

Title: When does it pay to cooperate? Strategic information exchange in the harvest of common-pool fishery resources

Authors: Michele L. Barnes^{a,b,c*}, Shawn Arita^d, Kolter Kalberg^b, and PingSun Leung^a

Author Affiliations:

^a Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, 1910 East-West Rd., Sherman 101, Honolulu, HI 96822, USA;
barnesm@hawaii.edu, psleung@hawaii.edu

^b Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, 1000 Pope Rd., Marine Science Building 312, Honolulu, HI 96822, USA;
KK: kolter.kalberg@noaa.gov

^c Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; MB: Michele.Barnes@jcu.edu.au

^d Economic Research Service, United States Department of Agriculture, 335 E Street SW, Washington, DC 20024, USA; SA: shawnarita@gmail.com

*Corresponding author

barnesm@hawaii.edu

Michele.Barnes@jcu.edu.au

+ 61 7 4781 6328

Abstract

Harvesting common-pool fishery resources is often a competitive activity and important questions remain about the costs and benefits of engaging in cooperative behavior. Here, we link comprehensive data on fisher's information exchange networks and economic productivity to test hypotheses about when it pays to cooperate by exchanging different types of strategic information. We find that being well connected locally in information exchange networks about both short-term topics (e.g., the location of species) and long-term topics (e.g., technical innovations) is positively associated with productivity in both the short-term (within fishing trips) and long-term (annually). In contrast, we find that exchanging both types of information across distinct social divides – a form of brokerage – is negatively associated with productivity. Our results therefore suggest that while there appears to be an economic benefit associated with cooperation across temporal scales in the harvest of

common-pool fishery resources, exchanging strategic information across social divides may come at a cost – particularly under conditions of competition. We discuss our results in light of emerging research at the nexus of sociology and economics, providing key insight into the social-structural dynamics that help form the foundation for fisher decision-making and behavior.

Keywords: information exchange, cooperation, social network, fisher behavior, common-pool resources, fisheries

Acknowledgements

This project was funded by Cooperative Agreement NA11NMF4320128 between the Joint Institute for Marine and Atmospheric Research and the National Oceanic and Atmospheric Administration (NOAA). MB was also supported by National Science Foundation Social, Behavioral, and Economic Sciences Postdoctoral Fellowship Grant #1513354. We thank our interpreters, all of the fishers who participated in this project, and Joey Lecky for the development of Fig. 2. We also thank Steve Borgatti for technical advice. Data on catch and effort and fish sales was provided by the U.S. National Marine Fisheries Service Pacific Islands Fisheries Science Center, the National Marine Fisheries Service Pacific Islands Regional Office, and the Hawaii Division of Aquatic Resources. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA, the USDA, or any of its subdivisions.

1 **1. Introduction**

2 There is a large body of theoretical and empirical research that seeks to understand the
3 conditions that facilitate cooperation in the harvest of common-pool resources. Classic
4 economic theory would predict that individuals, acting as rational self-interested actors,
5 would likely choose to defect from attempts at cooperative arrangements due to the
6 nonexcludable and rivalrous nature of common-pool resources (Gordon, 1954; Hardin, 1968;
7 Scott, 1955). Yet many argue this conceptualization is too simplistic, and under certain
8 conditions common-pool resource users may choose to cooperate (Gintis, 2000; Ostrom,
9 1990); for example, when groups are small and coercion is possible (Olson, 1965), or when
10 cooperation is reinforced by norms, ethical codes, and institutions (Ostrom, 2000).

11 Information exchange among marine fishers has long been a key focus of investigations into
12 cooperation in common-pool resource settings (Evans and Weninger, 2014; Gatewood,
13 1984; Haynie et al., 2009; Pollnac and Carmo, 1980; Wilson, 1990). Fishers operate in a
14 dynamic and complex ecological environment, often covering vast spatial scales across the
15 open ocean where spatiotemporal dynamics can change in unpredictable ways (Wilson,
16 1990). Decision-making in this context can be further complicated by a complex array of
17 socio-political and economic processes. For example, in the U.S. pelagic fishers operate
18 under the jurisdiction of the U.S. Magnuson-Stevens Act (NOAA, 2006), are subject to both
19 U.S. environmental legislation and binding international conservation measures, and are
20 governed by international fishery management organizations¹, regional fishery management
21 councils, and the U.S. National Marine Fisheries Service. Adding a further layer of
22 complexity, all commercial fishers are faced with fluctuating fish prices, market competition,
23 and the dynamics of supply and demand in deciding when and where to land their catch
24 (Béné, 1996; Salas and Gaertner, 2004). Marine fisheries are thus characterized by
25 repetitive and competitive interactions among individual fishers who must determine the
26 most strategic use of inputs over time and space to transform wild stocks of fish into catch.
27 Fishers need to make these critical decisions while accommodating their activities to
28 complex and uncertain market dynamics, socio-political processes, and the spatiotemporal
29 fluctuations of the open ocean.

30 To cope with this complexity, fishers may choose to cooperate by exchanging information
31 with others to improve their decision-making (Salas and Gaertner 2004). Engaging in
32 information exchanges can potentially reduce time and effort spent searching for fish
33 aggregations (Branch et al., 2006; Gatewood, 1984), and facilitate the diffusion of
34 technological innovations capable of enhancing vessel efficiency (Gezelius, 2007). However,

¹ Formally referred to as “Regional Fishery Management Organizations”, though they are international in scope.

35 decisions to engage in information exchange may be tempered by the competitive nature of
 36 fishing (Acheson, 1975; Gezelius, 2007; Wilson, 1990). Indeed, the rational actor model
 37 suggests that fishers acting in their own self-interest are unlikely to cooperate by
 38 participating in information exchanges because such exchanges can increase the efficiency
 39 of others (Gordon, 1954; Hardin, 1968; Scott, 1955). Yet existing empirical work in marine
 40 fisheries suggests that information transfer among fishers is widespread, though it does vary
 41 depending on the size, structure, and diversity of fishing communities, the biology of the fish
 42 involved, and the type and value of the information exchanged (Barnes-Mauthe et al., 2013;
 43 Branch et al., 2006; Gezelius, 2007; Wilson, 1990).

44 One of the most common arguments put forth is that fishers are more likely to cooperate by
 45 exchanging information with others when it is economically beneficial for them to do so
 46 (Haynie et al., 2009). Yet existing research that seeks to quantify the relationship between
 47 information exchange and economic gains in marine fisheries largely rely on simulations and
 48 other models that lack explicit data on patterns of information exchange in fishing
 49 communities (Dreyfus-Leon and Gaertner, 2006; Haynie et al., 2009; Millischer et al., 2006).²
 50 When it actually pays for fishers to engage in cooperative information exchange behavior
 51 therefore remains an important empirical question. To this end, we employ comprehensive
 52 data on networks of information exchange, catch and effort, and economic cost-earnings
 53 among pelagic tuna fishers to contribute a better understanding of when it pays to cooperate
 54 in the harvest of common-pool fishery resources.

55 In line with the literature on the structural aspects of social capital (Borgatti et al., 2009; Burt,
 56 2000; Lin, 1999), our empirical approach rests on the assumption that fishers' structural
 57 position in networks of fishery-related information exchange can affect their ability to *access*
 58 information that can improve their decision-making. The ability to access information flowing
 59 through networks of information exchange can be exceptionally critical when dealing with
 60 aggregated and highly migratory species such as schools of tuna (Salas and Gaertner,
 61 2004). In this case, there are two types of information that can potentially influence fisher's
 62 productivity: (1) *short-term information*, such as information on the location of species that
 63 can influence fisher productivity within fishing trips, and (2) *long-term information*, such as
 64 information on technical innovations that can influence fisher productivity over a longer
 65 period of time (Barnes et al., 2016b; Gezelius, 2007; Mueller et al., 2008; Wilson, 1990).³

² One exception is Turner et al. (2014) who presented explicit information exchange network information on lobster fishers, yet was limited to analyzing *perceived* levels of fishing success rather than actual productivity. A final exception is Barnes et al. (2016b), which the analysis presented here builds on.

³ These definitions are in line with Gezelius (2007). Wilson (1990) refers to short-term vs. long-term information as "fine-grained" vs. "coarse-grained", while fishers studied in Muller et al. (2008) distinguished between "right now" and "after-hours" information, which was similar in scope to the categories identified here.

66 To our knowledge there are no existing empirical studies examining the relationship between
67 long-term information exchange and fisher economic outcomes, though existing research
68 does provide insight into what we might expect regarding short-term information exchange.
69 Specifically, fishers who work with others rather than alone and are prominently located
70 within short-term information exchange networks (i.e., “network prominence”, see Fig. 1)
71 have been found to be more successful, particularly when targeting highly mobile species
72 (Barnes et al., 2016b; Dreyfus-Leon and Gaertner, 2006; Mueller et al., 2008). Network
73 prominence refers to how central or well-connected locally one is in a social network, which
74 tends to be associated with increased access to information and resources (Borgatti et al.,
75 1998; Freeman, 1979) and has been positively linked to economic productivity (Abbasi et al.,
76 2011; Greve et al., 2010). By their very nature, information exchange networks comprise
77 information channels that can reduce the amount of time and investment needed to gather
78 and process information (Molina - Morales and Martínez - Fernández, 2009). They can also
79 enable learning through close contact and intensive interaction, which can foster innovation
80 (Conley and Udry, 2010; Rogers Everett, 1995). Well-connected, centrally located
81 individuals in such networks thus tend to have increased opportunities to capitalize on these
82 benefits while pursuing their goals. Building on this existing theoretical and empirical
83 foundation, here we propose and test the following hypothesis:

84 **H1:** Being well connected locally (i.e., network prominence) in both short-term and long-term
85 information exchange networks will be positively associated with productivity in both the
86 short-run (within fishing trips) and long-run (annually).

87 Though we expect that in general, the ability to access both types of information can provide
88 advantages that enable fishers to be more productive, there are important differences
89 between the exchange of short-term and long-term information that require consideration.
90 Most notably, short-term information can almost immediately, and visibly, increase fishing
91 success, whereas the effects of long-term information are much less immediate and tangibly
92 visible. For example, information on the location of high-value species can reduce search
93 effort and increase high-value catch, thereby decreasing costs while increasing revenues.
94 The time-scale at which this occurs is almost immediate, i.e., productivity is increased within
95 fishing trips. Perhaps more importantly, fishers are highly aware of this (Gezelius, 2007),
96 particularly when all vessels unload their catch at a central location. Short-term information
97 in marine fisheries is therefore known to be highly guarded, often only exchanged within
98 small groups of trusted individuals (Gezelius, 2007; Wilson, 1990). This reflects the
99 competitive nature of fishing and the highly visible effects of short-term information on fisher
100 productivity, which calls into question how fishers that bridge divides between groups in the

101 structure of short-term information exchange networks may fare.

102 Crossing social divides can be considered a form of bridging or brokerage (see Fig. 1),
103 which has strong support in the literature for producing competitive advantages that lead to
104 economic gains (e.g., Abbasi et al., 2011; Burt, 1992; Burt, 2005; Tsai and Ghoshal, 1998).
105 This is primarily because groups that are largely disconnected in social structures often
106 possess heterogeneous knowledge and resources – thus, people who broker across these
107 divides have the ability to gain access to, and control over diverse information and
108 resources, thereby gaining a competitive advantage (Burt, 2005). However, recent research
109 has highlighted the fact that there are inherent pressures associated with brokering roles
110 that can place constraints on actors, and these constraints can actually have a negative
111 effect on productivity (Bizzi, 2013; Krackhardt, 1999; Stovel and Shaw, 2012). For example,
112 when social networks are clustered, and particularly in competitive environments, an “us-
113 them” attitude can emerge (McPherson et al., 2001). Those who broker across distinct
114 groups in such settings can face conflicting normative pressures. Others may also begin to
115 question their loyalties and commitments, which can generate distrust from actors on both
116 sides of the divide (Bailey, 1963; Stovel et al., 2011; Stovel and Shaw, 2012). Exploring this
117 potential issue for the first time in an environmental system, Barnes et al. (2016b) recently
118 found that fishers who bridge distinct social divides in short-term information exchange
119 networks may actually face an economic penalty, i.e., they found that brokers generated
120 significantly less revenue than your average fisher. In interpreting their findings, the authors
121 suggest that because fishing is such a competitive activity, and because short-term
122 information tends to only be exchanged within small groups of trusted individuals due to its
123 ability to almost immediately and visibly affect productivity, brokers may be penalized for
124 interacting across groups. Specifically, they suggest that critical information may be withheld
125 from brokers, who might be seen as breaking normative rules of information exchange by
126 cooperating with “the competition”.

127 To our knowledge, there have been no empirical studies of the effects of long-term
128 information exchange on fisher productivity. Though long-term information, such as technical
129 knowledge on gear innovations, can similarly increase fishing success, the time-scale at
130 which this occurs is typically longer, i.e., efficiency gains are typically realized over the
131 course of multiple fishing trips, each of which can independently span several weeks.
132 Perhaps more importantly, the effects of long-term information are less obvious. This helps
133 to explain why long-term information is thought to be exchanged much more openly among
134 fishers and across fishing communities than short-term information (Gezelius, 2007; Wilson,
135 1990). Existing research also suggest that fishers may be more open to exchanging

136 technical and other long-term information because it can afford them with prestige by
137 providing an opportunity to demonstrate a technical advantage (Gezelius, 2007). Thus, in
138 addition to our expectation that being prominently located in long-term information exchange
139 networks will be beneficial, we expect that the classically positive effects of brokerage are
140 also likely to be realized. Specifically, we propose and test the following specific hypothesis:

141 **H2:** Brokering between distinct social divides (i.e., brokerage) in short-term information
142 exchange networks will be negatively associated with productivity in the short-run (within
143 fishing trips), yet brokering between social divides in long-term information exchange
144 networks will be positively related with productivity in the long-run (annually).

145 In summary, we extend previous enquires into the effects of information exchange among
146 fishers by leveraging explicit information exchange network data on both short-term and
147 long-term topics among a population of fishers. Though we expect that cooperating by
148 exchanging information will generally be associated with economic benefits via increased
149 productivity to individual fishers, we hypothesize that these benefits will differ to some extent
150 depending on the type of information exchanged: short-term vs. long-term, which are
151 temporally tied to when we expect to see these effects on productivity.

152 The remainder of this paper is structured as follows. In section 2 we describe the context of
153 our study system. Section 3 provides a detailed description of our data, methodological
154 approach, and empirical model. In section 4 we present our results. In section 5 we discuss
155 our results and the limitations of the data, and conclude with implications for fisheries
156 management and recommendations for future research.

157

158 **2. Study System: Hawaii's Longline Fishery**

159 Hawaii's pelagic longline fishery (Fig. 2) is a multimillion-dollar industry that supplies local
160 and international markets with fresh tuna, swordfish, and other pelagic fish. In 2012 there
161 were 129 active vessels that generated approximately USD \$94 million in revenue over the
162 course of 19,424 fishing sets on 1,437 trips (see:

163 <http://www.pifsc.noaa.gov/fmb/reports.php>). Tuna, primarily bigeye (*Thunnus obesus*) is
164 targeted with continuous mainlines that hang 2,000 - 3,000 baited hooks on dropping
165 intervals strung between a procession of floats at depths of approximately 40 - 400 meters
166 over a range of 25 - 45 nautical miles in the open ocean. A small portion of the fleet also
167 targets swordfish (*Xiphias gladius*) for a portion of the year using shallow-set mainlines
168 hanging approximately 700 - 1,000 baited hooks at depths of approximately 30 - 90 meters.

169 Hawaii's longline fishers are restricted from fishing within 50 - 75 nautical miles of Hawaii's
 170 coastline, and tend to fish both within and outside of the U.S. Exclusive Economic Zone
 171 bordering the Hawaiian Islands and in both the western and central Pacific ocean and
 172 eastern Pacific ocean.

173 Though Hawaii has a diverse multicultural background (Nordyke, 1989), the fishery is made
 174 up of only three distinct ethnic groups: a group of Vietnamese-Americans, Euro-Americans,
 175 and Korean-Americans; and communication among fishers is significantly more extensive
 176 within ethnic groups than between groups (Barnes-Mauthe et al., 2013; Barnes-Mauthe et
 177 al., 2014). In social network terms, this is an example of a homophily effect, i.e., "birds of a
 178 feather flock together" (McPhersan et al. 2001). In this case, the homophily effect has a
 179 substantial impact on the overall structure of fisher's information exchange networks, and
 180 low levels of trust across groups have been documented (Barnes-Mauthe et al., 2013;
 181 Barnes-Mauthe et al., 2014).⁴

182

183 **3. Methods**

184 *3.1 Data*

185 To assess the role of having access to different types of information on fisher productivity we
 186 utilized data on fisher's information-exchange networks, annual and trip-level expenditures,
 187 and fish sales. These data are described in turn.

188 *3.1.1 Information Exchange Networks*

189 Comprehensive data on information exchange among more than 90% of all Hawaii longline
 190 fishers ($n = 143$)⁵ was collected via a structured survey by Barnes-Mauthe et al. (2013)
 191 between May 2011 – January 2012. By fishers, we mean vessel owners and operators,
 192 which include both hired captains and owners who also operate their vessel, i.e., 'owner-
 193 operators'. In the survey, respondents were asked to identify up to 10 individuals they
 194 commonly exchanged useful information with regarding different aspects of fishing. Thus,
 195 the relationships identified represent respondent's perceptions of two-way information
 196 sharing ties. Though it could be argued that asking fishers to separately identify people they
 197 gave useful information to and people they got useful information from would have been
 198 more fruitful for identifying information access advantages, doing so would have doubled the

⁴ Existing quantitative and qualitative research strongly suggests that ethnicity plays the dominant role in influencing the network homophily effect and the overall structure of Hawaii's longline fishery information exchange network over all other fisher attributes, such as age, title, education, and experience (Barnes-Mauthe et al., 2013).

⁵ The original dataset included 145 respondents, two of which were dropped due to incomplete information.

199 time it took fishers to complete the survey. Because Hawaii's longline fishers typically
200 operate year-round, only coming to port for an average of 1-4 days when unloading catch
201 and restocking before their next trip, such a substantial increase in respondent burden would
202 have dramatically reduced our sample size. In addition, discussions with key informants from
203 each ethnic group prior to conducting fieldwork suggested gauging what respondents
204 considered to be two-way information exchange relationships would be more likely to reduce
205 bias in the sample. This was due to the expectation that fishers would have been prone to
206 overestimating their importance for sharing useful information with others, while
207 underestimating the level at which they relied on others for useful information. In this case,
208 asking fishers to report who they exchanged information with was therefore selected as the
209 most appropriate approach.

210 After nominating individuals considered useful for information exchange, respondents were
211 asked to disclose which topic(s) were discussed with each individual from a predetermined
212 list. The topics included covered aspects of fishing that were determined through
213 discussions with key informants as important for decision making in either the short-run or
214 long-run, i.e., they could be considered either short-term or long-term topics. Short-term
215 topics included (1) fish activity (i.e., "what the fish are doing"), (2) site catch/set location
216 (where the fish are), (3) bycatch (which is preferably avoided while at sea), and (4) weather.
217 Long-term topics included (1) vessel technology, (2) hiring of captain or crew, (3) fishery
218 regulations, and (4) gear maintenance. Respondents often nominated other fishers as
219 important for information exchange, though some industry leaders⁶ and
220 government/management officials were also identified. The survey also collected basic
221 socio-demographic information from respondents, and was fielded in person with the help of
222 Vietnamese and Korean translators, as needed.

223 Using this data, we identified two different networks of information exchange. The first
224 network included ties used to exchange short-term information. Discussed in detail in the
225 following sections, we employ this network in our analysis of short-run, or trip-level
226 productivity for all vessel operators, including both hired captains and vessel owners who
227 also captain their vessel (owner-operators). The second network included ties used to
228 exchange long-term information. Discussed in detail in the following sections, we use this
229 network in our analysis of long-run, or annual productivity for all vessel owners (also

⁶ The definition of "industry leader" was adopted from Barnes et al. (2013) who relied on key informants to define industry leaders as those whose role in the fishery included one or more of the following: (a) current or past representative on fishing association boards or fishery management councils relevant to Hawaii's longline fishery; (b) high-level, prominent employee or associate of a fishing organization, the Hawaii Fish Auction (where the majority of fish caught by Hawaii's longline fleet is landed), or other group that supports operations of Hawaii's longline fleet; (c) owner or high-level, prominent employee of supply stores that support Hawaii longline operations."

230 including owner-operators). In this fishery less than 25% of the population both owns and
231 operates their vessel; the remainder of vessel owners rely on hired captains (Barnes-Mauthé
232 et al., 2013). The two networks are presented in Fig. 3.

233 *3.1.2 Annual and Trip-Level Expenditures*

234 In collaboration with NOAA's Pacific Islands Fisheries Science Center (PIFSC) Economics
235 Program (see Kalberg and Pan, forthcoming), we collected information on vessel operating
236 costs incurred during the 2012 calendar year from vessel owners and operators through the
237 use of a structured survey. The survey focused primarily on annual fixed costs, and was
238 fielded in person from January – September 2013 with the help of Vietnamese and Korean
239 translators.

240 All trips targeting swordfish and 20% of trips targeting tuna that originate in Hawaii are
241 federally mandated to carry an onboard fishery observer that collects detailed data on catch
242 and effort. Through a joint effort between the PIFSC Economics Program and the Pacific
243 Islands Regional Office (PIRO) Observer Program (Pan et al., 2014), vessel operators of all
244 federally observed trips are also asked to voluntarily provide trip-level variable costs. Trip-
245 level expenditures were voluntarily provided through this mechanism on 60% of all observed
246 trips in 2012. Using this sample, we developed a regression model to estimate a trip cost
247 function accounting for individual vessel and trip characteristics; such as vessel length,
248 number of fishing sets, trip length, and travel distance; in order to generate cost information
249 for all trips for which we did not have expenditure information. In the example of fuel cost
250 estimation for a particular trip, the fuel usage is estimated based on its trip length (days),
251 travel distance (miles), vessel size (feet), and a dummy variable to represent an individual
252 vessel's unobservable heterogeneity (see Kalberg and Pan, forthcoming).

253 *3.1.3 Fish Sales*

254 The Hawaii Department of Aquatic Resources maintains detailed records of fish purchased
255 from Hawaii's longline fleet by Hawaii marine fish dealers, including information on number
256 of fish bought by species, price per pound paid, and weight and value of each fish. By linking
257 these dealer reports with fisher's federally mandated logbook records we directly acquired
258 revenue data for all longline trips that landed their catch in Hawaii in 2012. There were also
259 a handful of Hawaii-based trips that landed their catch outside of Hawaii in 2012, resulting in
260 a record of catch and effort present in logbooks, but not accounted for in the dealer reports.
261 As a proxy revenue for these trips, the average weekly fish prices and average weight by
262 species from the dealer data were multiplied by the number of kept fish by species as
263 recorded in federal logbooks to estimate trip revenues. Weekly average prices and weights

264 were used to mitigate the variation a single vessel might influence in daily averages, while
 265 still maintaining the temporal variation in both price and weight per piece of fish kept (see
 266 Kalberg and Pan, forthcoming).⁷

267 *3.1.4 Data Compilation*

268 We integrated all data on expenditures and sales using vessel permit numbers or vessel
 269 names and landing dates, trip return dates, and sales data. We used information on vessel
 270 ownership during the 2012 calendar year collected via the information exchange network
 271 survey to link vessel owners to their respective vessels. Vessel operators were linked to
 272 each fishing trip using a combination of fishery observer data that included operator names,
 273 and information from the network survey, where vessel operators reported all vessels they
 274 had operated within the last five years. In accordance with strict confidentiality agreements,
 275 the data was stripped of all names and other personally identifying information immediately
 276 after the data was merged.

277 *3.2 The Production Function Model*

278 Following similar approaches in the literature (e.g. Fafchamps and Minten, 2002), we
 279 incorporate information exchange proxies as added inputs in the production function in order
 280 to test the role of information exchange on fishers' economic productivity. The general
 281 production function can be written as,

$$Y = F(L, K) \quad (1)$$

282 where total production Y is assumed to be a function of labor L and capital K . Following
 283 Fafchamps and Minten (2002), in specifying a production function for Hawaii's longline
 284 fishers we can distinguish physical from human capital and include information exchange
 285 inputs as an additional factor of production. Consider a fishing vessel with economic
 286 outcome Y (revenue), labor L (crew size), capital or inputs K (trip length, fixed costs, variable
 287 costs, and other inputs), human capital H (education, experience), information exchange
 288 inputs I (network prominence, brokerage), and vessel and owner/operator specific
 289 characteristics Z (vessel size, vessel age, target species, ethnicity, etc.). Equation 1 can
 290 therefore be re-specified as,

$$Y = F(L, K, H, I, Z) \quad (2)$$

⁷ Average auction prices for the same species can vary significantly between vessels due to fishing grounds, fish handling practices, the average time between landings and sales. There can also be substantial variations in fish size due to spatial-temporal variations.

291 Here, we are specifically interested in information exchange, I . If information exchange is
 292 irrelevant to fisher's productivity, I should have no effect on output when controlling for L , K ,
 293 H , and Z . Yet we hypothesize that when accounting for the other factors of production,
 294 being well connected locally in information exchange networks, i.e., network prominence I_p ,
 295 will have a positive effect on Y , while brokering between socialy distinct groups, I_b will have a
 296 negative effect for vessel operators in the short-run, but a positive effect for vessel owners in
 297 the long-run. Our empirical model following the traditional log-log functional form is therefore
 298 specified as,

$$\ln(Y) = \beta_0 + \alpha_1 \ln(L) + \sum_{n=1}^N \alpha_n \ln(K_n) + \beta_1 H_{ed} + \beta_2 \ln(H_{exp}) \\ + \beta_3 \ln(I_p) + \beta_4 \ln(I_b) + \sum_{n=1}^N \beta_n Z_n \quad (3)$$

299 where Y denotes gross revenue, L represents crew size, K corresponds to various capital
 300 inputs described in Table 1, H_{ed} is a dummy variable for education (some college or higher),
 301 H_{exp} denotes years of fishing experience, I are the same as described above, and Z denotes
 302 various vessel and operator specific variables (see Table 1).

303 Described in both Pradhan et al. (2003) and Barnes et al (2016b), using gross revenue
 304 instead of a quantity as the output is not truly a production function. However, catches in
 305 Hawaii's longline fishery typically feature multiple species that receive different market prices
 306 (i.e., vessels operate as multi-product firms). The use of value as an output rather than
 307 aggregated quantity of fish landed is therefore standard practice.⁸

308 Using this empirical approach, we estimated two separate production functions: one for
 309 vessel owners assessing the role of information exchange about long-term topics at the
 310 annual level (the long-run), and one for vessel operators assessing the role of information
 311 exchange about short-term topics at the trip-level (the short-run). Because the network
 312 metrics used to capture information exchange can violate the assumption of independence
 313 central to standard statistical approaches, we applied a nonparametric bootstrap method to
 314 estimate robust standard errors following Banerjee et al. (2013). Both analyses correspond
 315 to the 2012 calendar year.

316 3.3 Information Exchange Metrics

⁸ The value output is indicative of both quantity of production and the quality of the product. Tuna quality is largely a factor of trip length, fishing grounds and fish handling practices.

317 To gauge information exchange, we employed structural measures of network prominence
 318 and brokerage using the information exchange networks described in section 3.1.1 (see
 319 Table 1). To capture network prominence we used indegree centrality. Indegree centrality is
 320 a simple measure of local centrality that measures the number of incoming edges (i.e., ties)
 321 a node has in a network. We used indegree centrality rather than outdegree (ties going out
 322 from an actor) because we assume incoming ties more accurately represent fishers' ability
 323 to access information in this case due to an underlying level of trust associated with being
 324 nominated by others as someone they commonly exchange information with. Outdegree
 325 was also capped in our survey at a max of 10, i.e., fishers were only asked to nominate up to
 326 10 individuals. The variation of outdegree was thus limited to between 0 and 10, which
 327 constrained its ability to identify truly well-connected fishers who had access to more than 10
 328 information sources. By comparison, indegree ranged from 0 to 23 for vessel operators in
 329 the short-term information exchange network, and from 0 to 50 for vessel owners in the long-
 330 term information exchange network, suggesting that at least some fishers indeed have the
 331 ability to access information from more than 10 independent sources when needed.

332 We measured brokerage using both a structural and qualitative approach. Structural
 333 measures of brokerage capture bridging or brokering across groups that are structurally
 334 distinct in a social network, while qualitative measures capture bridging or brokering across
 335 socially heterogeneous groups (Borgatti et al., 1998). To capture structural brokerage across
 336 otherwise disconnected groups, we employed the measure network 'efficiency', which builds
 337 on Burt's (1992) theory of structural holes. In his discussion of structural holes, Burt (1992)
 338 was primarily interested in the number of opportunities for brokerage in a network. Building
 339 on this, the efficiency measure captures the suitability of a network for brokerage, given the
 340 number of opportunities, by idealizing non-redundant contacts. More formally, efficiency
 341 calculates the number of disjoint groups an actor is connected to divided by their total
 342 number of contacts, where disjoint groups are those that are otherwise not connected.⁹ Due
 343 to the strong social divides along ethnic lines present in Hawaii's longline fishery (Barnes-
 344 Mauthe et al., 2013; Barnes-Mauthe et al., 2014), we also conceptualized brokerage
 345 qualitatively as the total number of ties each actor had that spanned ethnic groups. This
 346 measure was inspired by existing work that argues ties that bridge heterogeneous
 347 subgroups in networks constitute an important form of brokerage (Borgatti et al., 1998;
 348 Stovel and Shaw, 2012), and was modeled after Barnes et al. (2016b).

349 We generated indegree centrality and brokerage metrics using two separate networks for
 350 vessel owners and operators (Fig. 3). For vessel owners, we used the long-term network

⁹ Efficiency calculates the effective size of an actor's ego network divided by their degree centrality, where effective size equals degree centrality minus the average degree of alters (see Abbasi et al., 2014).

described in section 3.1.1 which consisted of ties identified by all respondents as important for exchanging information about *vessel technology, hiring captain or crew, gear maintenance, and fishing regulations*. In the network survey, respondents were asked how valuable the information was that they exchanged with each person they nominated (very valuable, somewhat valuable, not valuable). Because we were interested in information that could, in theory, boost fisher productivity, ties deemed “not valuable” were dropped. The remaining information exchange network was treated as binary, i.e., it included all ties reported as very valuable or somewhat valuable by respondents. There were two sets of partner owners in our data who jointly shared multiple vessels. We treated partner owners as a single actor by merging their ties. Specifically, if a set of partners each identified a tie to the same person, we counted this as one outgoing tie for the partner pair. Likewise, if a different actor identified a tie to both individuals in the partner pair, we treated this as one incoming tie. The resulting network includes 167 nodes, 781 ties, has a mean geodesic distance of 4.17, an average indegree of 4.73 ties, one weakly connected component containing all nodes, and a homophily index of -0.86, where -1 indicates extreme ethnic homophily¹⁰ (Fig. 3). Of the 167 nodes, 153 were fishers. Of the remaining nodes, 10 were industry leaders not directly involved in fishing (i.e., they did not own a fishing vessel) and four represented government or management officials that respondents deemed important for information exchange.

For vessel operators, we used the short-term network described in section 3.1.1 which consisted of ties identified by all respondents as important for exchanging information about *fish activity, site catch/set location, bycatch, and weather*. As in the long-run network, ties identified as “not valuable” were dropped. The remaining information exchange network was treated as binary, i.e., it included all ties respondents reported as very valuable or somewhat valuable. The resulting network included 158 nodes, 620 ties, a mean geodesic distance of 4.12, an average indegree of 3.92, one weakly connected component containing all nodes, and a homophily index of -0.88 (Fig. 3). Of the 158 nodes, 150 were fishers and eight were industry leaders deemed important by respondents for information exchange. With the exception of a single captain, everyone in the vessel operator short-term information exchange network appears in the vessel owner long-term information exchange network. In contrast, the vessel owner long-term information exchange network has seven owners, one captain, one owner-operator, six industry leaders, and six government or management officials who do not appear in the vessel operator short-term information exchange network.

¹⁰ The homophily index is equal to the number of ties external to groups minus the number of ties internal to groups, divided by the total number of ties possible. This results in a value that ranges from +1 (in cases of extreme heterophily) to -1 (in cases of extreme homophily).

384 *3.4 Other Inputs*

385 Other inputs used in the production function are presented in Table 1. Explanatory variables
386 for vessel owner's annual-level production function differed slightly from that of vessel
387 operator's trip-level production function, primarily due to the difference in scale at which the
388 production process was estimated (see Tables 2 and 3). Specifically, vessel owner's
389 production functions were estimated at the annual level accounting for all trip days, inputs,
390 and total annual revenue, whereas operator's production functions were estimated at the trip
391 level accounting for trip days, average inputs, and average trip-level revenue. For vessel
392 owners, capital inputs were aggregated into fixed and variable costs, where the former
393 included costs associated with dry docking, engine work, gear added/replaced, and
394 continuous maintenance; and the latter included trip-level costs, such as fuel, bait, engine
395 oil, provisions, ice, fishing gear replacement, and communication. Only trip-level costs were
396 included in operator's production functions (denoted as *other inputs*, Table 1). Vessel and
397 operator specific variables are also included, one of which accounts for fishers that both own
398 and operate their vessel.

399 *3.5 Sample*

400 The compiled data described in Section 3.1.4 included information on 128 unique vessels,
401 30 of which were associated with owners not present in the network dataset. Data on an
402 additional seven vessels were missing key productivity variables, resulting in a total usable
403 sample of 91 vessels associated with 87 owners to be used to estimate vessel owner's
404 annual-level production function. 15% of these vessels targeted swordfish for at least one
405 trip during the year, while the other 85% targeted tuna only. Summary statistics for the 2012
406 annual-level data included in vessel owner's production function are presented in Table 2.

407 For vessel operator's trip-level production function, we first evaluated swordfish trips
408 separately from tuna trips because they consist of very different fishing profiles (i.e., different
409 depths, times, number of hooks, etc.). The trip-level data for 2012 included 984 recorded
410 tuna trips, 40 of which were taken by operators not present in the network data. An
411 additional 91 trips were missing key variables, resulting in a total usable sample of 853 tuna
412 trips taken by 84 vessel operators on 85 unique vessels during the 2012 calendar year. The
413 2012 trip-level data also included a total of 54 recorded swordfish trips made by 14 unique
414 vessels. However, operators of these vessels were all Vietnamese-American, and there was
415 very little variation in their patterns of information exchange or vessel operating
416 characteristics. Our analysis on vessel operators therefore focuses on tuna targeting trips
417 only. Note that all vessel operators on swordfish trips also participated in tuna trips during

418 the 2012 calendar year. Summary statistics for the trip-level data included in vessel
 419 operator's production function are presented in Table 3.

420

421 **4. Results**

422 Our initial estimation of vessel owner's annual-level production function described in Eq. 3
 423 exhibited problematic signs of collinearity among the information exchange metrics.¹¹
 424 Specifically, we found that inter-ethnic ties had a strong positive correlation with both
 425 indegree centrality and efficiency for vessel owners in the long-term information exchange
 426 network (Table 4). The same relationship was not present among vessel operators in the
 427 short-term information exchange network (Table 4). We therefore had to exclude inter-ethnic
 428 ties in the final long-run model for vessel owners, yet were able to retain it in the short-run
 429 model for vessel operators, where there were no problematic signs of multicollinearity.¹²
 430 Thus, in our analysis of the relationship between long-term information exchange and vessel
 431 owner productivity, brokerage is restricted to the structural measure *efficiency*, and direct
 432 inferences about the potential effect of the qualitative measure *inter-ethnic ties* cannot be
 433 made. Final results for both production functions by ordinary least squares are presented in
 434 Table 5.

435 In support of our first hypothesis, our results show that being well connected locally (i.e.,
 436 indegree centrality) in both short and long-term information exchange networks has a
 437 significant, positive relationship with productivity for both vessel operators at the trip-level
 438 and vessel owners at the annual level. The effect is stronger for vessel owners ($\beta = 0.085$, p
 439 < 0.05 vs. $\beta = 0.050$, $p < 0.10$) but not statistically significant in terms of the difference.

440 Results regarding brokerage are partly at odds with our second hypothesis. We expected
 441 bridging both structurally and socially distinct groups in the short-term information exchange
 442 network to be negatively associated with productivity for vessel operators in the short-run,
 443 and our results lend support to this hypothesis. However, we expected the opposite to be
 444 true for vessel owners in the long-run, yet what we find instead is that structural brokerage
 445 (efficiency) also has a significant, negative relationship with productivity for vessel owners in
 446 the long-run (Table 5).

447 Results regarding other inputs are largely in accordance with expectations. All capital
 448 variables have the expected sign, though only trip days and trip-level capital inputs are
 449 significant (Table 5). Results regarding human capital are mixed, with experience playing a

¹¹ The mean variance inflation factor (VIF) was 3.06, and VIFs for inter-ethnic ties and centrality were both > 3 .

¹² The mean VIF is 2.14, and the VIF for all short-run information exchange metrics are < 1.5 .

450 positive yet insignificant role, and education having a strong negative relationship with
451 productivity in both the short-run and long-run. Fishers operating older vessels perform less
452 well both in the short-run and long-run. Vessel size is also important, and in this case
453 temporal scale matters. Specifically, medium sized vessels generate significantly more
454 revenue on average than larger vessels in the short-run, yet having a larger vessel is
455 positively associated with productivity in the long-run – though this relationship is not
456 statistically significant. Our results also indicate that owners who switch between fishing for
457 swordfish and tuna throughout the year are significantly less productive. Both owning and
458 operating your vessel does not appear to play a significant role in influencing revenue in
459 either case. Our results also indicate that when controlling for other variables, Euro-
460 American fishers (both owners and operators) generate significantly more revenue than
461 others.

462

463 **5. Discussion and Conclusion**

464 Our results offer evidence that engaging in strategic information exchange about both short-
465 term and long-term topics with close, localized contacts is positively related to economic
466 productivity for commercial fishers (see results on network prominence, Table 5). These
467 findings extend the results of Barnes et al. (2016b) to account for long-term information
468 exchange and add further empirical support to broader claims on the value of cooperation in
469 the harvest of common-pool fishery resources (Dreyfus-Leon and Gaertner, 2006; Millischer
470 et al., 2006; Mueller et al., 2008; Turner et al., 2014; Wilson, 1990). Though a direct positive
471 association between social interaction and performance has also been documented in other
472 fields (e.g., Tsai and Ghoshal, 1998), to our knowledge no existing study has jointly
473 examined this association in relation to both short-run and long-run performance in the same
474 setting.

475 The message here appears relatively simple – the more direct contacts fishers have access
476 to that they can leverage strategic information from on both short-term and long-term topics
477 when needed, the better they perform in harvesting target species. This relationship holds in
478 both the short-run (i.e., within fishing trips) and long-run. However, it's important to note that
479 there is likely a limit to the positive relationship between the number of information exchange
480 contacts that fishers have direct access to and higher returns because of saturation: as the
481 number of information exchange contacts among fishers increases, the information
482 exchange network as a whole becomes hyperconnected, likely resulting in information being
483 redundant, rather than novel (Bodin and Crona, 2009). Another important caveat is that

484 fishery resources are rivalrous in nature, and Hawaii's longline fishers operate under a total
485 allowable catch on bigeye tuna that applies to the entire fishery. This implies that if
486 maximizing centrality in information exchange networks has a direct causal relationship with
487 productivity, it's unlikely that this relationship would hold as more fishers sought to maximize
488 their centrality. This is due to the simple fact that there's a limit to how much can be caught.

489 In contrast to our results regarding strategic information exchange with close, localized
490 contacts, we found that engaging in information exchange across structurally or socially
491 distinct divides (brokering) may come at a cost. The most interesting result is that when it
492 comes to bridging structural divides, the type of information exchange does not seem to
493 matter – brokering has a negative association with productivity whether the information
494 exchanged is about long-term topics such as technological innovations, or short-term topics
495 thought to be more highly guarded, such as the location of fish aggregations. This stands in
496 contrast to dominant theories regarding brokerage that argue for its ability to provide tangible
497 economic benefits (e.g., Abbasi et al., 2011; Burt, 1992; Burt, 2005; Tsai and Ghoshal,
498 1998), and is somewhat puzzling considering existing research in fisheries examining
499 cooperative information exchange behaviors. For example, Mueller et al. (2008) found that
500 highly successful fishers in the Great Lakes area generally exchanged fishing related
501 information more frequently and with more individuals both within *and outside* their
502 subgroup¹³ than less successful fishers. They also found that information exchanges
503 *between* subgroups (i.e., brokerage exchanges), tended to be more reliable than within,
504 which implies brokerage would likely have been even more important for fisher success in
505 their case. Moreover, long-term information is thought to be much more commonly
506 exchanged across fishing communities than short-term information (Gezelius, 2007; Wilson,
507 1990). Indeed, even in our case we found a higher level of ties crossing both social and
508 structural divides in the long-term information exchange network than in the short-term
509 information exchange network (Tables 2 and 3). Intuitively, one would expect that fishers
510 perceive a benefit from these brokerage relationships, yet our results clearly indicate they
511 are associated with a measurable economic disadvantage.

512 Though our findings regarding brokerage were somewhat unexpected and diverge from
513 dominant theories (i.e., Burt, 1992), the overwhelming majority of existing empirical work on
514 brokerage has been conducted in corporate and organizational settings comprised of
515 socially homogenous populations, and contrary evidence in more diverse environments has
516 been emerging. For example, Xiao and Tsui (2007) found evidence that the benefits of
517 brokerage typically found in more individualistic cultures can actually be reversed in cultures

¹³ Subgroup is a network term used to describe individuals that are more densely connected to each other than others in the network, thus, exchanges between them is a form of brokerage.

518 where working collectively is considered important. The potential drawbacks of brokerage
519 have also been highlighted by Bizzi (2013), who showed that group composition can
520 sometimes constrain individuals, having a negative impact on their performance. Additional
521 research in sociology provides even further insight into our puzzling result, particularly when
522 considering the competitive nature of fisheries. In line with identity theory (Tajfel and Turner,
523 1979) and role conflict (Goffman, 1959), diverse settings characterized by strong homophily
524 and fragmentation can result in strong group identities. In cases where strong (and
525 potentially conflicting) social identities exist, which can be related to cultural background or
526 other, more subtle distinctions, the behavior of individuals is often heavily influenced by peer
527 pressure and normative expectations (Krackhardt, 1999). Sometimes these identities cause
528 individuals to emphasize their differences with others, which can decrease trust, amplify
529 conflict (Baerveldt et al. 2004), and result in discriminatory behavior across groups (Tajfel
530 and Turner, 1979) – particularly under conditions of competition (Poteete and Ostrom,
531 2004). Thus, in certain contexts brokering can be more tenuous and constraining for
532 individuals (Bizzi, 2013; Stovel et al., 2011), making it more difficult for them to realize the
533 information access advantages that are typically associated with bridging across distinct
534 social groups (Podolny and Baron, 1997). Indeed, recent research suggests that in complex,
535 dynamic environments, brokering between disparate parts of a social network can result in
536 *disadvantaged* access to information (Aral and Van Alstyne, 2011). It is well recognized that
537 marine fisheries constitute complex, dynamic systems (Jentoft, 2007; Levin and Lubchenco,
538 2008; Wilson, 1990), and our results suggest that when this is coupled with competition,
539 exchanging strategic information across distinct social divides is associated with a
540 demonstrable economic cost.

541 In the case of Hawaii's longline fishery, it's possible there exists a common suspicion of
542 fishers interacting across strong social divides driven by a lack of trust, which can result in
543 brokers being penalized by other fishers (Barnes et al., 2016b). For example, specific
544 strategic information that could knowingly increase fishing efficiency may simply be withheld
545 from brokers. A general sentiment of mistrust across distinct groups, particularly ethnic
546 groups, in this fishery has indeed been repeatedly observed by field researchers, leading to
547 it being characterized as ethnically fragmented despite the ties that exist across groups
548 (Barnes et al., 2016b; Barnes-Mauthe et al., 2013; Barnes-Mauthe et al., 2014). Ethnic
549 fragmentation has been shown to negatively impact trust, cooperation, and the provision of
550 public goods (Alesina et al., 2014; Alesina and La Ferrara, 2002; Chakravarty and Fonseca,
551 2014; Pomeroy et al., 2007), though histories and other factors can mediate these
552 relationships (Varughese and Ostrom, 2001).

553 Our results leave us with a lingering question: if brokers are experiencing an economic
554 disadvantage for bridging distinct social divides, then why do they broker? Aside from the
555 simple explanation that fishers may be unaware of the economic disadvantage associated
556 with brokerage, it's possible that brokering provides fishers with other, non-monetary
557 rewards, such as benefits to their reputation and standing in the community (Gezelius,
558 2007). We suspect this might especially be the case for vessel owners exchanging
559 information about fishery management, technological innovations, and other long-term
560 topics, as previous accounts of fishers in other settings suggest engaging in this sort of
561 information exchange is thought to increase social prestige (Gezelius, 2007). Still, whether
562 brokerage provides non-monetary benefits of value to fishers remains an open question that
563 could be investigated in future research. The cross-sectional nature of our information
564 exchange network data also prevented us from investigating how stable these brokerage
565 relationships are. Considering brokerage is critical to achieve cooperation and collaboration
566 across stakeholder communities, which has been linked with improved management of
567 common-pool resources (Gruber, 2010; Nkhata et al., 2008; Ostrom, 1990), understanding
568 how brokerage affects individuals and learning how to stabilize brokerage are key (Stovel et
569 al., 2011), and could form the foundation for a fruitful future research agenda.

570 Our results are subject to some limitations, particularly the potential for endogeneity in our
571 empirical models. One possible issue is that more successful fishers may have abilities,
572 expertise, and other idiosyncratic features that set them apart from others that may also be
573 related to their position in the information exchange networks. Acknowledging this possibility,
574 we took several steps to minimize potential endogeneity. First, we asked fishers to
575 specifically identify people with whom they exchanged useful information about fishing,
576 rather than using second-hand data on formal group associations or spatial data on vessel
577 movements assumed to represent cooperation. Second, we included a number of individual-
578 level covariates (e.g., experience, education, owning and operating a vessel) that we know
579 are important for explaining fisher productivity and individual level network characteristics in
580 Hawaii's longline fishery, such as prominence and brokerage (see Barnes-Mauthe et al.,
581 2014; Pradhan et al., 2003).

582 Still, there is the possibility of reverse causality. Instead of being centrally located in
583 networks of information exchange improving fisher productivity, it may be the case that
584 successful fishers are sought out more so than others for their skills and knowledge, driving
585 the positive association between productivity and network prominence. Likewise, our finding
586 of fisher's productivity being negatively associated with brokerage could be due to less
587 productive fishers seeking out other fishers outside their ethnic group to compensate for

588 their lower ability. Furthermore, the possibility of 'fluidness' of network positions sets forth
589 complicated dynamic relationships between productivity and networks of information
590 exchange (Reagans and Zuckerman, 2008). Our cross-sectional empirical strategy
591 substantiates the association between these two factors but does not allow us to identify the
592 direction of causality. Thus, our estimates of the effects of information exchange may be
593 biased upwards and qualified as an upper-bound estimate. Nevertheless, our results provide
594 support for a positive association between productivity and being well connected locally in
595 networks of information exchange, and our counterintuitive finding regarding brokerage
596 suggests that at the very least, it does not improve fisher productivity. Future work should
597 build on our approach by identifying appropriate instrumental variables (see Wooldridge,
598 2010) or by leveraging dynamic network data to account for network formation processes
599 and exploit lagged outcomes to firmly establish causal relationships.

600 In spite of these limitations, this research fills a critical gap in the literature regarding the
601 costs and benefits of cooperation in the harvest of common-pool fishery resources. By
602 explicitly investigating the relationship between strategic information exchange and fisher
603 productivity, our results shed light on social-structural dynamics that help form the
604 foundation for fisher decision-making and behavior. The social dynamics underpinning fisher
605 behavior and decision-making have received very little attention in the literature compared to
606 fish ecology and fish stock dynamics, yet understanding these dynamics is critical for
607 devising effective fisheries management strategies that meet societal goals (Barnes et al.,
608 2016a; Branch et al., 2006; Hicks et al., 2016) and avoid widespread fisheries collapse
609 (Hilborn, 1985). Here, we demonstrated that while there is clearly an economic benefit
610 associated with cooperation across temporal scales in the harvest of common-pool fishery
611 resources, engaging in strategic information exchange across social divides is associated
612 with a clear economic disadvantage. More fully understanding these relationships, why
613 some fishers still choose to broker, and the stability of brokerage over time and in the face of
614 external shocks should be the focus of future research.

615

616 **References**

617 Abbasi, A., Altmann, J., Hossain, L., 2011. Identifying the effects of co-authorship networks
618 on the performance of scholars: A correlation and regression analysis of
619 performance measures and social network analysis measures. *Journal of
620 Informetrics* 5, 594-607.

621 Abbasi, A., Wigand, R.T., Hossain, L., 2014. Measuring social capital through network
622 analysis and its influence on individual performance. *Library & Information Science
623 Research* 36, 66-73.

624 Acheson, J.M., 1975. The lobster fiefs: economic and ecological effects of territoriality in the
625 Maine lobster industry. *Human Ecology* 3, 183-207.

626 Alesina, A., Gennaioli, C., Lovo, S., 2014. Public goods and ethnic diversity: Evidence from
 627 deforestation in Indonesia. NBER Working Paper No. 20504, National Bureau of
 628 Economic Research.

629 Alesina, A., La Ferrara, E., 2002. Who trusts others? *Journal of Public Economics* 85, 207-
 630 234.

631 Aral, S., Van Alstyne, M., 2011. The diversity-bandwidth trade-off1. *American Journal of*
 632 *Sociology* 117, 90-171.

633 Bailey, F.G., 1963. Politics and society in contemporary Orissa, in: Phillips, C.H. (Ed.),
 634 *Studies on Modern Asia and Africa: Politics and Society in India*. Allen & Unwin,
 635 London, UK.

636 Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O., 2013. The diffusion of
 637 microfinance. *Science* 341.

638 Barnes, M., Lynham, J., Kalberg, K., Leung, P.S., 2016a. Social networks and environmental
 639 outcomes. *Proceedings of the National Academy of Sciences* In press.

640 Barnes, M.L., Kalberg, K., Pan, M., Leung, P., 2016b. When is brokerage negatively
 641 associated with economic benefits? Ethnic diversity, competition, and common-pool
 642 resources. *Social Networks* 45, 55-65.

643 Barnes-Mauthe, M., Arita, S., Allen, S.D., Gray, S.A., Leung, P.S., 2013. The influence of
 644 ethnic diversity on social network structure in a common-pool resource system:
 645 Implications for collaborative management. *Ecology and Society* 18, 23.

646 Barnes-Mauthe, M., Gray, S.A., Arita, S., Lynham, J., Leung, P., 2014. What determines
 647 social capital in a social-ecological system? Insights from a network perspective.
 648 *Environmental Management* 55, 392-410.

649 Béné, C., 1996. Effects of market constraints, the remuneration system, and resource
 650 dynamics on the spatial distribution of fishing effort. *Canadian Journal of Fisheries*
 651 and *Aquatic Sciences* 53, 563-571.

652 Bazzi, L., 2013. The Dark Side of Structural Holes A Multilevel Investigation. *Journal of*
 653 *Management* 39, 1554-1578.

654 Bodin, Ö., Crona, B.I., 2009. The role of social networks in natural resource governance:
 655 What relational patterns make a difference? *Global Environmental Change* 19, 366-
 656 374.

657 Borgatti, S.P., 2002. NetDraw: Graph Visualization Software. Harvard: Analytic
 658 Technologies, Lexington, Kentucky, USA.

659 Borgatti, S.P., Jones, C., Everett, M.G., 1998. Network measures of social capital.
 660 *Connections* 21, 27-36.

661 Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G., 2009. Network analysis in the social
 662 sciences. *Science* 323, 892-895.

663 Branch, T.A., Hilborn, R., Haynie, A.C., Fay, G., Flynn, L., Griffiths, J., Marshall, K.N.,
 664 Randall, J.K., Scheuerell, J.M., Ward, E.J., 2006. Fleet dynamics and fishermen
 665 behavior: Lessons for fisheries managers. *Canadian Journal of Fisheries and Aquatic*
 666 *Sciences* 63, 1647-1668.

667 Burt, R.S., 1992. *Structural Holes: The Social Structure of Competition*. Harvard University
 668 Press, Cambridge, MA, USA.

669 Burt, R.S., 2000. The network structure of social capital. *Research in Organizational*
 670 *Behavior* 22, 345-423.

671 Burt, R.S., 2005. *Brokerage and Closure: An Introduction to Social Capital*. Oxford University
 672 Press, New York, NY, USA

673 Chakravarty, S., Fonseca, M.A., 2014. The effect of social fragmentation on public good
 674 provision: An experimental study. *Journal of Behavioral and Experimental Economics*
 675 53, 1-9.

676 Conley, T.G., Udry, C.R., 2010. Learning about a new technology: Pineapple in Ghana. *The*
 677 *American Economic Review* 100, 35-69.

678 Dreyfus-Leon, M., Gaertner, D., 2006. Modeling performance and information exchange
 679 between fishing vessels with artificial neural networks. *Ecological Modelling* 195, 30-
 680 36.

681 Evans, K.S., Weninger, Q., 2014. Information sharing and cooperative search in fisheries.
 682 Environmental and Resource Economics 58, 353-372.

683 Fafchamps, M., Minten, B., 2002. Returns to social network capital among traders. Oxford
 684 Economic Papers 54, 173-206.

685 Freeman, L.C., 1979. Centrality in social networks conceptual clarification. Social Networks
 686 1, 215-239.

687 Gatewood, J.B., 1984. Cooperation, competition, and synergy: information-sharing groups
 688 among Southeast Alaskan salmon seiners. American Ethnologist, 350-370.

689 Gezelius, S.S., 2007. The social aspects of fishing effort. Human Ecology 35, 587-599.

690 Gintis, H., 2000. Beyond< i> Homo economicus</i>: evidence from experimental economics.
 691 Ecological Economics 35, 311-322.

692 Goffman, E., 1959. The presentation of self in everyday life, in: Newman, D.M., O'brien, J.
 693 (Eds.), Sociology: Exploring the Architecture of Everday Life Readings. Pine Forge
 694 Press, Thousand Oaks, CA, USA, pp. 120-129.

695 Gordon, H.S., 1954. The economic theory of a common-property resource: The fishery. The
 696 Journal of Political Economy 62, 124-142.

697 Greve, A., Benassi, M., Sti, A.D., 2010. Exploring the contributions of human and social
 698 capital to productivity. International Review of Sociology—Revue Internationale de
 699 Sociologie 20, 35-58.

700 Gruber, J.S., 2010. Key principles of community-based natural resource management: a
 701 synthesis and interpretation of identified effective approaches for managing the
 702 commons. Environmental management 45, 52-66.

703 Hardin, G., 1968. The tragedy of the commons. Science 162, 1243-1248.

704 Haynie, A.C., Hicks, R.L., Schnier, K.E., 2009. Common property, information, and
 705 cooperation: Commercial fishing in the Bering Sea. Ecological Economics 69, 406-
 706 413.

707 Hicks, C.C., Levine, A., Agrawal, A., Basurto, X., Breslow, S.J., Carothers, C., Charnley, S.,
 708 Coulthard, S., Dolsak, N., Donatuto, J., 2016. Engage key social concepts for
 709 sustainability. Science 352, 38-40.

710 Hilborn, R., 1985. Fleet dynamics and individual variation: why some people catch more fish
 711 than others. Canadian Journal of Fisheries and Aquatic Sciences 42, 2-13.

712 Jentoft, S., 2007. Limits of governability: Institutional implications for fisheries and coastal
 713 governance. Marine Policy 31, 360-370.

714 Kalberg, K., Pan, M., forthcoming. 2012 Economic Cost-Earnings of Pelagic Longline
 715 Fishing in Hawaii. Pacific Islands Fisheries Science Center, NOAA Technical
 716 Memorandum.

717 Krackhardt, D., 1999. The ties that torture: Simmelian tie analysis in organizations. Research
 718 in the Sociology of Organizations 16, 183-210.

719 Levin, S.A., Lubchenco, J., 2008. Resilience, robustness, and marine ecosystem-based
 720 management. BioScience 58, 27-32.

721 Lin, N., 1999. Building a network theory of social capital. Connections 22, 28-51.

722 McPherson, M., Smith-Lovin, L., Cook, J.M., 2001. Birds of a feather: Homophily in social
 723 networks. Annual Review of Sociology, 415-444.

724 Millischer, L., Gascuel, D., Drouineau, H., Mahévas, S., Pelletier, D., Beliaeff, B., Tejerina-
 725 Garro, F.L., de Mérona, B., Oberdorff, T., Hugueny, B., 2006. Information transfer,
 726 behavior of vessels and fishing efficiency: an individual-based simulation approach.
 727 Aquatic Living Resources 19, 1-13.

728 Molina - Morales, F.X., Martínez - Fernández, M.T., 2009. Too much love in the
 729 neighborhood can hurt: how an excess of intensity and trust in relationships may
 730 produce negative effects on firms. Strategic Management Journal 30, 1013-1023.

731 Mueller, K.B., Taylor, W.W., Frank, K.A., Robertson, J.M., Grinold, D.L., 2008. Social
 732 networks and fisheries: The relationship between a charter fishing network, social
 733 capital, and catch dynamics. North American Journal of Fisheries Management 28,
 734 447-462.

735 Nkhata, A.B., Breen, C.M., Freimund, W.A., 2008. Resilient social relationships and
 736 collaboration in the management of social-ecological systems. *Ecology and Society*
 737 13, 2.

738 NOAA, 2006. Magnuson-Stevens Fishery Conservation and Management Reauthorization
 739 Act of 2006, Public Law no. 109-479, 120 Stat 3575 (2006), Washington, D.C., USA.

740 Nordyke, E.C., 1989. *The Peopling of Hawai'i*. University of Hawaii Press, Honolulu, HI.

741 Olson, M., 1965. *Logic of Collective Action: Public Goods and the Theory of Groups*.
 742 Harvard University Press, Cambridge, MA, USA.

743 Ostrom, E., 1990. *Governing the Commons: The Evolution of Institutions for Collective*
 744 *Action*. Cambridge University Press, Cambridge, UK.

745 Ostrom, E., 2000. Collective action and the evolution of social norms. *The Journal of*
 746 *Economic Perspectives* 14, 137-158.

747 Pan, M., Chan, H., Kalberg, K., 2014. Tracking the Changes of Economic Performance
 748 Indicators for the Main Commercial Fisheries in the Western Pacific Areas 2012
 749 Update. Pacific Islands Fisheries Science Center Internal Report (IR-14-017),
 750 Honolulu, HI, p. 18.

751 Podolny, J.M., Baron, J.N., 1997. Resources and relationships: Social networks and mobility
 752 in the workplace. *American sociological review*, 673-693.

753 Pollnac, R.B., Carmo, F., 1980. Attitudes toward cooperation among small-scale fishermen
 754 and farmers in the Azores. *Anthropological Quarterly*, 12-19.

755 Pomeroy, R., Parks, J., Pollnac, R., Campson, T., Genio, E., Marlessy, C., Holle, E., Pido,
 756 M., Nissapa, A., Boromthanarat, S., 2007. Fish wars: Conflict and collaboration in
 757 fisheries management in Southeast Asia. *Marine Policy* 31, 645-656.

758 Poteete, A.R., Ostrom, E., 2004. Heterogeneity, group size and collective action: The role of
 759 institutions in forest management. *Development and Change* 35, 435-461.

760 Pradhan, N.C., Sharma, K.R., Leung, P., 2003. Analyzing technical and economic
 761 interrelationships in Hawaii's longline fishery. *Marine Resource Economics* 18, 167-
 762 194.

763 Rogers Everett, M., 1995. *Diffusion of Innovations*, 4th ed. The Free Press, New York, NY,
 764 USA.

765 Salas, S., Gaertner, D., 2004. The behavioural dynamics of fishers: Management
 766 implications. *Fish and Fisheries* 5, 153-167.

767 Scott, A., 1955. The fishery: The objectives of sole ownership. *The Journal of Political*
 768 *Economy* 63, 116-124.

769 Stovel, K., Golub, B., Milgrom, E.M.M., 2011. Stabilizing brokerage. *Proceedings of the*
 770 *National Academy of Sciences* 108, 21326-21332.

771 Stovel, K., Shaw, L., 2012. Brokerage. *Annual Review of Sociology* 38, 139-158.

772 Tajfel, H., Turner, J.C., 1979. An integrative theory of intergroup conflict, in: Austin, W.G.,
 773 Worchel, S. (Eds.), *The Social Psychology of Intergroup Relations*. Brooks-Cole,
 774 Monterey, CA, USA, pp. 33-47.

775 Tsai, W., Ghoshal, S., 1998. Social capital and value creation: The role of intrafirm networks.
 776 *Academy of Management Journal* 41, 464-476.

777 Turner, R.A., Polunin, N.V.C., Stead, S.M., 2014. Social networks and fishers' behavior:
 778 Exploring the links between information flow and fishing success in the
 779 Northumberland lobster fishery. *Ecology and Society* 19.

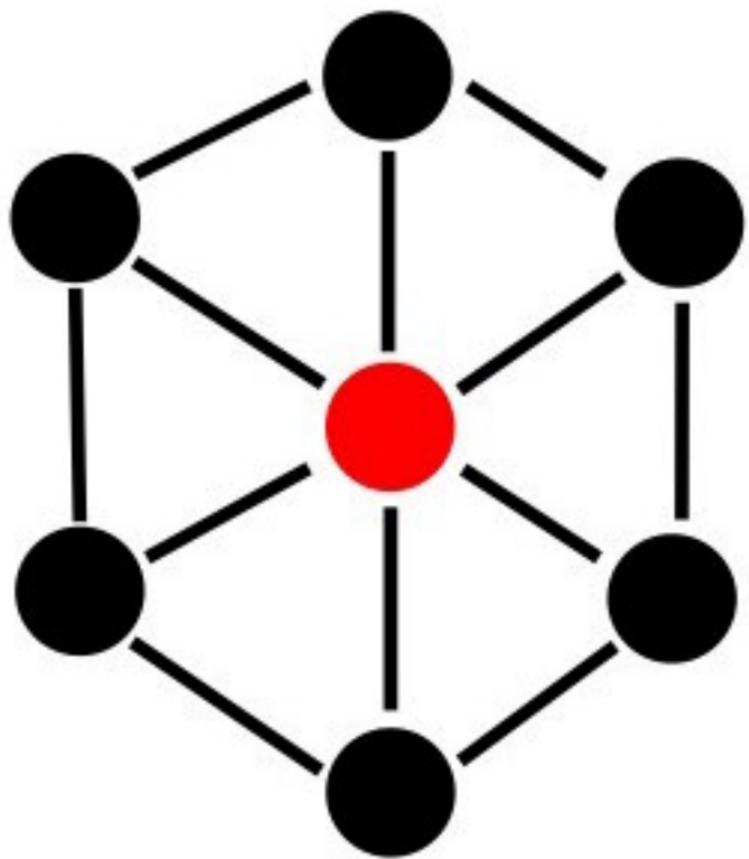
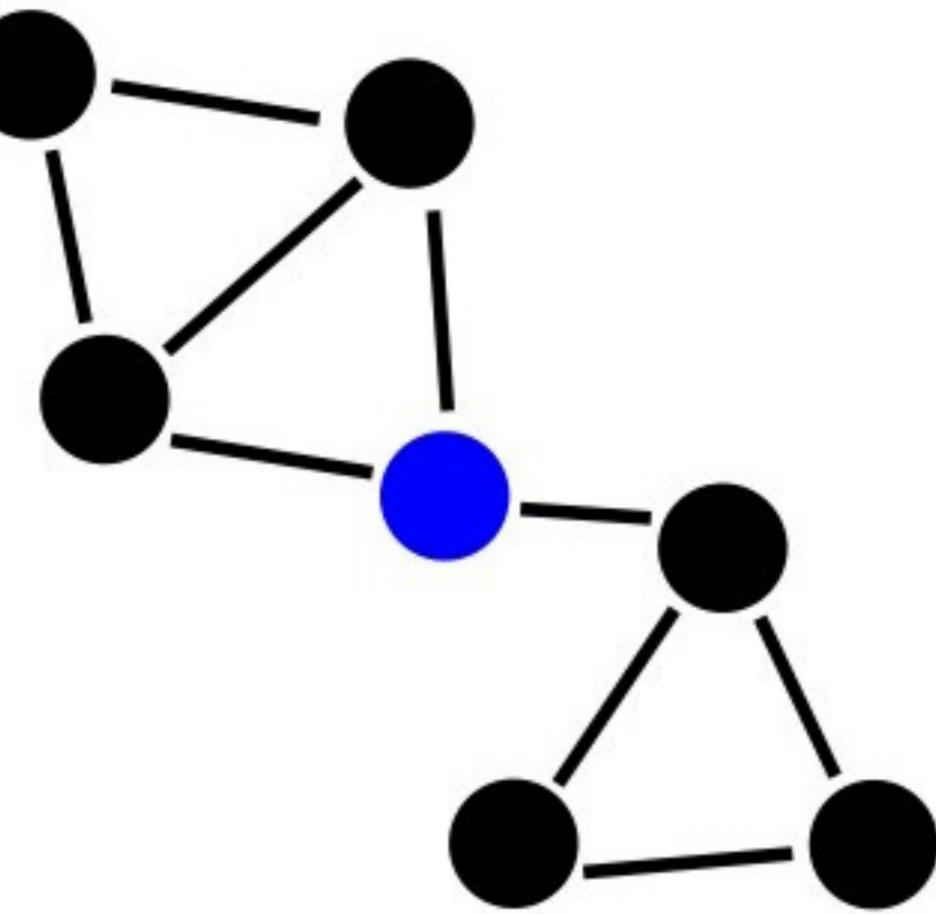
780 Varughese, G., Ostrom, E., 2001. The contested role of heterogeneity in collective action:
 781 Some evidence from community forestry in Nepal. *World Development* 29, 747-766.

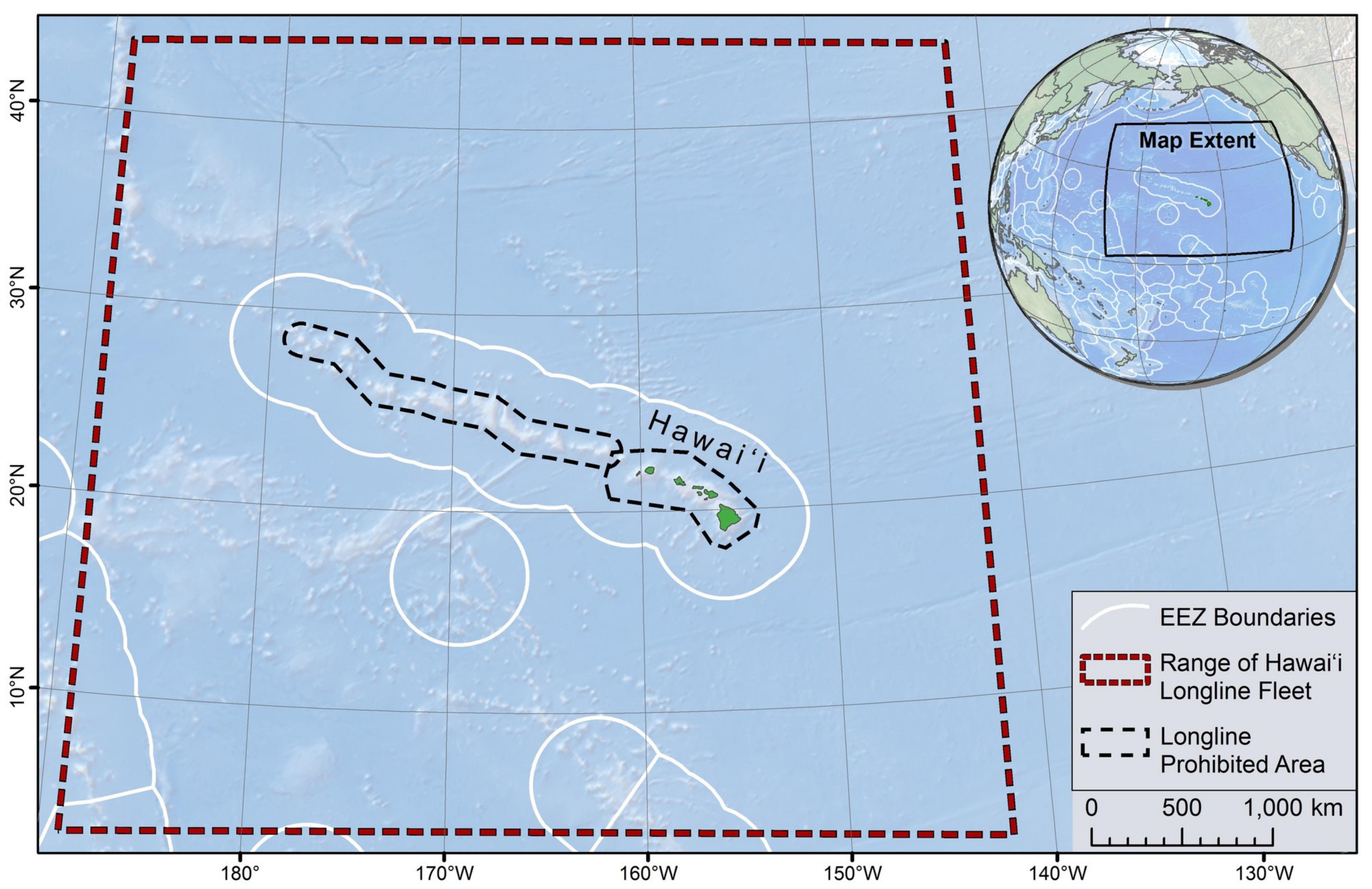
782 Wilson, J.A., 1990. Fishing for knowledge. *Land Economics* 66, 12-29.

783 Wooldridge, J.M., 2010. *Econometric analysis of cross section and panel data*. MIT press.

784 Xiao, Z., Tsui, A.S., 2007. When brokers may not work: The cultural contingency of social
 785 capital in Chinese high-tech firms. *Administrative Science Quarterly* 52, 1-31.

786



787


788 **Figure Captions:**

789 **Figure 1.** An example of network prominence (A) and brokerage (B). Network prominence can be
790 captured by degree centrality, which corresponds to the number of direct ties one has in a network. In
791 network A, the node with the greatest number of ties (where degree centrality = 6) is shaded in red.
792 Brokers act as intermediaries in networks by linking isolated individuals or disparate groups. In
793 network B, the blue shaded node is acting as a broker.

794 **Figure 2.** Map identifying the study area and the range of Hawaii's longline fleet, adapted from
795 Barnes et al. (2016b).

796 **Figure 3.** Graphical depictions of (A) vessel owner's information exchange network used to access
797 and share long-term information on vessel technology, hiring captain or crew, gear maintenance, and
798 fishing regulations; and (B) vessel operator's information exchange network used to access and share
799 short-term information on fish activity, site catch/set location, bycatch, and weather. By vessel owner,
800 we mean all fishers who own a vessel. By vessel operator, we mean all fishers who operate their
801 vessel, including both hired captains and owners who operate their vessel themselves (owner-
802 operators). Each shape or node represents an actor in the network, and the lines or edges connecting
803 them represent their information exchange ties. V-A, E-A, and K-A refer to each ethnic group
804 (Vietnamese-American, Euro-American, and Korean-American, respectively). The network was
805 created in NetDraw (Borgatti, 2002) using the spring embedding algorithm with node repulsion, which
806 uses iterative fitting to place nodes closest to those they have the shortest path lengths to while
807 minimizing overlap.

A.**B.**

EEZ Boundaries

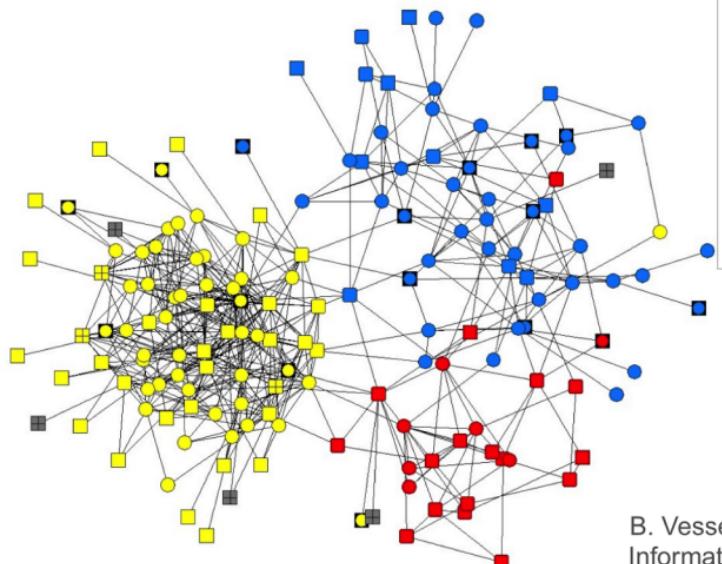
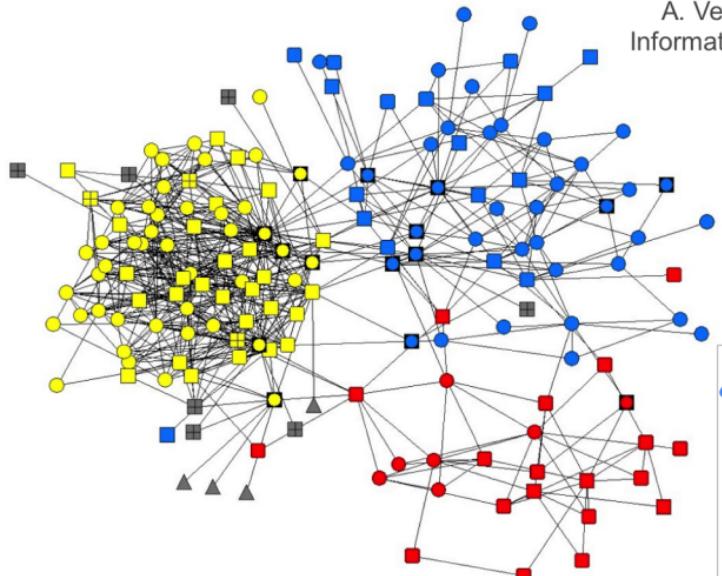
Range of Hawai'i
Longline Fleet

Longline
Prohibited Area

0 500 1,000 km

180°

170°W



160°W

150°W

140°W

130°W

A. Vessel Owner Long-Term Information Exchange Network

B. Vessel Operator Short-Term Information Exchange Network

Table 1. Description of input, vessel, and owner and operator specific variables.

Variable	Description
<i>Capital and labor</i>	
Trip days	Total trip length (in days), including days spent on travel
Crew size	Number of persons on the boat, including the operator
Fixed cost	Annual fixed operating costs (\$/yr), including dry dock, engine work, technology upgrades, and continuous maintenance
Variable cost	Annual variable operating costs (\$/yr), i.e., total annual trip-level costs, including fuel, bait, ice, and other miscellaneous items (used in vessel owner analysis)
Other input	Trip-level variable operating costs (\$/trip), including fuel, bait, ice, and other miscellaneous items (used in vessel operator analysis)
<i>Human capital</i>	
Education	Value 1 if the owner or operator had some college education, 0 otherwise
Experience	Owner or operator's fishing experience (years)
<i>Information exchange variables</i>	
<i>Network prominence</i>	
Centrality (indegree)	Number of incoming ties identified as important for exchanging long-run information (owners); number of incoming ties identified as important for exchanging short-run information (operators)
<i>Brokerage</i>	
Efficiency	A measure of an optimized network that idealizes non-redundant contacts. Calculated for owners using the long-run information exchange network, and operators using the short-run information exchange network (see section 3.4)
Inter-ethnic ties	Total number of inter-ethnic ties in the long-run information exchange network (owners); total number of inter-ethnic ties in the short-run information exchange network (operators)
<i>Vessel specific variables</i>	
Target: swordfish	Value 1 if the vessel targeted swordfish for at least 1 trip in 2012, 0 otherwise (targeted tuna only)
Vessel age	Age of vessel as of 2013
Vessel size: small	Value 1 if the vessel is a small size (≤ 55 feet), 0 otherwise
Vessel size: medium	Value 1 if the vessel is a medium size (>55 feet and <74 feet), 0 otherwise
<i>Owner specific variables</i>	
Owner-operated	Value 1 if the vessel was owner-operated, 0 otherwise (hired captain)
Ethnicity: Euro-American	Value 1 if the owner/operator is Euro-American, 0 otherwise
Ethnicity: Korean-American	Value 1 if the owner/operator is Korean-American, 0 otherwise

Table 2. Summary statistics for variables in vessel owner's annual-level production function, 2012 ($n = 91$ fishing vessels).

Variable	Unit	Mean	Std. dev
Output (annual revenue)	USD	\$758,062.30	\$275,751.80
<i>Capital and labor</i>			
Trip days	days/yr	254.703	210.991
Crew size	no. of persons	5.810	0.710
Fixed cost	\$/yr	\$98,734.49	\$36,845.37
Variable cost	\$/yr	\$343,420.10	\$102,752.60
<i>Human capital</i>			
Education	some college or above = 1	0.495	0.503
Experience	years fishing	27.962	12.215
<i>Information exchange variables (long-term)</i>			
Network prominence			
Centrality (indegree)	no. of incoming ties	12.044	14.705
Brokerage			
Efficiency	no. of non-redundant contacts/ total no. of contacts	0.836	0.091
Inter-ethnic ties	no. of inter-ethnic ties	1.802	2.177
<i>Vessel specific variables</i>			
Target: swordfish	yes = 1	0.154	0.363
Vessel age	years	27.846	10.421
Vessel size: small	yes = 1	0.099	0.3
Vessel size: medium	yes = 1	0.44	0.499
<i>Owner specific variables</i>			
Owner-operated	yes = 1	0.352	0.48
Ethnicity: Euro-American	yes = 1	0.374	0.486
Ethnicity: Korean-American	yes = 1	0.165	0.373

Table 3. Summary statistics for variables included in vessel operator's trip-level production function, 2012 ($n = 853$ tuna fishing trips).

Variable	Unit	Mean	Std. dev
Output (trip revenue)	USD	\$67,739.81	\$33,606.92
<i>Capital and labor</i>			
Trip days	days/trip	22.535	5.408
Crew size	no. of persons	4.682	0.672
Other input	\$/trip	\$29,683.97	\$8,797.28
<i>Human capital</i>			
Education	some college or above = 1	0.258	0.438
Experience	years fishing	24.759	9.218
<i>Information exchange variables (short-term)</i>			
Network prominence			
Centrality (indegree)	no. of incoming ties	4.026	4.455
Brokerage			
Efficiency	no. of non-redundant contacts/ total no. of contacts	0.789	0.131
Inter-ethnic ties	no. of inter-ethnic ties	0.584	0.93
<i>Vessel specific variables</i>			
Vessel age	years	26.498	10.113
Vessel size: small	yes = 1	0.134	0.341
Vessel size: medium	yes = 1	0.406	0.491
<i>Owner specific variables</i>			
Owner-operated	yes = 1	0.328	0.470
Ethnicity: Euro-American	yes = 1	0.409	0.492
Ethnicity: Korean-American	yes = 1	0.196	0.397

Table 4. Correlation coefficients among information exchange metrics

		Vessel Owners (long-term network)			Vessel Operators (short-term network)		
		1	2	3	1	2	3
1	Centrality (indegree)	1			1		
2	Efficiency	0.214	1		-0.123	1	
3	Inter-ethnic ties	0.628	0.563	1	0.203	0.277	1

Table 5. The role of information exchange on fisher productivity.

	unit	Owner long-run model (annual; $n = 91$ vessels)		Operator short-run model (trip-level; $n = 853$ trips)	
		Coef	SE	Coef	SE
<i>Capital and labor</i>					
Trip days	log	0.821***	0.249	0.767***	0.279
Crew size	log	0.260	0.266	0.083	0.180
Fixed cost (annual only)	log	0.101	0.088		
Variable cost (annual only)	log	0.299	0.204		
Other input (trip-level only)	log			0.610***	0.197
<i>Human capital</i>					
Education	yes = 1	-0.092	0.069	-0.109*	0.058
Experience	log	0.003	0.003	0.004	0.003
<i>Information exchange variables</i>					
Network prominence					
Centrality (indegree)	log	0.085**	0.037	0.050*	0.026
Brokerage					
Efficiency	log	-0.443*	0.235	-0.265***	0.100
Inter-ethnic ties	log	**	**	-0.202***	0.079
<i>Vessel specific variables</i>					
Target: swordfish (annual only)	yes = 1	-0.143*	0.075		
Vessel age	level	-0.006**	0.003	-0.007***	0.003
Vessel size: small	yes = 1	-0.154	0.127	0.016	0.114
Vessel size: medium	yes = 1	-0.026	0.070	0.167***	0.054
<i>Owner specific variables</i>					
Owner-operated	yes = 1	-0.059	0.062	0.030	0.050
Ethnicity: Euro-American	yes = 1	0.163*	0.096	0.283***	0.057
Ethnicity: Korean-American	yes = 1	-0.086	0.113	-0.063	0.077
Constant	level	3.450**	1.511	-2.054	1.405
R ²		0.802		0.338	
Adj. R ²		0.762		0.327	

*, **, *** denotes significance at the 0.10, 0.05, and 0.01 level. Standard errors were bootstrapped using 1,000 random samples.

** Omitted due to collinearity (see Table 4).