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Abstract 

Agricultural decision-making by different interest groups (e.g., farmers, development agents and 

policy makers) usually takes place on different scales (e.g., plot, landscape and country). 

Currently, tools to assist decision-making are either dedicated to small-scale management 

guidance or large-scale assessment, which ignore the cross-scale linkages and interactions and 

thus may not provide robust and consistent guidance and assessment. Here, we developed an 

advanced agricultural modeling framework by integrating the strengths of conventional crop 

models in representing crop growth processes and management practices into a terrestrial 

biosphere model (TBM), the Dynamic Land Ecosystem Model (DLEM), to meet the cross-scale 

application needs (e.g., adaptation and mitigation). Specifically, dynamic crop growth processes, 

including crop-specific phenological development, carbon allocation, yield formation, biological 

nitrogen fixation processes, and management practices such as tillage, cover cropping and 

genetic improvements, were explicitly represented in DLEM. The new model was evaluated 

against site-scale observations and the results showed that the model performed generally well, 

with an average normalized root mean square error of 19.91% for leaf area index and 17.46% for 

aboveground biomass at the seasonal scale and 14.42% for annual yield. Then the model was 

applied to simulate corn, soybean, and winter wheat productions in the conterminous United 

States from 1960 to 2018. The spatial patterns of simulated crop productions were consistent 

with ground survey data. Our model also captured both the long-term trends and interannual 

variations of the total national productions of the three crops. This study demonstrates the 

significance of fusing conventional crop modeling techniques into TBMs to establish a unified 

modeling framework, which holds the potential to address climate impacts, adaptation and 

mitigation across varied spatiotemporal scales. 
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1. Introduction 

Ensuring global food security while achieving sustainable agricultural development is a 

grand challenge for human society (Davis et al., 2016; Rosenzweig et al., 2014). During the past 

several decades, climate change and associated environmental stressors (e.g., water scarcity, pest 

prevalence, and soil degradation) have significantly impacted crop growth and production and 

are likely to reduce the resilience of global food systems (Bezner Kerr et al., 2022; Lesk et al., 

2016; Wheeler and von Braun, 2013). Agricultural activities (e.g., fertilization, irrigation, and 

cropland expansion) have, in turn, exacerbated climatic and environmental changes through 

pathways such as greenhouse gas (GHG) emissions, groundwater extraction, and nutrient 

pollution (Giordano and Villholth, 2007; Tian et al., 2016; Tian et al., 2020a). In view of the 

increasing uncertainty in the agriculture-climate-environment system caused by complex cross-

sector interactions, effective climate change mitigation and adaptation strategies in the 

agricultural sector are needed to limit further changes in the climate system and reduce the 

negative impacts of climate change on food production (Howden et al., 2007; Vermeulen et al., 

2012). Such mitigation and adaptation actions occur on multiple scales and are intertwined in 

intricate ways (Beveridge et al., 2018; Klein et al., 2007; Tol, 2005). Specifically, stakeholders’ 

adaptation decisions to sustain food production are usually carried out on a small scale (e.g., 

field-farm-landscape scales) and benefit local communities, as the influences of climate change 

on crop growth and production are largely mediated by local environments and local-specific 

adaptation strategies would be more effective (Hammer et al., 2014; Ofgeha and Abshare, 2021). 

In contrast, agricultural mitigation measures (e.g., soil organic carbon sequestration and GHG 

mitigation) and their potential feedbacks to the environment and climate are often implemented 

and assessed on a broader scale (e.g., regional-national-global scales), because effective 
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mitigation requires the participation of major GHG emitters globally and is primarily driven by 

international agreements and ensuing national public policies (Hansen and Jones, 2000; Klein et 

al., 2007; Locatelli, 2011). Therefore, a unified tool that is capable of addressing cross-scale 

agricultural application demands is needed (Beveridge et al., 2018; Peng et al., 2020). Such a 

tool would enable a more consistent and robust prediction and assessment of crop production and 

the concomitant environmental and climatic tradeoffs. 

Process-based crop models are commonly used to inform small-scale farm adaptation 

decisions to sustain food production (Chenu et al., 2017; Jones et al., 2017). A number of crop 

models that simulate crop growth and yields as influenced by weather, soil, cultivar, and 

management strategies have been developed, such as DSSAT (Decision Support System for 

Agrotechnology Transfer) (Jones et al., 2003), APSIM (Agricultural Production Systems 

sIMulator) (Holzworth et al., 2014; Keating et al., 2003), EPIC (Erosion Productivity Impact 

Calculator) (Williams et al., 1989), and CROPSYST (Cropping Systems Simulation Model) 

(Stöckle et al., 2003; Stöckle et al., 2014). Physiological mechanisms of crop development, 

growth, and yield formation processes under biotic and abiotic stresses, and farming 

management practices such as tillage and irrigation, are well-represented in these models. 

However, since crop models are originally designed for farmer’s decision support, they generally 

focus on field-scale yield simulation over homogeneous plot conditions. Meanwhile, they 

typically have a reduced-form representation of hydrologic, energy and biogeochemical cycles. 

These properties limit their ability to simulate regional crop production, assess mitigation 

potential in the agriculture sector, and evaluate the environmental impacts of agricultural 

management activities. 
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Terrestrial biosphere models (TBMs) with agricultural components provide new insights for 

agricultural climate change mitigation and adaptation on a broader scale (Bondeau et al., 2007; 

Lombardozzi et al., 2020; McDermid et al., 2017). Most TBMs have included detailed 

hydrological, biophysical, and biogeochemical processes and can be further integrated with 

general circulation models for future climate change impact projections (Alo and Wang, 2008; 

Fisher et al., 2014; Schaphoff et al., 2006). Therefore, they can potentially be used to simulate 

regional crop production under historical and future climate scenarios, assess the mitigation 

potential of agricultural management options, and quantify the exchange of carbon, water, 

nutrient and energy fluxes within the agriculture-climate-environment system. However, the 

representation of agriculture in most TBMs is relatively simple (e.g., lacking or simplifying 

dynamic crop growth processes and management practices), with some TBMs even treating 

crops as natural grasses though using different eco-physiological parameters as a distinction 

(Betts, 2005; McDermid et al., 2017). Since crops have rather different phenological 

development processes compared with natural vegetation and often involve implementation of 

management practices (e.g., irrigation and fertilization), such simplified schemes are unlikely to 

be able to closely replicate observed yields under varying climatic and environmental conditions 

across different spatiotemporal scales, which limit their use for agricultural adaptation and 

mitigation assessments. 

In view of the strengths and weaknesses of process-based crop models and TBMs, it is 

highly desirable to integrate these two types of models into a unified framework to complement 

each other (Peng et al., 2020). Such a framework is capable of meeting cross-scale agricultural 

application needs and providing more robust and consistent predictions and assessments. Some 

recent developments of TBMs have attempted to move in this direction, such as the Joint UK 
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Land Environment Simulator (JULES) (Van den Hoof et al., 2011), the Organizing Carbon and 

Hydrology in Dynamic Ecosystems Model (ORCHIDEE) (Wu et al., 2016), the Lund Potsdam 

Jena managed Land model (LPJmL5) (Lutz et al., 2019), and the Community Land Model (CLM) 

(Boas et al., 2021; Lombardozzi et al., 2020; Peng et al., 2018). These augmented models are not 

only conducive to yield simulation, but also improve the estimation of regional-scale carbon, 

water and energy exchanges within the agriculture-climate-environment system (Boas et al., 

2021; Lokupitiya et al., 2009; Song et al., 2013). However, despite these recent progresses, most 

TBMs still lack a sound representation of crop-specific physiology and/or agricultural land-use 

changes and management practices (e.g., tillage, cover cropping, and genetic improvement). 

Moreover, some TBMs still fail to adequately represent the effects of multiple environmental 

changes (e.g., CO2 fertilization, nitrogen (N) deposition, and ozone pollution) on crop growth 

and development. Improvements in our knowledge of the environmental and management factors 

influencing crop growth and yield will further deepen our understanding of the food-energy-

water nexus and lead toward sustainable agricultural systems. 

In this study, we implemented such a unified framework in the platform of the Dynamic 

Land Ecosystem Model v4.0 (hereinafter referred to as the agricultural module of DLEM v4.0), 

which is well-recognized for simulating coupled carbon-water-nutrient cycles (Pan et al., 2021; 

Tian et al., 2010; Tian et al., 2020b; Yao et al., 2020). Specifically, leveraging the strengths of 

DLEM v4.0 in representing hydrological, biophysical and biogeochemical processes under 

multiple environmental changes, we incorporated explicit and mechanistic representations of 

dynamic crop growth processes and agricultural management practices into it, including but not 

limited to crop-specific phenological development, carbon allocation, yield formation, and 

biological N fixation processes, as well as management practices such as tillage, cover cropping, 
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and crop genetic improvements. The performance of the new agricultural module in reproducing 

the seasonal variations and magnitudes of leaf area index (LAI), aboveground biomass, and yield 

was evaluated against field observations. Using this model, we also simulated corn, soybean, and 

winter wheat production in the conterminous United States (U.S.) over 1960-2018 and examined 

how they varied spatially and temporally.  

2. Materials and methods 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially 

explicit carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water 

systems across site, regional, and global scales (Pan et al., 2021; Tian et al., 2010; Tian et al., 

2020b; Yao et al., 2020). Five core components are included in DLEM v4.0 to simulate the 

biogeochemical and biogeophysical processes within terrestrial ecosystems: biophysics, plant 

physiology, dynamic vegetation, soil biogeochemistry, and natural and anthropogenic 

disturbances. Through coupling major biogeochemical-hydrological processes, DLEM is able to 

simultaneously depict the biosphere-atmosphere exchanges of CO2, nitrous oxide (N2O) and 

methane (CH4) as driven by multiple environmental forcings (e.g., climate, atmospheric CO2 

concentration, N deposition, tropospheric ozone pollution, and land use and land cover change). 

This capability provides a powerful tool for supporting the development of effective GHG 

mitigation options. DLEM has been widely evaluated and applied to estimate CO2, CH4 and N2O 

fluxes at multiple sites and regions like China (Ren et al., 2011; Tian et al., 2011), the United 

States (Tian et al., 2012a; Zhang et al., 2012), North America (Tian et al., 2015; Xu et al., 2012; 

Xu et al., 2010), and across the globe (Friedlingstein et al., 2020; Saunois et al., 2020; Tian et al., 

2020a). In addition, a land-aquatic interface has also been coupled to DLEM (Pan et al., 2021; 
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Yao et al., 2020), which enhances its ability to simulate nutrient loading from agroecosystems 

and investigate potential mitigation strategies. 

2.1. Development of the agricultural module of DLEM v4.0 

The new agricultural module is developed based on previous agricultural versions of DLEM 

(DLEM-Ag and DLEM-Ag2), which included simplified crop growth processes and basic 

management practices (e.g., N fertilization, irrigation, and rotation) (Ren et al., 2012; Tian et al., 

2012b; Zhang et al., 2018). While DLEM-Ag and DLEM-Ag2 can achieve a good performance 

at specific sites, their performance in regional-scale simulations has been relatively poor 

(especially when simulating long-term series of regional crop production) (Zhang et al., 2018). 

Moreover, their ability in quantifying impacts of agricultural activities on biosphere-atmosphere 

feedback is also limited. 

To overcome the above shortcomings, the new agricultural module in DLEM v4.0 has major 

improvements in five aspects: crop phenological development, carbon allocation, yield 

formation, biological N fixation, and management practices (Table S1). First, we included crop-

specific phenological development schemes, with phenology-stage-dependent environmental 

stresses explicitly considered. Second, a new dynamic carbon allocation scheme was 

implemented, where the allocation fraction of net assimilates to different vegetation pools is 

determined by a prescribed growth-stage dependent carbon allocation curve and modified by 

water, light, and N stresses. Third, the yield formation process was improved by calculating crop 

yield as the balance between available carbon supply to the reproduction pool and the actual 

carbon demand for grain filling. The actual carbon demand for grain filling of different crops 

was calculated using crop-specific methods derived from relevant studies (Gaspar et al., 2017; 

Gregory and Atwell, 1991; Gregory et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart 
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and Shoup, 2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm, 1998; 

Yamagata et al., 1987). Meanwhile, the translocation of dry matter between the stem tissue and 

the reproduction pool to supplement grain filling was also considered. Fourth, a new biological N 

fixation scheme was included, where the N fixation rate is dependent on soil temperature, soil 

moisture, N availability, substrate concentration, and crop phenological stage. Finally, we 

incorporated several important management practices (i.e., tillage, cover cropping, and crop 

genetic improvements) in the new model and implemented a dynamic crop rotation scheme 

through introducing time-varying crop rotation maps to better reflect the interannual changes in 

distributions of different crop types. 

2.1.1. Crop phenological development 

The life cycle of a crop can be divided into several phenological stages that influence the 

development of crop canopy structure (e.g., LAI and canopy height), the allocation of carbon and 

nutrients among crop tissues, and the biological N fixation process. Some of these phenological 

stages are general to all crops, such as sowing, germination, emergence, physiological maturity, 

and harvest; while other stages are crop-specific such as the tassel initiation and silking stages of 

corn. DLEM-Ag uses prescribed static LAI curves derived from satellite images to determine 

phenology (Ren et al., 2012). DLEM-Ag2 divides the life cycle of all crops into the same eight 

stages and does not consider environmental stresses on phenological development (Zhang et al., 

2018), which have been shown to be critical for determining phenological stages (Gungula et al., 

2003; Uhart and Andrade, 1995; Wilhelm et al., 1993). Our new model explicitly considers the 

phenological differences among crops as well as phenology-stage-dependent environmental 

stresses. It also adopts two separate schemes to determine phenological stages of various crop 

types: a general crop scheme (GCS) for some crops (currently including rice, peanuts, cotton, 
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sorghum, barley, rye, cassava, potato, rapeseed, sugarbeet and sugarcane, but can be flexibly 

expanded if needed) and a specific crop scheme (SCS) for other crops (currently including corn, 

soybean, and wheat). For the GCS, we used a unified phenological development cycle similar to 

that in DLEM-Ag2 but included more detailed phenological stages and the environmental 

stresses (e.g., water and N) on phenological development. Crop life cycle in the GCS is divided 

into ten stages: sowing, germination, emergence, end of juvenile, floral initiation, flowering, 

beginning of grain filling, end of grain filling, maturity, and harvest (Figure 1). Each crop type 

using the GCS is specifically parameterized. The SCS has the same basic characteristics as the 

GCS, but it additionally includes crop-specific phenological stages (Table S2), such as the tassel 

initiation and silking stages for corn, beginning of pod growth and end of pod growth stages for 

soybean, and terminal spikelet and end of ear growth stages for winter wheat, and the main 

growth tissues also differ across the crops’ various phenological stages. Moreover, the SCS also 

includes crop-specific physiological characteristics, such as photoperiodism and biological N 

fixation for soybean, and vernalization for winter wheat. 
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Figure 1. Crop life cycle in the general crop scheme of the Dynamic Land Ecosystem Model v4.0. fCBD_emer, 

fCBD_juve, fCBD_fini, fCBD_flow, fCBD_bfill, fCBD_efill, and fCBD_matu denote the target fraction of 

Cumulative Biological Days required to reach the phenological stages of emergence, end of juvenile, floral 

initiation, flowering, beginning of grain filling, end of grain filling, and maturity, respectively. 

The crop life cycle begins with seed sowing or planting. In DLEM-Ag and DLEM-Ag2, 

crop sowing dates have been prescribed and remain unchanged, which may lead to large errors in 

the simulated yields considering that crop planting dates vary annually due to changing weather 

conditions (Kucharik, 2006; Laux et al., 2010; Yang et al., 2020). In contrast, sowing dates in the 

new model are dynamically simulated rather than prescribed. To determine crop sowing dates, 

sowing trigger criteria modified from CLM4.5 were used (Levis et al., 2012). The original 

sowing trigger criteria in CLM4.5 include: (1) a 10-day running average of mean air temperature 

that exceeds a threshold; (2) a 10-day running average of minimum air temperature that exceeds 

a threshold; and (3) a 20-year running average of 8℃-based growing degree-days (GDD) from 

April to September that exceeds a threshold. However, these criteria have been found to lead to 

earlier sowing dates than the actual, because the GDD criterion is easily met and thus the sowing 

date is in fact determined by the first two criteria (Chen et al., 2015; Chen et al., 2018). To this 

end, we have modified the GDD criterion to be the cumulative thermal time from the earliest 

sowing date (defined by input data) that is greater than the crop-specific threshold (Peng et al., 

2018). Summarizing, the revised sowing trigger criteria used in DLEM v4.0 are as follows: 

���
������	
��
�
�� � ����	 � ����	
��
������� � ������������ � ������������� � ���  (1) 

where ����	
��
�
��  and ����	
��
��  denote the crop-specific prescribed earliest and latest 

sowing dates, respectively, which are obtained from input data; ����	 denotes the simulated 

sowing date; �����
 and �����

 denote the crop-specific thresholds of the 10-day running average 
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and minimum temperatures for sowing; ������� and ������� denote the actual 10-day running average 

and minimum air temperatures, respectively; ������  denotes the crop-specific threshold of 

minimum thermal time for sowing; ��� denotes the accumulated thermal time from the earliest 

sowing date to the current day, which is calculated using Equations (A1) and (A2) in Appendix 

A1.1. If the above criteria are not met, crops will be sown at the prescribed latest sowing date. 

Seed germination is triggered if the number of days after the simulated sowing date is larger 

than the crop-specific threshold. The initiation and duration of the subsequent phenological 

stages (i.e., from emergence to maturity) are determined according to the Biological Days (BD)-

based phenological development scheme (Soltani and Sinclair, 2012). Specifically, we first 

calculate the daily BD (i.e., an indicator of daily development rate) using a 3-segment 

temperature response function, with the vernalization and photoperiod effects as well as 

environmental stresses considered (Equation (2)); then the fraction of Cumulative Biological 

Days (fCBD), an indicator of cumulative crop development rate updated at a daily time-step, is 

calculated as the actual accumulated BD from germination to the current day divided by the total 

BD required for maturity (Equation (3)). A phenological stage is predicted to occur when the 

calculated fCBD reaches the target fCBD of that stage. 

 ���� !� = �	#$%&' × $$%&' × )	*%&' × %���
�� (2) 

 %+!� = ∑ ���� !�-.��
�� ��0�
�������1�∑ ���� !����.���0�
�������1�  (3) 

where ���� !�  denotes daily crop development rate; �	#$%&', $$%&', )	*%&', and %���
�� 

denote the inhibition of the potential crop development rate by temperature, photoperiod, 

vernalization, and environmental stresses, respectively, and are calculated using Equations (A3)-

(A8) in Appendix A1.2; %+!�  denotes the fraction of accumulated ���� !�  (i.e., from 
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germination to the current day) to total BD required for maturity, in which %+!� is equal to 0 at 

the germination stage and equal to 1 at the maturity stage. The crop is harvested immediately 

after maturity or when the growing season length of crops exceeds the crop-specific longest 

growing days. 

Along with the development of phenology, crop LAI is updated at a daily time step and 

ceases increase at the beginning of the reproductive phase. The daily LAI is calculated as a 

function of leaf carbon content and specific leaf area (SLA; the ratio of leaf area to leaf dry mass) 

(Equation (A9) in Appendix A1.2). Meanwhile, following CLM 4.5 (Levis et al., 2012), crop 

canopy height also varied with phenological stages and is obtained by scaling the maximum 

canopy height by the daily LAI (Equation (A10) in Appendix A1.2). 

2.1.2. Carbon assimilation and allocation 

Photosynthesis processes in the agricultural module of DLEM v4.0 are inherited from a 

previous DLEM version (Tian et al., 2010). However, to improve the representation of C4 plant 

(e.g., corn and sorghum) responses to environmental stresses (e.g., temperature, moisture, and 

radiation), we further incorporated an enzyme-driven C4 photosynthesis routine (Di Vittorio et 

al., 2010), which uses an enzyme-driven bundle sheath CO2 concentration to substitute the 

diffusion-driven internal CO2 concentration available to ribulose-1,5-bisphosphate carboxylase-

oxygenase (Rubisco) for carbon assimilation. 

For daily carbon allocation, DLEM-Ag and DLEM-Ag2 do not consider environmental 

stresses when allocating net carbon assimilates to the leaf, stem, and reproduction pools. To 

overcome this limitation, we implemented a new dynamic carbon allocation scheme in the 

agricultural module of DLEM v4.0. The potential allocation ratios followed a crop-specific 

dynamic carbon allocation curve across phenological stages (Figure S1) (Gaspar et al., 2017; 
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Gregory and Atwell, 1991; Gregory et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart 

and Shoup, 2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm, 1998; 

Yamagata et al., 1987), which were further regulated by light, N, and water stresses (Song et al., 

2013) to obtain the actual ratios: 

 

���
��
���
� �

�2 = �

�2,�1 + 6 × 73 − %: − %; − %<=���
� = ���
�,� + 6 × 71 − %:=1 + 6 × 73 − %: − %; − %<=��11� = ��11�,� + 6 × 72 − %; − %<=1 + 6 × 73 − %: − %; − %<=

��
�� = #�'?+����
 × ��
��,�, +�
����@+����
 × ?1 + 6 × 73 − %: − %; − %<=@
 (4) 

where �

�2 , ���
� , ��11�, and ��
��  denote the actual carbon allocation ratios for leaf, stem, 

root, and reproduction pools modified by environmental stresses, respectively; �

�2,�, ���
�,�, 

��11�,� , and ��
��,�  denote the potential carbon allocation ratios for leaf, stem, root, and 

reproduction pools, respectively, which are derived from the prescribed growth-stage dependent 

carbon allocation curve; 6 is a scaling parameter representing the sensitivity of an allocation 

ratio to changes in light, N, and water stresses; %:, %; , and %< denote the light, N, and water 

stresses, respectively, which are calculated using Equation (A11) in Appendix A2; +����
  is the 

net carbon assimilates available for allocation; and +�
����  is the actual carbon demand for 

fulfilling grain filling, which is calculated as: 

 +�
���� = �AB × CD × E�
����0 (5) 

where �AB denotes the actual kernel weight at physiological maturity, which is determined as 

the product of daily BD and potential kernel growth rate (pKGR) and is subject to heat and N 

stresses (calculated using Equation (A12) in Appendix A2); CD denotes grain number per plant, 

which is calculated using crop-specific methods (Fischer, 1985; Keating et al., 2003; Vega et al., 
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2001; Zheng et al., 2014) (calculated using Equation (A13) in Appendix A2); and E�
����0 

denotes planting density (i.e., number of plants per square meter). 

This dynamic carbon allocation scheme allows optimizing crop growth processes across its 

phenological stages. During the emergence stage, carbon stored in the seeds is allocated to the 

leaf pool and root pool at a fixed ratio of 0.6 and 0.4, respectively; during the vegetative phase, 

net assimilates are preferentially allocated to leaf, root, and then stem to facilitate capture of 

solar radiation and uptake of nutrients and water; during the reproductive phase, the reproduction 

pool has the highest priority of carbon allocation to fulfill grain filling. 

2.1.3. Yield formation 

In DLEM v4.0, the estimation of crop yield adopts a different algorithm from DLEM-Ag 

and DLEM-Ag2. Specifically, in DLEM-Ag, crop yield is estimated as the product of total 

aboveground biomass and a constant harvest index, which may lead to deviation in the simulated 

yields considering that harvest index actually varies with climate conditions, farming practices, 

and environmental factors (Hay, 1995; Porker et al., 2020; Sinclair, 1998). In DLEM-Ag2, crop 

yield is determined by the actual carbon demand for grain filling, where a single empirical 

equation related to stem dry weight is used to calculate the actual carbon demand of all crops, 

even though the grain filling characteristics differ by crops. In DLEM v4.0, yield formation 

follows a supply-demand relationship. That is, it is estimated as the balance between the 

available carbon assimilates supply to the reproduction pool and the actual carbon demand for 

crop to fulfill grain filling (Jones et al., 2003; Villalobos et al., 1996). Moreover, we use various 

methods derived from relevant studies, with crop-specific grain filling characteristics considered, 

to calculate the actual carbon demand of different crops (Equation (5)). The translocation of dry 

matter between the stem tissue and the reproduction pool is also considered in the new model, 
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allowing up to 20% of carbon to be translocated from the stem pool to the reproduction pool to 

supplement grain filling if the available carbon assimilates cannot satisfy the actual carbon 

demand. If excess assimilates are available, the carbon that exceeds the actual carbon demand 

will be re-translocated from the reproduction pool to the stem pool to ensure mass balance. 

2.1.4. Biological nitrogen fixation 

Crops like soybeans are able to fix N to meet nutrient requirements for growth. In DLEM-

Ag and DLEM-Ag2, the biological N fixation is determined by the prescribed PFT-specific 

annual N fixation rate and CO2 concentration, which does not consider environmental stresses 

and the effects of crop growth stages. In DLEM v4.0, the biological N fixation process has been 

improved, which is calculated as a function of potential N fixation rate, soil temperature, soil 

moisture, soil mineral N concentration, substrate carbon concentration, and crop phenological 

stage (Liu et al., 2011): 

 D2�F = D2�F,�1� × %�1�
G × %�1�
< × %�1�
; × %�1�
H × %�I
�  (6) 

where D2�F is the actual biological N fixation rate; D2�F,�1� is the potential N fixation rate; %�1�
G  

is a soil temperature factor; %�1�
< is a soil moisture factor; %�1�
; is a soil mineral N factor; %�1�
H 

is a function of substrate carbon concentration; and %�I
� is a factor of crop phenological stage 

(calculated using Equation (A14) in Appendix A3). 

2.1.5. Agricultural management practices 

Previous DLEM versions have incorporated common management practices, including N 

fertilization, irrigation, and crop rotation. N fertilization practice is represented by adding N 

directly to the soil ammonium and nitrate pools to meet crop N demands through both industrial 

fertilizer and manure application. Irrigation practice is implemented by assuming that soil 
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moisture would reach field capacity when irrigated, in which irrigation timing is determined as 

the point when soil moisture of the top layer dropped to 30% of maximum available water (i.e., 

field capacity minus wilting point) during the growing season (Ren et al., 2011). Crop rotation is 

implemented by allowing different crop types to exist on the same soil during different periods 

of growing/planting cycles (e.g., rotation of winter and summer crops). 

In the new model, besides including more management practices like tillage and cover 

cropping, we also incorporated genetic improvement options, as increased crop yields in the past 

decades can be largely attributed to improvements in both management practices and crop 

genetic breeding (Duvick, 1984; Duvick, 2005; Hammer et al., 2009; Pingali, 2012). Four types 

of tillage practices (i.e., no-tillage, conservation tillage, reduced tillage, and conventional tillage) 

are considered in our model, based on the differences in tillage depth, mixing efficiency, and the 

proportion of soil surface covered by residues after tillage (Table S3) (Porwollik et al., 2019). 

Three aspects of tillage impacts on the agroecosystem are represented: (1) changes in surface 

residue coverage and the subsequent redistribution of soil organic matter (SOM) and nutrients 

within the tilled soil layers due to tillage mixing (Equations (B1)-(B3) in Appendix B1.1); (2) 

changes in litter interception, bulk density, soil moisture and other water-related effects on 

processes such as nitrification, denitrification, and leaching (Equations (B4)-(B10) in Appendix 

B1.2); and (3) changes in the soil decomposition rate (Equations (B12)-(B20) in Appendix B1.3). 

Cover cropping is represented in the new model through planting crops (e.g., winter rye and 

peas) during the normal fallow period and leaving crop biomass in the field at the beginning of 

the following main crop growing season (Huang et al., 2020). The impacts of crop genetic 

improvements on yields are represented through two mechanisms: (1) increasing the 

photosynthesis rate of crops (Long et al., 2015; Parry et al., 2011; Wu et al., 2019), and (2) 
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enhancing crop N uptake ability (Lu et al., 2018). Besides these new considerations, we have 

also improved the representation of the existing rotation practice, where a dynamic rotation 

scheme is incorporated into the new model through introducing time-varying crop rotation maps, 

rather than the static rotation map in previous versions. 

2.2. Input data 

To drive DLEM v4.0, long-term spatial datasets at a resolution of 5×5 arc-min were 

developed, including climate, atmospheric CO2 concentration, N deposition, soil properties, crop 

rotation, N fertilizer use rates, manure N application rates, irrigation, tillage intensity, and the 

earliest and latest crop planting dates (Table 1). Specifically, the historical daily climate dataset 

(including precipitation, solar radiation, maximum, minimum and mean temperatures) from 1860 

to 2018 was reconstructed from the North American Land Data Assimilation System product 

(Mitchell et al., 2004; Xia et al., 2012), the Climate Research Unit‐National Centers for 

Environmental Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model 

dataset (Boucher et al., 2020), using a revised delta downscaling method (Liu et al., 2013). 

Monthly atmospheric CO2 concentration data from 1860 to 2018 were obtained from the NOAA 

GLOBALVIEW-CO2 dataset derived from atmospheric and ice core measurements 

(www.esrl.noaa.gov). Monthly atmospheric N deposition data from 1860 to 2018 were acquired 

from the International Global Atmospheric Chemistry (IGAC)/Stratospheric Processes and Their 

Role in Climate (SPARC) Chemistry–Climate Model Initiative (CCMI) (Eyring et al., 2013). 

Soil physical and chemical properties were obtained from the ISRIC‐WISE Harmonized Global 

Soil Profile dataset (Batjes, 2008). The annual crop rotation dataset from 1910 to 2018 was 

developed by combining the United States Department of Agriculture (USDA) Cropland Data 

Layer (CDL) product and the USDA-National Agricultural Statistics Service (NASS) survey 
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data of county-scale crop planting areas, using the spatialization method implemented in Yu et 

al. (2018). The annual crop‐specific N fertilizer use data from 1910 to 2018 was reconstructed 

using the state-level N fertilizer use rates from USDA-NASS and the national-level commercial 

N fertilizer consumption data from Mehring et al. (1957) and USDA-ERS (2019), following Cao 

et al. (2018). The annual manure N application dataset from 1860 to 2018 was acquired from 

Bian et al. (2021). The annual crop-specific irrigation dataset from 1950 to 2018 was downscaled 

from the county-scale irrigation reanalysis dataset (McManamay et al., 2021) and the USDA-

NASS county-scale irrigated cropland area, using the MODIS Irrigated Agriculture Dataset 

(MIrAD) (Brown and Pervez, 2014; Pervez and Brown, 2010) as a base map. The annual tillage 

intensity dataset from 1960 to 2018 was reconstructed from the county-scale tillage practices 

survey data (1989–2011) obtained from the National Crop Residue Management Survey (CRM) 

of the Conservation Technology Information Center (https://www.ctic.org/CRM). Tillage maps 

for missing years were kept the same as the nearest years when data were available. The original 

five types of tillage practices in the CRM dataset were reorganized into four types through 

combining the ridge tillage and mulch tillage types in CRM to the conservation tillage type in 

DLEM v4.0. The county-scale CRM dataset was combined with the CDL-derived crop rotation 

map and the USDA-NASS crop planting area to estimate historical spatial distributions of tillage 

practices. The state-level earliest and latest crop planting dates were obtained from the USDA-

NASS survey report (NASS, 2010), which provides the planting and harvesting windows in most 

of the historical years. Other auxiliary data such as topography and river network data were 

obtained from our previous studies (Tian et al., 2010; Tian et al., 2012b; Tian et al., 2020b; Xu et 

al., 2019).
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Table 1. Input datasets to drive DLEM v4.0. 

Dataset name Period  
Spatial 

resolution  

Temporal 

resolution 
Methods and data sources 

Climate (precipitation, solar 

radiation, maximum, minimum  

and mean temperatures) 

1860-2018 5 arc-min Daily 

Reconstructed from the North American Land Data Assimilation System product (Mitchell et 

al., 2004; Xia et al., 2012), the Climate Research Unit-National Centers for Environmental 

Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model dataset (Boucher 

et al., 2020), using a revised delta downscaling method (Liu et al., 2013) 

CO2 concentration 1860-2018 5 arc-min Monthly Obtained from the NOAA GLOBALVIEW-CO2 data set (www.esrl.noaa.gov) 

Nitrogen deposition 1860-2018 5 arc-min Yearly 

Acquired from the International Global Atmospheric Chemistry (IGAC)/Stratospheric 

Processes and Their Role in Climate (SPARC) Chemistry–Climate Model Initiative (CCMI) 

(Eyring et al., 2013) 

Soil physical and chemical 

properties (e.g., texture and pH) 
One time 5 arc-min One time Obtained from the ISRIC‐WISE Harmonized Global Soil Profile dataset (Batjes, 2008) 

Crop rotation maps 1910-2018 5 arc-min Yearly 

Developed by combining the United States Department of Agriculture (USDA) Cropland Data 

Layer (CDL) product, the USDA-National Agricultural Statistics Service (NASS) survey data 

of county-scale crop planting area, and the Google Earth Engine cloud computing platform, 

using the spatialization method implemented in Yu et al. (2018) 

Crop-specific nitrogen fertilizer 

use rate 
1910-2018 State-level Yearly 

Reconstructed using the state-level N fertilizer use rates from USDA-NASS and the national-

level commercial N fertilizer consumption data from Mehring et al. (1957) and USDA-ERS 

(2019), following a method similar to that used in Cao et al. (2018) 

Manure nitrogen application 1860-2018 5 arc-min Yearly Acquired from Bian et al. (2021) 

Crop-specific irrigation map 1950-2018 5 arc-min Yearly 

Using the MODIS Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez 

and Brown, 2010) as a base map, and then combining the county-scale irrigation reanalysis 

dataset derived from the United States Geological Survey (USGS) (McManamay et al., 2021) 

and the USDA-NASS county-scale irrigated cropland area to extrapolate the spatially explicit 

irrigation map in historical years 

Tillage map 1960-2018 5 arc-min Yearly 

Reconstructed from the county-scale tillage practices survey data obtained from the National 

Crop Residue Management Survey (CRM) of the Conservation Technology Information 

Center (https://www.ctic.org/CRM), where tillage maps for missing years were kept consistent 

with the nearest years for which data were available 

The earliest and latest crop  

planting dates 
One time State-level One time Obtained from the USDA-NASS survey report (NASS, 2010) 

Auxiliary data (e.g., topography 

and river network) 
One time 5 arc-min One time 

Obtained from previous DLEM studies (Tian et al., 2010; Tian et al., 2012b; Tian et al., 

2020b; Xu et al., 2019) 
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In addition, to better represent crop growth characteristics across a wide range of 

temperature and precipitation regimes, we divided corn, soybean and winter wheat varieties in 

the U.S. into seven, seven, and three groups, respectively (Figure S2), based on the classification 

of relative maturity groups (Zhang et al., 2007; Zhang et al., 2020). The spatial distribution of 

crop maturity groups remains relatively stable over time but differed in several genetic 

characteristics, including the total CBD required for maturity, the timing and duration of 

different phenological stages, and photoperiod-related parameters (Table S4). The spatial 

distribution of corn variety groups was adapted from the corn maturity zones provided by the Elk 

Mound Seed Company (https://www.elkmoundseed.com/seed-corn/seed-corn-resources/), and 

we merged the zone with maturity between 91 and 95 days and the zone with maturity between 

95 and 100 days into one. The distribution of soybean variety groups was derived from the 

revised optimum adaptation zones for soybean maturity groups (Zhang et al., 2007). The 

distribution of winter wheat variety groups was determined based on the wheat production map 

by the National Association of Wheat Growers (https://www.wheatworld.org/wheat-101/wheat-

production-map/), and we divided the U.S. winter wheat varieties into three groups, i.e., soft 

white winter wheat, hard red winter wheat, and soft red winter wheat. 

2.3. Model calibration and validation 

We calibrated and validated the new model using data collected from multiple sources, 

including the AmeriFlux Network, the Greenhouse Gas Reduction through Agricultural Carbon 

Enhancement Network, the Resilient Economic Agricultural Practices Project, the USDA-NASS, 

and relevant literature. The values of the crop variety group parameters (Table S4) and the 

general model parameters related to crop growth processes (Table S5) were determined through 

model calibration within a reasonable range of reported values in literature. Specifically, we first 
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used the default parameters to run the model, and then we adjusted the parameters (within a 

±20% range of default values) to obtain a close match between the observed and predicted 

values for LAI, aboveground biomass, and grain yield. The parameter set obtaining the minimal 

bias between the simulated and measured values across all sites was adopted. In addition, we 

calibrated parameters related to crop genetic improvements (Table S6), including N uptake 

capability ( D.���F ) and the maximum carboxylation rate ( M-��F ). Specifically, we first 

calibrated the temporal changes of D.���F using the time series of D.���F obtained from Lu et 

al. (2018), in which a logistic equation was used to model the impacts of crop genetic 

improvements in enhancing D.���F. Then, a linear regression model was used to estimate the 

temporal changes in increasing rate of M-��F to obtain the best match between the simulated time 

series of national crop yields and the USDA-NASS records. 

After model calibration, field observed LAI, aboveground biomass, and yield data 

(excluding the data for model calibration), as well as the regional-scale crop production survey 

data were used to evaluate the new model performance. The distribution and description of these 

field sites are presented in Figure S3 and Tables S7-S9. Several metrics were used to 

quantitatively evaluate the model performance, including the coefficient of determination (R2), 

the root mean square error (RMSE), and the normalized root mean square error (NRMSE). 

2.4. Model implementation 

The implementation of the agricultural module of DLEM v4.0 includes three major steps: an 

equilibrium run, a spin-up run, and a transient run. The equilibrium run was driven by the 

average climate data during the 1860s and other environmental factors in 1860. The equilibrium 

state was assumed to be reached when the changes in carbon, N, and water pools between two 
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consecutive 20 years period were less than 0.5 g C m−2 year−1, 0.5 g N m−2 year−1, and 0.5 mm 

year−1, respectively. The spin-up run was driven by the detrended climate data during the 1860s 

to eliminate model fluctuations due to the mode transition from equilibrium run to transient run. 

Finally, the transient run was driven by the historical data from 1860 to 2018. 

2.5. Parameter sensitivity analysis 

The Sobol’s method, a variance-based global sensitivity analysis method, was used to 

measure the sensitivity of simulated crop yield to key model parameters. The Sobol’ method 

decomposes model output variance into the contribution of each input parameter and their 

interactions to calculate sensitivity index (Sobol, 1993):  

 
MN = O M�� + O O M�PPQ� + O O O M�PR + ⋯ + M�,T,…,�RQPPQ���  

(7) 

where MN represents the total variance of model output, M� represents the variance explained by 

the �th input parameter, M�P represents the variance explained by the interactions between the �th 

and V th input parameters, and '  represents the number of input parameters. The first-order 

sensitivity index is defined as �� = M� MN⁄ , the higher-order sensitivity indices are defined as 

��P = M�P MN⁄ , ��PR = M�PR MN⁄ , … , ��,T,…,�,…,� = M�,T,…,�,…,� MN⁄ , respectively, and the total-order 

sensitivity index �G� of the �th parameter is defined as the sum of its first-order sensitivity index 

and all the higher-order sensitivity indices involving it. Among them, ��  measures the direct 

impact of each input parameter on the output variance and �G�  measures the total impacts (i.e., 

the sum of  direct and indirect impacts). A large difference between ��  and �G�  indicates that the 

parameter mainly affects output through interactions. The Sobol’ method uses the Monte Carlo 

sampling scheme to generate random parameter samples. To calculate sensitivity indices, it 

requires a parameter set with a sample size of X × 72' + 2=, where X represents the number of 
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base samples and ' represents the number of input parameters. Here, X is set to 512 (You et al., 

2019).  

3. Results 

3.1. Site-scale model performance 

3.1.1. Evaluation of the simulated leaf area index 

The performance of the LAI simulation was evaluated against 15 site-years of field 

observations for corn, 6 site-years for soybean, and 10 site-years for winter wheat. Generally, the 

simulated LAI was consistent with the observed LAI (Figure 2), with RMSE (NRMSE) values 

for corn, soybean, and winter wheat being 1.26 m2/m2 (20%), 0.87 m2/m2 (19%), and 0.66 m2/m2 

(21%), respectively, and R2 values being 0.68, 0.66, and 0.57, respectively. The model also 

captured the seasonal dynamics of LAI, for example, in the US-Ne3 corn-soybean rotation site, 

where the model reproduced well the timing of LAI increase and decrease as well as its 

amplitude (Figure 3). However, some discrepancies still existed between the simulated LAI and 

the observations. Specifically, the simulated LAI underestimated the observed LAI at its low end, 

suggesting that the simulated leaf onset slightly lags behind the actual leaf onset, which may be 

due to the simulated planting date being later than the actual planting date. For instance, our 

simulated planting date of corn in 2001 at the US-Ne3 site is May 22, while the actual planting 

date was May 14. In addition, at the US-Ne3 site, the simulated LAI of corn was slightly 

overestimated during the late growing season compared with the observations, and the peak LAI 

of soybean was underestimated in the year 2002 and 2006 (Figure 3). Such deviations also 

occurred at other sites (Figure S4). 
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Figure 2. Site-scale comparisons between the simulated leaf area index (LAI) and field observations for corn (a), 

soybean (b), and winter wheat (c). Different colors indicate different crop sites, and a detailed description of these 

sites are shown in Tables S7-S9. 

 

Figure 3. The seasonal evolution of observed and simulated leaf area index (LAI) in a corn-soybean rotation rainfed 

site, US-Ne3, where corn is planted in odd years (2001, 2003, 2005, and 2007) and soybean is planted in even years 

(2002, 2004, 2006). 

3.1.2. Evaluation of the simulated aboveground biomass 

Generally, the simulated aboveground biomass was in line with the observed data (Figure 4), 

where the RMSE (NRMSE) values between them for corn, soybean, and winter wheat were 2912 

kg/ha (12%), 658 kg/ha (14%), and 278 kg/ha (27%), respectively, and the R2 between them 
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were 0.82, 0.79, and 0.45, respectively. Meanwhile, similar to LAI, the modeled seasonal 

variations in aboveground biomass at each site was well consistent with the observations (Figure 

5 and Figure S5). 

 

Figure 4. Site-scale comparisons between the simulated aboveground biomass and field observations for corn (a), 

soybean (b), and winter wheat (c). Different colors indicate different crop sites, and a detailed description of these 

sites are shown in Tables S7-S9. 

 

Figure 5. The seasonal evolution of observed and simulated aboveground biomass in a corn-soybean rotation 

rainfed site, US-Ne3, where corn is planted in odd years (2001, 2003, 2005, and 2007) and soybean is planted in 

even years (2002, 2004, 2006). 
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3.1.3. Evaluation of the simulated crop yield 

 The simulated yields agreed well with the observations of 94 site-years for corn, of 87 site-

years for soybean, and of 12 site-years for winter wheat (Figure 6), with the RMSE values for 

corn, soybean, and winter wheat ranging from 351 kg/ha to 1080 kg/ha, and the NRMSE values 

ranging from 11% to 20%. Meanwhile, the R2 values for all crops were greater than 0.4. 

Compared to corn and soybean, the simulation accuracy for winter wheat yield was lower, 

maybe partly due to the smaller number of observations in correlation analysis.  

 

Figure 6. Site-scale comparisons between the simulated yield and field observations for corn (a), soybean (b) and 

winter wheat (c). Different colors indicate different crop sites, and a detailed description of these sites are shown in 

Tables S7-S9.  

3.2. Spatial patterns of simulated crop production 

We used the calibrated model to simulate the production of corn, soybean, and winter wheat 

in the conterminous U.S. from 1960 to 2018. The simulation results show that corn and soybean 

had relatively high production in the Midwest region but low production in the southern region, 

while winter wheat had relatively high production in the Southern Plains and northwestern 

regions (Figure 7). Overall, the spatial pattern of simulated mean annual crop production during 

1960-2018 simulated by our model was consistent with the USDA-NASS survey data, and so it 
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was at the decadal scale (Figures S6-S8), which suggest that our model is capable of reproducing 

the spatial pattern of crop production across a wide range of temperature and precipitation 

regimes. At the grid level,  the simulated crop production was mostly significantly correlated (P 

value <0.05) with the USDA-NASS survey data  (Figure S9). The areas with R2 > 0.7 accounted 

for 88.91%, 97.51% and 64.62% of the total planting areas of corn, soybean and winter wheat, 

respectively. 

 

Figure 7. Comparisons between the spatial patterns of average annual crop production simulated by the Dynamic 

Land Ecosystem Model (DLEM) and derived from the United States Department of Agriculture-National 

Agricultural Statistics Service (USDA-NASS) during 1960-2018, as well as the differences between them. (a-c) 

Corn production obtained from the DLEM and the USDA-NASS and their difference; (d-f) Soybean production 

obtained from the DLEM and the USDA-NASS and their difference; (g-i) Winter wheat production obtained from 

the DLEM and the USDA-NASS and their difference. A negative value in the difference of production indicates an 

underestimation of production by the DLEM, and a positive value indicates an overestimation of production by the 

DLEM. 

In addition, we also used NRMSE and R2 to quantitatively evaluate the simulation accuracy 

of crop production at county scale (Figure 8). The NRMSE values between the DLEM-simulated 
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crop production and the USDA-NASS survey data for corn, soybean, and winter wheat were all 

smaller than 5%, and the corresponding R2 values were 0.93, 0.94, and 0.67, respectively. 

However, despite the overall good performance, it should be noted that there were still some 

discrepancies between the simulated production of winter wheat and the survey data (e.g., the 

underestimated winter wheat production in the northwestern U.S.). 

 

Figure 8. Quantitative comparisons between the average annual crop production during 1960-2018 simulated by the 

Dynamic Land Ecosystem Model (DLEM) and obtained from the United States Department of Agriculture-National 

Agricultural Statistics Service (USDA-NASS) survey data at county-scale for corn (a), soybean (b) and winter wheat 

(c), respectively. The number next to the color bar represents the normalized point density. 

3.3. Temporal variations of simulated crop production 

Temporal variations in simulated crop production at the national scale was also examined 

(Figure 9). From the 1960s to the 2010s, the national corn production almost tripled and the 

soybean production almost quadrupled. Winter wheat production showed large interannual 

variations, increasing at first and then decreasing. Generally, the temporal variations of national 

crop production simulated by DLEM agreed well with the USDA-NASS survey data. The 

NRMSE values between them for corn, soybean, and winter wheat ranged from 6.89% to 

10.92%, and the R2 values between them are all greater than 0.7. Meanwhile, the results indicate 

that the new model was capable of capturing the reductions in crop production caused by 
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extreme weather disasters. For example, the extreme drought event that occurred in 2012 swept 

most of the contiguous U.S. (Mallya et al., 2013), leading to a significant reduction in crop 

production, and our simulated results also showed a large reduction. However, it should be noted 

that the simulated production responded more severely to extreme weather events than the 

observations. For instance, the corn production loss in 2012 estimated by DLEM was about twice 

the actual loss relative to the average corn production in 2011 and 2013. 

 

Figure 9. Historical trends of national crop production simulated by the Dynamic Land Ecosystem Model (DLEM) 

and obtained from the United States Department of Agriculture-National Agricultural Statistics Service (USDA-

NASS) for corn (a), soybean (b) and winter wheat (c), respectively. 

4. Discussion 

4.1. General performance of the agricultural module of DLEM 

The site-scale validation results indicate that the DLEM-simulated LAI, aboveground 

biomass, and yield were generally consistent with the observations (Figures 2-6), although part 

of the modeled LAI during the late growing season was still overestimated and the peak LAI in 

some years was underestimated. The deviations in the simulated LAI may be partly due to the 

constant SLA used in our model. Specifically, daily LAI in DLEM is calculated based on the leaf 

carbon and the constant SLA, while SLA actually varies with the crop growth stage and is 

simultaneously regulated by environmental conditions (Danalatos et al., 1994; Tardieu et al., 

1999). However, the mechanism of how SLA responds to changes in climate and environmental 
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factors throughout the growing season is still unclear (Drewniak et al., 2013), making it difficult 

to include dynamic SLA in the model at this time. Another possible explanation for the 

deviations in the simulated LAI might be bias in the modeled planting date and growing season 

length. Specifically, our model tended to estimate later planting dates and longer growing 

seasons than observations (Figure 3), which cause the simulated LAI to maintain a high value for 

a longer period than the actual duration and in turn overestimates LAI during the late growing 

season. The accurate simulation of plant phenology (e.g., planting date and growing season 

length) has been shown to be critical for modeling productivity (Anapalli et al., 2005; Wallach et 

al., 2021; You et al., 2020). In our model, to reduce model complexity and its associated 

uncertainty, only temperature-derived metrics are used to determine planting date (Levis et al., 

2012). Given that planting date depends not only on temperature but on other factors as well, for 

example, soil moisture, terrain condition and factors that may affect farmers’ decisions such as 

labor and equipment availability (Kucharik, 2006; Sacks et al., 2010), it is not surprising that 

there are some discrepancies in the modeled phenology. Consideration of these additional factors 

on planting date may help to improve the simulation of crop phenology in the future. 

The spatial pattern of crop production simulated by our model was also comparable to 

survey data (Figure 7 and Figures S6-S8), although some discrepancies still exist. The 

underestimated winter wheat production in the northwestern U.S. may be partly due to the 

deficiency of our model in simulating available soil water. A similar problem has also been 

reported in the spatial pattern of winter wheat yield simulated by CLM 4.5 (Lu et al., 2017). In 

DLEM, we use a water regulation factor, β, to represent the limitation of soil water on 

photosynthesis and other water-related processes (Pan et al., 2015; Tian et al., 2010). A β value 

of 0 denotes complete water restriction, whereas a β value of 1 denotes no water stress. The 
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spatial pattern of DLEM-modeled β during the growing season of winter wheat indicates that the 

modeled β in the northwestern U.S. is very low (Figure S10), with an average value less than 0.5, 

suggesting that soil water availability severely limits photosynthesis in this region and thus leads 

to the underestimated production. If we applied full irrigation over this region, the simulated 

pattern of winter wheat production better captures the USDA’s spatial pattern (Figure S11). This 

result suggests that there is less water stress on winter wheat growth in the region than indicated 

by the model. Crop water supply may be enhanced by an abundant groundwater resource and 

snowmelt water in this region. However, these hydrological processes are under-represented in 

our model. In addition to water stress issues, the discrepancy in crop production patterns may 

also stem from the deficiencies of our model in representing the growth characteristics of winter 

wheat (e.g., frost tolerance and damage) and relevant farming practices (e.g., irrigation and 

fertilization). 

With respect to the simulation accuracy of different crops, we found that the accuracy of 

winter wheat production is lower than that of corn and soybean (Figures 7 and 8). Winter wheat 

has a unique growth cycle (i.e., planted in fall and harvested in summer) compared with summer 

crops. Therefore, it may also have different response mechanisms to environmental stresses due 

to its frequent exposure to frost damage (Lu et al., 2017; Vico et al., 2014). Frost damage and its 

related processes are not considered in our model. Another possible reason for the lower 

accuracy of winter wheat production may be that we limited winter wheat to only three varieties. 

The varieties of winter wheat span a large range of latitudes, so there exists large spatial 

heterogeneity in the temperature and precipitation regimes in which they grow that we have not 

fully captured (Zhang et al., 2020). The consideration of frost damage effects and a further 

subdivision of varieties may improve the estimation of winter wheat production in the future. 
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The advances in crop genetic and breeding technologies, agricultural expansion and 

intensive management practices have led to a one to four-fold increase in crop production in the 

U.S. during the past several decades (USDA, 2018). Our model captured this trend (Figure 9). 

Nevertheless, despite the overall good performance, the model probably has not captured some 

effects of improvements in genetic and breeding technologies on crop resistance to pests and 

diseases as well as adaptation to environmental stress (Bailey-Serres et al., 2019; Hammer et al., 

2002). This deficiency may partly explain the high sensitivity of our model to extreme weather 

disasters. In addition, the high sensitivity may be attributed to human adaptive behaviors such as 

farmers’ preparedness and response strategies to extreme weather (Annan and Schlenker, 2015), 

which are not considered in the model.  

In addition, we also compared the performance of the new model in simulating national crop 

production with a previous DLEM version, namely the DLEM-Ag2 (Figure S12). Generally, our 

new model achieved higher simulation accuracy than the DLEM-Ag2, in which the NRMSE 

values reduced by 6.24%, 1.21%, and 2.18% for corn, soybean and winter wheat, respectively, 

and the R2 values increased by 0.13, 0.04, and 0.11, respectively. Meanwhile, the new model 

better captured the interannual variations and trends of national crop production as compared 

with the DLEM-Ag2. For example, the DLEM-Ag2 overestimated national corn production in 

the 1960s and 1970s and substantially underestimated corn production after the 2000s, however, 

the new model simulated the production changes well over the entire period. The improved 

performance of the new model also demonstrated the effectiveness of the newly incorporated 

crop growth processes and agricultural management practices. 
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4.2. Parameter sensitivity analysis 

Since the new model involves a lot of parameters (Tables S4 and S5), we conducted global 

sensitivity analysis to quantify the relative importance of each model parameter to crop yield 

simulation using the Sobol’ method. The Sobol’ sensitivity analysis was implemented by 

evaluating the changes in simulated yield in response to variations in parameter values over a 

large amount of random parameter samples, which were generated using the Monte Carlo 

sampling scheme by assuming a uniform distribution for each parameter and randomly varying 

its value within 20% of the calibrated value (Tian et al., 2011). The number of parameters 

included in the analysis was 17, 19, and 26 for corn, soybean, and winter wheat, respectively, 

and after sampling, a total of 18432, 20480, and 27648 parameter samples were generated, 

respectively. In addition, we performed a resampling analysis over the generated parameter 

sample space to estimate the variability of the derived first-order (�� ) and total-order (�G� ) 

sensitivity indices, and the resulting standard deviations of these indices are displayed as error 

bars in Figures S13-S15. 

We used �� and �G�  to measure the relative contribution of each parameter to the variance of 

simulated yield. For corn, the top three most influential parameters revealed by both ��  and �G� 
are the lower optimal cardinal temperature required for photosynthesis (+�*�1���), maximum 

stomatal conductance (Y��F), and maximum grain number per plant (CD��F) (Figure S13). For 

soybean, there are slight differences in the ranking of influential parameters revealed by ��  and 

�G�  (Figure S14), but in general, the lower and upper optimal cardinal temperatures required for 

photosynthesis (+�*�1���  and +�*�1��T ) still play a dominant role, and Y��F  as well as the 

threshold of 10-day running average temperature for sowing (�����
) also have a significant 

impact. For winter wheat, the lower cardinal temperature for heat stress to reduce grain number 
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(Z	���	#$���) and �����
 are identified as influential parameters by both ��  and �G� , whereas 

+�*�1���  is identified as a dominant parameter by �G�  but not by �� , suggesting that this 

parameter mainly affects output through interactions with other parameters. Overall, +�*�1��� 

was identified as the most influential parameter affecting yield simulation for all the three crops, 

as this parameter determines the critical point of temperature at which photosynthesis rate 

reaches the optimum. 

4.3. Uncertainties 

Despite the overall sound performance of our model, some limitations remain in this study. 

First, the representation of groundwater and irrigation practice (i.e., without considering the 

irrigation amount and frequency) in our model is relatively simple, which biased the simulated 

soil moisture and then crop production. Considering that some satellite-derived soil moisture 

products are available (e.g., SMAP and ESA-CCI datasets) (Dorigo et al., 2017; Entekhabi et al., 

2010), we may solve this problem by assimilating soil moisture products into our model. Second, 

input data used to drive DLEM may introduce bias. For example, the crop-specific N fertilizer 

use rate was obtained from the state-level surveys, which cannot reflect the actual variations of 

fertilizer use in both magnitude and timing. Previous studies have developed some optimized 

fertilization schemes to better represent fertilization practice in the model (Fu et al., 2020; Leng 

et al., 2016), which could be incorporated into our model in the future. Third, cover cropping 

practices were not included in our regional-scale simulation due to the lack of an available 

spatialized dataset, which may also introduce biases in our results. Finally, as discussed in 

Section 4.2, crop yield simulations are sensitive to some parameters (e.g., +�*�1��� and Y��F) 

so uncertainty in model parameters also constitutes a possible source of deviation in our results. 

In the long term, our goal is to develop a crop module applicable to all crop growing regions 
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worldwide. Here, the parameterization and calibration schemes mainly focused on the three 

major crops grown in the U.S. Extending this parameterization effort to additional crops and 

varieties from other regions will likely be needed to make the model more broadly applicable. 

Addressing these limitations is critical to further improve the simulation performance of the new 

model at regional and global scales. 

4.4. Future research opportunities 

In this study, we focused on how a better mechanistic representation of the effects of 

environmental factors and management practices on crop growth processes improved model 

estimates of crop production and yield at both the site and regional scales. Applying this 

knowledge to future climate scenarios should improve our understanding of how climate change 

may impact crop production at the site scale and food security at the regional scale in the future. 

In addition, the model improvements described in this study provide new ways to evaluate the 

effectiveness of potential climate mitigation and adaptation policies to sustain crop production 

and help protect food security. For example, climate-smart practices such as no-tillage and using 

cover crops have been widely advocated to promote soil carbon sequestration and GHG 

mitigation while sustaining or boosting crop production (FAO, 2010). The incorporation of 

different tillage and cover cropping effects on soil characteristics and crop growth into DLEM 

4.0 allows the model to quantify the potential benefits of such climate-smart practices on GHG 

mitigation and crop production under future climate scenarios. Diversified crop rotations have 

also been advocated to reduce adverse environmental and climatic effects on crop production 

(Bowles et al., 2020), and when rotated with legumes, they can also contribute to climate change 

mitigation by reducing N fertilizer use (Ma et al., 2018). The inclusion of the dynamic crop 

rotation scheme in the new model allows us to explore the benefits of diversified crop rotations 



 

38 

 

on crop production and climate. Besides quantifying the benefits of climate mitigation and 

adaptation policies, the new model can help identify unintended consequences of other 

management policies, such as changes in nutrient loading from agroecosystems to river networks 

(Pan et al., 2021; Yao et al., 2020). 

5. Conclusion 

To meet the multiscale agricultural application demands (e.g., farm-scale decision support 

and regional-scale climate change mitigation), we developed an advanced agricultural modeling 

framework on the platform of DLEM v4.0 through incorporating a more detailed representation 

of crop growth processes and management practices, including but not limited to crop-specific 

phenological development, dynamic carbon allocation, yield formation, biological N fixation, 

and the implementation of tillage, cover cropping, and crop genetic improvement practices. 

Comprehensive evaluations against site-scale observations generally show good performance of 

the new agricultural module in simulating the seasonal variations and magnitudes of LAI and 

aboveground biomass and annual yield. Regarding the regional-scale performance, the simulated 

spatial pattern of crop production is also consistent with ground survey data. Meanwhile, the 

national average crop production estimated by our model has increased by 1–4 times from the 

1960s to the 2010s, which is consistent with the observed trend. Our new agricultural module 

holds the potential to better predict future crop production to deploy early-warning measures, and 

to assess the efficacy of potential agricultural climate change adaptation and mitigation strategies. 

 



 

39 

 

Acknowledgements 

This study has been supported partially by NSF (Grant numbers 1903722, 1922687) and 

NOAA (Grant number: NA16NOS4780204). 

 

Appendix A. Dynamic crop growth processes in DLEM 

A1. Crop phenological development 

A1.1. Planting date determination 

The accumulated thermal time from the earliest sowing date to the current day (���) is 

calculated as: 

��� = O ���� ��-.��
�� ��0

��
�
�� ��0  (A1) 

���� �� =
���
��                                      0,                              �% ���� � +�*���� [* ���� ≥ +�*���F                          ���� − +�*���� ,                             �% +�*���� � ���� � +�*�1���                      +�*�1��� − +�*����,                       �% +�*�1��� � ���� � +�*�1��T7+�*���F − ����= × ?+�*�1��� − +�*����@+�*���F − +�*�1��T , �% +�*�1��T � ���� � +�*���F

 (A2) 

where ���� ��  is the daily thermal time; ����  is the average air temperature; +�*���� , 

+�*�1���, +�*�1��T, and +�*���F are the crop-specific minimum, lower optimal, upper optimal, 

and maximum air temperatures required for photosynthesis, respectively. 

A1.2. Biological days-based crop phenological development scheme 

The effects of temperature (�	#$%&'), photoperiod ($$%&'), vernalization ()	*%&'), and 

environmental stresses (%���
��) on crop development rate are calculated as: 
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 �	#$%&' = ���� ��+�*�1��� − +�*���� (A3) 

 $$%&' = ��
�]1 − $$^	' × 7+EE − EE=, �% EE � +EE                       1,                        �% EE ≥ +EE          7%[* �['Y ��  _*[$=

]                        1,                        �% EE � +EE 1 − $$^	' × 7EE − +EE=, �% EE ≥ +EE        7%[* ^ℎ[*� ��  _*[$= (A4) 

 )	*%&' = ]1 − )^	' × 7M���� − +aXMbc�=,   �% +aXMbc� � M����                              1,                                    �% +aXMbc� ≥ M���� (A5) 

 +aXMbc� = ]+aXMbc�d� + Mbc��e − 0.5 × 7���F − 30=,   �% +aXMbc�d� � 10 �'� ���F > 30            +aXMbc�d� + Mbc��e,                      [�ℎ	* _['����['^  (A6) 

 Mbc��e =
���
�
���

              0,                  �% ���� � M	*��� [* ���� ≥ M	*��F���� − M	*���M	*1��� − M	*��� ,                �% M	*��� � ���� � M	*1���               1,                                �% M	*1��� � ���� � M	*M	*��F − ����M	*��F − M	*1��T ,                �% M	*1��T � ���� � M	*��F
 (A7) 

 %���
�� = i       #�j?%<, %<���@,                �% ^[k�'Y � ^��Y	 � 	'� V&)	'��	#�' l%<, #�j?%; , %;���@m , �% 	'� V&)	'��	 � ^��Y	 � %�[k	*�'Y1,                            %[* [�ℎ	* ^��Y	^              (A8) 

where  ���� ��  denotes the daily thermal time, which is calculated using Equation (A2) in 

Appendix A1.1; +�*���� and +�*�1��� denote the minimum and lower optimal air temperatures 

required for photosynthesis, respectively; $$^	'  is a cultivar-specific photoperiod sensitivity 

coefficient; EE is daylength; +EE is a cultivar-specific critical daylength parameter at which the 

rate of phenological development began to be restricted by daylength; )^	' is a cultivar-specific 

vernalization sensitivity coefficient; M����  is the number of vernalization days needed to 

saturate the vernalization response; +aXMbc denotes cumulative vernalization days; Mbc��e 

denotes vernalization day, representing the contribution of each day to vernalization; 

���F denotes the maximum air temperature; M	*��� , M	*1��� , M	*1��T , and M	*��F  are the 
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minimum, lower optimal, upper optimal, and maximum air temperatures required for 

vernalization, respectively; %<  and %;  denote drought and N stresses, respectively, which are 

calculated using Equation (A11) in Appendix A2; and %<���  and %;���  denote the minimum 

drought and N stresses, respectively (here set to be 0.5 (Peng et al., 2018)). In addition, the 

devernalization process is also considered in DLEM v4.0 when winter crops are exposed to high 

temperature, namely, if +aXMbc is less than 10 days and the maximum air temperature is 

higher than 30 ℃, then +aXMbc is decreased by 0.5 days per degree above 30 ℃; however, if 

+aXMbc is larger than 10 days, no devernalization will occur.  

Daily crop leaf area index (n�o) is calculated as: 

 n�o = #�'?+

�2 × �n�, n�o��F@ (A9) 

where +

�2  denotes leaf carbon content; �n� is a cultivar-specific parameter representing the 

ratio of leaf area to leaf dry mass; and n�o��F denotes the maximum LAI. 

Canopy height (Z-��1�0) is estimated by scaling the maximum canopy height (Z-��1�0,��F) 

with LAI: 

 Z-��1�0 = Z-��1�0,��F × #�' pq n�on�o��F − 1r , 1sT
 (A10) 

A2. Carbon allocation strategy 

The effects of light (%:), nitrogen (%;), and water (%<) stresses on the carbon allocation 

process are calculated as: 
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���
���
���
�� %: = 	j$?−	j�-1
2 × n�o@%; = min q D�-�D��F , 1r

%< = O %*[[�� × w�
��

�x�
w� =

���
��    0,                    �% y� � y-
1�
         y��F − y�y��F − y���,� , �% y-
1�
 � y� � y1�
�1,                     �% y� ≥ y1�
�     

 (A11) 

where 	j�-1
2 denotes the canopy light extinction coefficient; LAI denotes the leaf area index; 

D�-� denotes the actual N content in the vegetation pool; D��F denotes the maximum N content 

in the vegetation pool; %*[[��  denotes the root fraction in the soil layer �; w�  is a soil matric 

potential-related factor; y��F  denotes the maximum water potential, which represents the 

wilting point potential of leaves (currently set to be −1.5 × 10z); y� denotes the water potential 

of layer � (mm H2O); and y1�
� and y-
1�
 denote the water potential under which the stomata 

fully opens and closes, respectively (mm H2O). 

The actual kernel weight at physiological maturity (�AB) is calculated as the product of 

daily crop development rate (���� !�) and the potential kernel growth rate (pKGR), as well as 

heat and N stresses: 

 

���
��
���
� �AB = ���� !� × $ACc × %; × %I
��$ACc = $AB∑ ���� !�
�������2�

����������2�



%I
�� =
���
��     1,                                           �% ���� � Z	���	#$���         1 − ���� − Z	���	#$���Z	���	#$��F − Z	���	#$��� ,    �% Z	���	#$��� � ���� � Z	���	#$��F         0,                                          �% ���� > Z	���	#$��F               

 (A12) 

where ���� !� is calculated from Equation (2) in the main text; %; and %I
�� denote the N and 

heat stresses, respectively; $AB denotes the potential kernel weight, which is estimated as the 

ratio of potential kernel weight to the target BD during the grain filling period; Z	���	#$��� 
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and Z	���	#$��F  denote the minimum and maximum cardinal temperatures at which heat 

stress occurs. 

In terms of grain number (CD), previous studies have demonstrated that CD is strongly 

associated with the physiological status of a crop (e.g., plant growth rate and tissue biomass) 

during a critical period for seed set, in which the critical period for corn and wheat are around the 

flowering stage (Aluko and Fischer, 1988; Andrade et al., 1999; Bindraban et al., 1998; Early et 

al., 1967; Fischer, 1985; Zheng et al., 2014). For soybean, this period extends from the flowering 

stage to the beginning or middle grain filling stage (Board and Tan, 1995; Egli, 1998; Jiang and 

Egli, 1995; Vega et al., 2001). In our model, CD of corn is calculated based on an exponential 

function related to plant growth rate from the end of juvenile stage to the silking stage, similar to 

the methods implemented in the APSIM model (Keating et al., 2003); CD  of soybean is 

calculated based on an empirical linear model related to plant growth rate from the flowering 

stage to the start of grain filling stage (Vega et al., 2001); and CD of wheat and other crops are 

calculated from an empirical equation related to stem dry matter at anthesis (Fischer, 1985; 

Zheng et al., 2014): 

 

���
��CD = i CD��F × l1 − 	j$?−CD{ × 7ECc − ECc|��
=@m ,                   %[* _[*'#�j7{� + {T × ECc, CD��F=,                                                  %[* ^[ }	�'#�j7�X��
� × CDY��
� , CD��F=,              %[* kℎ	�� �'� [�ℎ	* _*[$^ECc = �X�� − �X��D�� 

 (A13) 

where CD��F is a cultivar-specific parameter representing the maximum grain number per plant; 

CD{ and ECc|��
 are genotype parameters related to the CD of corn, which are set to 0.83 and 

1.2, respectively (derived from the APSIM model); {� and {T denote the intercept and slope of 

the empirical linear model used to calculate the CD of soybean, which are set to 4.5 and 123.9, 

respectively (derived from Vega et al. (2001); �X��
� denotes the stem dry weight at anthesis; 
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CDY��
�  denotes the number of kernels per gram stem; ECc  denotes the plant growth rate 

during the critical period for seed set and is calculated by dividing the accumulated shoot dry 

matter during this critical period (�X�� − �X��) by the number of days of this period (D�� ), in 

which �X��  and �X��  denote the shoot dry matter at the end and beginning of this period, 

respectively. 

A3. Biological nitrogen fixation 

The influences of soil temperature ( %�1�
G ), soil moisture ( %�1�
< ), soil mineral N 

concentration ( %�1�
; ), substrate carbon concentration ( %�1�
H ), and crop phenological stage 

(%�I
�) on biological N fixation are calculated as: 

 

��
��
��
��
��
��
��
�%�1�
G = ]%#�j70, ��1�
 × ��1�
 × 745 − ��1�
= × 0.0001=,                 �% ��1�
 > 0                                           0,                                                           �% ��1�
 � 0%�1�
< = %#�' q1.82 ∗ ����� , 1r%�1�
; = %#�'7%#�j71 − 0.0784 × log7�)'=, 0=, 1=%�1�
H = %#�j q +�.|+�.| + {_ , 0.01r

%�I
� =
���
�
���

                   0,                                                          %[* %+!� � %Eℎ	'���%+!� − %Eℎ	'���%Eℎ	'1��: − %Eℎ	'��� ,       %[* %Eℎ	'��� � %+!� � %Eℎ	'1��:                   1,                              %[* %Eℎ	'1��: � %+!� � %Eℎ	'1���%Eℎ	'��F − %+!�%Eℎ	'��F − %Eℎ	'1��� ,     %[* %Eℎ	'1��� � %+!� � %Eℎ	'��F                   0,                                                        %[* %+!� > %Eℎ	'��F

 (A14) 

where ��1�
 denotes the soil temperature; � and ���� denote the actual and saturated soil moisture 

contents, respectively; �)' denotes the available soil N; +�.| denotes the substrate carbon; {_ 

denotes the Michaelis–Menten constant for CO2; %+!�  denotes the cumulative crop 

development rate from germination to the current day; %Eℎ	'��� denotes the time before which 

no N fixation happens; %Eℎ	'1��:  and %Eℎ	'1���  denote the beginning and end time within 

which the N fixation rate is not limited by crop phenological stage; %Eℎ	'��F denotes the time 
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after which the N fixation ceases. The values of %Eℎ	'��� , %Eℎ	'1��: , %Eℎ	'1��� , and 

%Eℎ	'��F are set to 15%, 30%, 55%, and 75% of the crop life cycle (Cabelguenne et al., 1999). 

Appendix B. Agricultural management practices in DLEM 

B1. Tillage practice 

B1.1. Effects of tillage implement on soil organic matter and nutrients contents 

The effects of tillage practice on litter pools include the incorporation of surface residues 

into the soil and the redistribution of SOM and nutrients in the tilled soil layers. In DLEM v4.0, 

litter pool can be classified into two categories: aboveground litter pool ( n���	*�� ) and 

belowground litter pool (n���	*|�). Both of the dead shoot biomass of crops due to turnover and 

the crop residues not removed from the field are directly added to n���	*��, and the dead root 

biomass as well as the root residue are added to the n���	*|�. Besides, part of n���	*�� will be 

transferred to n���	*|� through bioturbation and tillage mixing practice, which is the same as that 

implemented in LPJmL5 (Lutz et al., 2019). For the bioturbation pathway, we assumed that 

0.1897% of the n���	*��  is transferred to n���	*|�  per day to account for the vertical 

displacement of litter under no-tillage and natural vegetation conditions (Lutz et al., 2019); and 

for the tillage pathway, the amount of transfer depends on tillage intensity:  

 n���	*|�,��� = n���	*|�,� + n���	*��,� × %��F (B1) 

 n���	*��,��� = n���	*��,� × 71 − b���F= (B2) 

where n���	*|�,��� and n���	*��,��� denote the belowground and aboveground litter pools in the 

7� + 1=th day, respectively; n���	*|�,� and n���	*��,� denote the belowground and aboveground 
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litter pools in the �th day, respectively; and b���F denotes the mixing efficiency, with a value 

between 0 and 1. 

The redistribution of SOM and nutrients among the tilled soil layers is calculated based on 

the methods adopted in the Agricultural Policy Environmental EXtender (APEX) model 

(Williams et al., 2008): 

 �
 = �1
 × 71 − b���F= + �
 − �
d��� × b���F × O �1R
�

Rx�  (B3) 

where �
 is the amount of SOM/nutrients in layer � after mixing; �1
 is the original amount of 

SOM/nutrients in layer � before mixing; b���F denotes the mixing efficiency; � is the depth to 

the bottom of the tilled layer; �� is the tillage depth; X is the total number of soil layers affected 

by tillage operation; and �1R is the original amount of SOM/nutrients in layer { before mixing. 

B1.2. Effects of tillage implement on soil water processes 

The impacts of tillage operation on soil water processes in DLEM are mainly reflected in 

two aspects: (1) changes in litter interception due to reduced surface residue coverage and the 

accompanying changes in litter evaporation, soil evaporation and infiltration, as well as soil 

moisture content; (2) changes in soil bulk density due to tillage mixing and the accompanying 

changes in soil moisture content at saturation and field capacity. 

In DLEM, precipitation and irrigation water are either intercepted by crop canopy and 

surface litter or falls to the ground as throughfall, and will be lost through evapotranspiration, 

soil infiltration and surface runoff. Crop canopy interception is calculated as the same process as 

in the natural vegetation module of DLEM, which is estimated as the minimum of input water 

content and canopy water holding capacity (Tian et al., 2010). Litter interception is determined 
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as the balance of available input water content after canopy interception and actual water holding 

capacity of surface litter (kℎ_
��,�-�), in which kℎ_
��,�-� is calculated as: 

 kℎ_
��,�-� = kℎ_
��,��F × %
�� (B4) 

where kℎ_
��,��F  denotes the maximum water holding capacity of surface litter, which is 

obtained by multiplying n���	*�� with a conversion factor of 2 × 10d�##{Yd�, following Lutz 

et al. (2019) and Enrique et al. (1999); and %
�� denotes the fraction of soil surface covered by 

litter, which is calculated through adapting the equation from Gregory (1982): 

 %
�� = 1 − 	d��×:���
���  (B5) 

where �� denotes the area covered per dry matter of surface litter and is set to 0.004 in DLEM 

(Dadoun, 1993). 

The calculation of litter evaporation ( bM�E
�� ) is similar to the calculation of soil 

evaporation (bM�E�1�
) in DLEM, which is obtained by multiplying the potential evaporation 

7Eb�= estimated from the Penman–Monteith equation with a LAI-adjusted item (Pan et al., 2020; 

Pan et al., 2015). Here, %
�� is also included in the calculation process of bM�E
�� and bM�E�1�
 to 

account for the impacts of changes in surface litter coverage on evaporation: 

 bM�E
�� = Eb�
�� × 	d�.�×:�� × %
�� (B6) 

 bM�E�1�
 = Eb��1�
 × 	d�.�×:�� × 71 − %
��= (B7) 

Tillage practice generally leads to a reduction in bulk density through incorporating surface 

residues into the soil and promoting soil fragmentation (Guérif et al., 2001; Maharjan et al., 

2018), which further results in the changes in soil moisture content at saturation and field 

capacity. Here, the impacts of tillage implement on bulk density and the subsequent soil moisture 

effects are calculated as (Lutz et al., 2019):  
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 %����

,
,�2� = %����

,
,��� − ?%����

,
,��� − 0.667@ × b���F (B8) 

 ����,
,�2� = 1 − ?1 − ����,
,���@ × %����

,
,�2� (B9) 

 �2-,
,�2� = �2-,
,��� − 0.2 × ?����,
,��� − ����,
,�2�@ (B10) 

where %����

,
,�2�  denotes the fraction of bulk density change after tillage in layer � ; and 

%����

,���1�  denotes the density effect before tillage in layer � ;  ����,
,�2�  and �2-,
,�2�  are the 

modified soil moisture content at saturation and field capacity after tillage in layer �; ����,
,��� 
and �2-,
,��� are the original soil moisture content at saturation and field capacity before tillage in 

layer �. In DLEM v4.0, the vertical soil profile is described by a ten-layer discretization of a 3 m 

soil profile, and the layer thickness increases geometrically from top to bottom with values of 0.1 

m, 0.1 m, 0.1 m, 0.2 m, 0.2 m, 0.2 m, 0.3 m, 0.4 m, 0.4 m, and 1 m, respectively. Soil water flow 

between different soil layers is calculated using the Darcy’s law, in which the water flow rate � 

(mm/s) in layer � can be approximated as: 

 �
 = −{��I,
� p7�
−�
��= + 7�
��−�
=7�
��−�
= s (B11) 

where {��I,
� is the hydraulic conductivity at the depth of the interface of two adjacent layers 

7�I,
=, �
 is the depth of soil layer �,  and �
  is the soil matric potential (mm). 

B1.3. Effects of tillage implement on decomposition 

In DLEM, the direct effect of tillage implement on the decomposition rate of litter pools is 

represented by a tillage scalar (%��

), which has a value greater than 1, indicating the promoting 

effect of tillage on decomposition (Huang et al., 2020). In addition, the indirect effect of tillage 

implement on decomposition is also included, which is mainly reflected in its impacts on the 

amount of SOM, nutrient availability, actual soil moisture content, and soil moisture content at 
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saturation and field capacity. The actual decomposition rate of each litter pool ({�11
) within the 

tilled soil layers is calculated as: 

 {�11
 = {#�j�11
 × %7�= × %7B= × %7_�� = × %7D= × %��

 (B12) 

 %7�= = 4.89 × 	d�.��T��.�×G� ¡¢×7�d�.z×G� ¡¢/��.¤= (B13) 

 %7B= =
���
��                 1 − 	d¥/¥��¦1 − 	d¥§¨/¥��¦ ,              �% � � �2-

1.0044 − 0.0044
	dz×©¥/¥��¦d¥§¨/¥��¦�d¥§¨/¥��¦ ª , �% � > �2-  (B14) 

 %7_�� = = 1 − 0.75 × E-
�0/100 (B15) 

 %7D= = ] %7D��=, �% #�'	*�������[' [__&*^%7D��=,          �% �##[}�������[' [__&*^ (B16) 

 %7D��= =
���
��1 − �)' − �)'1���)'1�� ,                     �% �)' > �)'1��1,                             �% �)'1��/2 � �)' � �)'1��1 + 0.5�)'1�� − �)'�)'1�� , �% �)' � �)'1��/2  (B17) 

 %7D��= = �)'/'��� (B18) 

 %��

,� = 1 + %-�,� (B19) 

 %-�,� = ��
�?3 + 5 × 	dz.z×«¨¢�¬@ × b���Fb���F + 	�dT×­®�¡¯ , � = 1

                %-�,�d� × q1 − 0.02 × �����r ,                      � > 1  (B20) 

where {#�j�11
 denotes the potential decomposition rate of each pool; %7�=, %7B=, %7_�� =, 

and %7D=  denote the limitation of soil temperature, soil moisture, soil texture, and N on 

decomposition; %��

  is a tillage scalar; ��1�
 is soil temperature; �, ���� and �2- denote the actual 

soil moisture content, soil moisture content at saturation, and soil moisture content at field 
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capacity, respectively; E-
�0 denotes the percentage of clay content; %7D��= and %7D��= denote 

the limitation of N availability when mineralization and immobilization occur, respectively; �)' 

and �)'1��  denote the actual and optimum available soil N, respectively; '���  denotes the 

potential N immobilization estimated by the tentative decomposition procedure; %-�,� denotes the 

cumulative effect of tillage at day �; b���F denotes the mixing efficiency; � and ���� denote the 

actual and saturated soil moisture contents of a given soil layer at day �. The decomposition rate 

is calculated separately in each soil layer, and %��

 is only considered in those soil layers affected 

by tillage practice. 
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