

1 July 24, 2017

2 Managed Nutrient Reduction Impacts on Nutrient Concentrations, Water Clarity, Primary
3 Production, and Hypoxia in a North Temperate Estuary.

4

5 Candace Oviatt¹, Leslie Smith², Jason Krumholz³, Catherine Coupland⁴, Heather Stoffel¹,
6 Aimee Keller⁵, M. Conor McManus^{1,6} and Laura Reed¹

7

8 ¹Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882,
9 michael_mcmanus@myuri.edu ²Your Ocean Consulting, LLS, 9924 Rainbow Dr,
10 Knoxville, TN 37922, leslie.smith.gso@gmail.com, ³McLaughlin Research Corporation,
11 132 Johnnycake Hill Rd., Middletown RI 02842, jkrumholz@gmail.com ⁴ Maine School
12 of Marine Science, Darling Marine Center, Walpole, Maine 04573,
13 ccoupland4@gmail.com ⁵NOAA National Marine Fisheries Service, Northwest Fisheries
14 Science Center, Fishery Resource Analysis and Monitoring Division, 2725 Montlake
15 Boulevard East, Seattle, Washington, 98112, USA. aimee.keller@noaa.gov, ⁶Rhode
16 Island Department of Environmental Management, Division of Fish and Wildlife, 3 Fort
17 Wetherill Road, Jamestown, Rhode Island 02835, conor.mcmanus@dem.ri.gov
18 Corresponding author: coviatt@uri.edu, Tel: +01011-401-874-6661, FAX 401-874-6613

19

20

21 Abstract

22 Except for the Providence River and side embayments like Greenwich Bay,
23 Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed
24 nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved

25 inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US
26 estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s.
27 The input reduction was reflected in standing stock nutrients resulting in a statistically
28 significant 60% reduction in concentration. In the Providence River estuary, total
29 nitrogen decreased from 100 μ m to about 40 μ m, for example. We tested four
30 environmental changes that might be associated with the nitrogen reduction. System
31 apparent production was significantly decreased by 31% and 45% in the upper and mid
32 Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and
33 upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced
34 the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have
35 been significantly lower than before the reduction. The impact on the Bay will continue
36 to evolve over the next few years and be a natural experiment for other temperate
37 estuaries that will be experiencing nitrogen reduction. To provide perspective we review
38 factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude
39 that, as in Narragansett Bay, physical factors can be as important as nutrients. On a
40 positive note managed nutrient reduction has mitigated further deterioration in most
41 estuaries.

42 Keywords: Nitrogen reduction, System Responses, Hypoxia

43

Introduction

45 As the expensive engineering efforts reduce nutrients in coastal systems, the
46 documentation toward restoration becomes increasingly relevant to justify. Some systems
47 fail to follow a simple trajectory from degradation to restoration (Duarte et al. 2009,
48 Conley 2012). In large stratified Chesapeake Bay, inorganic nutrients were a primary
49 driver of hypoxia through growth, sinking and decomposition of algal cells, but the
50 removal of bivalve filter feeders, climate change and changing physical factors have
51 continued to contribute to hypoxia (Kemp et al. 2009). However, other systems indicate
52 improvement with reduced chlorophyll levels, improved water clarity and in some cases
53 the re-growth of seagrass beds (Staehr et al. 2017, Taylor et al. 2011, Greening and
54 Janicki 2006). Here, we offer one more case where the effort may be evaluated.

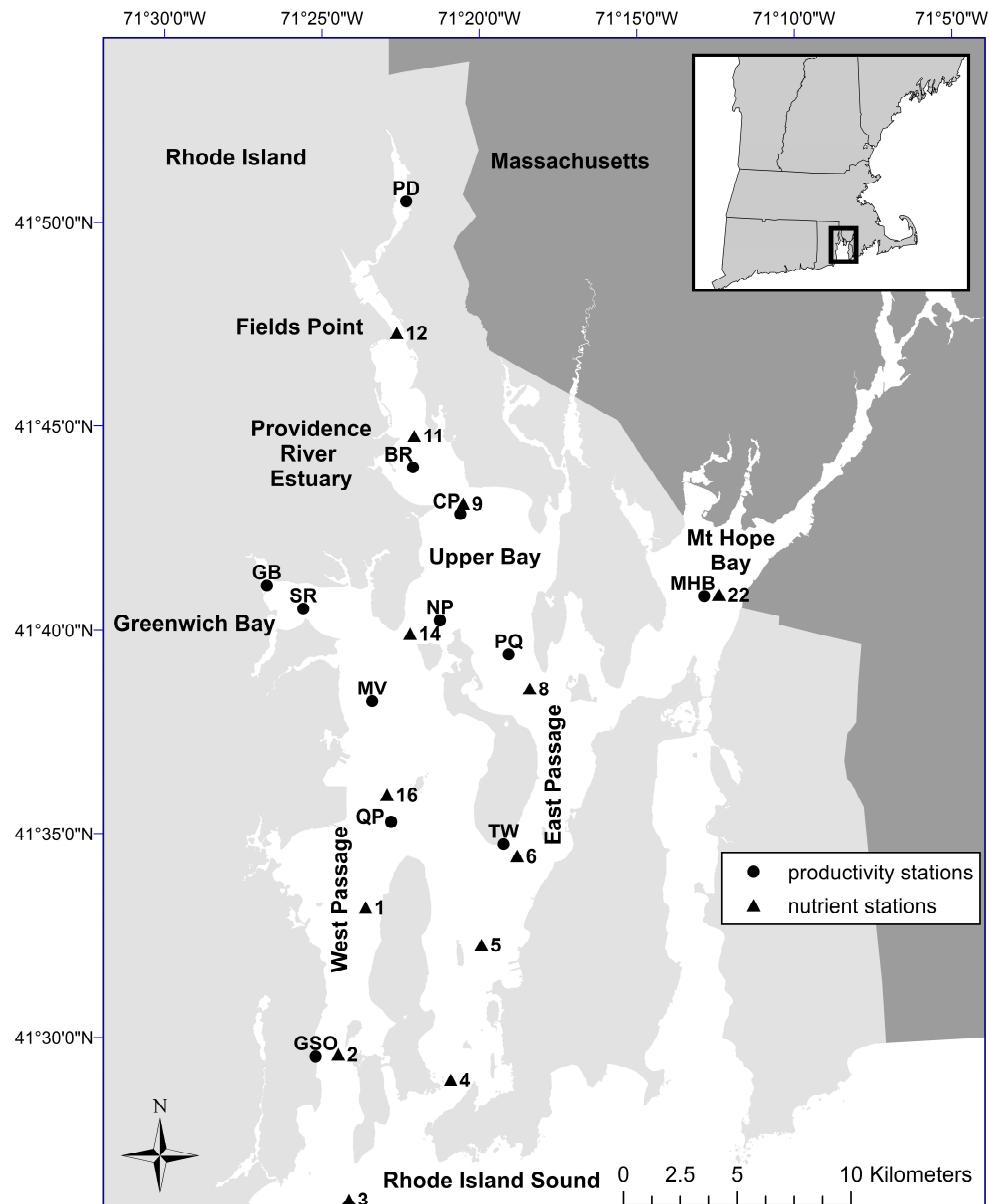
55 In the late 1990s and early 2000s, studies in Narragansett Bay revealed incidences
56 of low oxygen concentrations during the summer in the Providence River area, the upper
57 Bay and coves such as Greenwich Bay (Bergondo 2004, Bergondo et al. 2005, Deacutis
58 et al. 2006, Melrose et al. 2007, Codiga et al. 2009). The Providence River and Seekonk
59 River estuaries at the head of the Bay have low oxygen reports dating back to 1923
60 (Desbonnet and Lee 1991, US Public Health Service 1960). Estimates of prehistoric
61 nutrient concentration suggest that reactive nitrogen and phosphorus had been increased 5
62 fold and 2 fold, respectively, from human activities by the 1990s (Nixon 1997).

63 Eutrophication and low oxygen resulting in the 2003 fish kill in the Greenwich
64 Bay portion of Narragansett Bay caught the public's attention and provided impetus for
65 managed nitrogen reduction (Deacutis et al. 2006). The Rhode Island Department of
66 Environmental Management (RI DEM) implemented nitrogen reductions in waste water

67 treatment facilities (WWTF) beginning in 2005 (RIDEM 2005). By summer 2012 the
68 overall goal of a 50% reduction of the WWTF effluent DIN load was achieved in
69 Narragansett Bay (Liberti, A. 2014 RI DEM, personal communication). Management
70 regulations have mandated tertiary treatment at WWTF year round but threshold limits of
71 5 ppm nitrogen only apply in warmer months when the process is most efficient.

72 This study presents the change in nutrient standing stocks in Narragansett Bay and
73 four environmental changes associated with oligotrophication: apparent production, water
74 clarity, frequency of summer hypoxia and intensity of the winter-spring diatom bloom.
75 The variables were examined Bay-wide and presented in a north-south format for
76 comparisons to nutrient concentrations and provide an estimation of gradient changes
77 within the Bay ecosystem. This manner of presentation has the advantage of making
78 outlier areas evident. Since our study began after the initial nutrient reduction, two
79 annual surveys (1979-1980 and 1997-1998) conducted before this study were mined for
80 data for the before treatment in this study.

81 The Study Area – Narragansett Bay


82 Narragansett Bay, with a length of 45 km and mean depth of 8.3 m, lies in a
83 north-south orientation on the coast of Rhode Island and opens into Rhode Island Sound
84 (Figure 1). The 4660 km² watershed extends from Rhode Island into Massachusetts and
85 provides an average freshwater input of 37 m³ s⁻¹ (Kremer and Nixon 1978). The Bay
86 includes several distinct regions: the northern Seekonk - Providence estuaries, upper Bay,
87 and the lower Bay divided by islands into the West and East Passages. The East Passage
88 borders the entrance to the Mt Hope Bay-Sakonnet Passage complex.

89 Tidal waters account for about 13% of the volume of the Bay. Offshore waters
90 enter from Rhode Island Sound mainly into the deeper East Passage of the Bay. They
91 flow north to the Providence area along the bottom and slowly mixing to the surface.
92 The range of salinity in the Bay is small, about 22 to 30 ppt, owing to the low fresh water
93 input compared to the large tidal volume. Water in the upper Bay and East Passage
94 moves west due to prevailing winds and Coriolis force. The resulting flow then
95 propagates south on the surface in the West Passage (Kincaid et al. 2008). Average
96 residence time of water in the Bay is about 40 days (Pilson 1985).

97 Historically WWTF located in the watershed and the urban northern portion of the
98 Bay have contributed high nutrient loads to the Bay resulting in a gradient of high
99 nutrient concentrations in the upper Bay to low nutrients in Rhode Island Sound (Oviatt
100 2008). Primary production, chlorophyll-a, zooplankton abundances and frequency of
101 hypoxia events have followed a similar gradient of higher values up Bay and decreasing
102 values down Bay (Oviatt 2008).

103

104

106 Figure 1. Narragansett Bay station locations are numbered nutrient sampling stations and
 107 labeled fixed and buoy monitoring sites: PD is Phillipsdale, BR is Bullocks Reach; CP is
 108 Conimicut Point; NP is North Prudence; GB is Greenwich Bay; SR is Sally Rock; PQ is
 109 Poppasquash; MHB is Mount Hope Bay; MV is Mount View; T-W is T-Wharf; QP is
 110 Quonset Point; GSO is Graduate School of Oceanography Dock.

111

112

Methods

113 Nutrients

114 From late summer 2005 through 2014, 13 surface stations around Narragansett
115 Bay (Figure 1) were sampled to measure ammonia, nitrate, nitrite, phosphate, total
116 phosphorus and total nitrogen. Sampling was conducted monthly during cold months and
117 bi-monthly during June, July, August. These surveys were compared to a dissolved
118 inorganic nutrient survey conducted in 1979-80 and a total nitrogen and total phosphorus
119 survey in 1997-1998 over annual cycles (Oviatt et al. 1984, Oviatt et al. 2002).

120 Samples were collected using an acid cleaned plastic container within 0.5 m of the
121 surface and stored on ice until return to the laboratory. Upon return during the afternoon
122 of the same day 40 ml dissolved inorganic nutrients were filtered using 0.45-micron
123 Nucleopore filters. A second aliquot of 40 ml whole water was collected for TN and TP.
124 All samples were frozen at -4 °C until analysis.

125 Samples were analyzed with a colorimetric method on a Technicon auto-analyzer
126 before 2008 and an Astoria SFA auto-analyzer after 2008. The two instruments were
127 inter-calibrated with samples over a three-year period (Krumholz 2012). Total nutrient
128 samples were mineralized with alkaline persulfate before being analyzed (Patton and
129 Kryskalla 2003). Ammonia, nitrate and nitrite were analyzed using methods from
130 Astoria Pacific (2005), Scott et al. (2005) and Schmidt and Clement (2009). Phosphate
131 was analyzed using methods from Scott et al. (2005).

132

133 Field Monitoring Network for Oxygen and Apparent System Production

134 Since the early 2000s, a summer monitoring network of fixed and buoy sites was
135 developed to observe and record water quality variables at several station throughout the
136 Bay (Figure 1). The Rhode Island Department of Environmental Management (RI DEM)
137 developed the program in partnership with the Narragansett Bay Commission, the
138 Narragansett Bay National Estuarine Research Reserve and the University of Rhode
139 Island, Graduate School of Oceanography. The RI DEM has used the data from this
140 network to assess levels of low oxygen conditions for the upper Bay.

141 For this study the network data were used to estimate primary production. System
142 apparent production is defined as water column net community production during the day
143 (Oczkowski et al. 2016). Surface and bottom sensors were deployed at each site, with the
144 exception of GSO and CP winter stations that had only surface sensors deployed.
145 Sensors took measurements every 15 minutes for depth, temperature, salinity, oxygen,
146 chlorophyll-a fluorescence (surface only), and pH using Yellow Springs Incorporated
147 (YSI) brand instruments at all stations. Stations are serviced on a 2-week interval to
148 remove bio-fouling (for water quality procedures see RI DEM 2014). The buoy stations
149 are operational from May through October (PD, BR, CP, SR, MV, QP, PQ, MHB). Four
150 of the stations operated year round (CP, GB, T-W, GSO). Daily averages of the data are
151 stored and available online: http://www.narrbay.org/d_projects/buoy/buoydata.htm
152 (accessed May 2015).

153 Model for System Apparent Production

154 Net apparent system metabolism estimates were calculated from oxygen data
155 (RIDEM 2007, 2014) from each station in the network from 2006 to 2015 using a Dawn-
156 Dusk (DD) estimation (Odum and Hoskin 1958). System apparent production was

157 estimated from surface sensors using dawn and dusk measurements daily June through
158 August (92 d):

159

160
$$PP = [(O_{2(dusk)} - O_{2(dawn)}) - D],$$

161

162 where PP is apparent daytime production, $(O_{2(dusk)})$ is oxygen concentration at sunset and
163 $(O_{2(dawn)})$ is oxygen at sunrise, and D is the air-sea gas exchange correction coefficient. D
164 is estimated from an empirical exchange coefficient (K) using wind speed at 10 m above
165 the water surface (Kremer et al. 2003):

166

167
$$D = K * \text{Saturation deficit } O_2, \text{ where } K = 0.55e^{(0.15*U_{10})}; U_{10} = \text{wind speed at 10 m.}$$

168

169 Wind data were obtained from the National Oceanic and Atmospheric Administration
170 (NOAA) buoys in Narragansett Bay at QP and CP and averaged together for the day
171 estimate of diffusion (Figure 1). Diffusion corrected metabolism data were averaged from
172 June through August period for each summer period (92 days).

173 Hypoxic Event Estimation

174 The monitoring network was also used to estimate hypoxia duration for the
175 agency and this study. Low oxygen events were defined as the number of days from June
176 1- August 31 that DO levels did not meet RI state water quality criteria for dissolved
177 oxygen for salt waters (RIDOCS) below the pycnocline. The criterion was $2.9 \text{ mg O}_2 \text{ l}^{-1}$
178 for a 24 h period or 1.4 mg l^{-1} for 1 hour and designed to protect 95 % of larval
179 recruitment from the cumulative effects of exposure to low dissolved oxygen (RI DEM

180 2009). Monitoring data were summed to determine the total seasonal exposure. All buoy
181 data have gaps that may create a temporal bias in the data.

182 Chlorophyll Estimation

183 Chlorophyll-a fluorescence readings were taken every 15 minutes at all surface
184 monitoring locations using YSI 6 –Series sondes (RIDEM 2007, RIDEM 2014). Water
185 samples were collected for chlorophyll-a analysis every two weeks during sonde swaps.
186 Water was filtered using a 25 mm Whatman GF/F filters for chlorophyll extraction and
187 frozen until analysis to verify/adjust sonde readings (Yentsch and Menzel 1963, Lorenzen
188 1966, Oviatt and Hindle 1994). Stations from previous surveys and operating year round
189 were used to assess the winter-spring bloom chlorophyll at the CP, GB, TW and GSO
190 stations before, during and after nutrient reduction.

191 Precipitation Data

192 Rainfall data were obtained from the Kingston, RI weather station (Kingston
193 Weather 2015). Daily precipitation data for June, July and August were summed for
194 summer totals.

195 PAR Attenuation Measurements

196 PAR attenuation was measured bi-weekly to monthly during summer from 2007
197 through 2009, 2013 and 2014. In addition PAR values were available from an earlier
198 survey in 1997 for comparison. A Li Cor Light meter Data Logger (LI1000 or LI1400)
199 with deck (Quantum LI-190) and depth (Spherical LI-193) sensors (factory calibrated
200 annually) was used to measure the decrease in light at one-meter intervals throughout the
201 water column. The extinction coefficient (k) was estimated from logarithm transformed
202 light data through the water column using Beers' Law.

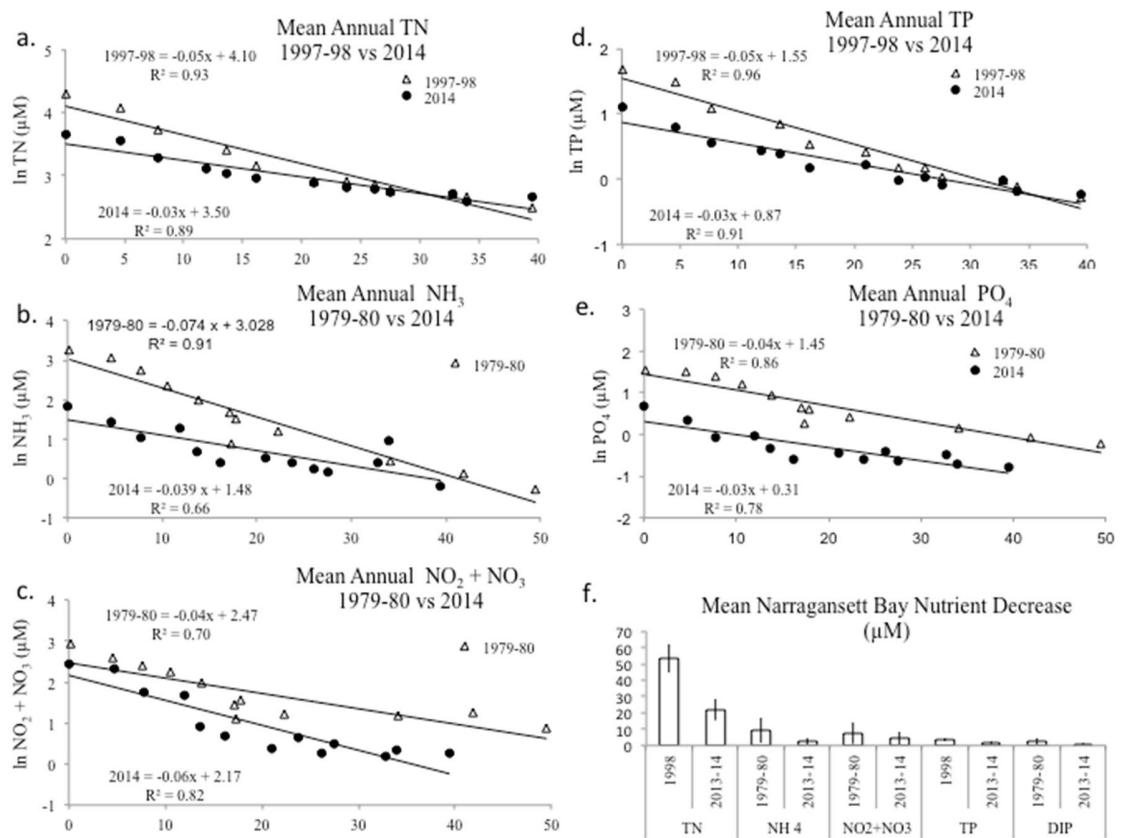
203 Statistical Analyses

204 Analysis of covariance ANCOVA was conducted using SAS PROC GLM (SAS
205 v. 9.3, SAS Institute, Inc., Cary, North Carolina) to examine variation relative to time
206 period, station location and an interaction term (Sokal and Rohlf 1981). The null
207 hypothesis tested was that no difference in nutrient concentration, water column
208 metabolism, chlorophyll concentration or days of hypoxia occurred between periods ($P >$
209 0.05 or 0.0001). The purpose of the ANCOVA is to compare two or more linear
210 regression lines. Coefficients of determination (R^2) and P -values were reported in linear
211 regression analyses to indicate the model fits and tests of significances for changes with
212 time and distance. Station location was incorporated in the model as a covariate as
213 distance and as a proxy for nutrient concentration. Either the slopes are different, and the
214 results are considered different based on a significant P -value for the interaction term, or
215 if the slopes are not different, the next step in an ANCOVA is to draw a regression line
216 through each group of points, all with the same slope. This common slope is a weighted
217 average of the slopes of the different groups and the final test in the ANCOVA is to test
218 the null hypothesis that all of the Y-intercepts of the regression lines with a common
219 slope are the same. Because the lines are parallel, saying that they are significantly
220 different at one point (the Y-intercept) means that the lines are different at any point. The
221 main factor in the ANCOVA was year or period, which had various levels within the
222 study (one year: 1979-80 (inorganic nutrients-before), one year: 1998 (total nutrients-
223 before), 5 years continuous data: 2006-2010 (inorganic and total nutrients-during) and
224 after years of continuous data (inorganic and total nutrients-after). Nutrients, system

225 apparent production and chlorophyll were transformed to natural logarithm before
226 analysis as appropriate.

227 Analysis of variance (ANOVA) was used to test for significant differences in
228 mean winter-spring chlorophyll levels for periods before, during and after nitrogen
229 reduction. The null hypothesis was no difference in environmental conditions between
230 periods. We used ANOVA based on daily values and thus high degrees of freedom
231 rather than ANCOVA based on means because there were only 3 to 4 stations for each
232 treatment. *F* levels, *P* values and coefficients of determination, *R*² were estimated.

233


234 Results

235 Nutrient Concentrations

236 Yearly concentrations of nitrogen and phosphorus were compared in surveys
237 before, during and after nutrient reduction along a north-south distance gradient in
238 Narragansett Bay (Table 1, Figure 1). An ANCOVA test showed that stations for DIN
239 and DIP from earlier surveys were significantly higher than the survey for the 2014
240 (Table1). Stations in the upper Bay decreased over the nutrient reduction period more
241 than stations in the lower Bay for most nutrient species. Nitrite/nitrate showed the
242 opposite pattern as ammonia oxidized with distance down Bay. During early surveys,
243 before implementation of tertiary treatment, ammonia was higher than nitrate/nitrite
244 concentration (Figure 2). TN and TP decreases were also statistically significant between
245 1997-1998 and 2014 (Figure 2, Table 1). All data for all surveys are not shown in Figure
246 2 to simplify the figure. Including more data does not change conclusions. Most of the
247 phosphorus decrease occurred in the early years (TP -56%) rather than in recent years

248 (TP -11%) (Table 1). In general, higher nutrient concentrations occurred in the
 249 Providence River Estuary, which received inputs from rivers and large WWTF, and lower
 250 concentrations were found towards the mouth of Narragansett Bay (Figure 2). With lower
 251 nutrient concentrations, a reduced north–south nitrogen gradient in the Bay persisted
 252 (Figure 2). Bay wide concentrations of forms of nutrients decreased on the order of 50 to
 253 60% (Figure 2f).

254

255

256 Figure 2. ANCOVA regressions using the natural logarithm of yearly nutrient
 257 concentration along the north-south distance axis of Narragansett Bay before and after
 258 nutrient reduction. a –e, Mean surface concentrations of nutrients (TN , NH_4 , $NO_{2,3}$, TP ,
 259 and DIP) before and after nutrient reduction survey periods plotted as kilometers from

260 Fields Point in the Providence River to the mouth of the bay; f, mean concentration of
261 nutrients for all stations before and after nutrient reduction.

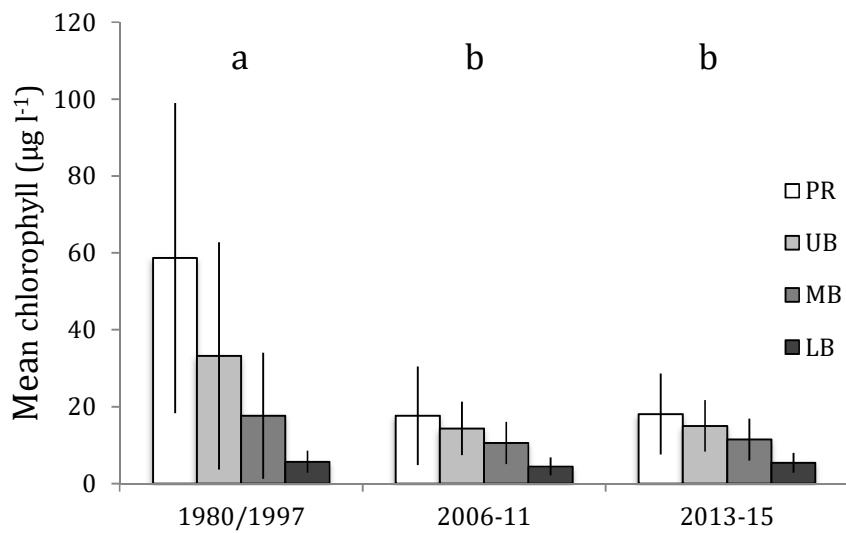
262

263 Table 1. Nutrient reduction P value tests of significance for all stations comparing
264 periods before to after and during to after. ANCOVA tests were performed on
265 regressions of the natural logarithm of nutrient concentration with north to south distance
266 during the successive surveys before, during and after managed nutrient reduction (Figure
267 2).

Dissolved Inorganic Nutrient	1979-80 vs 2014	2006-10 vs 2014
<i>DIN</i>	<i><0.0001</i>	<i>0.05</i>
<i>NH₃</i>	<i>0.005</i>	<i>0.003</i>
<i>NO₂ + NO₃</i>	<i><0.0001</i>	<i>0.003</i>
<i>PO₄</i>	<i><0.0001</i>	<i>0.005</i>
Total Nutrient	1997-98 vs 2014	2006-10 vs 2014
<i>TN</i>	<i>0.0004</i>	<i>0.02</i>
<i>TP</i>	<i>0.0004</i>	<i>0.03</i>

Notes:

NS - not significant


P -value shown for significantly different sampling periods.

If significant 2014 typically $<$ other years but underlined cell indicate 2014 $>$ than other years.

268 Chlorophyll and Water Clarity Response

269 As summer chlorophyll decreased, extinction coefficients decreased and water
270 clarity increased (Figures 3, 4). Before nutrient reduction mean summer chlorophyll
271 values were $58 \mu\text{g l}^{-1}$ in the Providence River and $6 \mu\text{g l}^{-1}$ near the mouth of the Bay
272 (Figure 3). After nutrient reduction summer chlorophyll values ranged from $22 \mu\text{g l}^{-1}$ in
273 the Providence River to $5 \mu\text{g l}^{-1}$ near the mouth. ANCOVA tests between before and
274 after nitrogen reduction were statistically significant ($P<0.0001$ level). The mean values
275 for during and after nitrogen reduction were not significantly difference (Figure 3). An
276 increase change in water clarity was statistically significant before to after nutrient
277 reduction (0.05 level). Measurement of light extinction coefficients after nitrogen
278 reduction showed similar water clarity Bay wide in 2014 (Figure 4). Lower Bay values
279 did not change over the periods.

280

281

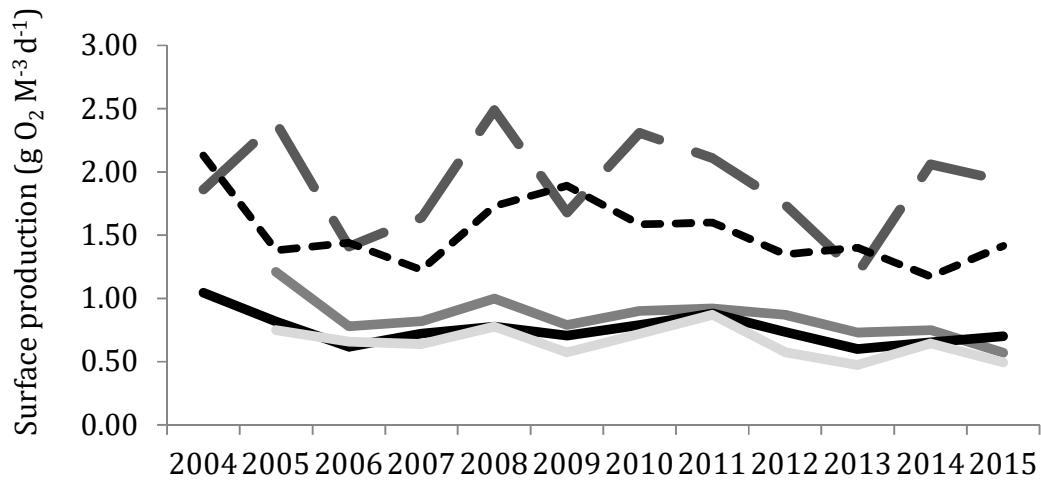
282 Figure 3. Summer surface chlorophyll before (mean 1980 and 1997), during and after
 283 nutrient reduction along the north south axis of the Bay (Providence River (PD, BR),
 284 Upper Bay (CP, MHB, NP), mid Bay (MV, PQ), Lower Bay (QP, TW, GSO) \pm standard
 285 deviation. Letters refers to ANCOVA tests of significance before, during and after
 286 nitrogen reduction at 0.0001 level.

287

288

289

290 Figure 4. Water clarity before, during and after nutrient reduction in the Providence River,
291 upper Bay and mid Bay \pm standard deviation. Letters a and b indicate ANCOVA
292 significant difference at the 0.05 level between before and after but not during. Region
293 code is white Providence River Estuary, light grey Upper Bay and dark grey Mid Bay.


294

295 Surface Production Response

296 Summer apparent production Bay-wide decreased by 33% after nutrient reduction
297 (Figure 5, Table 2). The largest reductions occurred in the upper Bay area between North
298 Prudence, Mt View (MV) and Poppasquash (PQ) rather than in areas of lower or higher
299 production. Surface summer production in 2004, before nitrogen reduction, ranged from
300 over 2 g O₂ m⁻³ d⁻¹ in the Providence River estuary to 1.0 g O₂ m⁻³ d⁻¹ in the upper Bay
301 and decreased to 0.6 g at the mouth of Narragansett Bay. After nitrogen reduction in 2013
302 to 2015 production was less than 0.7 g O₂ m⁻³ d⁻¹ in the upper Bay (Figure 5). Lower Bay
303 values were slightly lower compared to upper Bay values at 0.5 g O₂ m⁻³ d⁻¹ after nutrient
304 reduction. Areas with additional sources of nutrients such as Greenwich Bay do not fit
305 the general pattern of reduced production, remaining higher than the Providence Rives
306 estuary, the upper Bay and Mt Hope Bay values (Figure 5, Table 3).

307

308

309

310 Figure 5. Summer mean system apparent production in Greenwich Bay (long dash),
 311 Providence River estuary (BR, CP, short dash), Mt Hope Bay (dark grey), the upper to
 312 mid Bay (NP, PQ, MV, black) and the lower Bay (TW, QP, GSO, light grey) from 2004
 313 before to after nutrient reduction in 2013.

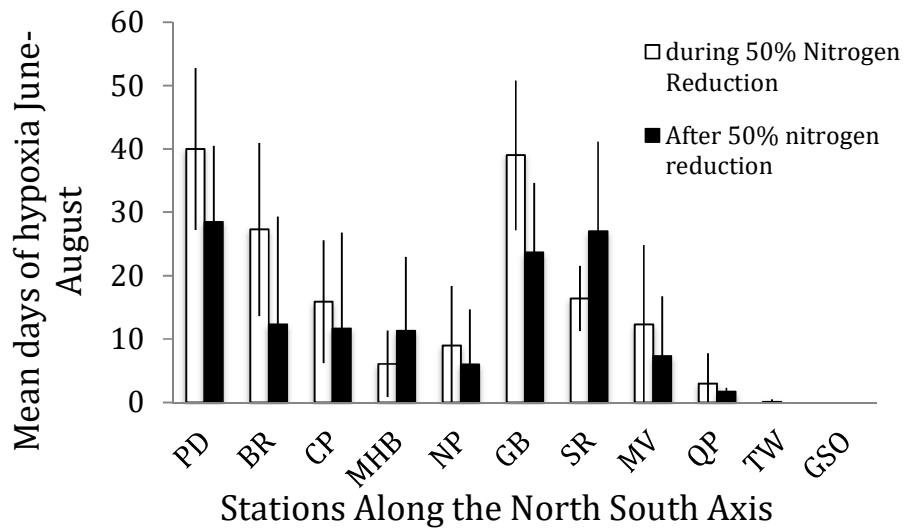
314

315 Table 2. Percent reduction in surface system apparent production along the north-south
 316 stations in Narragansett Bay over three time intervals: from before to 30% nitrogen
 317 reduction, from 30% to 50% nitrogen reduction and from before to 50% nitrogen
 318 reduction. Regressions of production with distance for each time period comparison
 319 were tested for significant differences by ANCOVA.

Station	Prod %	Prod %	Prod %
	Difference 2004 to 2006-2011	Difference 2006-2011 to 2013- 2015	Difference 2004 to 2013-2015
BR	-13	-21	-31
CP		-15	

MHB		-15	
NP	-29	-22	-44
GB	4	-16	-12
SR		-22	
MV	-28	-24	-45
PQ	-29	-3	-31
QP		-18	
T-W		-29	
GSO		2	
Average	-21	-17	-33
Statistical			
Significance:	**	N.S.	**

** = 0.01 level of significance


N.S. - not significant at the 0.05 level of significance

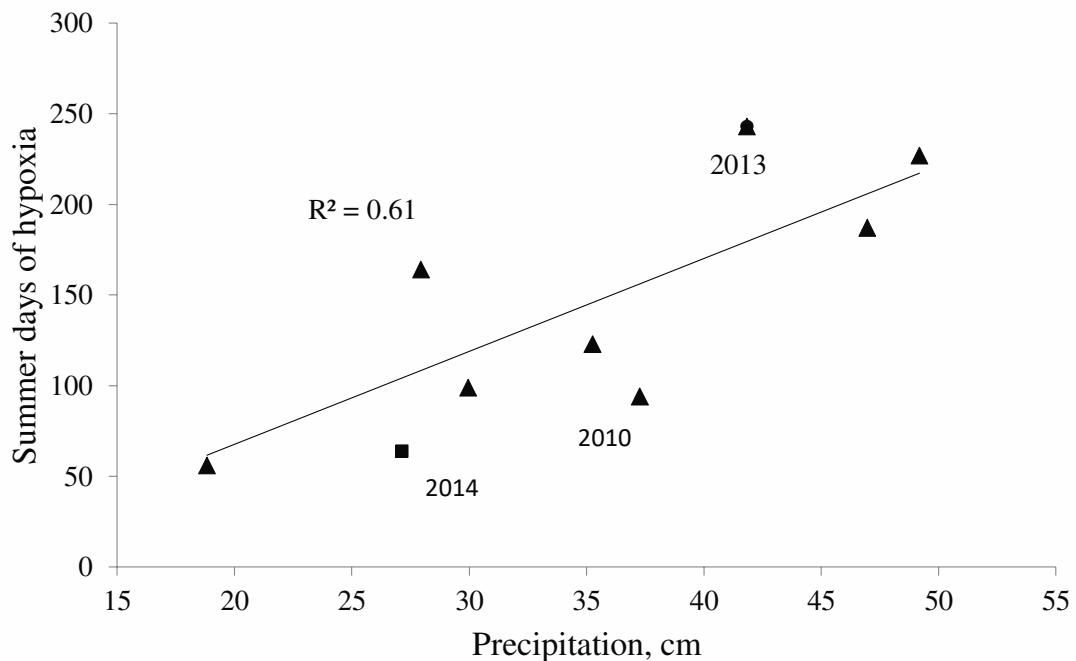
320

321 Summer Hypoxia Response

322 Summer hypoxia in all stations decreased on average by 34% after the 60%
 323 nitrogen reduction (Figure 6). An ANCOVA intercept test indicated the decreases in
 324 summer hypoxia were statistically significant for open Bay stations ($p<0.001$). MHB,
 325 SR and GB were eliminated as outliers for this test where distance down Bay was a proxy
 326 for nutrient concentration. A separate t-test of decreased mean values during and after
 327 nutrient reduction for GB was significant at the 0.05 level. Both Sally Rock and MHB
 328 showed increases in hypoxia after nutrient reduction (Figure 6).

329

330


331

332

333 Figure 6. Mean number of summer hypoxic days \pm standard deviation during (2006-
 334 2012) and after (2013-2015) the 50% nitrogen reduction at stations along the north to
 335 south axis of the Bay. Sally Rock (SR) data was only available after 2008 and before
 336 2015.

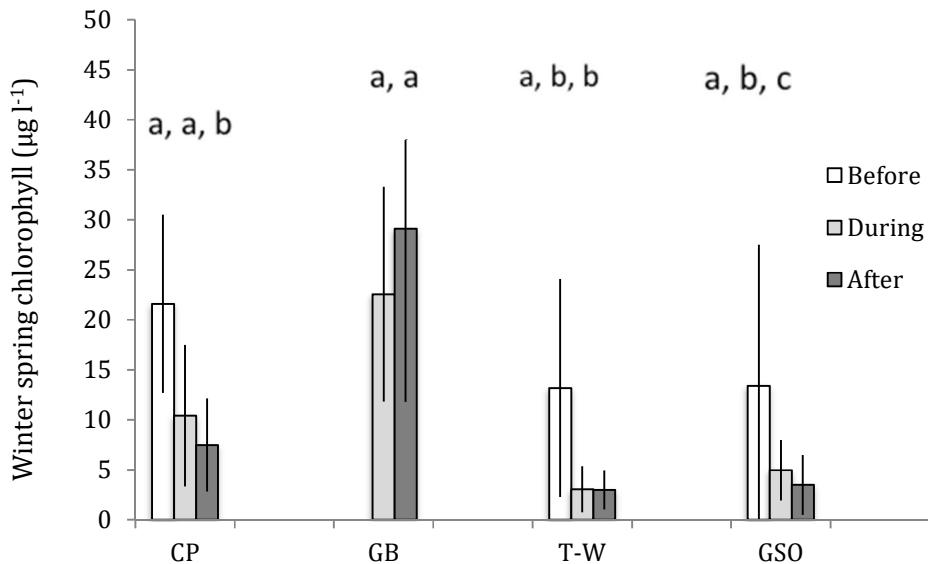
337

338 Hypoxia was enhanced under stratified conditions in 2013 after nitrogen reduction
 339 (Figure 7). A regression analysis of summer precipitation versus summer days of hypoxia
 340 was significant (0.01 level) although the R^2 is lower than

341

342 Figure 7. Hypoxia as a function of rainfall. Summer precipitation versus days of
 343 summer hypoxia (all sites summed) in June, July and August from 2006 to 2014. The
 344 flood year 2010, and 2013 and 2014, after 50% nitrogen reduction are separately labeled.
 345
 346 the Prairie criteria for predictive value (Figure 7, Prairie 1996). While the relationship
 347 may have low predictive capability at $R^2 < 0.65$, it is higher than the $R^2=0.6$ needed to
 348 distinguish between a low and high value for the dependent variable. The data show that
 349 after the 50% nitrogen reduction, the wet summer 2013 was at the upper end of the
 350 hypoxia record with 42 cm of rain and 242 days of hypoxia for all stations compared to
 351 2014 at the lower end of the relationship with 25 cm of summer precipitation and 50 days
 352 of hypoxia (Figure 7). At the lower extreme, summer precipitation of ~20 cm resulted in
 353 ~50 days of hypoxia in 2007 the dry summer for the record.

354


355 The winter-spring bloom and other spring blooms do not apparently contribute to
356 summer hypoxia. The average 40-day residence time of the Bay (Pilson 1985) prevented
357 an April flood in the spring of 2010 (100 year flood) from increasing hypoxia during the
358 2010 summer (Figure 7). High concentrations of nutrients flowed into the system from
359 extreme runoff and the submergence of a WWTF, resulting in a large phytoplankton
360 bloom but not summer hypoxia (Figure 7).

361

362 Winter-Spring Diatom Bloom

363 The winter-spring diatom bloom has been reduced significantly in Narragansett
364 Bay during and after nitrogen reduction compared to historical levels (Figure 8). In
365 Greenwich Bay (GB) and other coves where nitrogen reduction has not yet been
366 successful, blooms still reach historical proportions and durations (Figure 8). The bloom
367 has become variable or non-existent in recent warm winters like 1998 (Oviatt et al 2002).
368 However, with the return of some cold winters in the 2000s, the bay has bloomed, but not
369 to levels prior to nutrient reduction or currently observed in Greenwich Bay. The upper
370 Bay at Conimicut Point (CP) has significantly reduced chlorophyll values compared to
371 before nitrogen reduction. Currently CP has higher winter chlorophyll values than down
372 Bay locations at T-Wharf (TW) and the Graduate School of Oceanography dock (GSO)
373 (Figure 8). T-Wharf had significantly greater blooms before nitrogen reduction (Figure
374 8). The GSO dock had significantly greater blooms before and during nitrogen reduction
375 than after (Figure 8).

376

378

379

380 Figure 8. Impact of nitrogen reduction on the winter-spring bloom in Narragansett Bay.

381 Winter-spring mean chlorophyll during January, February and March from before

382 nitrogen reduction (1980) (no data for GB) during at CP (2009-2013) GB (2007-2010 &
383 2012-2013), T-W (2011-2013), GSO (2005-2013) and after at all stations (2014-2015).

384 The mean values include \pm standard deviations of the means. The letters indicate
385 ANOVA tests of significance on the daily values from January through March; different
386 letters indicate significance levels greater than 0.0001; similar letters indicate no
387 significant difference between time periods.

Discussion

389 Managed Nitrogen Reduction

390 The final nutrient reduction for large WWTF in the Providence River occurred in
391 summer 2012 achieving about 60% reduction in nitrogen compared to the 1990s. The
392 managed nitrogen reductions began in 2005 and achieved over a 30% decrease of direct

393 wastewater input to the Bay by 2006-10 (Krumholz 2012). The effort of reducing
394 nitrogen inputs from sewage treatment plants in Rhode Island were helped by nitrogen
395 and phosphorus WWTF reductions being implemented in the entire Narragansett Bay
396 watershed extending into Massachusetts (Liberti, A. 2014 RI DEM, personal
397 communication). Thus the reductions also occurred in all the rivers entering
398 Narragansett Bay affecting a greater reduction than initially hoped. Final tertiary
399 treatment was implemented at large WWTF in the Providence River area in summer 2012
400 with TN, DIN reductions achieving 58%, 60% and TP, DIP reductions achieving 54%,
401 61% Bay wide. During this study dissolved organic nitrogen (DON) and phosphorus
402 (DOP) were not measured so we cannot directly indicate how much these forms may
403 have declined. Based on bay-wide surveys conducted four times over 1985 to 1986 we
404 can provide an annual estimate of the percentage of DON and DOP as 45% and 47%
405 respectively, of TN and TP (Pilson and Hunt 1988).

406 Our use of annual survey data in 1979-1980 and 1997-1998, before managed
407 nitrogen reduction in 2005, should attribute the decrease in phosphorus as happening
408 before managed nitrogen reduction. Nutrient budgets compiled in the mid-80s and 90s
409 and updated in 2003 recognized the large reduction in phosphate and total phosphorus
410 due to regulation of detergents by the 1990s (Nixon et al. 2008). Before 2005 TN
411 discharged to the Bay had apparently not changed since the 1980s and although ammonia
412 has decreased and nitrate has increased, DIN had also not changed since the 1980s
413 (Nixon et al. 2008).

414 Sewage based inputs to the Bay represent the largest sources of nitrogen in the
415 Bay budget. Direct sewage nitrogen inputs have been reduced by about 85×10^6 moles

416 per year (updated from Krumholz 2012). This sewage source can be compared to
417 atmospheric deposition, which was about 30×10^6 moles per year in the nutrient budget as
418 of 2003 (Nixon et al. 2008). Recent estimates suggest atmospheric input has decreased
419 on the order of 25% or 7.5×10^6 moles per year (Latimer and Charpentier 2010) making
420 this source a minor input of nitrogen to the Bay. Sewage and river inputs (primarily
421 sewage) total to about 182×10^6 moles N per year (updated from Krumholz 2012).

422 In the Providence River estuary light, and in the lower Bay nutrients, have limited
423 primary production. In consequence the largest percentage reductions in summer
424 apparent production occurred in the upper and mid Bay region (Table 2). Values in this
425 large region have converged with lower Bay values (Figure 5). This region has also
426 experienced decreased summer chlorophyll and improved water clarity. These changes
427 should improve habitat for fauna but perhaps, not flora like eelgrass. Local eelgrass
428 strains have failed to thrive in increasingly warm Bay waters (Bintz et al. 2003).

429 The gradient presentation reveals current problem areas (Figure 6). Two stations
430 Sally Rock (SR) in Greenwich Bay and Mt Hope Bay (MHB) had increases in hypoxia
431 after 50% nitrogen reduction. Managed nitrogen reduction is incomplete in both areas.
432 Both have additional sources of nutrients from ground water, brook or river inputs and
433 WWTF which do not originate from the Providence River area. Greenwich Bay has an
434 additional problem of long residence time during southwest sea breeze periods (Rogers
435 2008). All these factors enhance the frequency of hypoxia and are not related to the open
436 Bay gradient of nutrients.

437 Controlling Hypoxia in Estuaries
438 Nutrients and Light

439 In many estuaries including Narragansett Bay, nutrients have increased several
440 fold since the pre-industrial era and may no longer be strongly limiting to primary
441 production. The relationship between nutrients and primary production is a hyperbolic
442 tangent where at high nutrients productivity continues to increase a small amount for
443 large increases in nutrients (Oviatt et al. 1986). The water column productivity range in
444 estuaries is constrained to a low range of usually less than $700 \text{ g C m}^{-2} \text{ y}^{-1}$, compared to
445 the terrestrial environment, due to self shading (Oviatt 1994). Thus large reductions in
446 nitrogen, usually the limiting nutrient in marine systems, will be needed to reach the
447 exponential portion of the curve where small changes in nitrogen cause large reductions
448 in primary production. For example, in the North Carolina New River DIP was reduced
449 by 71% and DIN was reduced by 57% from WWTF sources resulting in a decrease of
450 69% in chlorophyll-a; however, oxygen concentrations in bottom water have generally
451 failed to improve (Mallin et al. 2005). Greater decreases in nutrients from the watershed
452 livestock production facilities would be required to improve hypoxia in the estuary.

453 In some estuaries where nutrients alone control environmental conditions, regime
454 changes can be accomplished by nutrient reduction. In Tampa Bay, Florida beneficial
455 improvements occurred when total nitrogen was reduced by 60%; chlorophyll-a
456 concentrations declined by 50% improving water clarity and over several years, seagrass
457 beds increased by 25% (Greening and Janicki 2006). In this case a turbid phytoplankton
458 system of the 1980s shifted back with nutrient reduction to a clear, seagrass system
459 characteristic of the 1950s (Greening et al. 1914). A long-term study of nutrient
460 reduction in a shallow Danish estuary provides a trajectory of improvement over time
461 (Staehr et al. 2017). Nutrient reductions resulted in initial fast improvements followed by

462 slower changes over more than three decades. Hypoxia decreased, chlorophyll decreased
463 by 50% in the inner estuary and water clarity improved (Staehr et al. 2017). Unlike
464 Narragansett Bay, the winter-spring bloom increased in the Danish estuary probably due
465 to increased water clarity. Over time the Danish system became more autotrophic and
466 less heterotrophic.

467 Not all estuaries will exhibit a relationship between nitrogen and primary
468 productivity if they are highly turbid, strongly mixed and exchanged or if they have large
469 organic inputs from the watershed agriculture, livestock production, WWTFs or other
470 sources (Cloern 2001, Kemp et al. 2009). Estuaries with high particulates and/or tannins
471 may have low productivity but still sufficient organic carbon inputs to become hypoxic.
472 Light limited low productivity will limit the oxygen input to the water column. Water
473 contains only a small amount of oxygen compared to air. During summer oxygen
474 saturation may be only 5 to 7 g O₂ m⁻³. In a eutrophic estuary with primary production or
475 organic inputs of greater than 0.5 g C m⁻² d⁻¹ only a few days of sinking organic matter
476 will be needed to utilize all the oxygen available where residence times are on the order
477 of weeks or months. Some highly enriched estuaries with high tidal exchange and water
478 column mixing do not experience hypoxia. In Boston Harbor with nutrient and organic
479 carbon reduction, a more aerated later successional stage benthos resulted (Diaz et al.
480 2008). With sewage treatment upgrades and re-location of the outfall 8 km offshore into
481 Massachusetts Bay, organic carbon inputs declined by 90% and DIN declined by 56%;
482 after two to three years chlorophyll concentrations declined by 29% and oxygen in
483 bottom waters increased by 12% (Taylor et al. 2011). Over six years of monitoring after
484 waste-water reduction, the benthic habitat in the harbor became a more oxygenated

485 environment colonized by deeper burrowing fauna (Diaz et al. 2008). In other highly
486 enriched river estuaries rate of fresh water flow dictates eutrophic conditions. When
487 fresh water discharged large volumes in the 1970s, the Hudson River Estuary, where
488 nitrogen loads have increased 12 fold and phosphorus loads have increased 50 fold over
489 the pre-industrial era, experienced low rates of primary production; during low flows of
490 the 1990s the estuary became hypereutrophic (Howarth et al. 2000)

491 Stratification and Residence Time

492 Large river flows and/or high summer precipitation stratifies estuarine waters with
493 surface fresh water preventing re-aeration and causing hypoxia due to higher summer
494 respiration of organic matter (Diaz and Breitburg 2009). In some systems like
495 Narragansett Bay, hypoxia is ephemeral lasting hours, days or weeks; in others it is
496 seasonal lasting months. During a rainy summer, river flows of fresh waters cap the
497 bottom waters in the Providence River estuary and the upper portions of Narragansett
498 Bay leading to stronger degrees of stratification. The decrease in exposure to the
499 atmosphere and decrease in vertical mixing results in a higher frequency, duration and
500 intensity of hypoxia (Figure 7). In the Susquehanna River spring floods cause seasonal
501 stratification and hypoxia/anoxia in the bottom waters of Chesapeake Bay (Wang et al.
502 2015, Kemp et al. 2009). A large complex and variable riverine system with strong
503 stratification and long residence time on the order of months have stymied efforts of
504 controlling low oxygen by nutrient reduction in main stem Chesapeake (Boesch and
505 Goldman 2009). The main stem has also continued to be a detrimental source of
506 nutrients to some tributaries like the Patuxent. In the Patuxent River TP was reduced by
507 54% and TN by 55% at WWTFs but chlorophyll failed to decline and hypoxia was not

508 reduced (Testa et al. 2008). In the Neuse River and Pamlico Sound estuary long residence
509 times, stratification and warmer temperatures exacerbate hypoxic conditions even with
510 nitrogen reduction (Pearl 2006).

511 Biota

512 In some eutrophic systems a large filtering benthos may control a high primary
513 production system to low biomass of phytoplankton and result in aerobic conditions. San
514 Francisco Bay with a high biomass of clam filter feeders had a nitrogen input greater than
515 Chesapeake Bay but a chlorophyll concentration of only 2.7 mg m^{-3} compared to the
516 Chesapeake Bay value of $13.6 \text{ mg chl m}^{-3}$ and no hypoxia (Cloern 2001). Chesapeake
517 Bay researchers have long proposed that in the past, the vast biomass of oysters reduced
518 phytoplankton biomass and prevented hypoxia (Newell 1988, Kemp et al. 2009).
519 Pomeroy et al. (2006) refuted that idea with calculations apparently showing that the
520 oysters could not have reduced the spring bloom biomass to the point that eliminated
521 hypoxia and anoxia. This controversy continues (Pomeroy 2007, Newell et al. 2007)
522 with oysters being restored to some 60 sites in the Bay tributaries (Boesch and Goldman
523 2009).

524 A biota change under the rubric of unintended consequences has to do with the
525 winter-spring diatom bloom in Narragansett Bay. In northern temperate estuaries the
526 winter-spring bloom has historically been the signature ecological event of the year (Pratt
527 1965). The winter spring diatom bloom has been renowned for duration and intensity
528 during cold winters of the past. During warm winters (positive North Atlantic
529 Oscillation) from the late 1970s to early 2000's zooplankton grazing appeared to control
530 the expression of the bloom and the bloom often failed to occur during warm winters

531 (Oviatt et al. 2002, Keller et al. 1999). The lack of winter-spring blooms during warm
532 winters caused a significant reduction in measures of benthic metabolism and nutrient
533 flux compared to historically higher values during periods of strong blooms (Nixon et al.
534 2008, Fulweiler et al. 2008, Fulweiler et al. 2009). During and after the nutrient reduction
535 period the winter-spring bloom occurred during cold winters (negative NAO) maintaining
536 to a significantly lesser extent the north to south gradient in chlorophyll (Figure 8). Thus
537 the larger winter spring diatom bloom of the past relied not only on cold winter
538 temperatures but also sewage effluent nitrogen. Likely the continually warming climate
539 will eliminate cold winters and winter diatom blooms in the near future.

540 Climate

541 In some systems climate trends have overwhelmed efforts of estuarine restoration
542 and nutrient reduction. In Chesapeake Bay since the 1990s decrease in nutrients, hypoxic
543 volume of water per unit nitrogen input has doubled (Kemp et al. 2009). A numerical
544 simulation model has demonstrated that wind-driven lateral circulation and enhanced
545 vertical mixing in shoal regions is a dominant mechanism for providing oxygen to deeper
546 waters and thus wind direction may explain much of the variability in hypoxia in
547 Chesapeake Bay (Scully 2010). A change in wind direction and a decrease in wind speed
548 and mixing with a shift in the North Atlantic Oscillation may be the cause of increased
549 hypoxia (Wang et al. 2015). In Long Island Sound WWTF have decreased nitrogen
550 inputs by about 28% but this change did not decrease in the volume of hypoxic water in
551 the western portion of the Sound (O'Donnell et al. 2014). Prevailing wind direction may
552 have changed over the last several decades, increasing the tendency for stratification and
553 reducing the renewal of oxygen in bottom waters in LIS. In San Francisco Bay the

554 biomass of filter feeders has recently declined by a factor of 20 due to increased
555 predation by shrimp, sole, and crab from offshore and chlorophyll has increased to 10 mg
556 m^{-3} (Cloern et al. 2007). A negative oscillation cold upwelling phase has apparently
557 introduced offshore waters and predators into the Bay and stimulated phytoplankton
558 blooms. In shallow coastal Danish systems hypoxia has increased after nutrient
559 reductions of over 50% due to decreased wind, increased stratification and warmer
560 temperatures (Riemann et al. 2016). In several cases climate oscillation and trends have
561 resulted in decreased wind mixing and changes to circulation exacerbating low oxygen
562 conditions.

563

564 Conclusion

565 The nutrient reduction in Narragansett Bay will continue to evolve over the next
566 few years and serves as a possible outcome for other temperate estuaries that will be
567 experiencing nitrogen reduction. With nutrient reductions of near 60%, surface primary
568 production in the Bay declined from $323 \text{ g C m}^{-2} \text{ y}^{-1}$ before nutrient reduction to about
569 $224 \text{ g C m}^{-2} \text{ y}^{-1}$, water clarity increased and hypoxia tended to decrease. Much greater
570 nutrient reductions would be needed to decrease hypoxia during rainy summer conditions
571 raising concerns about decreased secondary productivity for aquaculture and estuarine
572 fishes.

573 Elimination of hypoxia/anoxia by sufficient reduction of nutrient sources will
574 remain difficult for many systems including Narragansett Bay: (1) large nutrient
575 reductions in eutrophic systems decrease primary production only slightly, (2) hypoxia in
576 some systems is driven by diffuse watershed inputs, (3) stratification greatly exacerbates

577 hypoxia, (4) biotic controls on hypoxia may be ephemeral and (5) climate changes in
578 temperature and wind tend to increase hypoxia. Boesch and Goldman (2009) suggest the
579 way forward for Chesapeake Bay will be to focus on individual tributaries with
580 researchers and stakeholders developing a strategy that works for the individual case.
581 Similarly each estuarine restoration will need to take into account the factors most
582 important for the particular site. On the positive side nutrient reduction in some systems
583 has effected a positive regime change to a previous ecosystem state and in most other
584 systems nutrient reduction mitigated deterioration.

Acknowledgements

586 This work was supported by the National Oceanographic and Atmospheric
587 Administration Coastal Hypoxia Research Program grants NA05NOS4781201 and
588 NA11NOS4780043 with Project Officers Libby Jewett and Alan Lewitus. We thank
589 Edwin Requintina and the undergraduate interns that helped with laboratory and field
590 work. A grant from RI Sea Grant helped support nutrient collection from February 2011
591 to January 2014. We are grateful to the Rhode Island Department of Environmental
592 Management Office of Water Resources for developing and maintaining the fixed site
593 and buoy monitoring network in Narragansett Bay with partners from the Narragansett
594 Bay Commission, the National Narragansett Bay Estuarine Research Reserve and the
595 Graduate School of Oceanography. We thank all reviewers for greatly improving the
596 manuscript. The views in this paper are the authors', and do not necessarily reflect
597 the views of their agencies.

References

600 Astoria-Pacific, I. 2005. Nitrate+Nitrite in seawater. Method A177. Astoria Pacific

601 International, Clackamas, OR.

602

603 Bergondo, D. L., Kester, D. R., Stoffel, H. E. Woods W. L. 2005. Time-series

604 observations during he low sub-surface oxygen events in Narragansett Bay during

605 summer 2001. *Marine Chemistry*. 97:90-103.

606

607 Bergondo, D. L. 2004. Examining the processes controlling water column variability in

608 Narragansett Bay: time series data and numerical modeling. PhD Dissertation, Graduate

609 School of Oceanography, University of Rhode Island, Narragansett, RI 02882. 186p.

610

611 Boesch, D.F., and E. Goldman. 2009. The evolution of ecosystem- based management of

612 the Chesapeake Bay over three decades. In Ecosystem-based management for the oceans,

613 ed. K. McLeod and H. Leslie, 268–293. Washington, D.C.: Island Press.

614

615 Boesch, D. F., Brinsfield, R. B. Magnien. R. E. 2000. Chesapeake Bay eutrophication.

616 *Journal of Environmental Quality*. 30(2):303-320.

617

618 Bintz, J., Nixon, S., Buckley, B., Granger S. 2003. Impacts of temperature and nutrients

619 on coastal lagoon plant communities. *Estuaries*. 26:765-776.

620

621 Cloern, J. E., Jassby, A. D., Thompson, J. K., Hieb, K. 2007. A cold phase of the East
622 Pacific triggers new phytoplankton blooms in San Francisco Bay. *Proceeding of the*
623 *National Academy of Sciences of the United States of America*. 104: 18561-18565.
624 Doi:10.1073/pnas.0706151104.

625

626 Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem
627 *Marine Ecology Progress Series*. 210:223-253.

628

629 Codiga, D. L., Stoffel, H. E., Deacutis, C. F., Kiernan, S., Oviatt C. A. 2009.
630 Narragansett Bay hypoxic event characteristics based on fixed-site monitoring network
631 time series: intermittency, biographic distribution, spatial synchronicity, and interannual
632 variability. *Estuaries and Coasts* 32: 621-641.

633

634 Conley, D. J. 2012. Save the Baltic Sea. *Nature*. 486:463-464.

635

636 Deacutis, C. F., Murray, D., Prell, W., Saarman, E., Korhun, L. 2006. Hypoxia in the
637 upper half of Narragansett Bay, RI, during August 2001 and 2002. *Northeastern*
638 *Naturalist*. (13 Special Issue 4):173-198.

639

640 Desbonnet, A., Lee, V. 1991. Historical trends in water quality and fisheries resources in
641 Narragansett Bay. Rhode Island. A report to National Ocean Pollution Program Office,
642 National Oceanic and Atmospheric Administration, Rhode Island Sea Grant,
643 Narragansett, RI, RIU-T91-001.

644

645 Diaz, R., Breitburg, D. L. 2009. Ch 1 The hypoxic environment. In: Hypoxia. Edited by
646 J. Richards, A. Farrell and C. Brauner. *Fish Physiology*. 27:1-23. Published by Elsevier,
647 NY. [http://dx.doi.org/10.1016/S1546-5098\(08\)00001-0](http://dx.doi.org/10.1016/S1546-5098(08)00001-0)

648

649 Diaz, R. J., Rhoads, D. C., Blake, J. A., Kropp, R. K., Keay, K. E. 2008. Long-term
650 trends of benthic habitats related to reduction in wastewater discharge to Boston Harbor.
651 *Estuaries and Coasts*. 31:1184-1197. DOI 10.1007/s12237-008-9094-z

652

653 Duarte, C. M., Conley, D. J., Carstensen, J., Sanchez-Camacho, M. 2009. Return to
654 Neverland: shifting baselines affect eutrophication restoration targets. *Estuaries and*
655 *Coasts*. 32:29-36. DOI 10.1007/s12237-008-9111-2

656

657 Fulweiler, R. W., Nixon, S. W., Buckley, B. A., Granger, S. L. 2008. Net sediment N₂
658 fluxes in a coastal marine system-experimental manipulation and a conceptual model.
659 *Ecosystems*. 11:1168-1180.

660

661 Fulweiler, R. W., Nixon, S. W. 2009. Responses of benthic-pelagic coupling to climate
662 change in a temperate estuary. *Hydrobiologia*. 629:147-156.

663

664 Greening, H., Janicki, A., Sherwood, E., Pribble, R., Johansson, J. 2014. Ecosystem
665 responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida,

666 USA. *Estuarine, Coastal and Shelf Science*. 151:A1-A16.

667 <https://doi.org/10.1016/j.ecss.2014.10.003>

668

669 Greening, H., Janicki, A. 2006. Toward reversal of eutrophic conditions in a subtropical

670 estuary: water quality and seagrass response to nitrogen loading reductions in Tampa Bay,

671 Florida, USA. *Environmental Management*. 38 (2):163-178. DOI: 10.1007/soo267-005-

672 0079-4

673

674 Howarth, R. W., Marino, R., Swaney, D. P., Boyer, E. W. 2000. Ch 10 Waste water and

675 watershed influences on primary production and oxygen dynamics in the lower Hudson

676 Estuary. 121-137. In: The Hudson River Estuary. Levington, J., Waldman, J. R.(eds)

677 Cambridge University Press, New York.

678

679 Keller, A.A., Oviatt, C.A., Walker, H. A., Hawk, J. D. 1999. Predicted impacts of

680 elevated temperature on the magnitude of the winter-spring phytoplankton bloom in

681 temperate coastal waters: a mesocosm study. *Limnology and Oceanography*. 44(2):344-

682 356.

683

684 Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., Hagy, J. D. 2009. Temporal

685 responses of coastal hypoxia to nutrient loading and physical controls. *Biogeosciences*

686 6:2985-3008.

687

688 Kincaid, C., Bergondo, D., Rosenberger, K. 2008. The dynamics of water exchange
689 between Narragnsett Bay and Rhode Island Sound. In: Desbonnet, A., Costa-Pierce, B. A.
690 (eds). *Science for Ecosystem-based Management*. Springer, N.Y., 301-324.

691

692 Kingston Weather. 2015. (<http://www.usclimatedata.com/climate/kingston/rhode-island/united> states/usri0033/200616 obtained March 2015).

693

694

695 Kremer, J. N., Reischauer, A., D'Avanzo, C. 2003. Estuary-specific variation in the air-
696 water gas exchange coefficient for oxygen. *Estuaries*. 26(4A):829-836.

697

698 Kremer, J., Nixon, S. 1978. *A Coastal Marine Ecosystem, Simulation and Analysis*.
699 Springer-Verlag, New York. 217p.

700

701 Krumholz, J. 2012. Spatial and temporal patterns in nutrient standing stock and mass-
702 balance in response to load reductions in a temperate estuary. PhD Dissertation in
703 Oceanography, University of Rhode Island, Kingston, RI. 380p.

704

705 Lorenzen, C. J. 1966. A method for the continuous measurement of in vivo chlorophyll
706 concentration. *Deep Sea Research and Oceanographic Abstracts* 13:223-227.

707

708 Latimer, J. S., Charpentier, M. A. 2010. Nitrogen inputs to seventy-four southern New
709 England estuaries: Application of a watershed nitrogen loading model. *Estuarine, Coastal
710 and Shelf Science* 89:125-136.

711

712 Melrose, D. C., Oviatt, C. A., Berman, M. S. 2007. Hypoxic events in Narragansett Bay,
713 Rhode Island, during the summer of 2001. *Estuaries and Coasts* 30 (1):47-53.

714

715 Mallin, M.A., McIver, M.R., Wells, H.A., Parsons, D.C., Johnson, V.L. 2005. Reversal of
716 eutrophication following sewage treatment upgrades in the New River estuary, North
717 Carolina. *Estuaries* 28:750-760.

718

719 Newell, R., Kemp, M., Hagy III, J., Cerco, C., Testa, J., Boynton, W. 2007. Top-down
720 control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et
721 al. (2006). *Marine Ecology Progress Series* 241:293-298.

722

723 Newell, R. I. E. 1988. Ecological changes in Chesapeake Bay, are they the result of
724 overharvesting the eastern oyster (*Crassostrea virginica*)? In: Lynch, M.P., Krome, E.C.
725 (eds) Understanding the estuary, Publ 129, Chesapeake Research Consortium, Gloucester
726 Point, VA (also avail- able at www.vims.edu/GreyLit/crc129.pdf)

727

728 Nixon, S. W., Buckley, B. A., Granger, S. L., Harris, L. A., Oczkowski, A. J., Fulweiler,
729 R. W., Cole, L. W. 2008. Nitrogen and phosphorus inputs to Narragansett Bay: past,
730 present, and future. Ch. 5. In: Desbonnet, A., Costa-Pierce, B. A. (eds.), Science for
731 Ecosystem-Based Management. Springer, New York, 101-175.

732

733 Nixon, S. W., Fulweiler, R. W., Buckley, B. A., Granger, S. L., Nowicki, B. L., Henry, K.

734 M. 2008. The impact of changing climate on phenology, productivity, and benthic-

735 pelagic coupling in Narragansett Bay. *Estuarine, Coastal and Shelf Science* 82:1-18.

736

737 Nixon, S. 1997. Prehistoric nutrient inputs and productivity of Narragansett Bay.

738 *Estuaries* 20(2):253-261.

739

740 Oczkowski, A., Hunt, C. W., Miller, K. M., Oviatt, C. A., Nixon, S.W., Smith, L. 2016.

741 Comparing measures of estuarine ecosystem production in a temperate New

742 England estuary. *Estuaries and Coasts* doi:10.1007/s12237-016-0113-1

743

744 Odum, H. T., Hoskin, C. M. 1958. Comparative studies on the metabolism of marine

745 waters. *Publications of the Institute of Marine Science* 5:16-46.

746

747 O'Donnell, J., Wilson, R. E., Lwiza, K., Whitney, M., Bohlen, W. F., Codiga, D.,

748 Fribance, D. B., Fake, T., Bowman, M., Varekamp, J. 2014. The Physical Oceanography

749 of Long Island Sound. In: Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C.,

750 Stacey, P. E., Garza, C. (editors). Long Island Sound – Prospects for the Urban Sea.

751 Springer, New York, 79-158.

752

753 Oviatt, C. A. 2008. Impacts of Nutrients on Narragansett Bay Productivity: A Gradient

754 Approach. In: Desbonnet, A., Costa-Pierce, B. A. (eds). Science for Ecosystem-based

755 Management. Springer, N.Y., 519-539.

756 Oviatt, C. A., Keller, A. A., Reed, L. 2002. Annual primary production in Narragansett

757 Bay with no bay-wide winter-spring phytoplankton bloom. *Estuarine, Coastal and Shelf*

758 *Science* 54:1013-1026.

759

760 Oviatt, C. 1994. Biological considerations in marine enclosure experiments: challenges

761 and revelations. *Oceanography* 7(2):45-51.

762 Oviatt C., Hindle, K. M. 1994. Manual of biological and geochemical techniques in

763 coastal area. 3rd edition. Graduate School of Oceanography, University of Rhode Island,

764 Narragansett, RI, 202p.

765

766 Oviatt, C.A., Keller, A.A., Sampou, P.A., Beatty, L.L. 1986. Patterns of productivity

767 during eutrophication: A mesocosm experiment. *Marine Ecology Progress Series* 28:

768 69-80.

769 Oviatt, C.A., Pilson, M.E.Q., Nixon, S.W., Frithsen, J.B., Rudnick, D.T., Kelly, J.R.,

770 Grassle, J.F., Grassle, J.P. 1984. Recovery of a polluted estuarine system: a mesocosm

771 experiment, *Marine Ecology Progress Series* 16:203-217.

772 Paerl, H. 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine

773 and coastal waters: Interactive effects of human and climatic perturbations. *Ecological*

774 *Engineering* 26:40-54.

775 Patton, C. J., Kryskalla, J. R. 2003. Methods of analysis by the U. S. Geological Survey

776 National Water Quality Laboratory – evaluation of alkaline persulfate digestion as an

777 alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and

778 phosphorus in water. USGS Denver. CO.

779 Pilson, M., Hunt, C. 1988. Water quality survey of Narragansett Bay. A summary of

780 results from SINBADD cruises 1985 – 1986. A report to the Rhode Island Department of

781 Environmental Management. 102p.

782 Pilson, M. E. Q. 1985. On the residence time of water in Narragansett Bay. *Estuaries*

783 8:2-14.

784 Pomeroy, L., D'Elia, C., Schaffner, L. 2006. Limits to top-down control of

785 phytoplankton by oysters in Chesapeake Bay. *Marine Ecology Progress Series* 325:301-

786 309.

787 Pomeroy, L., D'Eia, C., Schaffner, L. 2007 Top-down control of phytoplankton by

788 oysters in Chesapeake Bay, USA: Reply to Newell et al. (2007). *Marine Ecology*

789 *Progress Series* 341:299-301.

790 Pratt, D. M. 1965. The winter-spring diatom flowering in Narragansett Bay. *Limnology*

791 and *Oceanography* 10:173-184.

792 Prairie, Y. 1996. Evaluating the predictive power of regression models. *Canadian.*

793 *Journal of Fisheries and Aquatic Science* 53:490-492.

794

795 RIDEM. 2005. Plan for managing nutrient loadings to Rhode Island waters. Pursuant to
796 RI General Law 46-12-3(25). RIDEM 18p.

797

798 RIDEM, 2014. Quality assurance project plan: Narragansett Bay fixed-site water quality
799 monitoring network seasonal monitoring. Office of Water Resources, Department of
800 Environmental Management, State of Rhode Island and Providence Plantations. 37pp.

801 [<http://www.dem.ri.gov/pubs/qapp/nbfsmn.pdf>].

802

803 RIDEM. 2007. Quality assurance project plan: Narragansett Bay fixed-site water quality
804 monitoring network seasonal monitoring. Office of Water Resources, Department of
805 Environmental Management, State of Rhode Island and Providence Plantations. 40pp.

806 [<http://www.dem.ri.gov/pubs>].

807

808 RIDEM. 2009. Dissolved oxygen criteria website.
809 <http://www.dem.ri.gov/pubs/regs/regs/water/h20q09.pdf> and
810 (http://water.epa.gov/scitech/swguidance/standards/upload/2007_03_01_criteria_dissolve_d_ocriteria.pdf) accessed 4-16.

812

813 Riemann, B., Carstensen, J., Dahl, K., Fossing, H., Hansen, J., Jakobsen, H., Josefson, A.,
814 Krause-Jensen, D., Markager, S., Staehr, P., Timmermann, K., Windolf, J., 2016.
815 Recovery of Danish coastal ecosystems after reductions in nutrient loading: trends and
816 time lags. *Estuaries and Coasts* 39:82-97.

817

818 Rogers, J. 2008. Circulation and transport in upper Narragansett Bay, MS Thesis,
819 University of Rhode Island, 95 p.

820

821 Scott, J., Adams, J., Stadlmann, S. 2005. Automated analysis of sea, estuarine, and
822 brackish waters Astoria Pacific International, Clackamas, Oregon.

823

824 Scully, M. E. 2010. Wind modulation of dissolved oxygen in Chesapeake Bay. *Estuaries*
825 and Coasts 33:1164-1175. DOI 10.1007/s12237-010-9319-9.

826

827 Sokal R. R., Rohlf, F. J. 1981. Biometry. Second ed. W.H. Freeman and Co, N.Y.

828

829 Staehr, P. A., Testa, J., Carstensen, J. 2017. Decadal changes in water quality and net
830 productivity of a shallow Danish Estuary following significant nutrient reductions.
831 *Estuaries and Coasts* 40:63-79. DOI 10.1007/s12237-016-0117-x

832

833 Taylor, D., Oviatt, C., Borkman, D. 2011. Non-linear responses of a coastal aquatic
834 ecosystem to large decreases in nutrient and organic loadings. *Estuaries and Coasts* 34:
835 745-757.

836 Testa, J. M., Kemp, W. M., Boynton, W. R., Hagy III, J. D. 2008. Long-term changes in
837 water quality and productivity in the Patuxent River estuary: 1985 to 2002. *Estuaries*
838 and Coasts 31:1021-1037. DOI 10.1007/s12237-008-9095-y

839

840 U. S. Public Health Service. 1960. Effects of proposed hurricane barriers on water quality
841 of Narragansett Bay. USPHS, New York.

842

843 Wang, P., Wang, H., Linker, L. 2015. Relative importance of nutrient load and wind on
844 regulating interannual summer hypoxia in the Chesapeake Bay. *Estuaries and Coasts*
845 38:1048-1061. Doi 10.1007/s12237-014-9867-5

846

847 Yentsch, C. S., Menzel, D. W. 1963, A method for the determination of phytoplankton
848 chlorophyll and phaeophytin by fluorescence. Deep Sea Research 10, 221-231.

849

850 Table 1. Nutrient reduction *P* value tests of significance for all stations comparing
851 periods before to after and during to after. ANCOVA tests were performed on
852 regressions of the natural logarithm of nutrient concentration with north to south distance
853 during the successive surveys before, during and after managed nutrient reduction (Figure
854 2).

855

856 Table 2. Percent reduction in surface system apparent production along the north-south
857 stations in Narragansett Bay over three time intervals: from before to 30% nitrogen
858 reduction, from 30% to 50% nitrogen reduction and from before to 50% nitrogen
859 reduction. Regressions of production with distance for each time period comparison
860 were tested for significant differences by ANCOVA.

861

862

863

864 Figure 1. Narragansett Bay station locations are numbered nutrient sampling stations and
865 labeled fixed and buoy monitoring sites: PD is Phillipsdale, BR is Bullocks Reach; CP is
866 Conimicut Point; NP is North Prudence; GB is Greenwich Bay; SR is Sally Rock; PQ is
867 Poppasquash; MHB is Mount Hope Bay; MV is Mount View; T-W is T-Wharf; QP is
868 Quonset Point; GSO is Graduate School of Oceanography Dock.

869

870 Figure 2. ANCOVA regressions using the natural logarithm of yearly nutrient
871 concentration along the north-south distance axis of Narragansett Bay before and after
872 nutrient reduction. a –e, Mean surface concentrations of nutrients (TN , NH_4 , $NO_{2,3}$, TP ,
873 and DIP) before and after nutrient reduction survey periods plotted as kilometers from
874 Fields Point in the Providence River to the mouth of the bay; f, mean concentration of
875 nutrients for all stations before and after nutrient reduction.

876

877

878 Figure 3. Summer surface chlorophyll before (mean 1980 and 1997), during and after
879 nutrient reduction along the north south axis of the Bay (Providence River (PD, BR),
880 Upper Bay (CP, MHB, NP), mid Bay (MV, PQ), Lower Bay (QP, TW, GSO) \pm standard
881 deviation. Letters refers to ANCOVA tests of significance before, during and after
882 nitrogen reduction at 0.0001 level.

883

884

885

886

887 Figure 4. Water clarity before, during and after nutrient reduction in the Providence River,
888 upper Bay and mid Bay \pm standard deviation. Letters a and b indicate ANCOVA
889 significant difference at the 0.05 level between before and after but not during. Region
890 code is white Providence River Estuary, light grey Upper Bay and dark grey Mid Bay.

891

892 Figure 5. Summer mean system apparent production in Greenwich Bay (long dash),
893 Providence River estuary (BR, CP, short dash), Mt Hope Bay (dark grey), the upper to
894 mid Bay (NP, PQ, MV, black) and the lower Bay (TW, QP, GSO, light grey) from 2004
895 before to after nutrient reduction in 2013.

896

897 Figure 6. Mean number of summer hypoxic days \pm standard deviation during (2006-
898 2012) and after (2013-2015) the 50% nitrogen reduction at stations along the north to
899 south axis of the Bay. Sally Rock (SR) data was only available after 2008 and before
900 2015.

901

902 Figure 7. Hypoxia as a function of rainfall. Summer precipitation versus days of
903 summer hypoxia (all sites summed) in June, July and August from 2006 to 2014. The
904 flood year 2010, and 2013 and 2014, after 50% nitrogen reduction are separately labeled.

905

906 Figure 8. Impact of nitrogen reduction on the winter-spring bloom in Narragansett Bay.
907 Winter-spring mean chlorophyll during January, February and March from before
908 nitrogen reduction (1980) (no data for GB) during at CP (2009-2013) GB (2007-2010 &
909 2012-2013), T-W (2011-2013), GSO (2005-2013) and after at all stations (2014-2015).

910 The mean values include \pm standard deviations of the means. The letters indicate
911 ANOVA tests of significance on the daily values from January through March; different
912 letters indicate significance levels greater than 0.0001; similar letters indicate no
913 significant difference between time periods.

914

915