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Abstract

Agricultural decision-making by different interest groups (e.g., farmers, development agents and
policy makers) usually takes place on different scales (e.g., plot, landscape and country).
Currently, tools to assist decision-making are either dedicated to small-scale management
guidance or large-scale assessment, which ignore the cross-scale linkages and interactions and
thus may not provide robust and consistent guidance and assessment. Here, we developed an
advanced agricultural modeling framework by integrating the strengths of conventional crop
models in representing crop growth processes and management practices into a terrestrial
biosphere model (TBM), the Dynamic Land Ecosystem Model (DLEM), to meet the cross-scale
application needs (e.g., adaptation and mitigation). Specifically, dynamic crop growth processes,
including crop-specific phenological development, carbon allocation, yield formation, biological
nitrogen fixation processes, and management practices such as tillage, cover cropping and
genetic improvements, were explicitly represented in DLEM. The new model was evaluated
against site-scale observations and the results showed that the model performed generally well,
with an average normalized root mean square error of 19.91% for leaf area index and 17.46% for
aboveground biomass at the seasonal scale and 14.42% for annual yield. Then the model was
applied to simulate corn, soybean, and winter wheat productions in the conterminous United
States from 1960 to 2018. The spatial patterns of simulated crop productions were consistent
with ground survey data. Our model also captured both the long-term trends and interannual
variations of the total national productions of the three crops. This study demonstrates the
significance of fusing conventional crop modeling techniques into TBMs to establish a unified
modeling framework, which holds the potential to address climate impacts, adaptation and

mitigation across varied spatiotemporal scales.
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1. Introduction

Ensuring global food security while achieving sustainable agricultural development is a
grand challenge for human society (Davis et al., 2016; Rosenzweig et al., 2014). During the past
several decades, climate change and associated environmental stressors (e.g., water scarcity, pest
prevalence, and soil degradation) have significantly impacted crop growth and production and
are likely to reduce the resilience of global food systems (Bezner Kerr et al., 2022; Lesk et al.,
2016; Wheeler and von Braun, 2013). Agricultural activities (e.g., fertilization, irrigation, and
cropland expansion) have, in turn, exacerbated climatic and environmental changes through
pathways such as greenhouse gas (GHG) emissions, groundwater extraction, and nutrient
pollution (Giordano and Villholth, 2007; Tian et al., 2016; Tian et al., 2020a). In view of the
increasing uncertainty in the agriculture-climate-environment system caused by complex cross-
sector interactions, effective climate change mitigation and adaptation strategies in the
agricultural sector are needed to limit further changes in the climate system and reduce the
negative impacts of climate change on food production (Howden et al., 2007; Vermeulen et al.,
2012). Such mitigation and adaptation actions occur on multiple scales and are intertwined in
intricate ways (Beveridge et al., 2018; Klein et al., 2007; Tol, 2005). Specifically, stakeholders’
adaptation decisions to sustain food production are usually carried out on a small scale (e.g.,
field-farm-landscape scales) and benefit local communities, as the influences of climate change
on crop growth and production are largely mediated by local environments and local-specific
adaptation strategies would be more effective (Hammer et al., 2014; Ofgeha and Abshare, 2021).
In contrast, agricultural mitigation measures (e.g., soil organic carbon sequestration and GHG
mitigation) and their potential feedbacks to the environment and climate are often implemented

and assessed on a broader scale (e.g., regional-national-global scales), because effective



mitigation requires the participation of major GHG emitters globally and is primarily driven by
international agreements and ensuing national public policies (Hansen and Jones, 2000; Klein et
al., 2007; Locatelli, 2011). Therefore, a unified tool that is capable of addressing cross-scale
agricultural application demands is needed (Beveridge et al., 2018; Peng et al., 2020). Such a
tool would enable a more consistent and robust prediction and assessment of crop production and

the concomitant environmental and climatic tradeoffs.

Process-based crop models are commonly used to inform small-scale farm adaptation
decisions to sustain food production (Chenu et al., 2017; Jones et al., 2017). A number of crop
models that simulate crop growth and yields as influenced by weather, soil, cultivar, and
management strategies have been developed, such as DSSAT (Decision Support System for
Agrotechnology Transfer) (Jones et al., 2003), APSIM (Agricultural Production Systems
sIMulator) (Holzworth et al., 2014; Keating et al., 2003), EPIC (Erosion Productivity Impact
Calculator) (Williams et al., 1989), and CROPSYST (Cropping Systems Simulation Model)
(Stockle et al., 2003; Stockle et al., 2014). Physiological mechanisms of crop development,
growth, and yield formation processes under biotic and abiotic stresses, and farming
management practices such as tillage and irrigation, are well-represented in these models.
However, since crop models are originally designed for farmer’s decision support, they generally
focus on field-scale yield simulation over homogeneous plot conditions. Meanwhile, they
typically have a reduced-form representation of hydrologic, energy and biogeochemical cycles.
These properties limit their ability to simulate regional crop production, assess mitigation
potential in the agriculture sector, and evaluate the environmental impacts of agricultural

management activities.



Terrestrial biosphere models (TBMs) with agricultural components provide new insights for
agricultural climate change mitigation and adaptation on a broader scale (Bondeau et al., 2007;
Lombardozzi et al.,, 2020; McDermid et al., 2017). Most TBMs have included detailed
hydrological, biophysical, and biogeochemical processes and can be further integrated with
general circulation models for future climate change impact projections (Alo and Wang, 2008;
Fisher et al., 2014; Schaphoff et al., 2006). Therefore, they can potentially be used to simulate
regional crop production under historical and future climate scenarios, assess the mitigation
potential of agricultural management options, and quantify the exchange of carbon, water,
nutrient and energy fluxes within the agriculture-climate-environment system. However, the
representation of agriculture in most TBMs is relatively simple (e.g., lacking or simplifying
dynamic crop growth processes and management practices), with some TBMs even treating
crops as natural grasses though using different eco-physiological parameters as a distinction
(Betts, 2005; McDermid et al., 2017). Since crops have rather different phenological
development processes compared with natural vegetation and often involve implementation of
management practices (e.g., irrigation and fertilization), such simplified schemes are unlikely to
be able to closely replicate observed yields under varying climatic and environmental conditions
across different spatiotemporal scales, which limit their use for agricultural adaptation and

mitigation assessments.

In view of the strengths and weaknesses of process-based crop models and TBMs, it is
highly desirable to integrate these two types of models into a unified framework to complement
each other (Peng et al., 2020). Such a framework is capable of meeting cross-scale agricultural
application needs and providing more robust and consistent predictions and assessments. Some

recent developments of TBMs have attempted to move in this direction, such as the Joint UK



Land Environment Simulator (JULES) (Van den Hoof et al., 2011), the Organizing Carbon and
Hydrology in Dynamic Ecosystems Model (ORCHIDEE) (Wu et al., 2016), the Lund Potsdam
Jena managed Land model (LPJmLS5) (Lutz et al., 2019), and the Community Land Model (CLM)
(Boas et al., 2021; Lombardozzi et al., 2020; Peng et al., 2018). These augmented models are not
only conducive to yield simulation, but also improve the estimation of regional-scale carbon,
water and energy exchanges within the agriculture-climate-environment system (Boas et al.,
2021; Lokupitiya et al., 2009; Song et al., 2013). However, despite these recent progresses, most
TBMs still lack a sound representation of crop-specific physiology and/or agricultural land-use
changes and management practices (e.g., tillage, cover cropping, and genetic improvement).
Moreover, some TBMs still fail to adequately represent the effects of multiple environmental
changes (e.g., CO; fertilization, nitrogen (N) deposition, and ozone pollution) on crop growth
and development. Improvements in our knowledge of the environmental and management factors
influencing crop growth and yield will further deepen our understanding of the food-energy-

water nexus and lead toward sustainable agricultural systems.

In this study, we implemented such a unified framework in the platform of the Dynamic
Land Ecosystem Model v4.0 (hereinafter referred to as the agricultural module of DLEM v4.0),
which is well-recognized for simulating coupled carbon-water-nutrient cycles (Pan et al., 2021;
Tian et al., 2010; Tian et al., 2020b; Yao et al., 2020). Specifically, leveraging the strengths of
DLEM v4.0 in representing hydrological, biophysical and biogeochemical processes under
multiple environmental changes, we incorporated explicit and mechanistic representations of
dynamic crop growth processes and agricultural management practices into it, including but not
limited to crop-specific phenological development, carbon allocation, yield formation, and

biological N fixation processes, as well as management practices such as tillage, cover cropping,



and crop genetic improvements. The performance of the new agricultural module in reproducing
the seasonal variations and magnitudes of leaf area index (LAI), aboveground biomass, and yield
was evaluated against field observations. Using this model, we also simulated corn, soybean, and
winter wheat production in the conterminous United States (U.S.) over 1960-2018 and examined

how they varied spatially and temporally.

2. Materials and methods

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially
explicit carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water
systems across site, regional, and global scales (Pan et al., 2021; Tian et al., 2010; Tian et al.,
2020b; Yao et al., 2020). Five core components are included in DLEM v4.0 to simulate the
biogeochemical and biogeophysical processes within terrestrial ecosystems: biophysics, plant
physiology, dynamic vegetation, soil biogeochemistry, and natural and anthropogenic
disturbances. Through coupling major biogeochemical-hydrological processes, DLEM is able to
simultaneously depict the biosphere-atmosphere exchanges of CO», nitrous oxide (N»O) and
methane (CHs) as driven by multiple environmental forcings (e.g., climate, atmospheric CO>
concentration, N deposition, tropospheric ozone pollution, and land use and land cover change).
This capability provides a powerful tool for supporting the development of effective GHG
mitigation options. DLEM has been widely evaluated and applied to estimate CO2, CH4 and N2O
fluxes at multiple sites and regions like China (Ren et al., 2011; Tian et al., 2011), the United
States (Tian et al., 2012a; Zhang et al., 2012), North America (Tian et al., 2015; Xu et al., 2012;
Xu et al., 2010), and across the globe (Friedlingstein et al., 2020; Saunois et al., 2020; Tian et al.,

2020a). In addition, a land-aquatic interface has also been coupled to DLEM (Pan et al., 2021;



Yao et al., 2020), which enhances its ability to simulate nutrient loading from agroecosystems

and investigate potential mitigation strategies.

2.1. Development of the agricultural module of DLEM v4.0

The new agricultural module is developed based on previous agricultural versions of DLEM
(DLEM-Ag and DLEM-Ag2), which included simplified crop growth processes and basic
management practices (e.g., N fertilization, irrigation, and rotation) (Ren et al., 2012; Tian et al.,
2012b; Zhang et al., 2018). While DLEM-Ag and DLEM-Ag2 can achieve a good performance
at specific sites, their performance in regional-scale simulations has been relatively poor
(especially when simulating long-term series of regional crop production) (Zhang et al., 2018).
Moreover, their ability in quantifying impacts of agricultural activities on biosphere-atmosphere

feedback is also limited.

To overcome the above shortcomings, the new agricultural module in DLEM v4.0 has major
improvements in five aspects: crop phenological development, carbon allocation, yield
formation, biological N fixation, and management practices (Table S1). First, we included crop-
specific phenological development schemes, with phenology-stage-dependent environmental
stresses explicitly considered. Second, a new dynamic carbon allocation scheme was
implemented, where the allocation fraction of net assimilates to different vegetation pools is
determined by a prescribed growth-stage dependent carbon allocation curve and modified by
water, light, and N stresses. Third, the yield formation process was improved by calculating crop
yield as the balance between available carbon supply to the reproduction pool and the actual
carbon demand for grain filling. The actual carbon demand for grain filling of different crops
was calculated using crop-specific methods derived from relevant studies (Gaspar et al., 2017;

Gregory and Atwell, 1991; Gregory et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart



and Shoup, 2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm, 1998;
Yamagata et al., 1987). Meanwhile, the translocation of dry matter between the stem tissue and
the reproduction pool to supplement grain filling was also considered. Fourth, a new biological N
fixation scheme was included, where the N fixation rate is dependent on soil temperature, soil
moisture, N availability, substrate concentration, and crop phenological stage. Finally, we
incorporated several important management practices (i.e., tillage, cover cropping, and crop
genetic improvements) in the new model and implemented a dynamic crop rotation scheme
through introducing time-varying crop rotation maps to better reflect the interannual changes in

distributions of different crop types.

2.1.1. Crop phenological development

The life cycle of a crop can be divided into several phenological stages that influence the
development of crop canopy structure (e.g., LAI and canopy height), the allocation of carbon and
nutrients among crop tissues, and the biological N fixation process. Some of these phenological
stages are general to all crops, such as sowing, germination, emergence, physiological maturity,
and harvest; while other stages are crop-specific such as the tassel initiation and silking stages of
corn. DLEM-Ag uses prescribed static LAI curves derived from satellite images to determine
phenology (Ren et al., 2012). DLEM-Ag?2 divides the life cycle of all crops into the same eight
stages and does not consider environmental stresses on phenological development (Zhang et al.,
2018), which have been shown to be critical for determining phenological stages (Gungula et al.,
2003; Uhart and Andrade, 1995; Wilhelm et al., 1993). Our new model explicitly considers the
phenological differences among crops as well as phenology-stage-dependent environmental
stresses. It also adopts two separate schemes to determine phenological stages of various crop

types: a general crop scheme (GCS) for some crops (currently including rice, peanuts, cotton,

10



sorghum, barley, rye, cassava, potato, rapeseed, sugarbeet and sugarcane, but can be flexibly
expanded if needed) and a specific crop scheme (SCS) for other crops (currently including corn,
soybean, and wheat). For the GCS, we used a unified phenological development cycle similar to
that in DLEM-Ag2 but included more detailed phenological stages and the environmental
stresses (e.g., water and N) on phenological development. Crop life cycle in the GCS is divided
into ten stages: sowing, germination, emergence, end of juvenile, floral initiation, flowering,
beginning of grain filling, end of grain filling, maturity, and harvest (Figure 1). Each crop type
using the GCS is specifically parameterized. The SCS has the same basic characteristics as the
GCS, but it additionally includes crop-specific phenological stages (Table S2), such as the tassel
initiation and silking stages for corn, beginning of pod growth and end of pod growth stages for
soybean, and terminal spikelet and end of ear growth stages for winter wheat, and the main
growth tissues also differ across the crops’ various phenological stages. Moreover, the SCS also
includes crop-specific physiological characteristics, such as photoperiodism and biological N

fixation for soybean, and vernalization for winter wheat.
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Figure 1. Crop life cycle in the general crop scheme of the Dynamic Land Ecosystem Model v4.0. f{CBD_emer,
fCBD_juve, fCBD_fini, f{CBD_flow, fCBD_bfill, f{CBD_efill, and fCBD_matu denote the target fraction of
Cumulative Biological Days required to reach the phenological stages of emergence, end of juvenile, floral

initiation, flowering, beginning of grain filling, end of grain filling, and maturity, respectively.

The crop life cycle begins with seed sowing or planting. In DLEM-Ag and DLEM-Ag2,
crop sowing dates have been prescribed and remain unchanged, which may lead to large errors in
the simulated yields considering that crop planting dates vary annually due to changing weather
conditions (Kucharik, 2006; Laux et al., 2010; Yang et al., 2020). In contrast, sowing dates in the
new model are dynamically simulated rather than prescribed. To determine crop sowing dates,
sowing trigger criteria modified from CLM4.5 were used (Levis et al., 2012). The original
sowing trigger criteria in CLM4.5 include: (1) a 10-day running average of mean air temperature
that exceeds a threshold; (2) a 10-day running average of minimum air temperature that exceeds
a threshold; and (3) a 20-year running average of 8°C-based growing degree-days (GDD) from
April to September that exceeds a threshold. However, these criteria have been found to lead to
earlier sowing dates than the actual, because the GDD criterion is easily met and thus the sowing
date is in fact determined by the first two criteria (Chen et al., 2015; Chen et al., 2018). To this
end, we have modified the GDD criterion to be the cumulative thermal time from the earliest
sowing date (defined by input data) that is greater than the crop-specific threshold (Peng et al.,

2018). Summarizing, the revised sowing trigger criteria used in DLEM v4.0 are as follows:

{SDateearliest < SDate < SDate,4tcqt

4 Tang < Tavg

(D
| Trfu‘n < Tr}L?g
( ATT, < ATT

where SDateggriiese and SDatey, 05 denote the crop-specific prescribed earliest and latest
sowing dates, respectively, which are obtained from input data; SDate denotes the simulated

sowing date; vag and TP

‘min denote the crop-specific thresholds of the 10-day running average
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and minimum temperatures for sowing; Tt%lﬁ’; and T,}g,‘f denote the actual 10-day running average

and minimum air temperatures, respectively; ATT,,;, denotes the crop-specific threshold of
minimum thermal time for sowing; ATT denotes the accumulated thermal time from the earliest
sowing date to the current day, which is calculated using Equations (A1) and (A2) in Appendix

Al.1. If the above criteria are not met, crops will be sown at the prescribed latest sowing date.

Seed germination is triggered if the number of days after the simulated sowing date is larger
than the crop-specific threshold. The initiation and duration of the subsequent phenological
stages (i.e., from emergence to maturity) are determined according to the Biological Days (BD)-
based phenological development scheme (Soltani and Sinclair, 2012). Specifically, we first
calculate the daily BD (i.e., an indicator of daily development rate) using a 3-segment
temperature response function, with the vernalization and photoperiod effects as well as
environmental stresses considered (Equation (2)); then the fraction of Cumulative Biological
Days (fCBD), an indicator of cumulative crop development rate updated at a daily time-step, is
calculated as the actual accumulated BD from germination to the current day divided by the total
BD required for maturity (Equation (3)). A phenological stage is predicted to occur when the

calculated fCBD reaches the target f{CBD of that stage.

dailyBD = tempfun X ppfun X verfun X fyiress )

current day .
dermination dallyBD

Zmaturity dailyBD

germination

fCBD =

3

where dailyBD denotes daily crop development rate; tempfun, ppfun, verfun, and fgtress
denote the inhibition of the potential crop development rate by temperature, photoperiod,
vernalization, and environmental stresses, respectively, and are calculated using Equations (A3)-

(A8) in Appendix Al.2; fCBD denotes the fraction of accumulated dailyBD (i.e., from

13



germination to the current day) to total BD required for maturity, in which fCBD is equal to O at
the germination stage and equal to 1 at the maturity stage. The crop is harvested immediately
after maturity or when the growing season length of crops exceeds the crop-specific longest
growing days.

Along with the development of phenology, crop LAI is updated at a daily time step and
ceases increase at the beginning of the reproductive phase. The daily LAI is calculated as a
function of leaf carbon content and specific leaf area (SLA; the ratio of leaf area to leaf dry mass)
(Equation (A9) in Appendix Al.2). Meanwhile, following CLM 4.5 (Levis et al., 2012), crop
canopy height also varied with phenological stages and is obtained by scaling the maximum

canopy height by the daily LAI (Equation (A10) in Appendix A1.2).

2.1.2. Carbon assimilation and allocation

Photosynthesis processes in the agricultural module of DLEM v4.0 are inherited from a
previous DLEM version (Tian et al., 2010). However, to improve the representation of C4 plant
(e.g., corn and sorghum) responses to environmental stresses (e.g., temperature, moisture, and
radiation), we further incorporated an enzyme-driven C4 photosynthesis routine (Di Vittorio et
al., 2010), which uses an enzyme-driven bundle sheath CO> concentration to substitute the
diffusion-driven internal CO2 concentration available to ribulose-1,5-bisphosphate carboxylase-

oxygenase (Rubisco) for carbon assimilation.

For daily carbon allocation, DLEM-Ag and DLEM-Ag2 do not consider environmental
stresses when allocating net carbon assimilates to the leaf, stem, and reproduction pools. To
overcome this limitation, we implemented a new dynamic carbon allocation scheme in the
agricultural module of DLEM v4.0. The potential allocation ratios followed a crop-specific
dynamic carbon allocation curve across phenological stages (Figure S1) (Gaspar et al., 2017;
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Gregory and Atwell, 1991; Gregory et al., 1995; Lei et al., 2010; Lokupitiya et al., 2009; Peart
and Shoup, 2018; Ritchie, 1991; Srivastava et al., 2006; Taylor et al., 1982; Wilhelm, 1998;
Yamagata et al., 1987), which were further regulated by light, N, and water stresses (Song et al.,

2013) to obtain the actual ratios:

A — Aleaf,p
YT T 1+ wxB—fi—fu—fw)
A — Astem,p +w X (1 - fL)
M T 1t wx B —f,— fv— fw)
) A _Araot,p+wx(2_fN_fW) (4)
YT 1+ wx 3= fi— fu— fuw)
min(cavail X Arepr,p' Cdemand)

Cavail X (1 +w X (3 _fL _fN _fw))

Arepr -

where Ajeqr, Astem» Aroot> and Arep, denote the actual carbon allocation ratios for leaf, stem,
root, and reproduction pools modified by environmental stresses, respectively; Ajeqr p> Astem,ps
Arootp» and Apeprp denote the potential carbon allocation ratios for leaf, stem, root, and
reproduction pools, respectively, which are derived from the prescribed growth-stage dependent
carbon allocation curve; w is a scaling parameter representing the sensitivity of an allocation
ratio to changes in light, N, and water stresses; f;, fy, and fy, denote the light, N, and water
stresses, respectively, which are calculated using Equation (A11) in Appendix A2; Cgpqir 18 the
net carbon assimilates available for allocation; and Cgemang 1S the actual carbon demand for

fulfilling grain filling, which is calculated as:

Cdemand = AKW X GN x Pdensity (5)
where AKW denotes the actual kernel weight at physiological maturity, which is determined as
the product of daily BD and potential kernel growth rate (pKGR) and is subject to heat and N

stresses (calculated using Equation (A12) in Appendix A2); GN denotes grain number per plant,

which is calculated using crop-specific methods (Fischer, 1985; Keating et al., 2003; Vega et al.,
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2001; Zheng et al., 2014) (calculated using Equation (A13) in Appendix A2); and Pyensity
denotes planting density (i.e., number of plants per square meter).

This dynamic carbon allocation scheme allows optimizing crop growth processes across its
phenological stages. During the emergence stage, carbon stored in the seeds is allocated to the
leaf pool and root pool at a fixed ratio of 0.6 and 0.4, respectively; during the vegetative phase,
net assimilates are preferentially allocated to leaf, root, and then stem to facilitate capture of
solar radiation and uptake of nutrients and water; during the reproductive phase, the reproduction

pool has the highest priority of carbon allocation to fulfill grain filling.

2.1.3. Yield formation

In DLEM v4.0, the estimation of crop yield adopts a different algorithm from DLEM-Ag
and DLEM-Ag2. Specifically, in DLEM-Ag, crop yield is estimated as the product of total
aboveground biomass and a constant harvest index, which may lead to deviation in the simulated
yields considering that harvest index actually varies with climate conditions, farming practices,
and environmental factors (Hay, 1995; Porker et al., 2020; Sinclair, 1998). In DLEM-Ag2, crop
yield is determined by the actual carbon demand for grain filling, where a single empirical
equation related to stem dry weight is used to calculate the actual carbon demand of all crops,
even though the grain filling characteristics differ by crops. In DLEM v4.0, yield formation
follows a supply-demand relationship. That is, it is estimated as the balance between the
available carbon assimilates supply to the reproduction pool and the actual carbon demand for
crop to fulfill grain filling (Jones et al., 2003; Villalobos et al., 1996). Moreover, we use various
methods derived from relevant studies, with crop-specific grain filling characteristics considered,
to calculate the actual carbon demand of different crops (Equation (5)). The translocation of dry
matter between the stem tissue and the reproduction pool is also considered in the new model,

16



allowing up to 20% of carbon to be translocated from the stem pool to the reproduction pool to
supplement grain filling if the available carbon assimilates cannot satisfy the actual carbon
demand. If excess assimilates are available, the carbon that exceeds the actual carbon demand

will be re-translocated from the reproduction pool to the stem pool to ensure mass balance.

2.1.4. Biological nitrogen fixation

Crops like soybeans are able to fix N to meet nutrient requirements for growth. In DLEM-
Ag and DLEM-Ag2, the biological N fixation is determined by the prescribed PFT-specific
annual N fixation rate and CO2 concentration, which does not consider environmental stresses
and the effects of crop growth stages. In DLEM v4.0, the biological N fixation process has been
improved, which is calculated as a function of potential N fixation rate, soil temperature, soil
moisture, soil mineral N concentration, substrate carbon concentration, and crop phenological

stage (Liu et al., 2011):
Nfix = Nfix,pat X fsailT X fsoilW X fsoilN X fsoilC X fphen (6)

where Ny;y is the actual biological N fixation rate; Ny po¢ is the potential N fixation rate; fsor
is a soil temperature factor; fgo;y 1S a soil moisture factor; fg,;;n 1S a soil mineral N factor; fsyi1c
is a function of substrate carbon concentration; and fypep is a factor of crop phenological stage

(calculated using Equation (A14) in Appendix A3).

2.1.5. Agricultural management practices

Previous DLEM versions have incorporated common management practices, including N
fertilization, irrigation, and crop rotation. N fertilization practice is represented by adding N
directly to the soil ammonium and nitrate pools to meet crop N demands through both industrial
fertilizer and manure application. Irrigation practice is implemented by assuming that soil

17



moisture would reach field capacity when irrigated, in which irrigation timing is determined as
the point when soil moisture of the top layer dropped to 30% of maximum available water (i.e.,
field capacity minus wilting point) during the growing season (Ren et al., 2011). Crop rotation is
implemented by allowing different crop types to exist on the same soil during different periods

of growing/planting cycles (e.g., rotation of winter and summer crops).

In the new model, besides including more management practices like tillage and cover
cropping, we also incorporated genetic improvement options, as increased crop yields in the past
decades can be largely attributed to improvements in both management practices and crop
genetic breeding (Duvick, 1984; Duvick, 2005; Hammer et al., 2009; Pingali, 2012). Four types
of tillage practices (i.e., no-tillage, conservation tillage, reduced tillage, and conventional tillage)
are considered in our model, based on the differences in tillage depth, mixing efficiency, and the
proportion of soil surface covered by residues after tillage (Table S3) (Porwollik et al., 2019).
Three aspects of tillage impacts on the agroecosystem are represented: (1) changes in surface
residue coverage and the subsequent redistribution of soil organic matter (SOM) and nutrients
within the tilled soil layers due to tillage mixing (Equations (B1)-(B3) in Appendix B1.1); (2)
changes in litter interception, bulk density, soil moisture and other water-related effects on
processes such as nitrification, denitrification, and leaching (Equations (B4)-(B10) in Appendix
B1.2); and (3) changes in the soil decomposition rate (Equations (B12)-(B20) in Appendix B1.3).
Cover cropping is represented in the new model through planting crops (e.g., winter rye and
peas) during the normal fallow period and leaving crop biomass in the field at the beginning of
the following main crop growing season (Huang et al., 2020). The impacts of crop genetic
improvements on yields are represented through two mechanisms: (1) increasing the

photosynthesis rate of crops (Long et al., 2015; Parry et al., 2011; Wu et al., 2019), and (2)
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enhancing crop N uptake ability (Lu et al., 2018). Besides these new considerations, we have
also improved the representation of the existing rotation practice, where a dynamic rotation
scheme is incorporated into the new model through introducing time-varying crop rotation maps,

rather than the static rotation map in previous versions.

2.2. Input data

To drive DLEM v4.0, long-term spatial datasets at a resolution of 5x5 arc-min were
developed, including climate, atmospheric CO> concentration, N deposition, soil properties, crop
rotation, N fertilizer use rates, manure N application rates, irrigation, tillage intensity, and the
earliest and latest crop planting dates (Table 1). Specifically, the historical daily climate dataset
(including precipitation, solar radiation, maximum, minimum and mean temperatures) from 1860
to 2018 was reconstructed from the North American Land Data Assimilation System product
(Mitchell et al., 2004; Xia et al.,, 2012), the Climate Research Unit-National Centers for
Environmental Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model
dataset (Boucher et al., 2020), using a revised delta downscaling method (Liu et al., 2013).
Monthly atmospheric CO> concentration data from 1860 to 2018 were obtained from the NOAA
GLOBALVIEW-CO2 dataset derived from atmospheric and ice core measurements
(www.esrl.noaa.gov). Monthly atmospheric N deposition data from 1860 to 2018 were acquired
from the International Global Atmospheric Chemistry (IGAC)/Stratospheric Processes and Their
Role in Climate (SPARC) Chemistry—Climate Model Initiative (CCMI) (Eyring et al., 2013).
Soil physical and chemical properties were obtained from the ISRIC-WISE Harmonized Global
Soil Profile dataset (Batjes, 2008). The annual crop rotation dataset from 1910 to 2018 was
developed by combining the United States Department of Agriculture (USDA) Cropland Data

Layer (CDL) product and the USDA-National Agricultural Statistics Service (NASS) survey
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data of county-scale crop planting areas, using the spatialization method implemented in Yu et
al. (2018). The annual crop-specific N fertilizer use data from 1910 to 2018 was reconstructed
using the state-level N fertilizer use rates from USDA-NASS and the national-level commercial
N fertilizer consumption data from Mehring et al. (1957) and USDA-ERS (2019), following Cao
et al. (2018). The annual manure N application dataset from 1860 to 2018 was acquired from
Bian et al. (2021). The annual crop-specific irrigation dataset from 1950 to 2018 was downscaled
from the county-scale irrigation reanalysis dataset (McManamay et al., 2021) and the USDA-
NASS county-scale irrigated cropland area, using the MODIS Irrigated Agriculture Dataset
(MIrAD) (Brown and Pervez, 2014; Pervez and Brown, 2010) as a base map. The annual tillage
intensity dataset from 1960 to 2018 was reconstructed from the county-scale tillage practices
survey data (1989-2011) obtained from the National Crop Residue Management Survey (CRM)
of the Conservation Technology Information Center (https://www.ctic.org/CRM). Tillage maps
for missing years were kept the same as the nearest years when data were available. The original
five types of tillage practices in the CRM dataset were reorganized into four types through
combining the ridge tillage and mulch tillage types in CRM to the conservation tillage type in
DLEM v4.0. The county-scale CRM dataset was combined with the CDL-derived crop rotation
map and the USDA-NASS crop planting area to estimate historical spatial distributions of tillage
practices. The state-level earliest and latest crop planting dates were obtained from the USDA-
NASS survey report (NASS, 2010), which provides the planting and harvesting windows in most
of the historical years. Other auxiliary data such as topography and river network data were
obtained from our previous studies (Tian et al., 2010; Tian et al., 2012b; Tian et al., 2020b; Xu et

al., 2019).
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Table 1. Input datasets to drive DLEM v4.0.

Dataset name Period Spatlal_ Tempo.r al Methods and data sources
resolution resolution
Climate (precipitation, solar Reconstructed from the North American Land Data Assimilation System product (Mitchell et
radiation pmax?mum I;ﬂnimum 1860-2018 5 arc-min Dail al., 2004; Xia et al., 2012), the Climate Research Unit-National Centers for Environmental
and mear; ton eratu;es) y Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model dataset (Boucher
P et al., 2020), using a revised delta downscaling method (Liu et al., 2013)
COz concentration 1860-2018 5 arc-min Monthly Obtained from the NOAA GLOBALVIEW-CO?2 data set (www.esrl.noaa.gov)
Acquired from the International Global Atmospheric Chemistry (IGAC)/Stratospheric
Nitrogen deposition 1860-2018 5 arc-min Yearly Processes and Their Role in Climate (SPARC) Chemistry—Climate Model Initiative (CCMI)
(Eyring et al., 2013)
Soil physical and chemical . . . . . . . .
: One time 5 arc-min One time Obtained from the ISRIC-WISE Harmonized Global Soil Profile dataset (Batjes, 2008)
properties (e.g., texture and pH)
Developed by combining the United States Department of Agriculture (USDA) Cropland Data
. . Layer (CDL) product, the USDA-National Agricultural Statistics Service (NASS) survey data
Crop rotation maps 1910-2018 3 arc-min Yearly of county-scale crop planting area, and the Google Earth Engine cloud computing platform,
using the spatialization method implemented in Yu et al. (2018)
Crop-specific nitroeen fertilizer Reconstructed using the state-level N fertilizer use rates from USDA-NASS and the national-
use Ir)atg & 1910-2018 State-level Yearly level commercial N fertilizer consumption data from Mehring et al. (1957) and USDA-ERS
(2019), following a method similar to that used in Cao et al. (2018)
Manure nitrogen application 1860-2018 5 arc-min Yearly Acquired from Bian et al. (2021)
Using the MODIS Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez
and Brown, 2010) as a base map, and then combining the county-scale irrigation reanalysis
Crop-specific irrigation map 1950-2018 5 arc-min Yearly dataset derived from the United States Geological Survey (USGS) (McManamay et al., 2021)
and the USDA-NASS county-scale irrigated cropland area to extrapolate the spatially explicit
irrigation map in historical years
Reconstructed from the county-scale tillage practices survey data obtained from the National
. : . Crop Residue Management Survey (CRM) of the Conservation Technology Information
Tillage map 1960-2018 3 arc-min Yearly Center (https://www.ctic.org/CRM), where tillage maps for missing years were kept consistent
with the nearest years for which data were available
The earliest and latest crop . . .
. One time State-level One time Obtained from the USDA-NASS survey report (NASS, 2010)
planting dates
Auxiliary data (e.g., topography One time 5 arc-min One time Obtained from previous DLEM studies (Tian et al., 2010; Tian et al., 2012b; Tian et al.,

and river network)

2020b; Xu et al., 2019)
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In addition, to better represent crop growth characteristics across a wide range of
temperature and precipitation regimes, we divided corn, soybean and winter wheat varieties in
the U.S. into seven, seven, and three groups, respectively (Figure S2), based on the classification
of relative maturity groups (Zhang et al., 2007; Zhang et al., 2020). The spatial distribution of
crop maturity groups remains relatively stable over time but differed in several genetic
characteristics, including the total CBD required for maturity, the timing and duration of
different phenological stages, and photoperiod-related parameters (Table S4). The spatial
distribution of corn variety groups was adapted from the corn maturity zones provided by the Elk
Mound Seed Company (https://www.elkmoundseed.com/seed-corn/seed-corn-resources/), and
we merged the zone with maturity between 91 and 95 days and the zone with maturity between
95 and 100 days into one. The distribution of soybean variety groups was derived from the
revised optimum adaptation zones for soybean maturity groups (Zhang et al., 2007). The
distribution of winter wheat variety groups was determined based on the wheat production map
by the National Association of Wheat Growers (https://www.wheatworld.org/wheat-101/wheat-
production-map/), and we divided the U.S. winter wheat varieties into three groups, i.e., soft

white winter wheat, hard red winter wheat, and soft red winter wheat.

2.3. Model calibration and validation

We calibrated and validated the new model using data collected from multiple sources,
including the AmeriFlux Network, the Greenhouse Gas Reduction through Agricultural Carbon
Enhancement Network, the Resilient Economic Agricultural Practices Project, the USDA-NASS,
and relevant literature. The values of the crop variety group parameters (Table S4) and the
general model parameters related to crop growth processes (Table S5) were determined through

model calibration within a reasonable range of reported values in literature. Specifically, we first
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used the default parameters to run the model, and then we adjusted the parameters (within a
+20% range of default values) to obtain a close match between the observed and predicted
values for LAI, aboveground biomass, and grain yield. The parameter set obtaining the minimal
bias between the simulated and measured values across all sites was adopted. In addition, we
calibrated parameters related to crop genetic improvements (Table S6), including N uptake
capability ( Nypmax) and the maximum carboxylation rate (Vinax). Specifically, we first
calibrated the temporal changes of Ny qy using the time series of Nyppmqy Obtained from Lu et
al. (2018), in which a logistic equation was used to model the impacts of crop genetic
improvements in enhancing Ny,mqy. Then, a linear regression model was used to estimate the
temporal changes in increasing rate of I/, to obtain the best match between the simulated time

series of national crop yields and the USDA-NASS records.

After model calibration, field observed LAI, aboveground biomass, and yield data
(excluding the data for model calibration), as well as the regional-scale crop production survey
data were used to evaluate the new model performance. The distribution and description of these
field sites are presented in Figure S3 and Tables S7-S9. Several metrics were used to
quantitatively evaluate the model performance, including the coefficient of determination (R?),

the root mean square error (RMSE), and the normalized root mean square error (NRMSE).

2.4. Model implementation

The implementation of the agricultural module of DLEM v4.0 includes three major steps: an
equilibrium run, a spin-up run, and a transient run. The equilibrium run was driven by the
average climate data during the 1860s and other environmental factors in 1860. The equilibrium

state was assumed to be reached when the changes in carbon, N, and water pools between two
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consecutive 20 years period were less than 0.5 ¢ C m~2 year™!, 0.5 g N m~? year™!, and 0.5 mm
year™!, respectively. The spin-up run was driven by the detrended climate data during the 1860s
to eliminate model fluctuations due to the mode transition from equilibrium run to transient run.

Finally, the transient run was driven by the historical data from 1860 to 2018.

2.5. Parameter sensitivity analysis

The Sobol’s method, a variance-based global sensitivity analysis method, was used to
measure the sensitivity of simulated crop yield to key model parameters. The Sobol’ method
decomposes model output variance into the contribution of each input parameter and their

interactions to calculate sensitivity index (Sobol, 1993):

Vy =ZVi+ZZVU‘+ZZZVijk+“‘+V1,2,...,n @)
- ‘

i j>i i j>ik>j
where Vy represents the total variance of model output, V; represents the variance explained by
the ith input parameter, V;; represents the variance explained by the interactions between the ith
and jth input parameters, and n represents the number of input parameters. The first-order
sensitivity index is defined as S; = V;/Vy, the higher-order sensitivity indices are defined as
Sij =Vii/Vy. Sijk = Vijk/Vy s S12,0.m = Viz,..i..n/Vy» respectively, and the total-order
sensitivity index Sy; of the ith parameter is defined as the sum of its first-order sensitivity index
and all the higher-order sensitivity indices involving it. Among them, S; measures the direct
impact of each input parameter on the output variance and Sr; measures the total impacts (i.e.,
the sum of direct and indirect impacts). A large difference between S; and S7; indicates that the
parameter mainly affects output through interactions. The Sobol’ method uses the Monte Carlo
sampling scheme to generate random parameter samples. To calculate sensitivity indices, it
requires a parameter set with a sample size of M X (2n + 2), where M represents the number of
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base samples and n represents the number of input parameters. Here, M is set to 512 (You et al.,

2019).

3. Results

3.1. Site-scale model performance

3.1.1. Evaluation of the simulated leaf area index

The performance of the LAI simulation was evaluated against 15 site-years of field
observations for corn, 6 site-years for soybean, and 10 site-years for winter wheat. Generally, the
simulated LAI was consistent with the observed LAI (Figure 2), with RMSE (NRMSE) values
for corn, soybean, and winter wheat being 1.26 m?/m? (20%), 0.87 m?/m? (19%), and 0.66 m?/m?
(21%), respectively, and R? values being 0.68, 0.66, and 0.57, respectively. The model also
captured the seasonal dynamics of LAI, for example, in the US-Ne3 corn-soybean rotation site,
where the model reproduced well the timing of LAI increase and decrease as well as its
amplitude (Figure 3). However, some discrepancies still existed between the simulated LAI and
the observations. Specifically, the simulated LAI underestimated the observed LAI at its low end,
suggesting that the simulated leaf onset slightly lags behind the actual leaf onset, which may be
due to the simulated planting date being later than the actual planting date. For instance, our
simulated planting date of corn in 2001 at the US-Ne3 site is May 22, while the actual planting
date was May 14. In addition, at the US-Ne3 site, the simulated LAI of corn was slightly
overestimated during the late growing season compared with the observations, and the peak LAI
of soybean was underestimated in the year 2002 and 2006 (Figure 3). Such deviations also

occurred at other sites (Figure S4).
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Figure 2. Site-scale comparisons between the simulated leaf area index (LAI) and field observations for corn (a),
soybean (b), and winter wheat (c). Different colors indicate different crop sites, and a detailed description of these

sites are shown in Tables S7-S9.
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Figure 3. The seasonal evolution of observed and simulated leaf area index (LAI) in a corn-soybean rotation rainfed
site, US-Ne3, where corn is planted in odd years (2001, 2003, 2005, and 2007) and soybean is planted in even years
(2002, 2004, 2006).

3.1.2. Evaluation of the simulated aboveground biomass
Generally, the simulated aboveground biomass was in line with the observed data (Figure 4),
where the RMSE (NRMSE) values between them for corn, soybean, and winter wheat were 2912

kg/ha (12%), 658 kg/ha (14%), and 278 kg/ha (27%), respectively, and the R? between them
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were 0.82, 0.79, and 0.45, respectively. Meanwhile, similar to LAI, the modeled seasonal

variations in aboveground biomass at each site was well consistent with the observations (Figure

5 and Figure S5).
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Figure 4. Site-scale comparisons between the simulated aboveground biomass and field observations for corn (a),

soybean (b), and winter wheat (c). Different colors indicate different crop sites, and a detailed description of these

sites are shown in Tables S7-S9.
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3.1.3. Evaluation of the simulated crop yield

The simulated yields agreed well with the observations of 94 site-years for corn, of 87 site-
years for soybean, and of 12 site-years for winter wheat (Figure 6), with the RMSE values for
corn, soybean, and winter wheat ranging from 351 kg/ha to 1080 kg/ha, and the NRMSE values
ranging from 11% to 20%. Meanwhile, the R? values for all crops were greater than 0.4.
Compared to corn and soybean, the simulation accuracy for winter wheat yield was lower,

maybe partly due to the smaller number of observations in correlation analysis.
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Figure 6. Site-scale comparisons between the simulated yield and field observations for corn (a), soybean (b) and
winter wheat (c). Different colors indicate different crop sites, and a detailed description of these sites are shown in

Tables S7-S9.

3.2. Spatial patterns of simulated crop production

We used the calibrated model to simulate the production of corn, soybean, and winter wheat
in the conterminous U.S. from 1960 to 2018. The simulation results show that corn and soybean
had relatively high production in the Midwest region but low production in the southern region,
while winter wheat had relatively high production in the Southern Plains and northwestern
regions (Figure 7). Overall, the spatial pattern of simulated mean annual crop production during

1960-2018 simulated by our model was consistent with the USDA-NASS survey data, and so it
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was at the decadal scale (Figures S6-S8), which suggest that our model is capable of reproducing

the spatial pattern of crop production across a wide range of temperature and precipitation

regimes. At the grid level, the simulated crop production was mostly significantly correlated (P

value <0.05) with the USDA-NASS survey data (Figure S9). The areas with R?> > 0.7 accounted

for 88.91%, 97.51% and 64.62% of the total planting areas of corn, soybean and winter wheat,

respectively.
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Figure 7. Comparisons between the spatial patterns of average annual crop production simulated by the Dynamic

Land Ecosystem Model (DLEM) and derived from the United States Department of Agriculture-National

Agricultural Statistics Service (USDA-NASS) during 1960-2018, as well as the differences between them. (a-c)
Corn production obtained from the DLEM and the USDA-NASS and their difference; (d-f) Soybean production
obtained from the DLEM and the USDA-NASS and their difference; (g-i) Winter wheat production obtained from
the DLEM and the USDA-NASS and their difference. A negative value in the difference of production indicates an

underestimation of production by the DLEM, and a positive value indicates an overestimation of production by the

DLEM.

In addition, we also used NRMSE and R? to quantitatively evaluate the simulation accuracy

of crop production at county scale (Figure 8). The NRMSE values between the DLEM-simulated
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crop production and the USDA-NASS survey data for corn, soybean, and winter wheat were all
smaller than 5%, and the corresponding R? values were 0.93, 0.94, and 0.67, respectively.
However, despite the overall good performance, it should be noted that there were still some
discrepancies between the simulated production of winter wheat and the survey data (e.g., the

underestimated winter wheat production in the northwestern U.S.).
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Figure 8. Quantitative comparisons between the average annual crop production during 1960-2018 simulated by the
Dynamic Land Ecosystem Model (DLEM) and obtained from the United States Department of Agriculture-National
Agricultural Statistics Service (USDA-NASS) survey data at county-scale for corn (a), soybean (b) and winter wheat

(c), respectively. The number next to the color bar represents the normalized point density.

3.3. Temporal variations of simulated crop production

Temporal variations in simulated crop production at the national scale was also examined
(Figure 9). From the 1960s to the 2010s, the national corn production almost tripled and the
soybean production almost quadrupled. Winter wheat production showed large interannual
variations, increasing at first and then decreasing. Generally, the temporal variations of national
crop production simulated by DLEM agreed well with the USDA-NASS survey data. The
NRMSE values between them for corn, soybean, and winter wheat ranged from 6.89% to
10.92%, and the R? values between them are all greater than 0.7. Meanwhile, the results indicate

that the new model was capable of capturing the reductions in crop production caused by
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extreme weather disasters. For example, the extreme drought event that occurred in 2012 swept
most of the contiguous U.S. (Mallya et al., 2013), leading to a significant reduction in crop
production, and our simulated results also showed a large reduction. However, it should be noted
that the simulated production responded more severely to extreme weather events than the
observations. For instance, the corn production loss in 2012 estimated by DLEM was about twice

the actual loss relative to the average corn production in 2011 and 2013.
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Figure 9. Historical trends of national crop production simulated by the Dynamic Land Ecosystem Model (DLEM)
and obtained from the United States Department of Agriculture-National Agricultural Statistics Service (USDA-
NASS) for corn (a), soybean (b) and winter wheat (c), respectively.

4. Discussion

4.1. General performance of the agricultural module of DLEM

The site-scale validation results indicate that the DLEM-simulated LAI, aboveground
biomass, and yield were generally consistent with the observations (Figures 2-6), although part
of the modeled LAI during the late growing season was still overestimated and the peak LAI in
some years was underestimated. The deviations in the simulated LAI may be partly due to the
constant SLA used in our model. Specifically, daily LAI in DLEM is calculated based on the leaf
carbon and the constant SLA, while SLA actually varies with the crop growth stage and is
simultaneously regulated by environmental conditions (Danalatos et al., 1994; Tardieu et al.,

1999). However, the mechanism of how SLA responds to changes in climate and environmental
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factors throughout the growing season is still unclear (Drewniak et al., 2013), making it difficult
to include dynamic SLA in the model at this time. Another possible explanation for the
deviations in the simulated LAI might be bias in the modeled planting date and growing season
length. Specifically, our model tended to estimate later planting dates and longer growing
seasons than observations (Figure 3), which cause the simulated LAI to maintain a high value for
a longer period than the actual duration and in turn overestimates LAI during the late growing
season. The accurate simulation of plant phenology (e.g., planting date and growing season
length) has been shown to be critical for modeling productivity (Anapalli et al., 2005; Wallach et
al., 2021; You et al., 2020). In our model, to reduce model complexity and its associated
uncertainty, only temperature-derived metrics are used to determine planting date (Levis et al.,
2012). Given that planting date depends not only on temperature but on other factors as well, for
example, soil moisture, terrain condition and factors that may affect farmers’ decisions such as
labor and equipment availability (Kucharik, 2006; Sacks et al., 2010), it is not surprising that
there are some discrepancies in the modeled phenology. Consideration of these additional factors

on planting date may help to improve the simulation of crop phenology in the future.

The spatial pattern of crop production simulated by our model was also comparable to
survey data (Figure 7 and Figures S6-S8), although some discrepancies still exist. The
underestimated winter wheat production in the northwestern U.S. may be partly due to the
deficiency of our model in simulating available soil water. A similar problem has also been
reported in the spatial pattern of winter wheat yield simulated by CLM 4.5 (Lu et al., 2017). In
DLEM, we use a water regulation factor, B, to represent the limitation of soil water on
photosynthesis and other water-related processes (Pan et al., 2015; Tian et al., 2010). A B value

of 0 denotes complete water restriction, whereas a  value of 1 denotes no water stress. The
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spatial pattern of DLEM-modeled B during the growing season of winter wheat indicates that the
modeled B in the northwestern U.S. is very low (Figure S10), with an average value less than 0.5,
suggesting that soil water availability severely limits photosynthesis in this region and thus leads
to the underestimated production. If we applied full irrigation over this region, the simulated
pattern of winter wheat production better captures the USDA’s spatial pattern (Figure S11). This
result suggests that there is less water stress on winter wheat growth in the region than indicated
by the model. Crop water supply may be enhanced by an abundant groundwater resource and
snowmelt water in this region. However, these hydrological processes are under-represented in
our model. In addition to water stress issues, the discrepancy in crop production patterns may
also stem from the deficiencies of our model in representing the growth characteristics of winter
wheat (e.g., frost tolerance and damage) and relevant farming practices (e.g., irrigation and

fertilization).

With respect to the simulation accuracy of different crops, we found that the accuracy of
winter wheat production is lower than that of corn and soybean (Figures 7 and 8). Winter wheat
has a unique growth cycle (i.e., planted in fall and harvested in summer) compared with summer
crops. Therefore, it may also have different response mechanisms to environmental stresses due
to its frequent exposure to frost damage (Lu et al., 2017; Vico et al., 2014). Frost damage and its
related processes are not considered in our model. Another possible reason for the lower
accuracy of winter wheat production may be that we limited winter wheat to only three varieties.
The varieties of winter wheat span a large range of latitudes, so there exists large spatial
heterogeneity in the temperature and precipitation regimes in which they grow that we have not
fully captured (Zhang et al., 2020). The consideration of frost damage effects and a further

subdivision of varieties may improve the estimation of winter wheat production in the future.
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The advances in crop genetic and breeding technologies, agricultural expansion and
intensive management practices have led to a one to four-fold increase in crop production in the
U.S. during the past several decades (USDA, 2018). Our model captured this trend (Figure 9).
Nevertheless, despite the overall good performance, the model probably has not captured some
effects of improvements in genetic and breeding technologies on crop resistance to pests and
diseases as well as adaptation to environmental stress (Bailey-Serres et al., 2019; Hammer et al.,
2002). This deficiency may partly explain the high sensitivity of our model to extreme weather
disasters. In addition, the high sensitivity may be attributed to human adaptive behaviors such as
farmers’ preparedness and response strategies to extreme weather (Annan and Schlenker, 2015),

which are not considered in the model.

In addition, we also compared the performance of the new model in simulating national crop
production with a previous DLEM version, namely the DLEM-Ag2 (Figure S12). Generally, our
new model achieved higher simulation accuracy than the DLEM-Ag2, in which the NRMSE
values reduced by 6.24%, 1.21%, and 2.18% for corn, soybean and winter wheat, respectively,
and the R? values increased by 0.13, 0.04, and 0.11, respectively. Meanwhile, the new model
better captured the interannual variations and trends of national crop production as compared
with the DLEM-Ag2. For example, the DLEM-Ag2 overestimated national corn production in
the 1960s and 1970s and substantially underestimated corn production after the 2000s, however,
the new model simulated the production changes well over the entire period. The improved
performance of the new model also demonstrated the effectiveness of the newly incorporated

crop growth processes and agricultural management practices.
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4.2. Parameter sensitivity analysis

Since the new model involves a lot of parameters (Tables S4 and S5), we conducted global
sensitivity analysis to quantify the relative importance of each model parameter to crop yield
simulation using the Sobol’ method. The Sobol’ sensitivity analysis was implemented by
evaluating the changes in simulated yield in response to variations in parameter values over a
large amount of random parameter samples, which were generated using the Monte Carlo
sampling scheme by assuming a uniform distribution for each parameter and randomly varying
its value within 20% of the calibrated value (Tian et al., 2011). The number of parameters
included in the analysis was 17, 19, and 26 for corn, soybean, and winter wheat, respectively,
and after sampling, a total of 18432, 20480, and 27648 parameter samples were generated,
respectively. In addition, we performed a resampling analysis over the generated parameter
sample space to estimate the variability of the derived first-order (S;) and total-order (Sz;)
sensitivity indices, and the resulting standard deviations of these indices are displayed as error
bars in Figures S13-S15.

We used S; and S7; to measure the relative contribution of each parameter to the variance of
simulated yield. For corn, the top three most influential parameters revealed by both S; and Sr;
are the lower optimal cardinal temperature required for photosynthesis (Card,y,;1), maximum
stomatal conductance (gmqyx), and maximum grain number per plant (GNy,q,) (Figure S13). For
soybean, there are slight differences in the ranking of influential parameters revealed by S; and
St; (Figure S14), but in general, the lower and upper optimal cardinal temperatures required for
photosynthesis (Card,yt; and Card,pe, ) still play a dominant role, and gpmqy, as well as the
threshold of 10-day running average temperature for sowing (vag) also have a significant

impact. For winter wheat, the lower cardinal temperature for heat stress to reduce grain number
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(HeatTemp,y,in) and vag are identified as influential parameters by both S; and Sy;, whereas
Card,p¢; is identified as a dominant parameter by S7; but not by §;, suggesting that this
parameter mainly affects output through interactions with other parameters. Overall, Card,,;
was identified as the most influential parameter affecting yield simulation for all the three crops,

as this parameter determines the critical point of temperature at which photosynthesis rate

reaches the optimum.

4.3. Uncertainties

Despite the overall sound performance of our model, some limitations remain in this study.
First, the representation of groundwater and irrigation practice (i.e., without considering the
irrigation amount and frequency) in our model is relatively simple, which biased the simulated
soil moisture and then crop production. Considering that some satellite-derived soil moisture
products are available (e.g., SMAP and ESA-CCI datasets) (Dorigo et al., 2017; Entekhabi et al.,
2010), we may solve this problem by assimilating soil moisture products into our model. Second,
input data used to drive DLEM may introduce bias. For example, the crop-specific N fertilizer
use rate was obtained from the state-level surveys, which cannot reflect the actual variations of
fertilizer use in both magnitude and timing. Previous studies have developed some optimized
fertilization schemes to better represent fertilization practice in the model (Fu et al., 2020; Leng
et al., 2016), which could be incorporated into our model in the future. Third, cover cropping
practices were not included in our regional-scale simulation due to the lack of an available
spatialized dataset, which may also introduce biases in our results. Finally, as discussed in
Section 4.2, crop yield simulations are sensitive to some parameters (e.g., Cardyys and grmqay)
so uncertainty in model parameters also constitutes a possible source of deviation in our results.

In the long term, our goal is to develop a crop module applicable to all crop growing regions
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worldwide. Here, the parameterization and calibration schemes mainly focused on the three
major crops grown in the U.S. Extending this parameterization effort to additional crops and
varieties from other regions will likely be needed to make the model more broadly applicable.
Addressing these limitations is critical to further improve the simulation performance of the new

model at regional and global scales.

4.4. Future research opportunities

In this study, we focused on how a better mechanistic representation of the effects of
environmental factors and management practices on crop growth processes improved model
estimates of crop production and yield at both the site and regional scales. Applying this
knowledge to future climate scenarios should improve our understanding of how climate change
may impact crop production at the site scale and food security at the regional scale in the future.
In addition, the model improvements described in this study provide new ways to evaluate the
effectiveness of potential climate mitigation and adaptation policies to sustain crop production
and help protect food security. For example, climate-smart practices such as no-tillage and using
cover crops have been widely advocated to promote soil carbon sequestration and GHG
mitigation while sustaining or boosting crop production (FAO, 2010). The incorporation of
different tillage and cover cropping effects on soil characteristics and crop growth into DLEM
4.0 allows the model to quantify the potential benefits of such climate-smart practices on GHG
mitigation and crop production under future climate scenarios. Diversified crop rotations have
also been advocated to reduce adverse environmental and climatic effects on crop production
(Bowles et al., 2020), and when rotated with legumes, they can also contribute to climate change
mitigation by reducing N fertilizer use (Ma et al., 2018). The inclusion of the dynamic crop

rotation scheme in the new model allows us to explore the benefits of diversified crop rotations
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on crop production and climate. Besides quantifying the benefits of climate mitigation and
adaptation policies, the new model can help identify unintended consequences of other
management policies, such as changes in nutrient loading from agroecosystems to river networks

(Pan et al., 2021; Yao et al., 2020).

5. Conclusion

To meet the multiscale agricultural application demands (e.g., farm-scale decision support
and regional-scale climate change mitigation), we developed an advanced agricultural modeling
framework on the platform of DLEM v4.0 through incorporating a more detailed representation
of crop growth processes and management practices, including but not limited to crop-specific
phenological development, dynamic carbon allocation, yield formation, biological N fixation,
and the implementation of tillage, cover cropping, and crop genetic improvement practices.
Comprehensive evaluations against site-scale observations generally show good performance of
the new agricultural module in simulating the seasonal variations and magnitudes of LAI and
aboveground biomass and annual yield. Regarding the regional-scale performance, the simulated
spatial pattern of crop production is also consistent with ground survey data. Meanwhile, the
national average crop production estimated by our model has increased by 14 times from the
1960s to the 2010s, which is consistent with the observed trend. Our new agricultural module
holds the potential to better predict future crop production to deploy early-warning measures, and

to assess the efficacy of potential agricultural climate change adaptation and mitigation strategies.

38



Acknowledgements

This study has been supported partially by NSF (Grant numbers 1903722, 1922687) and

NOAA (Grant number: NA16NOS4780204).

Appendix A. Dynamic crop growth processes in DLEM

Al. Crop phenological development

Al.1. Planting date determination

The accumulated thermal time from the earliest sowing date to the current day (ATT) is

calculated as:

current day
ATT = Z dailyTT (AD)
earliest day
0, if Tavg < Cardpin o1 Tgyg = Cardpg,
( Towg — Cardpm, if Cardmin < Tgyg < Cardype
dailyTT = { Cardaptl - Cardmin’ if Cardaptl < Tavg < Cardoptz (AZ)

| (Cardpmax — Tavg) % (Cardypyy — Cardyy;y)
Cardyg, — Card,p,

Jf Cardopiy < Tayg < Cardpgy

where dailyTT is the daily thermal time; Tg,, is the average air temperature; Cardy ,
Card,per, Card,ptz, and Cardy,qy are the crop-specific minimum, lower optimal, upper optimal,
and maximum air temperatures required for photosynthesis, respectively.

A1.2. Biological days-based crop phenological development scheme

The effects of temperature (tempfun), photoperiod (ppfun), vernalization (verfun), and

environmental stresses (fsress) On crop development rate are calculated as:
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dailyTT

tempfun =
pf Cardyp — Cardpy

((1—ppsen x (CPP — PP),if PP < CPP (for long day crop)

B 1, if PP > CPP
ppfun = { 1, if PP < CPP hort d
1 — ppsen x (PP — CPP),if PP = cpp U 0T short day crop)
verfun = {1 — vsen x (VDSAT — CUMVER,), if CUMVER; < VDSAT
N 1, if CUMVER; = VDSAT
CUMVER. — {CUMVERi_l + VERDAY — 0.5 X (Tyax — 30), if CUMVER;_, < 10 and Tpg, > 3
L CUMVER;_, + VERDAY, other conditions
( 0, if Tang < Vermin o1 Tgyg = Vermay
1 Tovg —Verp
| u, if Verpmin < Tavg < Vergpir
VERDAY = |V €Tovts = V€ imin
- 1, if Veryper < Tapg < Ver
| Vermax - Tavg
—__max avg if Verypr, < Ty < Ver,
kvermax — Veroptz opt2 avg max
max(fW,fV’}li"), if sowing < stage < end juvenile
fstress = {min (fW, max(fN,fIG”"“)), if end juvenile < stage < flowering
1, for other stages
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(A3)

(A4)

(A5)

0
(A6)

(A7)

(A8)

where dailyTT denotes the daily thermal time, which is calculated using Equation (A2) in
Appendix Al.1; Card,,;, and Card,y;; denote the minimum and lower optimal air temperatures
required for photosynthesis, respectively; ppsen is a cultivar-specific photoperiod sensitivity
coefficient; PP is daylength; CPP is a cultivar-specific critical daylength parameter at which the
rate of phenological development began to be restricted by daylength; vsen is a cultivar-specific
vernalization sensitivity coefficient; VDSAT is the number of vernalization days needed to
saturate the vernalization response; CUMVER denotes cumulative vernalization days; VERDAY
denotes vernalization day, representing the contribution of each day to vernalization;

Tax denotes the maximum air temperature; Vet , Veropey, Verg,,, and Ver,,, are the



minimum, lower optimal, upper optimal, and maximum air temperatures required for

vernalization, respectively; fy, and fy denote drought and N stresses, respectively, which are

calculated using Equation (A11) in Appendix A2; and fi*** and fi™" denote the minimum

drought and N stresses, respectively (here set to be 0.5 (Peng et al., 2018)). In addition, the
devernalization process is also considered in DLEM v4.0 when winter crops are exposed to high
temperature, namely, if CUMVER is less than 10 days and the maximum air temperature is
higher than 30 °C, then CUMVER is decreased by 0.5 days per degree above 30 °C; however, if

CUMVER is larger than 10 days, no devernalization will occur.
Daily crop leaf area index (LAI) is calculated as:
LAI = min(Creqs X SLA, LAl ) (A9)
where Cj.qr denotes leaf carbon content; SLA is a cultivar-specific parameter representing the
ratio of leaf area to leaf dry mass; and LAL,,, denotes the maximum LAIL

Canopy height (Hgqnepy) 18 estimated by scaling the maximum canopy height (Hcqnopy,max)

with LAIL:

_ LAI 2
Hcanopy = Hcanopy,max X min [(m) i 1] (AlO)

A2. Carbon allocation strategy

The effects of light (f;), nitrogen (fy), and water (fy,) stresses on the carbon allocation

process are calculated as:
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fi= exp(—extmef X LAI)
N,
fy = min (ﬂ, 1)

Nmax

10
fiw = ) froot; x f,
i=1

(Al11)
( O, if 1,01' < lpclase
l»bmax - lpi .
Bi = 4' Vax — Voot l'f Petose < Wi < Yopen
k 1, lf 1,[}1‘ = 1»bopen

where ext.,.s denotes the canopy light extinction coefficient; LAI denotes the leaf area index;
N, denotes the actual N content in the vegetation pool; Ny, ., denotes the maximum N content
in the vegetation pool; froot; denotes the root fraction in the soil layer i; §; is a soil matric
potential-related factor; Y4, denotes the maximum water potential, which represents the
wilting point potential of leaves (currently set to be —1.5 X 10°); 1; denotes the water potential
of layer i (mm H20); and Yypen and g denote the water potential under which the stomata

fully opens and closes, respectively (mm H>0O).

The actual kernel weight at physiological maturity (AKW) is calculated as the product of
daily crop development rate (dailyBD) and the potential kernel growth rate (pKGR), as well as

heat and N stresses:

AKW = dailyBD X pKGR X fy X freat
pKW

Zendgrainfill dai lyBD

startgrainfill
( 1, if Tapg < HeatTemp;, (A12)
Tavg — HeatTempp,y,

pKGR =

fhear = , If HeatTemppn < Tapg < HeatTemppq,

1-—
HeatTemp,,,, — HeatTempy,in
| 0, if Tapg > HeatTempy,qy

where dailyBD is calculated from Equation (2) in the main text; fy and fp.4; denote the N and
heat stresses, respectively; pKW denotes the potential kernel weight, which is estimated as the

ratio of potential kernel weight to the target BD during the grain filling period; HeatT emp,,,
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and HeatTemp,,,, denote the minimum and maximum cardinal temperatures at which heat

stress occurs.

In terms of grain number (GN), previous studies have demonstrated that GN is strongly
associated with the physiological status of a crop (e.g., plant growth rate and tissue biomass)
during a critical period for seed set, in which the critical period for corn and wheat are around the
flowering stage (Aluko and Fischer, 1988; Andrade et al., 1999; Bindraban et al., 1998; Early et
al., 1967; Fischer, 1985; Zheng et al., 2014). For soybean, this period extends from the flowering
stage to the beginning or middle grain filling stage (Board and Tan, 1995; Egli, 1998; Jiang and
Egli, 1995; Vega et al., 2001). In our model, GN of corn is calculated based on an exponential
function related to plant growth rate from the end of juvenile stage to the silking stage, similar to
the methods implemented in the APSIM model (Keating et al., 2003); GN of soybean is
calculated based on an empirical linear model related to plant growth rate from the flowering
stage to the start of grain filling stage (Vega et al., 2001); and GN of wheat and other crops are
calculated from an empirical equation related to stem dry matter at anthesis (Fischer, 1985;

Zheng et al., 2014):

GNpax X (1 — exp(—GNk x (PGR — PGRbase))), for corn
GN = max(k; + ky X PGR, GNpqy), for soybean
max(DMgeem X GNGstom> GNmax), for wheat and other crops (A13)
_ DMy, — DMy,
PGR = —

where GN,, 4, 1 a cultivar-specific parameter representing the maximum grain number per plant;
GNk and PGRy4,. are genotype parameters related to the GN of corn, which are set to 0.83 and
1.2, respectively (derived from the APSIM model); k; and k, denote the intercept and slope of
the empirical linear model used to calculate the GN of soybean, which are set to 4.5 and 123.9,

respectively (derived from Vega et al. (2001); DMg;,,, denotes the stem dry weight at anthesis;
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GNgstem denotes the number of kernels per gram stem; PGR denotes the plant growth rate
during the critical period for seed set and is calculated by dividing the accumulated shoot dry
matter during this critical period (DM;; — DM,) by the number of days of this period (Nday), in
which DM;; and DM,y denote the shoot dry matter at the end and beginning of this period,

respectively.

A3. Biological nitrogen fixation

The influences of soil temperature ( fg,;r ), soil moisture ( fspiw ), soil mineral N
concentration ( f,;;v ), substrate carbon concentration (fs,;c), and crop phenological stage

(fphen) on biological N fixation are calculated as:

o {fmax(O, Tsoir X Tsoir X (45 — Tgpip) X 0.0001), if Tsoi >0
soilT O, if Tsoil <0

]
fsouw = fmin (1.82 * ,1)
esat

fsoun = fmin(fmax(1 — 0.0784 x log(avn), 0),1)
Csub
fsoilC = fmax (m, 001)

) 0, for fCBD < fPhen,, (Al4)
fCBD — fPhen,;,
fPheny, — fPheny,,
fohen = 1, for fPhen,,, < fCBD < fPhen,py
fPhen,,q — fCBD
fPhen, ., — fPhen py

0, for fCBD > fPhen,,

, for fPhen,, < fCBD < fPhen,,,,

, for fPheny,; < fCBD < fPheny,,

where T,;; denotes the soil temperature; 8 and 6., denote the actual and saturated soil moisture
contents, respectively; avn denotes the available soil N; Cy,;, denotes the substrate carbon; kc
denotes the Michaelis—Menten constant for COz; fCBD denotes the cumulative crop
development rate from germination to the current day; f Phen,,;, denotes the time before which
no N fixation happens; fPhen,,,, and fPhen,,.y denote the beginning and end time within

which the N fixation rate is not limited by crop phenological stage; f Phen,,,, denotes the time
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after which the N fixation ceases. The values of fPheny,,, fPhen,y,, , fPhen,y,y , and

fPhen, . are set to 15%, 30%, 55%, and 75% of the crop life cycle (Cabelguenne et al., 1999).

Appendix B. Agricultural management practices in DLEM

B1. Tillage practice

B1.1. Effects of tillage implement on soil organic matter and nutrients contents

The effects of tillage practice on litter pools include the incorporation of surface residues
into the soil and the redistribution of SOM and nutrients in the tilled soil layers. In DLEM v4.0,
litter pool can be classified into two categories: aboveground litter pool (Litter,,) and
belowground litter pool (Litteryy). Both of the dead shoot biomass of crops due to turnover and
the crop residues not removed from the field are directly added to Littery,, and the dead root
biomass as well as the root residue are added to the Litter;, . Besides, part of Litter,, will be
transferred to Litter,  through bioturbation and tillage mixing practice, which is the same as that
implemented in LPJmLS (Lutz et al., 2019). For the bioturbation pathway, we assumed that
0.1897% of the Littery, is transferred to Litter,, per day to account for the vertical
displacement of litter under no-tillage and natural vegetation conditions (Lutz et al., 2019); and

for the tillage pathway, the amount of transfer depends on tillage intensity:

Litterygyq = Litteryg, + Litteryg, X frix (B1)
Litterygeq = Littergge X (1 — EFpy) (B2)

where Littery 41 and Litter,q 144 denote the belowground and aboveground litter pools in the

(t + 1)th day, respectively; Litter, ; and Litter,, , denote the belowground and aboveground
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litter pools in the tth day, respectively; and EF,,;, denotes the mixing efficiency, with a value

between 0 and 1.

The redistribution of SOM and nutrients among the tilled soil layers is calculated based on
the methods adopted in the Agricultural Policy Environmental EXtender (APEX) model

(Williams et al., 2008):

Z,—Z

M
-1
Xy = X X (1= Blpiy) + == X BB X )Xo (83)
t k=1

where X; is the amount of SOM/nutrients in layer [ after mixing; X,; is the original amount of
SOM/nutrients in layer [ before mixing; EF,,;, denotes the mixing efficiency; Z is the depth to
the bottom of the tilled layer; D; is the tillage depth; M is the total number of soil layers affected

by tillage operation; and X, is the original amount of SOM/nutrients in layer k before mixing.

B1.2. Effects of tillage implement on soil water processes

The impacts of tillage operation on soil water processes in DLEM are mainly reflected in
two aspects: (1) changes in litter interception due to reduced surface residue coverage and the
accompanying changes in litter evaporation, soil evaporation and infiltration, as well as soil
moisture content; (2) changes in soil bulk density due to tillage mixing and the accompanying

changes in soil moisture content at saturation and field capacity.

In DLEM, precipitation and irrigation water are either intercepted by crop canopy and
surface litter or falls to the ground as throughfall, and will be lost through evapotranspiration,
soil infiltration and surface runoff. Crop canopy interception is calculated as the same process as
in the natural vegetation module of DLEM, which is estimated as the minimum of input water

content and canopy water holding capacity (Tian et al., 2010). Litter interception is determined
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as the balance of available input water content after canopy interception and actual water holding

capacity of surface litter (Whcj¢ gc¢), in Which whey;, o, is calculated as:
thlit,act = thlit,max X flit (B4)

where WACj¢ ;mq, denotes the maximum water holding capacity of surface litter, which is
obtained by multiplying Litter,, with a conversion factor of 2 X 107 3mmkg1, following Lutz
et al. (2019) and Enrique et al. (1999); and f;;; denotes the fraction of soil surface covered by
litter, which is calculated through adapting the equation from Gregory (1982):

flit =1- e—Ameitterag (BS)

where A,, denotes the area covered per dry matter of surface litter and is set to 0.004 in DLEM

(Dadoun, 1993).

The calculation of litter evaporation ( EVAP;; ) is similar to the calculation of soil
evaporation (EVAPs,;) in DLEM, which is obtained by multiplying the potential evaporation
(PET) estimated from the Penman—Monteith equation with a LAI-adjusted item (Pan et al., 2020;
Pan et al., 2015). Here, f;;; is also included in the calculation process of EVAP;;; and EVAPg,;; to

account for the impacts of changes in surface litter coverage on evaporation:
EVAPy; = PETy; x e 64l x f, (B6)
EVAPgi = PETgoy X e~ 06xLAl 1- flit) B7)

Tillage practice generally leads to a reduction in bulk density through incorporating surface
residues into the soil and promoting soil fragmentation (Guérif et al., 2001; Maharjan et al.,
2018), which further results in the changes in soil moisture content at saturation and field
capacity. Here, the impacts of tillage implement on bulk density and the subsequent soil moisture

effects are calculated as (Lutz et al., 2019):
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foptitiare = foptigpri — (Fepeunipri — 0.667) X EFpiy (B8)
Hsat,l,aft =1- (1 - Gsat,l,pn‘) X fBDtill,l,aft (B9)

efc,l,aft = ch,l,pri —02x (esat,l,pri - esat,l,aft) (B10)

where fpptiiniare denotes the fraction of bulk density change after tillage in layer [; and
fBDtinprior denotes the density effect before tillage in layer [; 05411 q5c and O¢cyq5c are the
modified soil moisture content at saturation and field capacity after tillage in layer [; 8541 pri
and 6y ,r; are the original soil moisture content at saturation and field capacity before tillage in
layer [. In DLEM v4.0, the vertical soil profile is described by a ten-layer discretization of a 3 m
soil profile, and the layer thickness increases geometrically from top to bottom with values of 0.1
m, 0.1 m, 0.1 m, 0.2 m, 0.2 m, 0.2 m, 0.3 m, 0.4 m, 0.4 m, and 1 m, respectively. Soil water flow
between different soil layers is calculated using the Darcy’s law, in which the water flow rate g

(mm/s) in layer [ can be approximated as:

WF—Y510) + (Z141—27)
(Z11—2)

Q= —k[Zn,z][ (B11)

where k[zhll] is the hydraulic conductivity at the depth of the interface of two adjacent layers

(zn,1), z; is the depth of soil layer [, and ¥, is the soil matric potential (mm).

B1.3. Effects of tillage implement on decomposition

In DLEM, the direct effect of tillage implement on the decomposition rate of litter pools is
represented by a tillage scalar (f;;;;), which has a value greater than 1, indicating the promoting
effect of tillage on decomposition (Huang et al., 2020). In addition, the indirect effect of tillage
implement on decomposition is also included, which is mainly reflected in its impacts on the

amount of SOM, nutrient availability, actual soil moisture content, and soil moisture content at
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saturation and field capacity. The actual decomposition rate of each litter pool (k;,,;) Within the

tilled soil layers is calculated as:

kpoor = kmax,,e; X f(T) x f(W) x f(clay) X f(N) X fry (B12)
F(T) = 4.89 x e~3432+0.1xT50i1x(1-0.5xTs0i1/36.9) (B13)
( 1-— e—e/gsat .
1—e_gf6/95at' lfGSGfC
fw) = L0044 0.0044 . (B14)
I ' N _Sx(g/gsat_gfc/gsat>’lf > fe
k e 1_9fc/95at
f(clay) =1-0.75 X Pyq,, /100 (B15)
A f (N, if mineralization occurs
fN = {f(Nl-m), if immobilization occurs (B16)
avn — avn
(1 Tow’ if avn > avngy,
opt
f(N,) = { 1, if avng,, /2 < avn < avn,, (B17)
| 0. Savnopt avn )
kl +— pr— , if avn < avng,y,, /2
op
fWNim) = avn/niym (B18)
feii =1+ fomi (B19)
EF,;
—5.5XPq mix .
L {((3 +5 x e~55*Pday) x Bt et (=1 .
cm,i — 2]
k femji-1 X (1 —0.02 % ) i>1
esat

where kmax,,,; denotes the potential decomposition rate of each pool; f(T), f (W), f(clay),
and f(N) denote the limitation of soil temperature, soil moisture, soil texture, and N on
decomposition; f; is a tillage scalar; Ty, is soil temperature; 6, 8,4 and 8. denote the actual

soil moisture content, soil moisture content at saturation, and soil moisture content at field
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capacity, respectively; P;q, denotes the percentage of clay content; f(Np,;) and f(N;p,) denote
the limitation of N availability when mineralization and immobilization occur, respectively; avn
and avn,,; denote the actual and optimum available soil N, respectively; M, denotes the
potential N immobilization estimated by the tentative decomposition procedure; f.,, ; denotes the
cumulative effect of tillage at day i; EF,,;, denotes the mixing efficiency; 8 and 6,; denote the
actual and saturated soil moisture contents of a given soil layer at day i. The decomposition rate
is calculated separately in each soil layer, and f;;;; is only considered in those soil layers affected

by tillage practice.
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