LOW INCIDENCE OF MICROPLASTIC CONTAMINANTS IN PACIFIC OYSTERS

2 FROM THE SALISH SEA, USA 3 Julieta C. Martinelli^{1*}, Samantha Phan², Christine K. Luscombe³ and Jaqueline L. Padilla-4 5 Gamiño¹ 6 7 ¹School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, 8 USA, ²Chemistry Department, University of Washington, Seattle, WA 98195, USA, 9 ³Materials Science and Engineering Department, University of Washington, Seattle, WA 10 98195, USA 11 12 *Corresponding author: julimar@uw.edu 13 14 Keywords: Crassostrea gigas, Raman microspectroscopy, FTIR, polymers, sorbitan, shellfish

15 HIGHLIGHTS

16

- Microplastics in oysters were found in 5 of 10 sites in the Salish Sea, Washington.
- Only ~2% of the microparticles were identified as microplastics by RMS and FTIR.
- Sorbitan derivatives, polyamide resins, cellulose, and minerals were also present.
- Microfibers were observed but were not confirmed as plastic or polymeric with RMS.

21

22

ABSTRACT

24

25 Plastic pollution is a threat to marine life with long term impacts to ecosystems and 26 organisms in the sea. In this study, we quantified the presence of microparticles in wild 27 populations of Pacific oysters (Crassostrea gigas) from the Salish Sea, Washington State. 28 Examination under a dissecting microscope revealed 63% of oysters contained microparticles 29 (~1.75 microparticles per oyster) and microfibers were the dominant type of particles. Using 30 Raman microspectroscopy (RMS) and Fourier Transform Infrared microspectroscopy (µ-31 FTIR) we found that only ~2 % of these microparticles were synthetic and included polymers 32 such as polystyrene, polyethylene, polypropylene, poly(bisphenol A carbonate), rayon, and 33 polyacrylate. It is important to note that of the 447 microparticles analyzed with RMS, 41% 34 showed fluorescence interference, impeding the determination of their identification. The 35 remaining microparticles were cellulose derivatives, shell fragments, biological or 36 proteinaceous material, salts, minerals, and gypsum. Fourier Transform Infrared spectroscopy 37 equipped with a diamond Attenuated Total Reflectance accessory (ATR-FTIR) showed the 38 presence of sorbitan derivatives in all samples examined (n = 213). These findings provide 39 the first baseline for microplastic and other particles in oysters from the west coast of the 40 United States integrating results from ATR-FTIR, µ-FTIR, and RMS, in addition to visual 41 sorting. These results suggest there is low retention of plastic particles in Pacific oysters from 42 the Salish Sea, but further research is needed to determine the composition of microparticles 43 with fluorescence interference.

44

[229 words]

46

INTRODUCTION

48	+	0
----	---	---

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

47

Plastic pollution is a threat to marine life around the globe with long term impacts to coastal ecosystems and the industries that depend on them. Small plastic particles or microplastics are synthetic solid particles or polymeric matrices, that have regular or irregular shape and range in size from 1µm to 5mm (Arthur et al. 2009, Frias & Nash 2019). Microplastics are insoluble in water and can have either primary or secondary manufacturing origin. Microplastics are considered to be primary in origin when they are manufactured to be small, or secondary when they are a result of a slower, long-term breakdown from larger plastics. Primary and secondary microplastics can reach the ocean from wastewater treatment plant runoff, or form when plastic debris is fragmented by UV radiation and wave abrasion (e.g. Weinstein et al. 2016). Currently, microplastics have been reported along shorelines around the world on all continents (Moore 2008, Browne et al. 2011, Cole et al. 2011, Hirai et al. 2011, Waller et al. 2017) and have been found in sediments, throughout the water column, and in the digestive systems, respiratory structures, and tissues of marine organisms worldwide (Andrady 2011, Browne et al. 2011, Cole et al. 2011, Depledge et al. 2013, Ling et al. 2017, Munari et al. 2017). Because of their small size, microplastics can be easily ingested by marine organisms, particularly by species that have limited ability to select particles during feeding (Ward et al. 1994, Ward & Shumway 2004). The accumulation of microplastics in organisms may have detrimental effects on feeding rates, energy storage, reproduction and overall fitness (Paul-Pont et al. 2016, Sussarellu et al. 2016, Welden & Cowie 2016, Harris and Carrington 2019). Furthermore, microplastics do not degrade quickly and may be transferred through trophic interactions (Farrell & Nelson 2013, Au et al. 2017), creating a pathway to ingestion of microplastics by animals at higher trophic levels, including fish, predatory mammals, and humans (Wang et al. 2019).

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Microplastics are usually transported in the water, either by marine currents or in freshwater systems by rivers (see review by Cole et al. 2011 for marine environments, Siegfried et al. 2017, Horton & Dixon 2018). In regions with high population density, it is likely that more microplastics will be released to the waterways (e.g. Miller et al. 2017). Similarly, waters that are stagnant, or have longer residence times (e.g., in a bay, inlet, or fjord), may accumulate more microparticles at depth and in sediments (Wessel et al. 2016). Therefore, marine organisms living under different oceanographic conditions could be differentially exposed to microplastic contaminants. Previous research suggests that microfibers from clothing are the most common type of secondary microplastic worldwide (Carr 2017, Cesa et al. 2017). When clothes are washed, these small fibers are released into the water, and their small size allows them to pass through filters, into grey water and eventually local waterways. Other secondary microplastic sources include the breakdown of plastic bags and containers that are transported into waterways, and the breakdown of fishing or aquaculture gear. Primary sources can be microbeads used in cleaning and beauty products that are also transported by waterways. Distinguishing primary vs. secondary plastics or synthetic vs. natural particles in the marine environment is a difficult task. In our study we only use the term microplastic (regardless of origin) for particles that were identified as synthetic polymers by Raman microspectroscopy (RMS), Fourier Transform Infrared Spectroscopy equipped with a diamond Attenuated Total Reflectance accessory (ATR-FTIR), or FTIR microspectroscopy (µ-FTIR). Other particles that were similar in size and visual characteristics to microplastics but with unknown composition were referred to as microparticles, sometimes also referred to as "suspected microplastics".

95

96

Microplastics have been found in ecologically and commercially important bivalves from

Europe, Asia, Brazil, Canada, and the United States (Van Cauwenberghe & Janssen 2014, Mathalon & Hill 2014, Rochman et al. 2015, Li et al. 2016), however, there is a lack of research in the eastern North Pacific, one of the most productive regions in the world and with high potential for marine aquaculture (Baechler et al. 2019, Granek et al. 2020). On the west coast of the United States, two studies have assessed and quantified the presence of microplastics in commercially important bivalves (Rochman et al. 2015, Baechler et al. 2019). One study found that 33% of the Pacific oysters sampled in California markets (n = 12) contained 0-2 microparticles per individual (Rochman et al. 2015). These particles were identified as microfibers using visual sorting but no further analyses were performed to assess their chemical identity. The other study carried out in the Oregon coast found that microplastics were present in Pacific oysters and razor clams, but only 26 of the 2428 microfibers were analyzed with FTIR. In Canada, visual sorting also revealed the presence of microparticles in wild and cultured Manila clams (8-11 particles/clam; Davidson & Dudas 2016, Murphy 2018), oysters, and mussels (5.6-6.57 per gram; Mathalon & Hill 2014, Murphy 2018). Murphy (2018) was the only other study in addition to Baechler et al. (2019) that examined the chemical identity of microparticles. Using FTIR analysis, this study showed that only half of the microparticles extracted were synthetic polymers (including plastic). In this context, it is fundamental that microplastic determinations are based on chemically identified polymers, otherwise overestimation of microplastics and misinterpretation of results may occur (Shumway et al. 2018). In this study, we examine the presence and distribution of microplastic pollution in the Pacific oyster, Crassostrea gigas, an ecologically and economically important shellfish species in Washington State, USA (Fig. 1). As ecosystem engineers, their presence creates a

hard-bottom substrate that provides habitat and protection for other organisms. Furthermore,

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

oysters are important food sources for aquatic animals and can filter high volumes of water removing organic and inorganic particles from the water column, resulting in cleaner water (Coen et al. 2007). In the Salish Sea and Puget Sound in particular, there are multiple selfsustaining C. gigas populations in bays and inlets where the oysters grow either individually or in dense mats on rocks and soft-bottom substrates. Economically, the hardiness and rapid growth (10-15 cm in 2 years) of *C. gigas* are major advantages for the aquaculture industry. Pacific oysters currently lead the production output of the aquaculture industry in Washington State, the top producer of shellfish in the US with around 200 million dollars in sales in 2014 (Washington Sea Grant 2015). Understanding the abundance and diversity of microplastics in C. gigas will help determine if the species is vulnerable to these contaminants and to what degree. Specifically, our goals are to: (i) determine the abundance and type of microplastics in naturally occurring populations of C. gigas in Washington State, (ii) identify the material of these microplastics, and (iii) identify potential areas that are 'hotspots' for microplastic accumulation in Washington State. We hypothesize that microfibers will be the dominant type of microplastics in oysters, and that regions with longer water residence times will have oysters with higher concentration of microplastics due to longer exposure to these contaminants over time. Considering that marine plastic waste is expected to increase (Andrady 2011, Cózar et al. 2014, Lebreton et al. 2018), this study will contribute to establishing a baseline for the eastern North Pacific, and provide evidence to inform and direct mitigation strategies aimed at aiding in the detection of microplastic sources and the production of healthy shellfish.

143

144

145

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

METHODS

Location and species

The study was performed in Puget Sound in Washington State, the leading producer of farmed bivalves in the United States (Fig. 1). Puget Sound is located in the southern end of the Salish Sea, is the second largest estuary in the country, and is a complex glacial system with seven sub-basins that have distinct characteristics due to the degree of water mixing, freshwater influence, and wind fetch. The sampling sites are located throughout Puget Sound to capture the variability in environmental conditions between basins along the estuary (Fig. 1, Table 1). Sites in Northern Puget Sound often experience shorter water residence times (2 months) than the average for Puget Sound due to their proximity to the Pacific Ocean (Encyclopedia of Puget Sound). In contrast, South Puget Sound has longer water residence times (2-4 months) due to limited water circulation and mixing (Finlayson 2006). Puget Sound estuary is within close proximity to some of the largest cities in Washington State (Seattle, Tacoma and Olympia, Fig. 1) with a population of approximately 3,867,000 people, making it the 14th largest metropolitan area in the United States (United States Census Bureau 2017). Previous studies in the Puget Sound region have found that microplastics are present in sediment and water samples (Masura et al. 2015, Eshom-Arzadon 2017). However, there are no published studies examining accumulation of microplastics in shellfish that naturally grow in the area.

163

164

165

166

167

168

169

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

Sample collection and processing

We collected 30 *C. gigas* individuals during the low tide at ten sites in Puget Sound estuary between January and April 2018 (Table 1, Fig. 1). All collection sites are State Parks or public access beaches with self-sustaining Pacific oyster populations. Within 48 hs of collection, we dissected oysters and measured the right and left valves to the nearest mm with a digital caliper. We then removed the soft tissue from the shells, weighed it to the nearest mg

with an XS304 Mettler Toledo digital scale, and stored it at -20 °C until the microplastic extraction protocol was performed.

Tissue digestion and microplastics extraction

We used a standardized extraction protocol developed by Li et al. (2015) to extract potential microplastics from oysters. We placed each oyster tissue in a 1 L glass beaker and digested it with 250 ml of 30% hydrogen peroxide in an oscillator (3500 VWR Advanced) at 65 °C for 24 hs. In some cases, larger oysters took up to 48 hs to be fully digested. During digestion we covered the beakers with aluminum foil to prevent dehydration and airborne contamination of the samples. Each digestion cycle, we processed three samples and a blank extraction control. This number was determined by the maximum number of beakers that fit into the oscillator in the incubator (4 beakers total). We then added 750 ml of 25% saline solution to the digested solution. The water for the saline solution was filtered with a 1.0 μ m pore size nuclepore hydrophilic membrane (VWR Whatman). In the saline solution, positively buoyant microparticles floated to the surface while heavier, biotic (undigested tissue), and abiotic (sediment) sank to the bottom. After 24 hs, we filtered the solution with 5 μ m pore size Whatman nitrate cellulose membrane using a vacuum pump system under a fume hood. Finally, we placed each filter membrane in a labeled and sealed Petri dish and left it to dry for 48 hs.

Given that airborne microplastic contamination is very common (Foekema et al. 2013, Torre et al. 2016, Granek et al. 2020), we adopted a series of measures to prevent it. In addition to the control blanks throughout the protocol, we rinsed the glass beakers and other lab material with deionized filtered water three times prior to use (Li et al. 2015). To prevent contamination from our own clothing we used a 100% cotton laboratory coat during all

experimental procedures and analyses of the filters (Van Cauwenberghe & Janssen 2014).

Observation and quantification of microplastics and microparticles

Determination of microplastics was performed using the definition proposed by Frias & Nash (2019). Only synthetic polymers identified by RMS, ATR-FTIR, or μ -FTIR were considered microplastics. Other particles similar in size and visual characteristics to microplastics but with unknown composition are referred as microparticles throughout the manuscript. Once the filters were dry, we visually sorted and enumerated microparticles under a dissecting microscope. Visual sorting is one of the most common ways to quantify and identify potential microplastics, and differentiate morphotypes such as fibers (slender and elongated), spheres (round, similar to a ball in shape), flakes (small and very thin layer of larger plastic debris), and fragments (isolated or incomplete part of larger plastic debris that did not fit any of the previous categories; Hidalgo-Ruz et al. 2012, Li et al. 2016). The dimensions and coloration of the microparticles on the filters were obtained by taking pictures (Nikon Eclipse Ni camera with a 4x objective attached to a dissecting scope) and estimating their length using the open software ImageJ.

We used a d'Agostino test to test for normality in our data. The null hypothesis for this test is that data are normally distributed (not skewed) and the alternative hypothesis is that data are skewed. In our case the test indicated the data are skewed (skew = 2.38, z = 9.21, p < 2.2e-16). As a result, we used a Kruskal-Wallis rank sum tests were used to determine if there were significant differences in oyster weight per site and microparticle abundance between sites. A Spearman correlation test was also used to determine if there was a significant positive association between number of microparticles and oyster weight per site. All

analyses were carried out in R Statistical Computing software, version 3.5.3 (R Core Team 2019).

To account for potential sources of contamination we visually inspected the filters of blank extraction controls, and compared the microparticles found in them with those retrieved in the filters with sample after digestion. If there was an agreement between the type or color of microparticle in the samples, with the ones found in the controls, these microparticles were not considered towards the total count as they were considered to come from contamination.

Validation of microplastic identity through polymer chemical analyses

After categorizing and measuring microparticles retained in filters we employed RMS and ATR-FTIR to determine the identity of the polymers that make up those microparticles. These non-destructive techniques record the signals absorbed or produced from individual microparticles, and are commonly used for microplastic identification due to their high accuracy in polymer recognition (e.g. Enders et al. 2015, Loder et al. 2015, Tagg et al. 2015, Imhof et al. 2016). RMS provides information about the structure of a molecule depending on its polarizability, while FTIR identifies the presence of certain functional groups in an organic molecule depending on the molecules' change in dipole moment (Hind et al. 2001).

In recent studies, FTIR has been more frequently used for marine microplastic identification than RMS (Lenz et al. 2015). However, RMS can provide advantages over FTIR such as lower minimum microparticle size identification (Lenz et al. 2015, Kappler et al. 2016). In addition, RMS measurements can be done on thicker or strongly absorbing microparticles because measurements do not depend on the transmission of excited light through the sample material (Lenz et al. 2015). Both RMS and FTIR have limitations in the identification of

molecules because of the different approaches used to determine the polymer identity. However, when used in combination they become a powerful tool for polymer characterization.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

244

245

246

Across ten locations, we randomly selected 69 oyster samples and 23 controls to analyze by RMS. For each oyster (filter sample) we selected representative microparticles (n = 3-10depending on microparticle density on the filter) of various sizes and shapes and analyzed them using a Renishaw inVia Raman microspectrometer with 785 nm and 514 nm lasers. Two different objectives (5x and 10x) were used to optimize the analytical laser spot for spectral analysis, and the laser power and acquisition times were varied depending on each microparticle's sensitivity to thermal damage. Then, we individually and manually matched each microparticle's Raman spectrum to a known plastic Raman spectrum in the Renishaw Raman Database of Polymers library, containing 267 polymer entries (Renishaw). Each spectrum was subjected to data processing depending on the signal-to-noise ratio and fluorescent interference (which produces a curved, sloped baseline). Baseline correction allows for the removal of a distorted spectrum before comparing to a known reference spectrum. While some spectra received baseline correction (linear or polynomial baseline correction available in the Renishaw Windows-based Raman environment software) not every spectrum required baseline correction before library searching. The reference spectrum from the library database matched when all the reference peaks (in wavenumbers) appeared in the sample spectrum. Additional peaks appear in the sample spectrum because of proteinaceous or biological contaminants or effects from environmental degradation. It is important to note that all the spectra present in the polymer library correspond to virgin polymers which have not been subject to any environmental degradation. Comparing spectra

between virgin polymers and non-virgin polymers exposed the marine environment can hinder the ability to detect and identify microplastics.

In our samples, physical degradation (such as cracks, color change, or embrittlement) of the microplastics was not observed or quantified visually. However, it is possible that fragmentation, due to physical degradation, occurred as the microplastics identified were all less than 50 µm in size. For the positively identified microplastics in our samples, the Raman spectrum and all of the major peaks matched the reference spectrum exactly indicating that degradation did not hinder our identification analysis via RMS (Lenz et al. 2015).

We also used a Bruker Vertex 70 ATR-FTIR to determine polymer identification of 70 filters with samples and 24 filters used as controls. Since the diamond ATR crystal has an area of 4 mm² and the filters have an area of ~1662 mm², each filter was analyzed in two different random areas to confirm whether or not the samples or controls were uniform. We first analyzed the control filters to obtain a background spectrum and capture background sources such as light or other residual signals from the atmosphere. Next, we obtained the samples' spectrum and subtracted the background spectrum from the sample's spectrum to obtain the FTIR spectrum which we then matched to an FTIR spectral library. Similar to RMS, the FTIR library contained only virgin polymer spectra.

 μ -FTIR was performed on selected individual microparticles from three filters that had confirmed microplastics from RMS to determine if both techniques detected the same contaminants. μ -FTIR was performed on 5 μ m - 50 μ m microparticles with a Thermo Scientific Nicolet iNTM10 FT-IR microscope with a fixed focal length 15x objective. The

microparticles were isolated from the filters and, depending on the sample, were analyzed with either micro-ATR or micro-reflection techniques.

RESULTS

Observation and measurement of microparticles

Using a dissecting scope, we counted and measured microparticles from 213 of the 300 oysters collected throughout ten sites in Puget Sound (Table 2). This difference is due to the fact that several filters had plenty of digested organic matter and we could not process them. Of the 213 filters we were able to process (one filter per oyster), 63% (n = 134) had at least one microparticle visible under the dissecting scope, and in 96% of the cases (n = 129) these microparticles were microfibers. The rest of the microparticles (4% of the total) were classified as flakes or fragments. For 37% of the filters (n = 79) we did not observe microparticles resembling plastic under the dissecting scope. Across all sites, mean microfiber length was 621.93 μ m (n = 276), median fiber length was 485.14 μ m (n = 276), with minimum and maximum values ranging between 102.45 μ m and 2885.49 μ m respectively (n = 276).

When grouped per site, the mean number of microparticles per oyster ranged between 0.69 and 3 (Table 2, Fig. 2A) and there were significant differences between sites (Kruskal-Wallis rank sum test, $\chi^2 = 32.84$, p = 0.0001), where Oakland Bay and Samish Bay had significantly more microparticles than the other sites (Wilcoxon rank sum test, W = 322, p = 0.0099, Fig. 2A). Mean oyster weight per site ranged between 12.23 gr to 59.85 gr (Table 2, Fig. 2B). There were significant differences in oyster weights between sites (Kruskal-Wallis rank sum test, $\chi^2 = 103.07$, $p < 2.2^{-16}$), where Oakland Bay oysters were significantly smaller (Wilcoxon rank sum test, W = 101.5, P = 0.0006, Fig. 2B) and Samish Bay oysters were

significantly larger than the other sites (Wilcoxon rank sum test, W = 415, p = 1.41⁻¹⁰, Fig. 2B). However, overall, the number of microparticles was not associated with the biomass (size) of the oyster (Spearman's correlation, S = 15983, p = 0.912, Fig. 2C).

In terms of coloration, the majority of the microparticles identified under the dissecting scope were dark (either blue or black), light (yellow, white, silver), clear, red, purple and green (Fig. 3A).

Validation of microparticles through polymer identification analyses

We analyzed a total of 447 microparticles from oyster and control filters using RMS (Supplementary Table 1). The number of microparticles analyzed per site differed as it depended on the density of microparticles found on each filter. The shapes of the microparticles varied from fiber, shard, irregular, and spheroid with microparticles sizes ranging from 20 µm to 13000 µm. Out of the 447 microparticles examined, only eight (~2% of the total number of microparticles analyzed) were identified as microplastics (Fig. 4, Fig. 5, Fig. 6, Table 3). Seven of those microplastics were found in filters with oyster samples and only one microplastic (polystyrene) was found in one control filter. In the oyster samples, two microparticles were identified as polystyrene (PS), three particles as polypropylene (PP), and two as polyethylene (PE). All of these microplastic samples ranged in size from 50 - 150 µm and the shapes were irregular, spheroid, or shard. In terms of coloration, the majority of the microparticles identified using RMS were clear, light (mostly opaque white), dark (either blue or black), and pink or purple (Fig. 3B).

RMS results showed that 10% (n = 46) of the microparticles that were colorless or opaque, with an irregular or fiber-like shape, were identified as "cellulose", or a mixture of cellulose-

derived polymers (Fig. 4). These cellulose-derived microfibers were found on both control samples and oyster samples, but more predominantly on the control samples and had the same composition of the filter papers used. RMS also identified 18% (n = 81) of microparticles as either poly(ethylene glycol) monooleate or polyamide resin (Table 3, Fig. 4). Differentiation of these particles were not possible because of a combination of high fluorescence interference and because the spectra for the two polymers are similar. RMS results showed that 29% (n = 127) of the microparticles surfaces were biological, salt, or mineral in nature. These microparticles were predominantly < 75 µm and of various shapes and are labeled as 'others' (Fig. 4). The remaining proportion of the microparticles analyzed, 41% (n = 185), contained high fluorescence interference, possibly from a layer of biofilm, and weak Raman signals which prohibited our ability to identify them despite organic matter removal efforts. Based on their RMS spectra, we suspect that some of these microparticles are biological materials (such as protein and carbohydrates), silicates, minerals, or shell fragments, similar to those found by Wagner et al. (2017). Examinations using ATR-FTIR revealed that 100% of the filters examined with oyster samples from all sites (n = 71) contained a mixture of sorbitan derivatives such as sorbitan monopalmitate, sorbitan trioleate, sorbitan monolaurate, sorbitan monooleate, or polysorbate (a representative FTIR spectrum of sorbitan monopalmitate is shown in Fig. 7). Sorbitan derivatives were found consistently across the entire filter for all samples. µ-FTIR was performed on selected particles in a small subset of our samples that had microplastics present. µ-FTIR confirmed our RMS results such that the majority of the microparticles were identified as proteinaceous, fatty acid esters, and additionally identified the presence of

polyester, rayon, poly(t-butyl acrylate), and poly(bisphenol A carbonate) (Table 3).

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

Due to the small number of microplastics found in this study we were not able to establish any comparisons between sites with different oceanographic conditions. Similarly, the small number of microplastics per site (Table 2) also limited our ability to determine any hotspots for microplastic contamination in the different basins of Puget Sound estuary.

DISCUSSION

The global demand for plastics has consistently increased over recent years (Andrady 2011, Browne et al. 2011), leading to alarming rates of pollution worldwide (Gallo et al. 2018). Marine plastics have been estimated to exceed 5 trillion pieces (Eriksen et al. 2014), posing challenges for the health of marine ecosystems and the industries that depend on them. This first baseline of microplastic presence in Pacific oysters from Puget Sound revealed five major findings: (1) ~2% of the microparticles were identified as microplastics using RMS or μ-FTIR, (2) microplastics in oysters were present in five out of ten sites examined, (3) sorbitan derivatives were present in all oyster samples, (4) 41% of microparticles showed fluorescence interference and could not be identified with RMS, and (5) when observed under a dissecting scope, fibers were the most common type of microparticle found, but most of these fibers did not have a plastic composition as indicated by RMS and μ-FTIR.

Particles identified under the dissecting microscope

Oysters from all ten sites had microparticles that were identified mostly as microfibers (96% of microparticles) under a dissecting microscope. Relative abundances of these microparticles varied between sites but mean values ranged between 1 and 4 microparticles per oyster per site (Fig. 3). These findings agree with what has been reported for bivalves from Europe (Van Cauwenberghe & Janssen 2014, Li et al. 2018), China (Li et al. 2015, Li et al. 2016, Qu et al.

2018), Brazil (Santana et al. 2016), Canada (Davidson & Dudas 2016), and the United States (Rochman et al. 2015), among many others. Because visual sorting has limitations for accurate polymer identification, we complemented our observations with three different techniques that allow for polymer identification: RMS, ATR-FTIR, and μ-FTIR.

Plastic particles identified using RMS, ATR-FTIR, and µ-FTIR

The majority of microparticles in our study were analyzed using RMS, and this technique was complemented with ATR-FTIR and μ-FTIR for a smaller set of samples. Out of 447 microparticles examined, only eight particles were identified as microplastics by RMS and their spectra matched with polypropylene (PP), polyethylene (PE) or polystyrene (PS) (Fig. 6). These three polymers have been identified in surface waters and sediments in the Atlantic (Moret-Ferguson et al. 2010, Enders et al. 2015, Woodall et al. 2014, Courtene-Jones et al. 2017) and North Pacific Oceans (Rios et al. 2007), and also in bivalves from China and Europe (Li et al. 2016, Li et al. 2018, Li et al. 2018). PE along with PP are the most commonly used hydrocarbon polymers (Da Costa et al. 2018), and there are many different sources and a wide range of domestic and industrial applications for them (Andrady 2011, Zhao et al. 2018). PP for example, is used for rope, bottle caps and nettings (Smith et al. 2018). High and low density PE are used for milk and juice jugs, plastic bags, six pack rings, netting and drinking straws (Smith et al. 2018), and PS is used for plastic utensils and food containers (Smith et al. 2018).

RMS showed that 81 microparticles were either poly(ethylene glycol) monooleate and/or polyamide resin. The similar Raman spectra of these two compounds made differentiation of

the exact chemical identification challenging even with samples that have not been exposed to environmental factors. This challenge coupled with high fluorescence interference and weak Raman signal rendered differentiation impossible for the microparticles analyzed. However, poly(ethylene glycol) monooleate is water soluble and it is likely that this compound was washed away during the sample processing. If this was the case, then the compound in the oyster samples is most likely a polyamide resin. Given that polyamide resins are not ubiquitous or widely used, it is surprising they are found in high abundance in the oyster. If these resins are synthetic in origin they should be considered microplastics (Frias & Nash 2019), but the resins could also have a natural origin if they are the result of the oxidation of oyster protein by hydrogen peroxide. To test these hypotheses we ran a simple test to determine if the polyamide resins could be natural in origin by doing the same digestion protocol we used for the oyster samples on an egg. Eggs are also high in protein and are a closed system that should be naturally free of microplastics. The filter resulting from the egg processing was scanned with RMS and the Raman spectra matched the one observed for all the polyamide resin particles found in our samples (Supplementary Image 1). While this test is not conclusive, it provides strong support to the idea that these polyamide resins present in every filter can come from oysters instead of synthetic sources. Further, investigations using ATR-FTIR revealed that 100% of the filters with oyster samples from all sites contained sorbitan derivatives. While ATR-FTIR has a penetration depth of ~2 µm, RMS has a penetration depth of 12 µm at 785 nm. Thus, it is possible the microparticles are poly(ethylene glycol) monooleate or polyamide resins coated with sorbitan derivatives.

435

436

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

Both sorbitan derivatives and poly(ethylene glycol) monooleate are most often used as

emulsifiers and surfactants (Bobin et al. 1999). Sorbitan derivatives are not always polymeric (polysorbate being a polymeric sorbitan derivative) and are considered synthetic waxes derived from the dehydration of sorbitol. Sorbitan derivatives such as sorbitan monolaureate, monooleate, and monostearate are FDA-approved for oral administration up to 25 mg per kg body weight as food additives (Nielloud and Marti-Mestres 2000). In 2018, the European Food Safety Authority re-evaluated the use of sorbitan derivatives as food additives and found that the acute toxicity of these compounds is low, however, more data is needed to decrease uncertainty in exposure assessment (European Food Safety Authority 2015). Other ubiquitous polymers present in the samples were cellulose-derived. It is likely that these polymers originated during the extraction protocol. We used filters that are made up of nitrate-cellulose and it is possible that some degradation occurred during the peroxide treatment that led to cellulose particles in the filters. Future studies could benefit from using other types of filters such as glass filters to solve this. Other cellulose-derived polymers that were identified by RMS included cellulose acetate which are used in cigarette filters, hygiene products, and clothing (Woodall et al. 2014, Andrady 2015). This contaminant is usually

454

455

456

457

458

459

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

Lastly, four additional microparticles were identified as plastics/synthetic polymers with μ -FTIR. These microparticles came from three of the same filters also used for RMS and were identified as polyester, rayon, poly(t-butyl acrylate), and poly(bisphenol A carbonate). Polyester is a synthetic polymer that is petroleum based and mostly used as fibers used to manufacture fabrics that make up blankets, fleece and other clothing items. Rayon in contrast

introduced in marine environments via sewage discharge (Browne et al. 2011).

is considered a semi-synthetic fiber derived from wood pulp. Rayon is mostly used for clothing, and when it is bleached with dioxins to make white clothes it can become toxic. Poly(t-butyl acrylate) is a polymer mostly used in paints, coatings, adhesives, fuel and textiles but there is not enough information available about its toxicity to marine animals. Poly(bisphenol A carbonate) or polycarbonate (PC) is a polymer formed by monomers of bisphenol A carbonate (BPA) and is one of the most widely used thermoplastics (Quaranta et al. 2017). PC is used in a wide range of industrial applications, such as automotive and transportation, building and construction, packaging, medical, data storage, and interactive software media (Siddiqui et al. 2018). Traditional methods of PC disposal (such as landfilling and incineration) are related to the leaching of BPA and PBA products (Siddiqui et al. 2018). Previous research has also shown that BPA can be released when polycarbonates are biodegraded by marine microorganisms (Artham & Doble 2012). PC found in one of the oyster filters warrants some concern as degradation of this polymer to BPA may induce differential effects in the gonads of male and female oysters (Luo et al. 2017). BPA has received attention because it is mildly estrogenic (Im & Loffler 2016) and can be an endocrine disruptor toxic to marine organisms (Artham & Doble 2012).

476

477

478

479

480

481

482

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

Methods to identify plastic polymers and associated caveats

Microplastics research is a field that is growing at an exponential pace but there are still several challenges associated with the chemical identification of microparticles. The identification of polymers is challenging in part due to the large number of mixtures of polymers that are produced by manufacturers today. Therefore, no single analytical approach is perfect to determine the composition of microparticles (Elert et al. 2017), and studies

aiming to chemically identify microparticles can benefit from using different methods to analyze microplastic composition. This is hard to achieve however, as techniques such as RMS, FTIR, and μ -FTIR require training and expertise to use the equipment appropriately (Granek et al. 2020). These methods are also costly and time consuming, particularly in the case of RMS.

Of the three, ATR-FTIR is the least costly and is most suitable to analyze particles that are larger than 100 μ m. The caveat of ATR-FTIR is that it can detect materials that are coated on the surface of a sample, but may not identify the underlying material as it only has a penetration depth of ~2 μ m. Another disadvantage with ATR-FTIR is that brittle samples can fracture upon contact with the diamond ATR (Wagner et al. 2017). ATR-FTIR and μ -FTIR use mid-IR light while RMS uses sub-micron light (usually a laser source) to probe microparticle identities. Therefore, while IR can only identify particles larger than 10-20 μ m, RMS has the ability to resolve samples larger than 1 μ m (Silva et al. 2018). Both μ -FTIR and RMS require low amounts of sample, can identify particles with minimal sample preparation, and distinguish between plastics and natural particles from marine organisms or soil (Silva et al. 2018). Compared to Raman, FTIR has been around longer and the technology has evolved with the polymer industry. There is a greater abundance of historical IR spectroscopic data for polymer analysis and thus more available reference spectra for microplastic identification (Araujo et al. 2018).

There are also different caveats that need to be taken into account for each technique, such as the issue of fluorescence interference with RMS (Araujo et al. 2018). In our study, almost 41% of the microparticles analyzed showed high fluorescence and this limited our ability to

detect the RMS signal and identify the composition of the particles. Thus, it is likely we may have underestimated the amount of microplastics present in the samples. The sources of fluorescence in microparticles can be many. Coloring agents, biological material, or degradation products from the environment can attach/adsorb to the plastic particles and influence their spectra. Many colorants such as pigments and dyes strongly fluoresce in visible light and can also hinder the acquisition of spectra, while inorganic pigments are more likely to change the pattern of peaks that are displayed (Frederiks 2012). Bacteria present in biofilm (Araya et al. 2003, Rummel et al. 2017), and algal phaeopigments (Carlson & Shapiro 1981, Mitchell & Kiefer 1988) can also be major contributors to fluorescence. To reduce fluorescence interference in some of our samples, it was necessary to bleach or illuminate them with the laser before spectral acquisition. This treatment, however, occasionally led to microparticles degradation.

Another caveat are additive compounds included to the basic polymer matrix when commercial plastics are manufactured (Lenz et al. 2015). These added compounds can alter the reading of the plastic polymers by RMS. Similarly, plastic microparticles obtained from the marine environment can have altered chemical fingerprints as a result of weathering (Lenz et al. 2015). These alterations can sometimes lead to a falsified polymer type signal (Lenz et al. 2015) and misidentification. This issue has been mentioned as one of the main drawbacks of matching spectra to a library because reference libraries cannot cover the whole variety of particles present in marine samples, both in terms of additives and/or degradation (Lenz et al. 2015). As this challenge begins to be recognized, several authors have recommended that spectra from degraded polymers are also included in polymer libraries in

order to increase the possibilities of identification of microparticles that have been exposed to environmental conditions. Lenz et al. (2015) showed for example, that PVC can be degraded to a point where successful identification is not possible if using a virgin PVC reference. Similarly, when exposed to artificial seawater, PE pellets undergo considerable structural modifications as a result of the formation of new functional groups in the polymer that ultimately yield polymers with a distinct composition (Da Costa et al. 2018).

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

530

531

532

533

534

535

Conclusions and implications of this research

The findings presented here indicate that visual sorting should not be assumed to be a reliable method for microplastic identification. Over 60% of the oysters analyzed had a microparticles that looked like a microplastics however only 2% of the microparticles observed were confirmed to have a plastic composition. Our research further shows that Pacific oysters from Puget Sound in Washington State, USA, are not accumulating large amounts of microplastics, on the contrary, we have no evidence to support the idea that there is more than one microplastic per oyster. As pointed out previously, 41% of the samples were covered with fluorescent material and the methods have caveats to consider, but based on the 60% of the samples that were identifiable, the presence of microplastics is very low. This does not undermine in any way the seriousness and emergency of plastic contamination in marine environments and its effects on marine biota. This research instead provides the first baseline value for microplastics in Pacific oysters from Washington State based on three different techniques - in addition to visual sorting. Information from this first baseline study will give ecosystem managers, the aquaculture industry, and the general public an important indicator of bivalve health. This pioneer contribution can be considerably improved by analyzing more of the oyster samples with μ -FTIR, by managing fluorescence interference

under RMS, and using additional chemical identification techniques. Having a more comprehensive dataset of results as well polymer libraries with spectra of polymers that were exposed to the environmental degradation, will allow scientists to identify with more accuracy the types of microplastics, resins, additives, and other contaminants present in marine organisms.

ACKNOWLEDGEMENTS

We are very grateful to Heather Lopes and Marissa Leatherman for assistance with oyster sampling and processing; Rachel Cohen and Linnea Stavney for help with microplastics extraction, observations, and measurements. Lyda Harris provided valuable feedback on previous versions of the manuscript. We are also indebted to Suja Sukumaran and Brian Bertsch from Thermo Fisher Scientific for their support with the μ -FTIR analyses. Part of this work was conducted at the Molecular Analysis Facility, a National Nanotechnology Coordinated Infrastructure site at the University of Washington supported in part by the National Science Foundation (grant NNCI-1542101), the University of Washington, the Molecular Engineering & Sciences Institute, and the Clean Energy Institute. We thank Dr. Micah Glaz for insightful conversations about RMS. Five anonymous reviewers provided critical comments that greatly improved the quality of the manuscript. Work was supported by NOAA-SK (NA17NMF4270222) and Royal Research Fund (FA137468/A118587) awarded to J.L.P.G.

FIGURE CAPTIONS

Figure 1. Location of Puget Sound and its basins in Washington State, USA. The five basins indicated are Juan de Fuca (JF) Strait in purple, Hood Canal in green, South Puget Sound (PS) in yellow, Central Puget Sound in red and Whidbey Basin in blue. The image on the right shows the study species, the Pacific oyster, *Crassostrea gigas*.

Figure 2. Panel showing (A) boxplots with the number of microparticles per oyster that were identified using visual sorting under the dissecting microscope. Site names are organized alphabetically. Thick horizontal lines represent median values per site, boxes enclose the 25th-75th percentiles and whiskers indicate the minimum and maximum values, (B) boxplots showing mean oyster weight per site, (C) scatterplot of the relationship between mean oyster weight and number of microparticles per oyster for all pooled sites. R-squared value for regression: 0.003.

Figure 3. Pie charts showing (A) the percentage of different colors observed in microparticles identified as microfibers under the dissecting scope (size ranges: 102 to 2885 μm) and (B) the percentage of different colors observed in microparticles under RMS (size ranges between 20 to 50 μm). In a clockwise direction, 'clear' indicates transparent particles, 'red' indicated red and pink particles, 'purple' indicates violet and purple particles, light indicates white, yellow, silver and amber particles, 'green' indicates greenish particles and 'dark' indicates all particles that were blue, black or dark in coloration.

Figure 4. Map showing the location of sampling sites (1-10) in Puget Sound, Washington. Site names are organized N-S as follows: (1) Samish Bay, (2) Sequim Bay, (3) Mystery Bay, (4) Jacoby State Park, (5) Heritage County Park, (6) Illahee State Park, (7) North Bay, (8)

Kopachuck State Park, (9) Penrose Point, (10) Oakland Bay. The barplot to the right shows the proportion of different microparticles identified by RMS per site. It is important to note that we did not process 100% of the particles per filter therefore the graph does not represent all the particles that were present, only the ones that were randomly sampled. It is also of note that the number of particles sampled varied per site as it depended on the density of particles per filter (number of microparticles analyzed per site is shown in Table 2). 'Cellulose' are mainly cellulose fibers, 'fluorescence' are unidentified particles due to high fluorescence interference, 'others' are shell particles, grains of sand, and gypsum, 'resins' are polymers such as sorbitan monopalmitate, and 'plastics' are particles that were identified as polyethylene (PE), polypropylene (PP) and polystyrene (PS).

Figure 5. Size distribution and identification of microparticles from oyster samples using RMS. Most microparticles ranged between 20 to 50 μm in size. The identity of the particle is color coded according to the key in the top right-hand corner of the image. The darker blue color is an overlap between the blue and pink colors. Polystyrene (PS), polypropylene (PP), and polyethylene (PE) microparticles (in red) were all less than 150 μm. One 13000-μm microfiber particle and particles categorized as others (such as gypsum, salt, minerals, or shells) were omitted from the histogram for clarity.

Figure 6. Spectra of microplastic particles identified using RMS. Red spectra are the individual plastic RMS spectra and the blue spectra are the reference library spectra. (a) North Bay Oyster 3a is a 75-μm polystyrene shard, (b) North Bay Oyster 3e is a 100-μm polypropylene irregular-shaped particle, (c) North Bay Oyster 3h is 50-μm polystyrene shard, (d) North Bay Oyster 13d is a 150-μm polypropylene spheroid, (e) Oakland Oyster 4d is a 100-μm polyethylene shard, (f) Samish Control 4-6a is a 100-μm polystyrene irregular-

shaped particle, (g) Sequim Oyster 25d is a 150-µm polypropylene shard, (h) Jacoby Oyster 625 626 31b is a 125-µm polyethylene irregular-shaped particle. 627 628 Figure 7. FTIR spectrum of North Bay oyster 1 (in red) and FTIR reference spectrum of 629 sorbitan monopalmitate (in blue). This spectrum is representative of the large majority of the 630 spectra observed with FTIR. 631 632 Figure 8. Microplastic particles identified from three filter samples using μ -FTIR. Red 633 spectra are the individual microplastic µ-FTIR spectra and the purple or black spectra are the 634 library reference spectra. (a) Oakland Oyster 4a is a polyester fiber, (b) Oakland Oyster 4b is 635 a rayon fiber, (c) Oakland Oyster 4c is a poly(t-butyl acrylate) irregular-fragment, (d) Jacoby 636 Oyster 31a is a poly(bisphenol A carbonate) particle. 637 638

TABLE CAPTIONS Table 1. Sampling sites organized N-S according to the Puget Sound basin where they are located (see Fig. 1). Site coordinates and characteristics of the basins are also included. 'SP' indicates State Park and 'CP' indicates County Park. Table 2. Number of oysters processed under the dissecting scope and RMS per site. For microparticles identified under dissecting scope we present the mean value of the ones that were visually sorted as microplastics, and the mean value per gram of oyster. For microparticles identified under RMS we present the number of particles analyzed per site and the percentage of those that were confirmed as plastic. **Table 3**. Number and type of pollutants found per site. The main source of each pollutant is indicated, as well as the method of detection in oyster tissue samples from Washington state.

655 **REFERENCES**

656 Anbumani S & Kakkar P (2018) Ecotoxicological effects of microplastics on biota: a review. 657 658 *Environmental Science and Pollution Research*, 25(15): 14373-14396. 659 660 Andrady AL (2011) Microplastics in the marine environment. Marine Pollution Bulletin, 661 62(8): 1596-1605. 662 663 Andrady AL (2015) Persistence of plastic litter in the oceans. In Marine Anthropogenic Litter 664 (pp. 57-72). Springer, Cham. 665 666 Araujo CF, Nolasco MM, Ribeiro AM & Ribeiro-Claro PJ (2018) Identification of 667 microplastics using Raman spectroscopy: latest developments and future prospects. Water 668 Research, 142: 426-440. 669 670 Araya R, Tani K, Takagi T, Yamaguchi N & Nasu M (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by 671 672 fluorescent in situ hybridization and DGGE analysis. FEMS Microbiology Ecology, 43(1): 673 111-119. 674 675 Arthur C, Baker J & Bamford H (2009) Proceedings of the international research workshop 676 on the occurrence, effects, and fate of microplastic marine debris. NOAA marine debris 677 program. Technical memorandum NOS-OR&R-30. 678 679 Farrell P & Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to 680 Carcinus maenas (L.). Environmental Pollution, 177: 1-3. 681 682 Artham T & Doble M (2012) Bisphenol A and metabolites released by biodegradation of 683 polycarbonate in seawater. Environmental Chemistry Letters, 10(1): 29-34. 684 685 Au SY, Lee CM, Weinstein JE, van den Hurk P & Klaine SJ (2017) Trophic transfer of 686 microplastics in aquatic ecosystems: Identifying critical research needs. *Integrated* 687 Environmental Assessment and Management, 13(3): 505-509. 688 689 Baechler BB, Stienbarger CD, Horn DA, Joseph J, Taylor AR & Granek EF (2019) 690 Microplastic occurrence and effects in commercially harvested North American finfish and 691 shellfish: Current knowledge and future directions. Limnology and Oceanography Letters. 692 Special Issue: Microplastics in marine and freshwater organisms: Presence and potential 693 effects. 694 695 Batel A, Linti F, Scherer M, Erdinger L & Braunbeck T (2016) Transfer of benzo [a] pyrene 696 from microplastics to Artemia nauplii and further to zebrafish via a trophic food web 697 experiment: CYP1A induction and visual tracking of persistent organic pollutants. 698 Environmental Toxicology and Chemistry, 35(7): 1656-1666.

Bobin MF, Michel V & Martini MC (1999) Study of formulation and stability of emulsions
 with polymeric emulsifiers. *Colloids and Surfaces A: Physicochemical and Engineering* Aspects, 152: 53–58.

703

- Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T & Thompson R (2011)
- Accumulation of microplastic on shorelines worldwide: sources and sinks. *Environmental*
- 706 Science & Technology, 45(21): 9175-9179.

Carlson RE & Shapiro J (1981) Dissolved humic substances: A major source of error in fluorometric analyses involving lake waters. *Limnology and Oceanography*, 26(4): 785-790.

710

711 Carr SA (2017) Sources and dispersive modes of microfibers in the environment. *Integrated Environmental Assessment and Management*, 13(3): 466-469.

713

Catarino AI, Macchia V, Sanderson WG, Thompson RC & Henry TB (2018) Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. *Environmental Pollution*,

717 237: 675-684.

718

Cesa FS, Turra A & Baruque-Ramos J (2017) Synthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washings. *Science of The Total Environment*, 598: 1116-1129.

722

Coen LD, Brumbaugh RD, Bushek D, Grizzle R, Luckenbach MW, Posey MH, ... & Tolley, SG (2007) Ecosystem services related to oyster restoration. *Marine Ecology Progress Series*, 341: 303-307.

726

Cole M, Lindeque P, Halsband C & Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. *Marine Pollution Bulletin*, 62(12): 2588-2597.

729

Courtene-Jones W, Quinn B, Gary SF, Mogg AO & Narayanaswamy BE (2017) Microplastic
 pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall
 Trough, North Atlantic Ocean. *Environmental Pollution*, 231: 271-280.

733

Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, ... &
 Fernández-de-Puelles ML (2014) Plastic debris in the open ocean. *Proceedings of the National Academy of Sciences*, 111(28): 10239-10244.

737

Da Costa JP, Nunes AR, Santos PS, Girão AV, Duarte AC & Rocha-Santos T (2018)
 Degradation of polyethylene microplastics in seawater: Insights into the environmental
 degradation of polymers. *Journal of Environmental Science and Health, Part A*, 53(9): 866-

741 875.

742

Davidson K & Dudas SE (2016) Microplastic ingestion by wild and cultured Manila clams (*Venerupis philippinarum*) from Baynes Sound, British Columbia. *Archives of Environmental Contamination and Toxicology*, 71(2): 147-156.

746

Depledge MH, Galgani F, Panti C, Caliani I, Casini S & Fossi MC (2013) Plastic litter in the sea. *Marine Environmental Research*, 92: 279-281.

- 750 Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H & Braun U (2017)
- 751 Comparison of different methods for MP detection: what can we learn from them, and why
- asking the right question before measurements matters? Environmental Pollution, 231: 1256-
- 753 1264.

755 Encyclopedia of Puget Sound, accessed May 2019:

https://www.eopugetsound.org/articles/puget-sounds-physical-environment

757

- 758 Enders K, Lenz R, Stedmon CA & Nielsen TG (2015) Abundance, size and polymer
- 759 composition of marine microplastics \geq 10 μ m in the Atlantic Ocean and their modelled
- vertical distribution. *Marine Pollution Bulletin*, 100(1): 70-81.

761

- 762 Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, ... & Reisser J (2014)
- Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over
- 764 250,000 tons afloat at sea. *PloS one*, 9(12): e111913.

765

- Eshom-Arzadon F (2017) Concentration of Microplastics in Beach Sediments Surrounding
- 767 Seattle, Washington in the Puget Sound Estuary (Undergraduate dissertation for an
- Oceanography degree, University of Washington).

769

- European Food Safety Authority (2015) Scientific Opinion on the re-evaluation of
- polyoxyethylene sorbitan monolaurate (E432), polyoxyethylene sorbitan monooleate (E433),
- polyoxyethylene sorbitan monopalmitate (E434), polyoxyethylene sorbitan monostearate
- 773 (E435) and polyoxyethylene sorbitan tristearate (E436) as food additives. *ESFA Journal*, 3(7):
- 774 4152.

775

- 776 Finlayson D (2006) The geomorphology of Puget Sound beaches (No. 2006-02). University
- of Washington, School of Oceanography.

778

- 779 Floyd DE, Glaser DW (1962) Polyamide Resin Binder for Printing Inks., United States
- 780 Patent Office Patent No. 3,937,871.

781

- Foekema EM, De Gruijter C, Mergia MT, van Francker JA, Murk AJ & Koelmans AA
- 783 (2013) Plastic in north sea fish. *Environmental Science & Technology*, 47(15): 8818-8824.

784

- Fredericks PM (2012) Forensic analysis of fibres by vibrational spectroscopy. *Infrared and*
- 786 Raman Spectroscopy in Forensic Science, 153-169.

787

Frias JPGL & Nash R (2019) Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138: 145-147.

790

- Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I ... & Romano D (2018) Marine litter
- 792 plastics and microplastics and their toxic chemicals components: the need for urgent
- 793 preventive measures. *Environmental Sciences Europe*, 30: 1-14.

794

795 Gugnami A & Mishra A (2012) Textile & apparel compendium.

796

- 797 Granek EF, Brander SM & Holland EB (2020) Microplastics in aquatic organisms:
- 798 Improving understanding and identifying research directions for the next decade. Limnology
- and Oceanography Letters. Harris LS & Carrington E (2019) Impacts of microplastic vs.
- and natural abiotic particles on the clearance rate of a marine mussel. *Limnology and*
- 801 Oceanography Letters.

- Hidalgo-Ruz V, Gutow L, Thompson RC & Thiel M (2012) Microplastics in the marine
- 804 environment: a review of the methods used for identification and quantification.
- 805 Environmental Science & Technology, 46(6): 3060-3075.

Hind AR, Bhargava SK & McKinnon A (2001) At the solid/liquid interface: FTIR/ATR—the tool of choice. *Advances in Colloid and Interface Science*, 93(1-3): 91-114.

809

- Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M ... & Zettler ER (2011)
- Organic micropollutants in marine plastics debris from the open ocean and remote and urban
- beaches. Marine Pollution Bulletin, 62(8): 1683-1692.

813

Horton AA & Dixon SJ (2018) Microplastics: An introduction to environmental transport processes. *Wiley Interdisciplinary Reviews: Water*, 5(2): e1268.

816

- 817 Im J & Loffler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments.
- 818 *Environmental Science & Technology*, 50(16): 8403-8416.

819

- 820 Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R & Ivleva NP (2016)
- Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on
- microparticles of different size classes. *Water Research*, 98: 64-74.

823

- Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ & Voit B
- 825 (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR,
- Raman or both? Analytical and Bioanalytical Chemistry, 408(29): 8377-8391.

827

- Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, ... & Noble K (2018)
- 829 Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific
- 830 reports, 8(1), 4666.

831

- 832 Lenz R, Enders K, Stedmon CA, Mackenzie DM & Nielsen TG (2015) A critical assessment
- of visual identification of marine microplastic using Raman spectroscopy for analysis
- improvement. *Marine Pollution Bulletin*, 100(1): 82-91.

835

- 836 Lenz R, Enders K & Nielsen TG (2016) Microplastic exposure studies should be
- environmentally realistic. Proceedings of the National Academy of Sciences, 113(29): E4121-
- 838 E4122.

839

- 840 Li J, Yang D, Li L, Jabeen K & Shi H (2015) Microplastics in commercial bivalves from
- China. Environmental Pollution, 207: 190-195.

842

Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P ... & Shi H (2016) Microplastics in mussels along the coastal waters of China. *Environmental Pollution*, 214: 177-184.

845

- Li J, Lusher A, Rotchell JM, Company SD, Turra A, Bråte ILN ... & Shi H (2018) Using
- mussel as a global bioindicator of coastal microplastic pollution. *Environmental Pollution*,
- 848 244: 522-533.

- Li J, Green C, Reynolds A, Shi H & Rotchell JM (2018) Microplastics in mussels sampled
- from coastal waters and supermarkets in the United Kingdom. *Environmental Pollution*, 241:
- 852 35-44.

Ling SD, Sinclair M, Levi CJ, Reeves SE & Edgar GJ (2017) Ubiquity of microplastics in

coastal seafloor sediments. *Marine Pollution Bulletin*, 121(1-2): 104-110.

856

857 Löder MG & Gerdts G (2015) Methodology used for the detection and identification of

microplastics—A critical appraisal. In *Marine Anthropogenic Litter* (pp. 201-227). Springer,

859 Cham.

860

Luo W, Su L, Craig NJ, Du F, Wu C & Shi H (2019) Comparison of microplastic pollution in

different water bodies from urban creeks to coastal waters. Environmental Pollution, 246:

863 174-182.

864

Masura J, et al. (2015) Laboratory methods for the analysis of microplastics in the marine

866 environment: recommendations for quantifying synthetic particles in waters and sediments.

867

Miller RZ, Watts AJ, Winslow BO, Galloway T.S & Barrows AP (2017) Mountains to the

sea: river study of plastic and non-plastic microfiber pollution in the northeast USA. Marine

870 *Pollution Bulletin*, 124: 245-251.

871

NOAA Technical Memorandum NOS-OR&R-48.

873874

Mathalon A & Hill P (2014). Microplastic fibers in the intertidal ecosystem surrounding

Halifax Harbor, Nova Scotia. *Marine Pollution Bulletin*, 81(1): 69-79.

876

877 Mitchell BG & Kiefer DA (1988) Chlorophyll α specific absorption and fluorescence

878 excitation spectra for light-limited phytoplankton. *Deep Sea Research Part A*.

879 Oceanographic Research Papers, 35(5): 639-663.

880

Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-

term threat. Environmental Research, 108(2): 131-139.

882 883

Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE & Reddy CM (2010)

The size, mass, and composition of plastic debris in the western North Atlantic Ocean.

886 *Marine Pollution Bulletin*, 60(10): 1873-1878.

887

Munari C, Infantini V, Scoponi M, Rastelli E, Corinaldesi C & Mistri M (2017)

Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution

890 *Bulletin*, 122(1-2): 161-165.

891

892 Murphy CL (2018) A comparison of microplastics in farmed and wild shellfish near

893 Vancouver Island and potential implications for contaminant transfer to humans (Masters

dissertation, Royal Roads University, Victoria, British Columbia, Canada).

894 895

Nielloud, Francoise & Marti-Mestres, Gilberte (2000) Pharmaceutical Emulsions and

897 Suspensions. New York, NY: Marcel Dekker, Inc.

898

NOAA Fisheries (2015) Aquaculture production highlights infographic.

- 901 Paul-Pont I, Lacroix C, Fernández CG, Hégaret H, Lambert C, Le Goïc N ... & Guyomarch J
- 902 (2016) Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and
- influence on fluoranthene bioaccumulation. *Environmental Pollution*, 216: 724-737.

- 905 Pike Technologies Inc. (2018) ATR Theory and Applications.
- 906 https://www.piketech.com/files/pdfs/PIKE_ATR_Theory-Applications.pdf

907

908 Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Châtel A, Mouneyrac C & Lagarde F (2016) Is there any consistency between the microplastics found in the field and those used in laboratory experiments? *Environmental Pollution*, 211: 111-123.

911

- 912 Quaranta E, Sgherza D, Tartaro G (2017) Depolymerization of poly(bisphenol A carbonate)
- 913 under mild conditions by solvent-free alcoholysis catalyzed by 1,8-diazabicyclo[5.4.0]undec-
- 7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate.
- 915 Green Chemistry, 19: 5422-5434.

916

- Qu X, Su L, Li H, Liang M & Shi H (2018) Assessing the relationship between the
- abundance and properties of microplastics in water and in mussels. Science of the Total
- 919 Environment, 621: 679-686.

920

- R Core Team (2019) R: A language and environment for statistical computing. R Foundation
- 922 for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

923

- 924 Rios LM, Moore C & Jones PR (2007) Persistent organic pollutants carried by synthetic
- 925 polymers in the ocean environment. *Marine Pollution Bulletin*, 54(8): 1230-1237.

926

- 927 Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT ... & Teh SJ (2015)
- 928 Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves
- 929 sold for human consumption. Scientific Reports, 5: 14340.

930

- 931 Rummel CD, Jahnke A, Gorokhova E, Kühnel D & Schmitt-Jansen M (2017) Impacts of
- 932 biofilm formation on the fate and potential effects of microplastic in the aquatic environment.
- 933 Environmental Science & Technology Letters, 4(7): 258-267.

934

- 935 Santana MFM, Ascer LG, Custódio MR, Moreira FT & Turra A (2016) Microplastic
- 936 contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid
 - evaluation through bioassessment. *Marine Pollution Bulletin*, 106(1-2): 183-189.

937 938

- 939 Shumway SE, Ward JE & Mladinich (2018) The microplastics and shellfish media frenzy –
- stop the train, we want to get off! East Coast Shellfish Growers Newsletter, August 2018.

941

- 942 Silva AB, Bastos AS, Justino CIL, da Costa JP, Duarte AC, Rocha-Santos TAP (2018)
- 943 Microplastics in the environment: Challenges in analytical chemistry A review. *Analytica*
- 944 *Chimica Acta.* 1017: 1-19.

945

- 946 Siddiqui MN, Redhwi HH, Antonakou EV, Achilias DS (2018) Pyrolysis mechanism and
- 947 thermal degradation kinetics of poly(bisphenol Acarbonate)-based polymers originating in
- 948 waste electric and electronic equipment. *Journal of Analytical and Applied Pyrolysis*. 132:
- 949 123-133.

- 951 Siegfried M, Koelmans AA, Besseling E & Kroeze C (2017) Export of microplastics from
- land to sea. A modelling approach. Water Research, 127: 249-257.

954 Smith M, Love DC, Rochman CM & Neff RA (2018) Microplastics in seafood and the implications for human health. *Current Environmental Health Reports*, 5(3): 375-386.

956

957 Staples CA, Dome PB, Klecka GM, Oblock ST & Harris LR (1998) A review of the 958 environmental fate, effects, and exposures of bisphenol A. *Chemosphere*, 36(10): 2149-2173.

959

Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ ... Corporeau C
 (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. *Proceedings* of the National Academy of Sciences, 113(9): 2430-2435.

963

Tagg AS, Sapp M, Harrison JP & Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FTIR imaging.

Analytical Chemistry, 87(12): 6032-6040.

967

Torre M, Digka N, Anastasopoulou A, Tsangaris C & Mytilineou C (2016) Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. *Marine Pollution Bulletin*, 113(1-2): 55-61.

971

972 United States Census Bureau (2016)

973

974 Van Cauwenberghe L & Janssen CR (2014) Microplastics in bivalves cultured for human consumption. *Environmental Pollution*, 193: 65-70.

976

Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I, Moreno B ... & Hughes KA
 (2017) Microplastics in the Antarctic marine system: an emerging area of research. *Science of the Total Environment*, 598: 220-227.

980

981 Wagner J, Wang Z-M, Ghosal S, Rochman C, Gassel M, Wall S (2017) Novel method for the 982 extraction and identification of microplastics in ocean trawl and fish gut matrices. *Analytical* 983 *Methods*, 9: 1479-1490.

984

Wang W, Gao H, Jin S, Li R & Na G (2019) The ecotoxicological effects of microplastics on
 aquatic food web, from primary producer to human: A review. *Ecotoxicology and* Environmental Safety, 173: 110-117.

988

989 Ward JE & Shumway SE (2004) Separating the grain from the chaff: particle selection in 990 suspension-and deposit-feeding bivalves. *Journal of Experimental Marine Biology and* 991 *Ecology*, 300(1-2): 83-130.

992

Ward JE, Newell RI, Thompson RJ & MacDonald BA (1994) In vivo studies of suspension feeding processes in the eastern oyster, *Crassostrea virginica* (Gmelin). *The Biological Bulletin*, 186(2): 221-240.

996

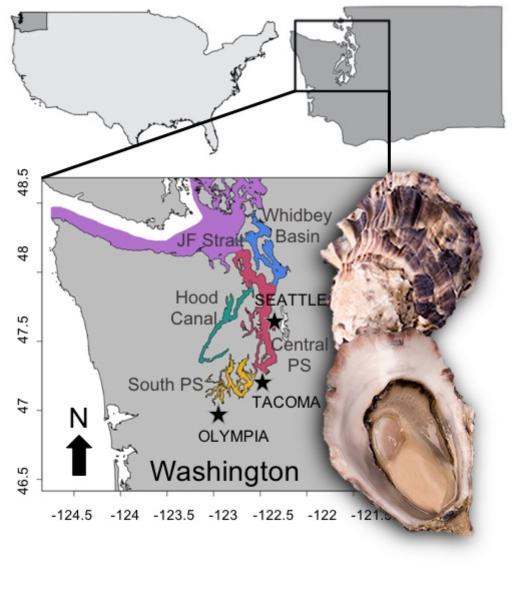
Washington Sea Grant (2015) Shellfish aquaculture in Washington State. Final report to the
 Washington State Legislature, 84 p.

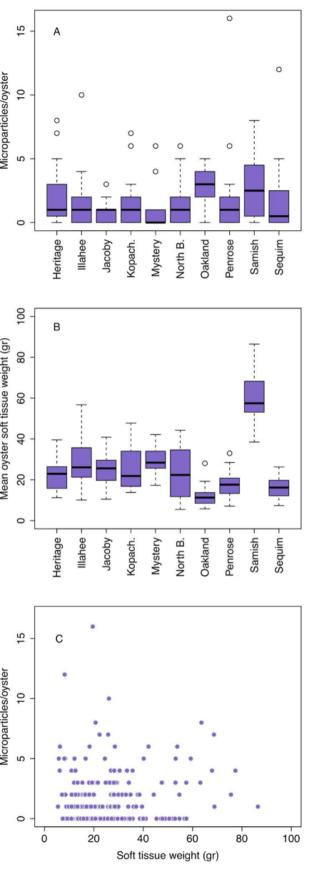
- 1000 Weinstein JE, Crocker BK & Gray AD (2016) From macroplastic to microplastic:
- Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh
- habitat. Environmental Toxicology and Chemistry, 35(7): 1632-1640.

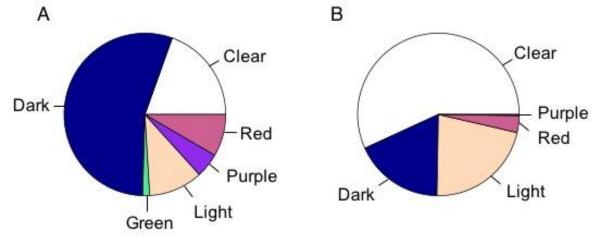
1003

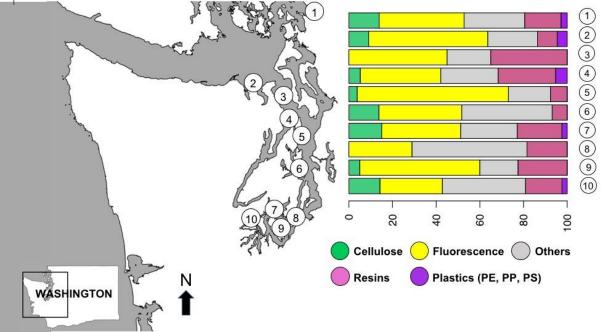
Welden NA & Cowie PR (2016) Long-term microplastic retention causes reduced body condition in the langoustine, *Nephrops norvegicus*. *Environmental Pollution*, 218: 895-900.

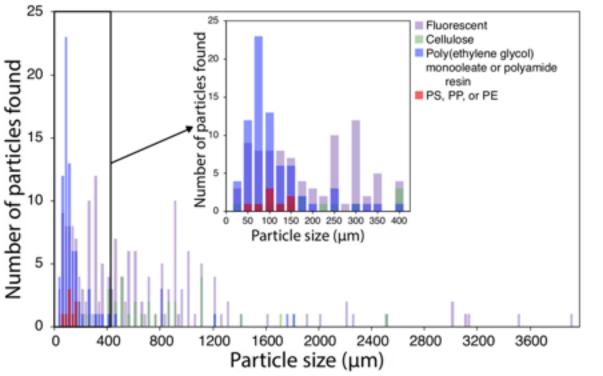
1006

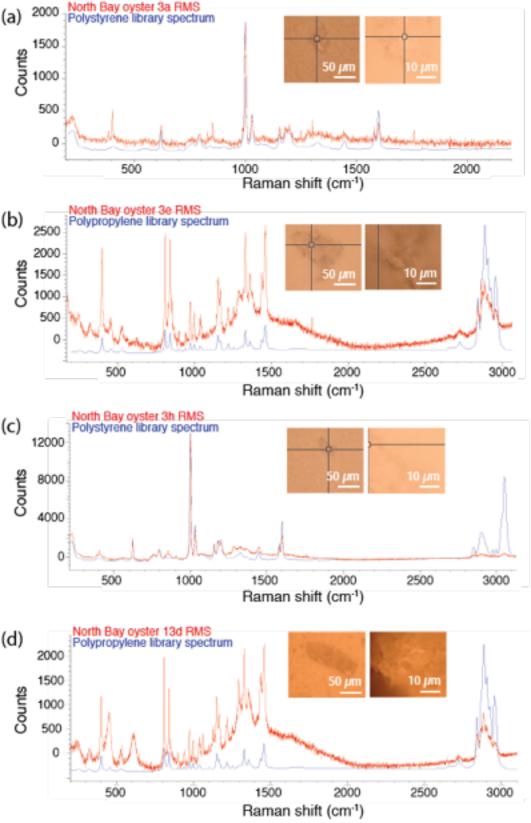

Wessel CC, Lockridge GR, Battiste D & Cebrian J (2016) Abundance and characteristics of microplastics in beach sediments: insights into microplastic accumulation in northern Gulf of Mexico estuaries. *Marine Pollution Bulletin*, 109(1): 178-183.

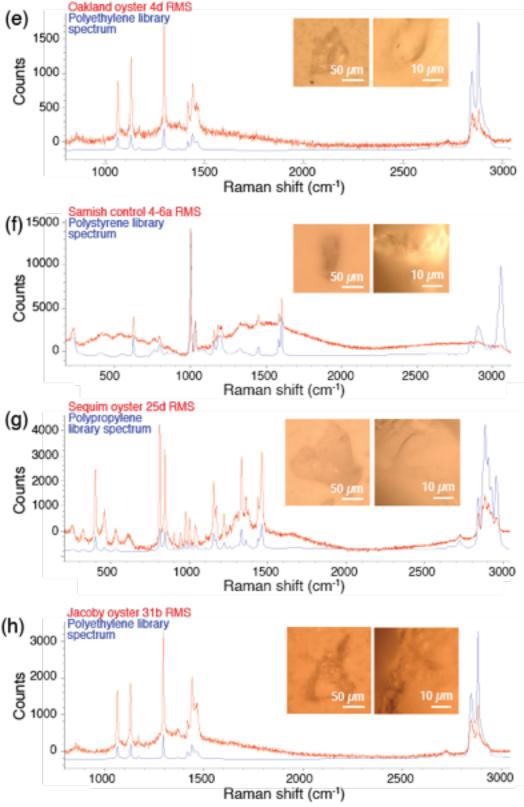

1010

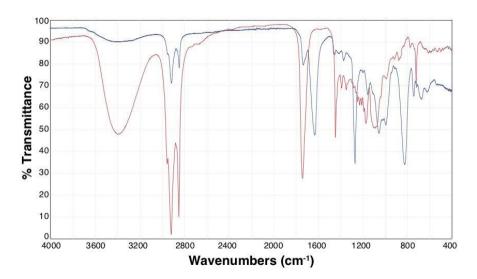

- 1011 Woodall LC, Sanchez-Vidal A, Canals M, Paterson GL, Coppock R, Sleight V ... &
- Thompson RC (2014) The deep sea is a major sink for microplastic debris. *Royal Society*
- 1013 Open Science, 1(4): 140317.


1014


- 1015 Zhao J, Ran W, Teng J, Liu Y, Liu H, Yin X ... & Wang Q (2018) Microplastic pollution in
- sediments from the Bohai Sea and the Yellow Sea, China. Science of The Total Environment,
- 1017 640: 637-645.







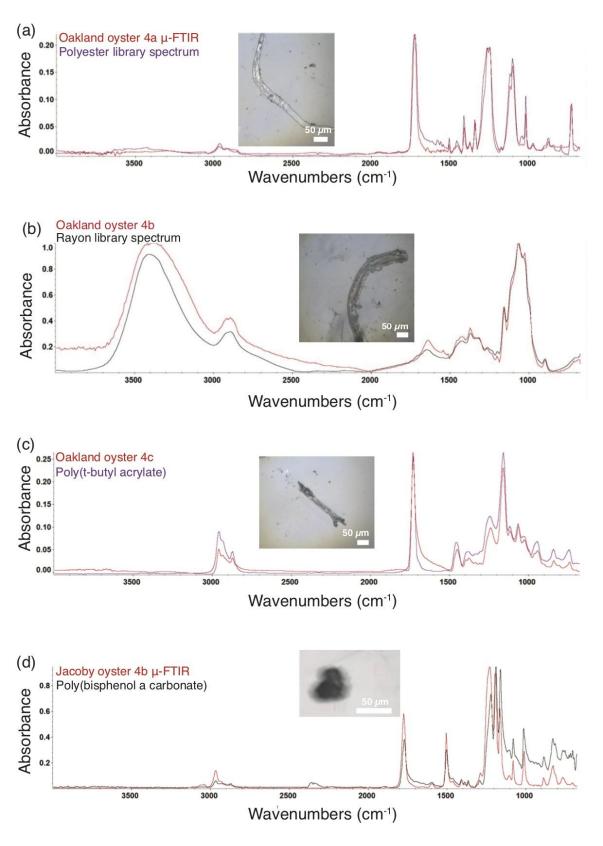
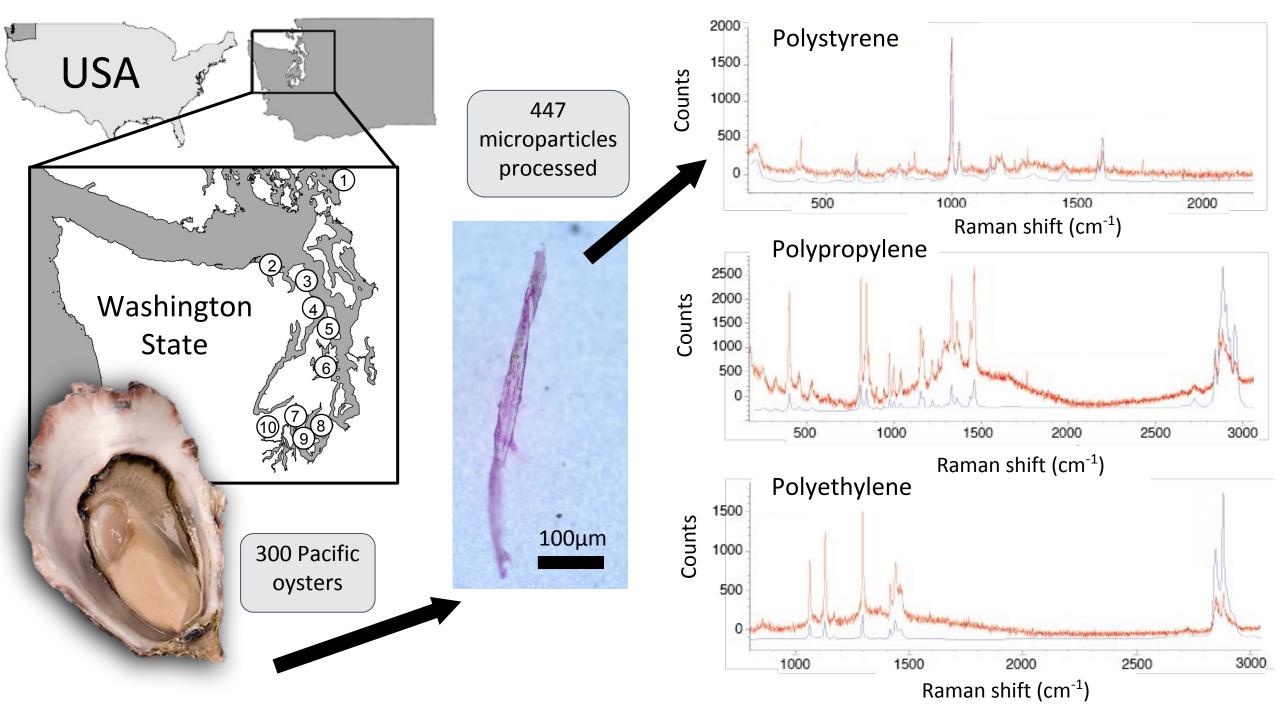


TABLE 1

Basin	Site	Coordinates	Characteristics	
Juan de Fuca Strait	Sequim Bay	48° 2' 26" N, 123° 2' 6" W	Open basin connected to the Pacific Ocean shorter water residence times than average for Puget Sound (approximately 1 month). Sequim Bay is however narrow and north-facing, factors that increase water residence times relative to the rest of the basin.	
Whidbey Basin	Samish Bay	48° 35' 23" N, 122° 30' 7" W	Close to Juan de Fuca Strait, shorter water residence times than average for Puget Sound (approximately 1 month)	
Central Puget Sound	Heritage CP	47° 50' 24" N, 122° 35' 16" W	This basin includes areas draining	
	Illahee SP	47° 35' 48" N, 122° 35' 57" W	into small creeks that flow directly	
	Jacoby SP	47° 52' 7" N, 122° 38' 12" W	into Puget Sound from Seattle and off Vashon Island. Water residence	
	Mystery Bay SP	48° 3' 34" N, 122° 41' 50" W	time approximately 2 months.	
South Puget Sound	Kopachuck SP	47° 18' 31" N, 122° 41' 16" W		
	North Bay	47° 23' 25" N, 122° 48' 51" W	Long, narrow bays, islands and small	
	Oakland Bay	47° 13' 29" N, 123° 4' 8" W	inlets. Water residence time approximately 2 months.	
	Penrose Point	47° 15' 32" N, 122° 44' 54" W	approximately 2 months.	


TABLE 2

	Number of	Mean	Mean	Mean	Particles	Percentage
	oysters	oyster	number of	number of	examined	of RMS
	processed	weight	particles	particles	using RMS	plastic
Site			per oyster	per gram		particles
			(using a	(using a		(%)
			dissecting	dissecting		
			scope)	scope)		
Heritage CP	20	22.41	2.05	0.09	35	0
Illahee SP	21	28.98	1.71	0.07	28	0
Jacoby SP	23	25.17	0.69	0.03	19	5.3
Kopachuck SP	22	26.66	1.36	0.05	38	0
Mystery Bay SP	21	29.48	0.76	0.02	21	0
North Bay	21	23.48	1.62	0.11	167	2.4
Oakland Bay	21	12.23	3	0.3	42	2.4
Penrose Point SP	24	18.18	2	0.11	40	0
Samish Bay	20	59.85	2.8	0.05	37	2.7
Sequim Bay	20	16.23	1.7	0.14	22	4.5

TABLE 3

Pollutant	Possible Sources	No. particles found	Sites	Method used
Polyethylene (PE)	Milk and juice jugs, plastic bags, six pack rings, drinking straws	2	Jacoby SP, Oakland Bay	RMS
Polystyrene (PS)	Plastic utensils, food containers	3	Samish Bay, North Bay	RMS
Polypropylene (PP)	Rope, bottle caps, nettings	3	Sequim Bay, North Bay	RMS
Polyester	Fabrics, fibers and outerwear	1	Oakland Bay	μ-FTIR
Rayon	Semi-synthetic fiber derived from wood pulp	1	Oakland Bay	μ-FTIR
Poly (t-butyl acrylate)	Paints, coatings, adhesives, textiles	1	Oakland Bay	μ-FTIR
Poly (bisphenol A carbonate)	Automotive and transportation, building and construction, packaging, medical, storage devices, interactive software media	1	Jacoby SP	μ-FTIR
Poly(ethylene glycol) monooleate or polyamide resins	Emulsifiers, surfactants, printing inks	81	All sites	RMS

Sorbitan derivatives	Emulsifiers, surfactants	Non-solid polymers (uncountable)	All sites	ATR-FTIR
-------------------------	--------------------------	--	-----------	----------

