

1 **Unaccounted mortality and overview of the Hawaiian Kona crab *Ranina ranina* (Linnaeus)**
2 **fishery**

3

4 John Wiley¹, Cassandra Pardee¹, Gwen Lentes², Emma Forbes¹

5 ¹Poseidon Fisheries Research LLC, 45-180 Mahalani Pl #26 Kaneohe, HI 96744 United States

6 ²Waikiki Aquarium, 2777 Kalakaua Ave, Honolulu, HI 96815 United States

7

8 Corresponding Author:

9 John Wiley

10 john.wiley@pfr.fish

11 808-464-6055

12

13 Declarations of interest: None

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 Injuries sustained by Kona crabs *Ranina ranina* (Linnaeus) through tangle-nets were
26 quantified during 17 fishing trips on 4 of the Main Hawaiian Islands: Oahu, Hawaii, Maui, and
27 Niihau. Of the 1,160 crabs assessed by onboard observers, 30% were damaged via the fishing
28 process, either through predation of crabs stuck to the tangle-nets or disentanglement by the
29 fishermen. Effects of the most common injuries on crab mortality were then evaluated during a
30 laboratory experiment. Aquaria were used to hold damaged crabs along with undamaged controls
31 to compare the resulting mortalities during two rounds of experiments. The loss of one or more
32 dactyli resulted in 0-8.7% mortality; one limb pulled off resulted in 62.5% mortality; one limb
33 cut cleanly off resulted in 8.3% mortality; and crabs kept out of water under the sun for two
34 hours resulted in 16.7% mortality. The demonstrated care in aquarium husbandry underscores
35 that estimated mortality rates are potentially very sensitive to aquarium setup, explaining
36 differences between similar studies. Additionally, predation on crabs stuck to the tangle-nets and
37 on those sinking back to the sea floor after release were monitored via small high definition
38 cameras. Post-release mortality was calculated by multiplying the number of injuries observed in
39 the field by the corresponding mortality rate from the lab. Unaccounted mortality, the combined
40 rates of post-release mortality and total predation, was calculated at 10.9% for the Hawaiian
41 Kona crab fishery. Using the ratio of landed and released crabs this results in the deaths of an
42 additional 38.9% of landed crabs. However, when catch rates are high, care in handling crabs is
43 compromised, therefore unaccounted mortality is likely a minimum estimate.

44

45 **Key Words**

46 Captive observation; Discard survival; Injuries; Tangle-net; Brachyura

47 **1. Introduction**

48 *Ranina ranina* (Linnaeus) is a Brachuyran crab found throughout the tropical and
49 subtropical Indo-Pacific region. *R. ranina* bury themselves in sandy substrate at depths between
50 2 and 200 m. The crabs emerge from the sand to scavenge on dead marine fauna, small fish, and
51 invertebrates (Onizuka, 1972; Fielding and Haley, 1976; Kennelly et al., 1990). *R. ranina* are
52 considered a delicacy and are fished throughout their range. The crabs are captured using strings
53 of baited tangle-nets positioned on sandy seafloor. Crabs emerge from the sand and walk across
54 the netting to eat the bait and become entangled in the mesh.

55 In Hawaii, *R. ranina* are known as Kona crabs, and are a highly prized food crab on the
56 islands. Currently, several catch regulations are in place to protect the Kona crab population. The
57 fishery is closed from May through August to protect the crabs during their breeding season
58 (§HAR 13-95, 2010). During the open season, regulations restrict the harvest to males with at
59 least a 10.2 cm (4 in) carapace length (§HAR 13-95, 2010; HI REV Stat §188-58.5, 2011). These
60 regulations have contributed to a high percentage of Kona crab catch discarded due to size and
61 sex restrictions.

62 Post-release mortality is an important factor for any stock assessment, and for the
63 management of the Hawaiian Kona crab fishery due to the massive amount of undersized and
64 female crabs released back into the water. Surveyed fishers from Hawaii report that they are
65 careful when disentangling the crabs from tangle-nets (Wiley, 2017). However, injuries to the
66 crabs still occur with the most common being the loss of the dactyl (last segment) of a walking
67 leg. Studies on other crustaceans found that disentanglement injuries decrease growth after
68 molting and can increase mortality based on blood loss from unsealed injuries (Brouwer et al.,
69 2006; Uhlmann et al., 2009; Leland et al., 2013). An Australian study determined that 60-100%

70 of *R. ranina* with injuries due to disentanglement (loss of one or more dactyli or the loss of a
71 whole limb) died within 50 days (Kennelly et al., 1990).

72 Predation may be another factor for post-release mortality. Released animals often
73 experience an impaired physiological capacity and altered behavior, which may result in an
74 increased susceptibility to predators (Raby et al., 2014). The predation of animals still stuck to
75 traps (referred to as “depredation” hereafter) is also a common source of mortality within
76 fisheries, distinct from post-release mortality (Clark and Agnew, 2010). Depredation can have
77 both economic and ecological impacts to valuable fisheries (Briceño et al., 2014).

78 Depredation occurs on *R. ranina* while the crabs are stuck to the tangle-nets before being
79 hauled to the surface. Crabs are unable to bury in the sand to avoid detection and are thus easy
80 targets for various predators (Onizuka, 1972; Kirkwood and Brown, 1998; Brown et al., 2001).
81 Kona crabs are pulled up with missing chunks out of the carapace, missing chelae, and entire
82 bodies missing with only limbs still attached to the net. Hawaiian fishermen estimate that
83 depredation can increase the total percent of injured crabs by up to 40% (Wiley, 2017). Some
84 fishers do make efforts to minimize depredation by limiting soak time and using less bloody bait
85 such as tuna and billfish bones to attract fewer predators.

86 The purpose of this study was to categorize and quantify injuries to Kona crabs caused by
87 normal fishing activities for the Hawaiian fishery, and to determine the rate of unaccounted
88 mortality within the fishery including both post-release mortality and depredation. This project
89 was conducted in two portions: a field assessment and a laboratory experiment.

90

91 **2. Materials and Methods**

92 *2.1 Field Work*

93 A total of 17 fishing trips were conducted between November 2017 and April 2018.
94 Seven different local fishing boats and crews with experience capturing Kona crabs were
95 contracted to fish for crabs on four of the Main Hawaiian Islands: Oahu, Hawaii, Maui, and
96 Niihau (Figure 1). Fishing boats ranged in length from 23 to 34 feet and in engine power from a
97 single 200 horsepower engine to twin 315 horsepower engines.

98

99 **Figure 1.** Commercial fishing grids for the Main Hawaiian Islands. Fished areas highlighted
100 orange.

101

102 Typical fishing practices included setting strings of tangle-net traps with bait attached to
103 the middle over sandy substrate 10-90 m deep. Fishermen attached traps 3-5 m apart to a set line
104 with weights at the ends connected to buoys and enough rope for the buoys to float freely. Traps
105 were about 1 m in diameter and covered with one or two layers of small mesh netting which
106 entangled the limbs of the crabs as they walked across the net to the bait (Figure 2). Operational
107 characteristics – including traps per string, number of sets, soak time, depth, and bait (typically
108 fish scraps such as mahi, tuna, and billfish skin and bones) – varied between fishermen.

109

110 **Figure 2.** Tangle-net used to capture the attached Kona crabs. Metal ring measures roughly 1 m
111 in diameter with either one or two (pictured here) layers of mesh netting.

112

113 The number of traps, soak time, location, and water depth were recorded for each set.
114 Upon retrieval of the crabs, carapace length, trap number, time out of water, sex, and any injuries
115 were recorded for each captured crab. Injuries which occurred before being handled by

116 fishermen were classified as depredation injuries while those which occurred directly from
117 fishermen pulling crabs off the nets were classified as disentanglement.

118 Cameras were utilized throughout the fishing and release process to observe crab
119 behavior and predator interactions. Ten high definition GoPro Hero Session cameras were
120 attached to random nets in order to capture bottom type, crab arrival times, trap efficiency
121 (number of crabs walking over the trap that were captured), and predator interactions and arrival
122 times. A live-feed splash camera (Deep Blue Pro from Ocean Systems Inc.) and a Garmin VIRB
123 360° camera were used to observe the crabs upon release. Underwater housing was made by the
124 National Oceanic and Atmospheric Administration Pacific Islands Fisheries Science Center
125 Advanced Tech Program and used to allow recordings of the entire descent of the crabs. These
126 cameras captured the average time it took to sink to the bottom, behavior of the crabs after
127 release, and any predator interactions.

128

129 *2.2 Lab Experiment*

130 Crabs used in the mortality experiment were captured on the west side of Oahu and
131 placed in a live-well aboard the fishing boat. The crabs were then transferred into aerated 100 L
132 bins filled with seawater and driven by truck to the Waikiki Aquarium (approximately 1 hour).
133 After acclimating with the aquarium water, the crabs were placed into one of four identical 680 L
134 (1.0 x 1.5 x 0.6 m) tanks, each containing 20 cm of sand. Crabs were held in these aquaria for 3-
135 9 weeks before beginning the experiment. Crabs kept from each specific fishing trip were
136 randomly, yet equally, assigned to each treatment group to ensure no group had a
137 disproportionate amount of older crabs to newer.

138 The experiment consisted of two unique rounds, which tested the effect of common
139 injuries observed during the fishing process on the mortality of the crabs. Based on Kennelly et
140 al. (1990), each round lasted a total of 50 days. Crabs were sexed, measured, and weighed prior
141 to the start of the experiment. The length weight relationships for both males and females were
142 calculated using these measurements. Cable ties labeled with unique numbers by permanent
143 marker were used as simple loop-tags and attached to the chela of each crab for identification.
144 The four aquaria represented replicate experiments for each round, with all treatment groups
145 represented in each tank (Table 1). Limbs or segments were removed according to the crabs'
146 assigned group. The choice of which limb was to be injured within each treatment group was
147 determined randomly. Crabs were then placed back in their designated tanks. They were cared
148 for in the same manner as the holding period and otherwise left alone for the 50-day
149 experimental period.

150 Round 1 began June 20, 2017 with 88 crabs. The crabs were randomly assigned to one of
151 five treatments: control (no injury), removal of one dactyl from one walking leg, removal of one
152 dactyl from two walking legs, removal of one whole walking leg (cut cleanly off with wire
153 cutters), and preexisting (old) injuries (acquired during holding period). Old injuries ranged from
154 a single missing dactyl to multiple whole limbs missing.

155 Round 2 began February 2, 2018, with 95 crabs. Round 2 had four treatments: control (no
156 injury), one dactyl removed from four legs, removal of one whole walking leg (pulled off), and
157 two hours sitting out of water in a bin exposed to the sun (similar to extreme cases observed on
158 fishing trips). Crabs from Round 2 were held in bins half-filled with standing aquaria water for
159 40 minutes after sustaining their injury to better simulate the most common fishing practices
160 observed before releasing crabs in the field.

161

162 **Table 1:** Treatment groups for Kona crabs present in each of the four experimental tanks.

	Treatment Group	# crabs per tank	# crabs per treatment
Round 1	Control (no injury)	5	20
	Removed 1 dactyl from 1 limb	5	20
	Removed 1 dactyl from 2 limbs	5	20
	Removed 1 whole limb (cut)	3	12
	Old injuries	4	16
Total		22	88
Round 2	Control (no injury)	6	24
	Removed 1 dactyl from 4 limbs	6 (one tank w/ 5)	23
	Removed 1 whole limb (pulled)	6	24
	2 hours out of water	6	24
Total		24 (one tank w/ 23)	95

163

164 The aquaria used an open system of seawater flowing continuously into each tank. Round
 165 1 used the Waikiki Aquarium's well saltwater, which flowed at a rate of 300 L/hr resulting in a
 166 residence time of about 1.5 hours. Round 2 used the Aquarium's natural seawater (filtered
 167 surface ocean water) in accordance to their water usage needs at the time. The natural seawater
 168 flowed at a rate of 900 L/hr resulting in a residence time of about 0.5 hours. The same tanks were
 169 used in both rounds and were located outside, providing natural sun cycles, and fitted with
 170 layered mesh covers to block direct heat from the sun and keep crabs within the tanks.

171 Crabs were fed daily with pieces of herring, night smelt, or white crab. The tanks were
 172 also cleaned daily by pulling out excess food from the previous day and using a gravel vacuum
 173 to clean smaller food particles and detritus from the sand. Additionally, water overflowed down a
 174 stove-pipe (opposite the in-flow) which removed floating debris. Water quality was tested
 175 weekly to ensure parameters such as temperature, salinity, pH, dissolved oxygen, and nitrogen

176 levels (NH_3 , NO_3^- , NO_2^-) were maintained throughout the trials. All mortalities were removed
 177 and recorded daily.

178

179 *Annual Fishing Mortality*

180 One of the primary foci of this study was to estimate the post-release mortality of those
 181 crabs being released back into the ocean. Probable post-release mortality was calculated based on
 182 the number and type of injury witnessed in the field and the mortality rate of injuries observed in
 183 the laboratory experiment. The percent mortality for multiple injuries was calculated as the mean
 184 of the average mortality rates of all other injuries (1 dactyl/2 dactyli, 3+ dactyli, limb/chela).
 185 Injury specific post-release mortality was calculated by multiplying the number of injuries
 186 observed in the field by the corresponding mortality rate calculated in the lab.

187 Depredation events were not included with post-release mortality. These instances
 188 assumed 100% mortality to be conservative based on the severity of injuries observed. Thus,
 189 depredation mortality equaled the number of field observations.

190 Annual fishing mortality can be calculated by using the rates of crab retention and
 191 unaccounted mortality (combined post-release and depredation mortality). Fishing mortality (F)
 192 is equal to the amount of crabs landed (L) plus the unaccounted mortality (U) as seen in Equation
 193 1.

194
$$F = L + U \quad (1)$$

195 U is determined by Equation 2, where a = mortality rate from the experiment for a specific
 196 injury, b = observed number crabs with the corresponding injury in the field, d = deaths from
 197 depredations, c = total captured crabs in the field, and T = total released crabs within the fishery.

198
$$U = \left\lfloor \frac{(\sum_{i=1}^n a_i b_i) + d}{c} \right\rfloor * T \quad (2)$$

199 Then, the amount of L crabs can be expressed in terms of T by some factor of x (determined by
 200 fishing), as in Equation 3.

201
$$T = L * x \quad (3)$$

202 F can then be calculated from the amount of L crabs as Equation 4.

203
$$F = L + \left(\left\lfloor \frac{(\sum_{i=1}^n a_i b_i) + d}{c} \right\rfloor * L * x \right) \quad (4)$$

204

205 **3. Results**

206 *3.1 Fishing Summary*

207 The number of nets per set ranged from 10 to 100. Soak time varied from 23 minutes to a
 208 maximum soak time of just over 3 hours; the mean soak time was 74 minutes (SE = 2.9 min). A
 209 total of 1,337 crabs were captured with 1,160 crabs measured and assessed for injuries (Table 2).
 210 The Niihau trip had the highest catch with 473 total crabs. During this trip, the amount and rate
 211 of crabs captured was so high complete data could only be captured for the first 40 crabs per set.
 212 The remaining catch per set were quickly counted based on sex and size.

213 A basic catch-per-unit effort (CPUE: total crabs/traps) was calculated per island. Niihau
 214 and Hawaii had the highest CPUE (Table 2). Niihau also had the highest percentage of legal
 215 sized males at 25.6% of the total catch. Oahu had the most trips resulting in the highest total
 216 catch yet had the lowest CPUE. Coordinating logistics with suitable weather windows limited the
 217 opportunities to sample neighboring islands as the researchers were based on Oahu.

218

219 **Table 2:** Summary of trips and catch by island platform. Trips were performed during fishing
 220 season November 2017-April 2018. Ratio of males to females is expressed as M:F. Catch per
 221 unit effort (CPUE) expressed as both legal crabs kept per trap and total crabs caught per trap.

	Trips		Male	Male	Total	M:F	%	#	#	CPUE	CPUE
	(N)	Female	(<4 in)	(>4 in)				Kept	sets	traps	(kept/traps)
Niihau	1	208	144	121	473	1.27	25.6%	8	800	0.15	0.59
Oahu	14	345	165	129	639	0.85	20.2%	97	2690	0.05	0.24
Maui	1	24	27	14	65	1.71	21.5%	15	186	0.08	0.35
Hawaii	1	104	27	29	160	0.54	18.1%	16	240	0.12	0.67
Total	17	681	363	293	1,337	0.96	21.9%	136	3,916	0.07	0.34

222

223 A total of 512 video observations from the GoPros mounted to the traps were analyzed.

224 These videos represented 130 traps, from 81 sets on 16 different fishing trips. The GoPro video
225 footage revealed that crabs reached the trap a mean of 22 minutes (SE = 1.33 min) after setting.

226 The maximum time it took for a crab to come to the nets was 71 minutes. About 75% of crabs
227 were at the trap within 30 minutes of it settling on the bottom. Crabs were often observed
228 walking on and off the traps without capture. Of the 140 crabs observed on the nets, 39% were
229 able to escape. Crabs walking off the net typically appeared smaller than the legal size. Their
230 walking legs stepped more easily between the mesh to avoid entanglement.

231 Total catch was comprised of 49% male and 51% female crabs, which was not
232 significantly different than a 1:1 sex ratio ($\chi^2 = 0.20$, df = 1, p > 0.1). Male carapace length
233 differed significantly with female carapace length (z = 8.17, df = 1142, p < 0.001). The largest
234 male had a carapace length of 15.2 cm while the largest female carapace length was 12.7 cm.
235 Males and females had a mean carapace length of 9.78 cm (SE = 0.09 cm) and 8.86 cm (SE =
236 0.06 cm) respectively.

237 Kona crab size across islands was similar. The largest males were caught in Niihau and
238 Oahu. Maui had the highest percentage of non-mature males (20%) and females (43%). The
239 length weight equation is $W = 3.9 \times 10^{-3} L^{2.454}$ ($R^2 = 0.80$; n = 42) for males and $W = 2.7 \times 10^{-3}$
240 $L^{2.5316}$ ($R^2 = 0.82$; n = 53) for females.

241 In total, 25.4% of captured crabs were injured in some way due to disentanglement. The
242 most common observable injury was the loss of a single dactyl from one limb, followed by the
243 loss of two dactyli (43% and 15% of injured crabs respectively) (Figure 3). Crabs captured in
244 Niihau and Hawaii had the most injuries due to disentanglement (40.6% and 53% respectively).
245 These trips had the highest catch rates (Table 2), resulting in less careful disentanglement by the
246 fishermen and a higher injury rate for the crabs.

247

248 **Figure 3:** Percentage of type of injuries sustained from disentanglement and depredation by
249 island.

250

251 Additionally, 4.8% of crabs caught were injured through depredation. Maui had the
252 highest proportion of depredation while Niihau had the lowest proportion of depredation. More
253 depredated crabs may have gone unnoticed during the Niihau trip; the higher rate of catch made
254 it difficult for researchers to closely inspect each crab and net. Unquantified mortality from
255 depredation for which there was no video evidence, nor evidence left on the net, is also likely.

256 The most common injury attributed to depredation was the loss of one or both chelae
257 (58%). Other common results from depredation included a missing chunk out of the carapace
258 (28%) and retrieval of only limbs or pieces of crab (14%). Video footage revealed the spotted
259 burrfish *Chilomycterus reticulatus* (Linnaeus) was responsible for eating the crabs' chelae once
260 the crab was captured on the net. The spotted eagle ray *Aetobatus narinari* (Euphrasen) sucked
261 the crab off the net and left only legs and pieces of the abdomen. Of the 140 crabs caught on
262 camera, 11 depredation events were observed (7.9%). All 11 of these depredation events were
263 from either the spotted burrfish or the spotted eagle ray. Other predators did approach the nets

264 (sharks, rays, jacks), but they were only interested in the bait and didn't harm the crabs even after
265 multiple passes. Predators (including those that attacked only the bait) reached the traps a mean
266 of 35 minutes (SE = 2.73 min) into the soak time.

267 The combination of a live-feed splash camera and a 360° camera provided a view of the
268 water column and sinking crabs. Bottom current combined with surface winds made it difficult
269 to follow crabs all the way to the bottom on several releases. However, upon successful camera
270 drops, predators were never witnessed consuming a sinking crab or a crab off of the sand. A
271 scrawled filefish *Aluterus scriptus* (Osbeck) was observed pecking at a sinking crab in one video
272 and pecking at a crab laying ventral side up on the sand in another video. It was unclear if these
273 instances caused any real damage to the crabs. Most crabs landed on their back before burying
274 after a few minutes or more.

275

276 *3.2 Aquarium Mortality Experiment*

277 Temperature within the aquaria typically varied between 23° and 25° C between the
278 morning and heat of the day, although one day did have a spike up to 27° C. No negative effects
279 were observed during this temperature peak. Salinity remained close to 34. The pH was
280 maintained closely around 8.0. Dissolved oxygen was kept above 85%. Values for NH₃, NO₃⁻,
281 and NO₂⁻ were kept below 0.13 ppm, 0.05 ppm, and 0.02 ppm, respectively.

282 Four (4.5%) Kona crabs died during Round 1 while 23 (24.2%) died during Round 2.
283 Daily mortality percentages are shown in Figure 4. Only the one limb removed treatments
284 (pulled and cut) and four dactyli treatment had crabs die quickly (1-5 days) after injuries were
285 induced. The remaining mortalities all occurred after day 40 during Round 1 and day 19 in
286 Round 2. No significant differences in mortality were observed between males and females or

287 specific tanks allowing all the data from both rounds to be pooled together, which yielded a
288 significant difference between treatment groups ($\chi^2 = 53.3$, df = 7, p < 0.01).

289

290 **Figure 4:** Mortality of Kona crabs over the 50-day experimental periods for Round 1 (A) and
291 Round 2 (B). The “Control” and “2 dactyli removed” groups had zero mortality throughout.

292

293 The treatment group with one whole limb removed by pulling yielded the highest
294 mortality percentage by nearly four times that of the next treatment group (two hours out of
295 water) and nearly eight times the third highest mortality group (four dactyli removed). When the
296 pulled whole limb group was removed from the treatment comparison, no significant difference
297 in mortality was detected across all other treatment groups ($\chi^2 = 6.7$, df = 6, p > 0.3). Thus, the
298 whole limb group was the clear driver in the initial comparison and had a significantly different
299 mortality rate than the other treatment groups.

300 Limbs pulled off resulted in an increased mortality rate nearly eight times greater than
301 when limbs were cut cleanly. Pulling off limbs caused a small amount of connected inner tissue
302 loss for some of the crabs. Each of the eight crabs (33.3%) that lost any inner tissue when the
303 limb was pulled died within two days of limb loss.

304 Zero crabs molted during Round 1 (June-Aug) while 27 crabs molted during Round 2
305 (Feb-March). No difference in number of molts was observed between males and females, but
306 there was a significant difference between crabs that molted and their treatment group ($\chi^2 = 11.1$,
307 df = 3, p < 0.05). The control group had the highest amount of molts.

308 Regeneration was also observed in the lab following each round of experiments. Crabs
309 were kept on display at the Waikiki Aquarium following the first round of experiments. Three
310 months after the first round concluded molting occurred in the display tanks and the crabs were

311 reexamined. Each of the previously injured crabs ($n = 11$) had clear signs of regeneration
 312 following this molt. After the second round, 20 crabs from injured groups were maintained in
 313 one experimental tank. Two crabs, each with four dactyli removed, successfully molted after the
 314 experiment. Molts occurred 76 and 84 days after injuries were first induced. Each crab
 315 successfully regenerated all four dactyli following this single molt.

316

317 *3.3 Post-Release Mortality*

318 Field observations revealed nearly 80% of the total crabs caught are released due to the
 319 size and sex restrictions (Table 2). The unaccounted mortality rate (including depredation on the
 320 nets) was 10.9%; post-release mortality caused by disentanglement alone was 6.1% (Table 3)

321

322 **Table 3:** Post-release and total unaccounted mortality based on observed field injuries and
 323 mortality from laboratory experiment.

Injuries	# Observed (in field)	% mortality (+/- 1 SE)	Estimated deaths
1 dactyl/ 2 dactyli	205	2.5% (+/- 2.5 %)	5.1
3+ dactyli	31	8.7% (+/- 5.9%)	2.7
limb/chela	16	62.5% (+/- 9.9%)	10.0
out of water > 2 hrs	50	16.7% (+/- 7.6%)	8.3
multiple injuries	43	24.6% (+/- 4.6%)	10.6
depredation	56	100%	56.0
non-injuries	759	4.5% (+/- 3.1%)	34.5
TOTAL OBSERVED	1160		
Post-release mortality		6.1% (+/- 3.3%)	71
Unaccounted mortality		10.9% (+/- 3.3%)	127

324

325 Applying the results to Equations 1-4:

326
$$F = L + [0.109 * L * 3.57] = 1.389L$$

327 Thus, annual fishing mortality (F) for any given year can be easily calculated by multiplying the
 328 number of landed crabs (L) by 1.389.

329

330 **4. Discussion**

331 We have quantified the components of and estimated total unaccounted mortality for the
 332 Kona crab fishery using both field observations and aquarium studies. Previous studies
 333 conducted similar experiments testing injury effects on the mortality of *R. ranina* in Hawaii
 334 (Onizuka, 1972) and Australia (Kennelly et al., 1990; Kirkwood and Brown, 1998). The results
 335 from each study are provided in Table 4.

336

337 **Table 4:** Comparison of mortality percentages (sample size in parentheses) of injured Kona
 338 crabs from four studies.

Injury	Onizuka (1972)	Kennelly et al. (1990)	Kirkwood and Brown (1998)	Present Study
None	6.4 (94)	12.5 (16)	5.0 (20)	4.5 (44)
1 Dactyl	7.7 (13)	62.5 (16)	20.0 (20)	5.0 (20)
2 Dactyli	-	-	-	0.0 (20)
3 Dactyli	-	-	25.0 (20)	-
4 Dactyli	9.3 (54)	62.5 (16)	-	8.7 (23)
8 Dactyli	20.0 (15)	-	-	-
1 Limb (pulled off)	70.0 (10)	-	55 (20)	62.5 (24)
1 Limb (cut off)	-	-	-	8.3 (12)
2 Limbs	-	100.0 (16)	-	-
1 Chela	-	-	90 (20)	-
2 Hours sitting out	-	-	-	16.7 (24)

339

340 The mortality results achieved for this study are similar to Onizuka (1972) and Kirkwood
 341 and Brown (1998) even with an experimental time twice that of Kirkwood and Brown (1998)

342 and an unknown time for Onizuka (1972). The mortality rates observed by Kennelly et al. (1990)
343 were far higher than the other studies for comparable injuries: 3 to 12 times higher with one
344 dactyl removed and about 7 times higher with four dactyli removed.

345 The loss of one or more dactyli does not appear to have a major impact on mortality for
346 crabs studied in Hawaii. However, the loss of an entire limb does appear to have a drastic impact
347 on Kona crab survival. All studies testing this injury showed a mortality rate of at least 55%. An
348 interesting caveat, when the limb was cut cleanly off at the base, the mortality rate drastically
349 dropped over 7 times that of pulling off the limb.

350 Limb autotomy was observed on four instances when crabs were handled by people –
351 three times while fishing and once while preparing crabs for the experiment (resulting in the
352 exclusion of the crab) – and may explain why cutting the limb cleanly was far less likely to result
353 in mortality. The autotomy response of *R. ranina* was also documented by Kirkwood and Brown
354 (1998). However, Kennelly et al. (1990) suggested *R. ranina* exhibited a weak autotomy reflex
355 possibly because they spend most of their time buried in the sand where limbs could be easily
356 lost while digging.

357 Increased survival rate for cleanly injured crabs has meaningful implications to the Kona
358 crab fishery. Fishermen could take extra precaution not to remove any inner tissue deeper than
359 the limbs of the crabs to increase chances of survival. A last resort for particularly stuck crabs
360 could be to cut the crabs off the nets rather than pulling. Even better for the crabs would be to cut
361 the mesh point of the net to avoid any damage to the crab. However, higher catches can cause a
362 hurried response in fishermen to quickly remove crabs from the tangle-nets to keep pace with the
363 rate of fishing. Such instances were observed while fishing around the islands of Niihau and

364 Hawaii resulting in rougher detachment and more injuries; asking fishermen to increase handling
365 time to limit injuries may not prove to be practical.

366 The aquarium husbandry techniques used to hold the crabs play a vital role in their
367 possible mortality. Providing enough space and sand to allow crabs safety from each other likely
368 decreases their stress levels and intraspecific aggression, while allowing damaged crabs enough
369 protection to safely heal their wound(s). Kirkwood and Brown (1998) noted crowded conditions
370 (12-16 crabs m⁻²) frequently resulted in greater aggression between crabs causing more injuries
371 and possibly death. Our study had initial crab densities upwards of 14.76 m⁻² and minimal effect
372 on mortality even with 27 molted crabs during the experiment. The 20 cm of sand greatly helped
373 by providing more 3-dimensional space for crabs to hide. Kennelly et al. (1990) had double the
374 initial crab density of our study (30.30 crabs m⁻²), which could be a large factor in why such high
375 mortality was observed. Maintaining consistent water quality is also crucial to prevent
376 mortalities not directly caused by the injuries. Kennelly et al. (1990) noted a breakdown in the
377 aeration system which caused a 12.5% increase in mortality across treatment groups.

378 Kirkwood and Brown (1998) was the only study to effectively use cages buried in situ
379 rather than aquaria (despite forced early termination due to collision with a fishing vessel).
380 Kennelly et al. (1990) achieved one day of in situ testing before cages were pulled from the
381 substrate. Regardless, no study currently accounts for potential increased mortalities caused by
382 decreased competitive ability, foraging efficiency, and increased predator vulnerability in injured
383 crabs (Juanes and Smith, 1995). Laboratory results can be validated by tagging injured crabs and
384 recapturing them in situ. Previous work shows high site fidelity and successful recaptures of
385 tagged Kona crabs in Hawaii (Onizuka, 1972).

386 In addition to physical injury from the fishing process, post-release mortalities may occur
387 immediately as the crabs are vulnerable to predators as they sink and sit on the sand before
388 burying. Other studies have observed loggerhead turtles *Caretta caretta* (Linnaeus) feeding on *R.*
389 *ranina* after they were released from the boat (Kirkwood and Brown 1998). Most crabs take at
390 least 68 seconds to bury upon reaching the sandy substrate, while some crabs may take up to 20
391 minutes to fully bury (Kirkwood and Brown, 1998). Crabs remaining on their backs are far more
392 vulnerable to predators.

393 The female and undersized crabs in the present study were usually released as a group
394 after several sets of nets had been picked up. Fishermen tend to keep crabs on the boat in order to
395 deter predators from entering fishing areas. The fishermen then drive to a different location with
396 suitable habitat to drop the crabs away from the nets still soaking. Such practices seem to be
397 proficient in deterring predator interactions with sinking crabs as the drop cameras never
398 witnessed a crab taken in the water column or on the substrate.

399 Crab depredation while on the traps varied between island and fishing trip. Injuries
400 attributed to depredations accounted for 14% of the total injuries observed. Fishermen must
401 allow enough time to attract the crabs but too much time may increase depredation on the
402 trapped crabs. Based on the average time it took for crabs to reach the trap, fishers could limit
403 their soak time to 45 minutes and would still catch 90% of the crabs while reducing predator
404 interactions. Though sharks, stingrays, and jacks were never observed eating the trapped crabs on
405 the net videos, it still may occur.

406 One indicator that crabs are surviving fishing injuries post-release was the field
407 observation of 50 captured crabs with clear signs of regenerated dactyli, legs, and chelae.

408 Regenerated limbs observed in the field appear noticeably different than normal appendages;
409 they are often smaller, rougher, and discolored.

410 Regeneration and limb loss are common for crustaceans (Skinner, 1985) and have been
411 studied on other benthic crabs (Niwa and Kurata, 1964; Edwards, 1972). However, several
412 papers have stated that *R. ranina* may not have the same repair mechanisms observed in other
413 marine crabs (Kennelly et al. 1990, Juanes and Smith 1995, Brown et al. 2001). We document
414 clear evidence that Hawaiian Kona crabs can seal wounds and regenerate lost limbs after
415 breakage caused by fishing or predation. However, based on studies of other decapods, injuries
416 sustained during fishing practices as well as blood loss could affect their survival in the wild and
417 growth rate after molting (Brouwer et al., 2006; Leland et al., 2013; Urban 2015). Additionally,
418 limb loss can have an effect on mating success (Abello et al., 1994).

419 Due to the large amount of undersized crabs and female crabs thrown back, unaccounted
420 fishing mortality is an important factor for any stock assessment and management of the
421 Hawaiian Kona crab fishery. This study calculated the actual annual fishing mortality for Kona
422 crabs in the Hawaiian fishery to be 1.4 times that of the reported landed crabs. The additional
423 deaths are caused by injuries to released crabs during disentanglement and depredation.
424 Additional onboard observations to better quantify Kona crab injuries, especially for the top
425 fishers in the commercial fishery, would allow for a more representative correction factor.
426 Managers can use this information to evaluate the efficacy of current regulations such as the
427 annual catch limit and the prohibition of female crab retention.

428 Of further interest, size and sex structure for the Hawaiian Kona crab fishery were
429 determined. Kona crabs are sexually dimorphic with males attaining a larger size than females

430 (Fielding and Haley, 1976; Minagawa, 1993). Based on size at maturity (Fielding and Haley,
431 1976), 91% of males and 83% of females captured in our study were sexually mature.

432 Prior studies determined the sex ratio of Hawaiian Kona crabs to be more skewed than
433 the current study. Sites including Waimea Bay and Wailua Bay on the North shore of Oahu and
434 Penguin Banks off the coast of Molokai consisted of 55% male and 45% female (Onizuka, 1972;
435 Fielding and Haley, 1976). However, a different study at Penguin Banks observed the opposite
436 sex ratio of 45% male and 55% female (Vasant, 1978). Our study falls in between these
437 estimates with 49% male and 51% female. The difference in ratios might be attributed to varying
438 study area, depth, or sampling season. The current study included a broader range of locations
439 than the other three studies, thus may be a closer representation of the statewide population.

440 Additionally, this study was conducted after the 2006 regulation that prohibits the take of
441 females (HI REV Stat §188-58.5, 2011), which suggests the regulation has had a minimal impact
442 on the sex ratio.

443

444 **5. Acknowledgments**

445 Mahalo to each of the fishermen who took us out Kona crab fishing on their boats, taught
446 us about the fishery, and let us taste some of the crabs; without you this project would have never
447 happened. Thanks to the Waikiki Aquarium for their guidance in building the aquaria and
448 assistance in the laboratory experiment. Thank you to Rahul Amin and the NOAA PIFSC tech
449 development team for the use of the 360° underwater housing. Thank you to Rhia Gonzales, Tina
450 Nakasone, and Mark Fitchett for helping out on Kona crab fishing trips and feeding crabs at the
451 aquarium. Mahalo to Donald Kobayashi for his thoughtful review of the manuscript and helpful
452 suggestions. And finally, this project was funded by the Western Pacific Regional Fishery

453 Management Council; thank you for the funding and especially to Marlowe Sabater for the
454 support in completing this project.

455

456 **6. References**

457 §HAR 13-95. 2010. Title 13 Subtitle 4 Chapter 95: Rules regulating the taking and selling of
458 certain marine resources.

459 Abello, P., C.G. Warman, D.G. Reid and E. Naylor. 1994. Chela loss in the shore
460 crab *Carcinus maenas* (Crustacea: Brachyura) and its effect on mating success. Mar. Biol.
461 121: 247-252.

462 Briceño F., A.J. Linnane, J.C. Quiroz, C. Gardner, and G.T. Pecl. 2015. Predation risk within
463 fishing gear and implications for South Australian rock lobster fisheries. PLoS ONE 10(10):
464 e0139816. <https://doi.org/10.1371/journal.pone.0139816>

465 Brouwer, S.L., J.C. Groeneveld, and B. Blows. 2006. The effects of appendage loss on growth of
466 South African west coast rock lobster *Jasus lalandii*. Fish. Res. 78: 236–242.
467 <https://doi.org/10.1016/J.FISHRES.2005.11.017>

468 Brown, I.W., M. Dunning, S. Hansford, and L. Gwynne. 2001. Ecological assessment of the
469 Queensland spanner crab fishery. Queensland Government Department of Primary
470 Industries: 1-36.

471 Clark, J. and D.J. Agnew. 2010. Estimating the impact of depredation by killer whales and sperm
472 whales on longline fisheries for toothfish (*Dissostichus elongatus*) around South Georgia.

473 CCAMLR Sci. 17: 163-178.

474 Edwards, J.S. 1972. Limb loss and regeneration in two crabs: the king crab *Paralithodes*
475 *camtschatica* and the tanner crab *Chionoecetes bairdi*. Acta Zool. 53: 105-112.

476 doi:10.1111/j.1463-6395.1972.tb00577.x

477 Fielding, A., and S.R. Haley. 1976. Sex ratio, size at reproductive maturity, and reproduction of
478 the Hawaiian Kona crab, *Ranina ranina* (Linnaeus) (Brachyura, Gymnopleura, Raninidae).
479 Pac. Sci. 30(2): 131–145.

480 HI REV Stat §188-58.5. 2011. Division 1. Government Title 12. Conservation and
481 Resources.188. Fishing Rights and Regulations §188-58.5 Female ula spiny lobsters, Kona
482 crabs, and Samoan crabs; taking or killing prohibited.

483 Juanes, F., and L.D. Smith. 1995. The ecological consequences of limb damage and loss in
484 decapod crustaceans: a review and prospectus. J. Exp. Mar. Biol. Ecol. 193: 197–223.

485 Kennelly, S.J., D. Watkins, and J.R. Craig. 1990. Mortality of discarded spanner crabs *Ranina*
486 *ranina* (Linnaeus) in a tangle-net fishery - laboratory and field experiments. J. Exp. Mar.
487 Biol. Ecol. 140(1–2): 39–48.

488 Kirkwood, J.M., and I.W. Brown. 1998. Effect of limb damage on the survival and burial time of
489 discarded spanner crabs *Ranina ranina* (Linnaeus). Mar. Freshwater Res. 49: 41–45.

490 Leland, J.C., P.A. Butcher, M.K. Broadhurst, B.D. Paterson, and D.G. Mayer. 2013. Damage and
491 physiological stress to juvenile eastern rock lobster (*Sagmariasus verreauxi*) discarded

492 after trapping and hand collection. *Fish. Res.* 137: 63–70.

493 <https://doi.org/10.1016/J.FISHRES.2012.09.001>

494 Minagawa, M. 1993. Relative growth and sexual dimorphism in the red frog crab *Ranina ranina*
495 (Decapoda: Raninidae). *Nippon Suisan Gakk.* 59(12): 2025–2030.

496 Niwa, K. and H. Kurata. 1964. Limb loss and regeneration in the adult king crab *Paralithodes*
497 *camtschatica*. *Bull. Hokkaido Reg. Fish. Res. Lab.* 28: 51-55.

498 Onizuka, E.W. 1972. Management and development investigations of the Kona Crab, *Ranina*
499 *ranina* (Linnaeus). *Div. Fish Game Dep. Land Nat. Res., Honolulu, Hawaii:* 1-28.

500 Raby, G.D., J.R. Packer, A.J. Danylchuk, and S.J. Cooke. 2014. The understudied and
501 underappreciated role of predation in the mortality of fish released from fishing gears. *Fish*
502 *Fish.* 15(3): 489-505.

503 Skinner, D.M. 1985. Molting and regeneration. In, *Biology of Crustacea, Vol. 9*, edited by D.E.
504 Bliss and L.H. Mantel, Academic Press, New York, pp. 43-146.

505 Uhlmann, S.S., M.K. Broadhurst, B.D. Paterson, D.G. Mayer, P. Butcher, and C.P. Brand. 2009.
506 Mortality and blood loss by blue swimmer crabs (*Portunus pelagicus*) after simulated
507 capture and discarding from gillnets. *ICES J. Mar. Sci.* 66(3): 455–461.
508 <https://doi.org/10.1093/icesjms/fsn222>

509 Urban, J.D. 2015. Discard mortality rates in the Bering Sea snow crab, *Chionoecetes opilio*,
510 fishery. *ICES J. Mar. Sci.* 72(5): 1525-1529. <https://doi.org/10.1093/icesjms/fsv004>

511 Vansant, J.P.I. 1978. A survey of the Hawaiian Kona crab fishery. *Univeristy of Hawaii:* 1-59

512 Wiley, J. 2017. Characterizing post-release mortality within the Hawaiian Kona crab, *Ranina*
513 *ranina*, fishery. Technical Report for Western Pacific Regional Management Council,
514 Honolulu, HI: 1-24.
515

A**B**