Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory

Celeste T. Venoliaa, Romain Lavaudb, Lindsay A. Green-Gavrielidisc,d, Carol Thornberc, and Austin T. Humphriesa,e,*

aDepartment of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island

bInstitut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, QC, Canada

cDepartment of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island

dPresent address: Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI, USA

eGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

* Corresponding Author.

Email Address: humphries@uri.edu (Austin Humphries)
Keywords

Macroalgae; food production; bioenergetics; synthesizing units; Rhode Island
Abstract

Aquaculture is an industry with the capacity for further growth that can contribute to sustainable food systems to feed an increasing global population. Sugar kelp (Saccharina latissima) is of particular interest for farmers as a fast-growing species that benefits ecosystems as a primary producer. However, as a new industry in the U.S., farmers interested in growing S. latissima lack data on growth dynamics. To address this gap, we calibrated a Dynamic Energy Budget (DEB) model to data from the literature and field-based growth experiments in Rhode Island (U.S.A.). Environmental variables forcing model dynamics include temperature, irradiance, dissolved inorganic carbon concentration, and nitrate and nitrite concentration. The modeled estimates for field S. latissima blade length were accurate despite underestimation of early season growth. In some simulations, winter growth was limited by the rate at which the light-dependent reaction of photosynthesis, the first step of carbon assimilation, was performed. Nitrogen (N) reserves were also an important limiting factor especially later in the spring season as irradiance increased, although the low resolution of N forcing concentrations might restrict the model accuracy. Since this model is focused on S. latissima grown in an aquaculture setting with winter and spring growth, no specific assumptions were made to include summer growth patterns such as tissue loss or reproduction. The results indicate that this mechanistic model for S. latissima captures growth dynamics and blade length at the time of harvest, thus it could be used for spatial predictions of S. latissima aquaculture production across a range of environmental conditions and locations. The model could be a particularly useful tool for further development of sustainable ocean food production systems involving seaweed.
1. Introduction

Aquaculture is currently the fastest growing food production sector in the world and is likely to become the main seafood supply in the future (FAO, 2018). In open systems of fed species, aquaculture activities can cause concentrated fluxes of feces and feed wastage leading to eutrophication (Wu, 1995) and alteration of food webs (Herbeck et al., 2013). Open aquaculture systems composed of species that do not require supplemental feed or nutrients (i.e., primary producers and filter feeders) avoid these harms and instead can provide important ecosystem services such as removing dissolved organic and inorganic nutrients (Alleway et al., 2019).

Seaweeds are of particular interest as they mitigate hypoxia from terrestrial food production systems and even protect shorelines through dampening of wave energy (Duarte et al., 2017). Outside of these ecosystem services, growing seaweed has been proposed as a way to engage a wider public audience with climate change via offsetting carbon emissions (Froehlich et al., 2019). Seaweed aquaculture has the potential to generate net positive environmental and social impacts, but this industry has been traditionally concentrated in Asian countries (FAO, 2018).

The U.S. does not produce enough aquatic plants to even register in the global production statistics (< 0.1%; FAO, 2018). In the Northeast U.S., sugar kelp (Saccharina latissima) is a local species of recent interest for food, biofuel, bioremediation, and pharmaceutical products (Forbord et al., 2012). In a single season of aquaculture growth, S. latissima blades can grow up to 60-140 cm depending on the water depth, planting time, and nutrient availability (Handå et al., 2013). Oysters, however, are the most widely aquacultured species in coastal areas of the U.S (NMFS, 2018). The Eastern oyster (Crassostrea virginica) mostly grows during the summer months when water temperatures are above 15 °C and is in a state of relative dormancy in the winter (Dame, 1972). It has been suggested that cultivation of S. latissima could complement
oyster farming because of the differences in growing season with kelp growing mainly when water temperatures are below 15 °C. Therefore, kelp could provide an additional source of income without interfering with oyster production. This new industry, however, would benefit from production estimates in order to assess the biological and economic sustainability of *S. latissima* farming.

Bioenergetic models can provide such production estimates by studying energy fluxes and usage between the environment and the organism and within the organism. They constitute useful tools in the early development of an aquaculture activity to: assess the carrying capacity of a system before installing new farms (Grant et al., 2007; Filgueira et al., 2014), estimate production and feeding ration (Cho and Bureau, 1998), or to optimize integrated multi-trophic aquaculture (IMTA) systems (Ren et al., 2012). Forcing variables in bioenergetic modelling frameworks are of prime importance as they define the system response. In the case of *S. latissima*, blade growth is mainly influenced by irradiance, temperature, and nutrient concentration (Boden, 1979). Other factors such as wave action (Buck and Buchholz, 2005) and ambient light regime (Gerard, 1988) may also determine growth dynamics. In a simple predictive model, Petrell et al. (1993) estimated growth of *S. latissima* using a linear relationship with dissolved inorganic nitrogen concentration and a temperature correction. This model required an assumption that nitrogen dynamics are always limiting growth, thus ignoring the potential influence of irradiance. While integrating photosynthetic processes into a model can be challenging, mechanistic approaches may be more suited to capture the physiological response to environmental variability, especially in a changing environment (Denny and Helmuth, 2009).

Dynamic energy budget (DEB) theory provides a sound mechanistic basis for understanding an organism’s energetics, which is used to model the flow of mass and energy
through an organism from uptake to usage for maintenance, growth, reproduction, or excretion (Kooijman, 2010). This theory of metabolic organization provides a framework to examine the interactive effects of environmental nutrient concentrations and irradiance on an organism through parallel systems of nitrogen (N) and carbon (C) dynamics. Modeling autotrophs is a less common direction for the application of DEB theory. Thus, multiple reserves are necessary to accurately model matter and energy dynamics because of the different nutrient uptake pathways (Kooijman, 2010). Autotroph DEB models have been constructed for microalgae (Lorena et al., 2010, Livanou et al., 2019), phytoplankton-zooplankton interactions (Poggiale et al., 2010), calcification of a coccolithophore (Muller and Nisbet, 2014), and recently the macroalgae Ulva lactuca (Lavaud et al., 2020). Broch and Slagstad (2012) were the first to develop a dynamic bioenergetic model for S. latissima, borrowing concepts from DEB theory with the aim of creating a tool for optimizing aquaculture production of Norwegian S. latissima. These authors based their model structure on a Droop’s cell quota model completed by numerous empirical and allometric relationships to simulate growth of S. latissima, but this simplification did not increase parsimony (i.e., reduce the number of model parameters). Using a DEB framework, however, ensures theoretical coherence (i.e., mechanistic description of metabolic processes) and ease of model transference to other regions through less re-calibration.

Our objective with this study is to develop a bioenergetic model for S. latissima growth using the mechanistic properties of DEB theory. Specifically, we aim to calibrate the macroalga DEB model presented by Lavaud et al. (2020) to field data on kelp from Rhode Island (U.S.A.). The application of this model to another species from a different environment constitutes an important step in the validation of this model structure. The resulting model allows for growth
predictions based on environmental inputs and has the potential to support the sustainable
aquaculture industry, particularly with regard to site selection.

2. Methods

2.1 Dynamic Energy Budget model assumptions

The *S. latissima* model is based on a DEB model developed for sea lettuce by Lavaud et
al. (2020). The core structure of the *S. latissima* model tracks the uptake of carbon (C) and
nitrogen (N), their assimilation into specific reserves and allocation to growth or maintenance or
their excretion (Figure 1). The variables that depict the state of the model are the mass of
structure M_V (in mol V, moles of structure), Nitrogen reserve density m_{EN} (in mol N per mol V),
and Carbon reserve density m_{EC} (in mol C per mol V). The code for this model is freely
available at https://github.com/CVenolia/SugarKelpDEB.

A core assumption of DEB theory, strong homeostasis, maintains that reserve and
structure have constant chemical compositions (Kooijman, 2010). This does not mean that there
are always constant amounts of reserve and structure; rather, the amount of carbon, nitrogen,
hydrogen, and oxygen relative to each other within specific reserves or structures remains
constant.

Two substrates and associated reserves were considered in this *S. latissima* model: C and
N (nitrate and nitrite, collectively); other potential nutrients such as phosphorous or potassium
were dismissed based on the fact that in regions where nitrogen is not abundant year-round,
nitrogen availability is what drives accelerated growth in winter and early spring (Gagné et al.,
1982). Adding further reserves to the model would increase complexity by increasing the number
of state variables and parameters with potentially little to no increase in accuracy. On the C side of the model, since *S. latissima* and other algae use carbonic anhydrase to assimilate bicarbonate and convert it into carbon dioxide (Axelsson et al., 2000), we assumed that assimilating carbon dioxide directly was identical to assimilating carbon dioxide that was formed extracellularly from bicarbonate through a carbon concentrating mechanism.

Another assumption of this DEB model is that *S. latissima* is a V1-morph. In DEB theory, V1-morphs are organisms whose surface area is proportional to volume (Kooijman, 2010). *S. latissima* grows as a sheet in both length and width directions at the meristematic blade region near the stipe (Sjøtun, 1993). Variation in blade thickness over an individual blade and through time does not have a substantial impact on the surface area to volume ratio (Vettori and Nikora, 2017) to preclude the V1-morph assumption. Drag from water speed has been found to impact blade morphology (Buck and Buchholz, 2005) but this difference in appearance should not affect the surface area to volume ratio either.

Other assumptions were grounded in the fact that this model was used to determine aquaculture production, which is currently limited in time to November-May. Energy was not used for reproduction or maturity in this model, a simplification that allows for a more parsimonious model. There is evidence suggesting that kelp produces inhibitors that minimize the formation of reproductive tissue during the rapid growth phase (Buchholz and Lüning, 1999, Lüning et al., 2000). Moreover, only a small subset of blades show reproductive development by the time the aquaculture harvest occurs in spring, towards the end of the first period of rapid growth. Furthermore, the aquaculture season of *S. latissima* is set up to maximize growth while minimizing loss or degradation of tissues due to various stresses. Apical frond loss in kelp is correlated with temperature stress and wave action (Krumhansl et al., 2014), mechanical stress of
biofouling (Brown et al., 1997), and overall blade length (Sjøtun, 1993). A tissue loss function would be necessary to accurately model S. latissima growth year-round, however, the exact mechanism for this loss remains context-specific in the literature. Aquaculture farmers generally harvest kelp before biofouling begins, which maximizes harvestable blade length and product quality. Photoinhibition may occur in S. latissima when high light conditions are combined with high temperature conditions (Heinrich et al., 2012), but since we limit the application of our model to winter-spring seasons, photoinhibition was not accounted for. Photorespiration was not included either to simplify model dynamics (Kooijman, 2010).

2.2 Model structure

All the equations for this model are based on and detailed in Lavaud et al. (2020; Table 1). S. latissima blade length (L_w) was calculated via total dry weight (W_d) using an allometric relationship proposed by Gevaert et al. (2001; Table 1). The change in the three state variables (reserve density of C and N and mass of structure) over time is described by differential equations that were solved using the deSolve package (Soetaert et al., 2010) in R (R Core Team, 2019).

2.3 Model calibration

The parameters of the S. latissima DEB model were manually calibrated to fit simultaneously a combination of literature data and field data collected for this study (Table 2). Root mean square error (RMSE) was used as a measure of spread in the residuals for assessing the quality of model predictions compared to each observation data set.
2.3.1. Literature data

Information about the locations where literature studies were conducted was also included because there are multiple ecotypes of *S. latissima* (Gerard, 1988), which may influence their physiological response (Table 3). Due to a lack of local information on certain aspects of *S. latissima* life history traits, this model was calibrated with data across multiple ecotypes of *S. latissima*. The Arrhenius relationship parameters were estimated using a least squared non-linear regression on compiled physiological rates from the literature. Prior to the estimation, each data set was standardized by dividing by the averaged value found at the reference temperature (Table 3). The nitrate and nitrite uptake parameters, $J_{EN,Am}$, maximum volume specific nitrogen assimilation and K_N, half-saturation concentration for NO$_3^-$ and NO$_2^-$ uptake, were calibrated using nitrate uptake data from Espinoza and Chapman (1983). To match the dimensions used by these authors (μmol N$^{-1}$ g$_{DW}$$^{-1}$ h$^{-1}$) the volume-specific modeled N uptake was multiplied by M_v/W_d (structural mass divided by dry weight). Photosynthesis parameters, ρ_{PSU} photosynthetic unit (PSU) density, α_i specific photon arrival cross section, b_i binding probability of a photon to a free light synthesizing unit, and k_i dissociation rate of photosynthetic products, were calibrated using oxygen production data from Johansson and Snoeijs (2002).

Appropriate literature data for calibrating several model parameters were not available. For instance, air-based carbon dioxide uptake data for *S. latissima* (Ní Longphuirt et al., 2013) were examined to estimate dissolved inorganic carbon uptake but ultimately were rejected due to likely dissimilarity to submerged uptake. Carbon uptake parameters, maintenance rates, the yield factor of C reserve and the rejection flux were estimated during model testing so as to result in predicted length within the observed range in length data (Table 2). Other parameters such as the reserve turnover rates are difficult to compare to measurable physiological data, so these
parameters were set based on previously assumed values by Lorena et al. (2010) and Lavaud et al. (2020).

2.3.2. Field data

S. latissima was grown at four oyster farm sites from fall to spring in both 2017-2018 (Year 1) and 2018-2019 (Year 2). *S. latissima* seed was raised in aquaria from harvested local reproductive *S. latissima* tissue collected at Ft. Wetherill, RI, following the methods of Redmond et al. (2014), and seed lines were attached to ropes held in place by moorings at each of the farms. The growing sites were split between Narragansett Bay and Pt. Judith Pond, RI (Figure 2). Longlines of *S. latissima* were placed in duplicates at a depth of 1 m at all the growing sites. *S. latissima* growth, measured as length and width (cm), was monitored every 20-85 days using a subset of individuals harvested from the longline. The variability in monitoring timing was largely driven by the availability of farmers to assist with logistics as well as weather conditions.

Temperature data were collected every fifteen minutes at each site using HOBO® pendant loggers. Water samples were collected when *S. latissima* growth measurements were taken to determine the concentrations of nitrate and nitrite. In year 1, nitrate and nitrite concentrations were measured using a LACHAT Flow Injection Autoanalyzer (LACHAT, 2008, method detection limit 0.3 μM). In year 2, nitrate and nitrite concentrations were determined using an Astoria Pacific Model 303A Segmented Continuous Flow Autoanalyzer (Astoria-Pacific Inc, Clackamas, OR; Eaton et al., 1998, method detection limit 1.43 μM). Because Narragansett Bay S data were below the method detection limit for the analysis done in year 2, we replaced them with data from the nearby University of Rhode Island Graduate School of
Oceanography to better reflect reality; samples were run on an Astoria Analyzer (Reed and Oviatt, 2020, method detection limit of 0.1 µM).

2.4. Model forcing

The *S. latissima* model was forced with temperature, irradiance, dissolved inorganic carbon (DIC) concentration, and nitrate and nitrite concentration data on an hourly time step. Temperature recorded at fifteen-minute intervals at each site was averaged on an hourly basis. Due to difficulties with biofouling on irradiance loggers, we used radiative forcing from the North American Regional Reanalysis (Mesinger et al., 2006) to estimate photosynthetically active radiation (PAR, mol γ m⁻² h⁻¹ or E m⁻² h⁻¹) using this equation:

$$\text{PAR} = \text{NSW} \times \text{PAR}_{\text{frac}} \times C \times e^{(-k \times z)} \times 3600,$$

with NSW the net shortwave radiation (W m⁻²) at the water surface calculated from downward shortwave flux minus upward shortwave flux, PAR_{frac} the fraction of the incident flux usable for photosynthesis (dimensionless), C a conversion factor (µmol γ s⁻¹ W⁻¹), k extinction coefficient (m⁻¹), z line depth (m), and 3600 to convert from per second to per hour. We used a value of 4.56 µmol γ s⁻¹ W⁻¹ for C (Mõttus et al., 2011), a PAR_{frac} of 0.43 (Mõttus et al., 2011), a k of 0.46 m⁻¹ from past work in Narragansett Bay (Ullman & Codiga, 2010), and a z of 1 m as kelp lines were held at a depth of a minimum of 1 m. We used linear interpolation to create an hourly forcing from source data every three hours (Figure 3). All sites had the same base irradiance forcing in one year using this method. DIC concentration data were not collected in this study, so this forcing was estimated from other sources. The Pt. Judith Pond sites were held at a constant DIC value of 1.836 \(10^{-3}\) mol DIC L⁻¹ based on U.S. Environmental Protection Agency data from Ninigret Pond (J. Grear, unpublished data). The Narragansett Bay sites were held at a constant DIC value of 1.956 \(10^{-3}\) mol DIC L⁻¹ based on data from Brenton...
Point (Segarra, 2002). Nitrate and nitrite concentrations were also linearly interpolated on an hourly basis. State variable initial conditions were estimated based on approximate length and weight at planting of the kelp blades ($M_V = 0.00164 \text{ g}_{\text{DW}}$). Reserve densities had to be assumed but their impact on end results is limited to the first few days of the simulation. Initial m_{E_C} was set at 0.002 mol C mol V^{-1} and m_{E_N} at 0.01 mol N mol V^{-1} in year 1 and 0.01 and 0.09, respectively, in year two.

2.5 Sensitivity Analyses

To determine how each DEB parameter influenced simulation outputs, we analyzed the local sensitivity of the three state variables to model parameters using an L1 summary value of sensitivity from the R package FME (Soetaert and Petzoldt, 2010). The larger the L1 metric a parameter has the greater the sensitivity of the state variables to that parameter.

3. Results

3.1 Model calibration: Literature data

The Arrhenius relationship fit to the compiled literature data (Table 3) reflected maximum physiological rates at temperatures around 13 °C (Figure 4). The lower boundary of the temperature tolerance range in the Arrhenius relationship was 0 °C, and the upper boundary was 13.39 °C. The rather low value for the upper boundary indicates that the optimum temperature is close to the upper limit of the tolerance range for this species. However, the shape of the curve past this point implies that the effects of high temperatures on the metabolism of
sugar kelp appear gradually with increasing temperature. The adjusted R-squared for this relationship was 0.55 (p-value = 2.74 * 10^{-11}).

Using the nitrate uptake data from Espinoza and Chapman’s (1983) St. Margaret’s Bay site (Nova Scotia, Canada) provided estimates of maximum volume specific nitrate and nitrite assimilation of 1.5×10^{-4} mol N mol V$^{-1}$ h$^{-1}$ and a half-saturation concentration of 2.5×10^{-6} mol NO$_3^-$ and NO$_2^-$ L$^{-1}$ (Figure 5). The fit for the data collected at 18 °C was slightly better with a RMSE of 0.374 µmol N g$_{DW}$ h$^{-1}$ than the 9 °C data at 0.504 µmol N g$_{DW}$ h$^{-1}$.

For the oxygen production data (Johansson and Snoeijjs, 2002) used to calibrate the photosynthesis parameters, the values that had the lowest error around the data were a PSU density $\rho_{PSU} = 0.05$ mol PSU mol V$^{-1}$, specific photon arrival cross section α_i of 1 m2 mol PSU$^{-1}$, a binding probability of a photon to a free light synthesizing unit $\tilde{b}_f = 0.5$ (dimensionless), and a dissociation rate of photosynthesis products $\tilde{k}_l = 0.075$ mol γ mol PSU$^{-1}$ h$^{-1}$ (Figure 5). The resulting RMSE for this data set was 0.54 mg O$_2$ g$_{DW}$ h$^{-1}$. The maximum oxygen production rate of the model was approximately 4.95 mg O$_2$ g$_{DW}$ h$^{-1}$ (Figure 5).

3.2 Model calibration: Field data

In year 1, the maximum water temperature recorded at the sites was 16.7 °C in November and the minimum temperature was –1.72 °C in January (Figure 6). For year 2, the maximum temperature was 15.28 °C in May and the minimum temperature was –1 °C in January. Temperature changes were consistent across all four sites for both years.

The nitrate and nitrite concentration forcing variable had a lower resolution than the temperature forcing because of the linear interpolation between the N measurements (Figure 6). The mean N concentration at the Pt. Judith Pond sites was 4.42×10^{-6} mol NO$_3^-$ and NO$_2^-$ L$^{-1}$ (±
2.76 * 10^{-6}) and 2.20 * 10^{-6} mol NO_3^- and NO_2^- L^{-1} (± 2.99 * 10^{-6}) at the Narragansett Bay sites in year 1. For year 2, the mean N concentration at the Pt. Judith Pond sites was 1.01 * 10^{-6} mol NO_3^- and NO_2^- L^{-1} (± 2.11 * 10^{-6}) and 1.87 * 10^{-6} mol NO_3^- and NO_2^- L^{-1} (± 2.97 * 10^{-6}) at the Narragansett Bay sites.

3.3 Predicted growth and model dynamics

S. latissima grew quickly with mean elongation across all sites studied of 0.87 ± 0.63 cm d^{-1} in year 1 and 1.18 ± 0.62 cm d^{-1} in year 2 (Figure 7). End of season blade length varied, but no clear trend based on sites was observed (Table 4). The *S. latissima* DEB model generally underestimated growth observed in the early parts of the season (planting to end of March) but accurately predicted the length at harvest within one standard deviation of the observed mean length for the majority of sites (Figure 7). An exception to this trend was the first *S. latissima* line planted at Pt. Judith Pond South in year 1 for which final length was overestimated. The RMSEs for the model length prediction to the field length data ranged widely from 4.01 to 53.94 cm (Figure 7). Examining the reject fluxes from the growth SU indicate that the C reserve (carbohydrates) limited model growth after planting for greatly variable time spans across the sites, seasons, and lines (Figure 8). A growth limitation by C reserve may result from low C assimilation due to a low specific relaxation rate. Temperature seemed to be the main factor controlling C assimilation, as indicated by the greater similarity of the shape of the temperature correction to that of C assimilation than the shape of the seasonal trend of irradiance (Figure 9). N limitation seemed to have a strong role in controlling modeled *S. latissima* growth dynamics overall due to the proportion of time C was rejected from the growth SU.
3.4 Sensitivity Analysis

The parameters with the largest effects (>9000 L1 summary value of sensitivity functions) on the state variables were T_0, T_A, T_H, T_L, T_{AH}, T_{AL}, β_{ECV}, β_{EIC}, γ_{IC}, γ_{CO2C}, and α_l (Figure 10). The parameters \dot{J}_{ECAm}, ρ_{PSU} and \dot{b}_l had a moderate effect with L1 values ranging between 3000-7000. Finally, some parameters showed small but non-zero effects on the state variables, including: β_{ENV}, β_{EC}, β_{EN}, β_{CO2m}, and \dot{k}_l (Figure 10).

4. Discussion

Aquaculture development represents a key role in expanding U.S. sustainable food production and macroalgae can provide high returns when the proper growth conditions exist. Understanding and predicting the growth dynamics of *S. latissima* can provide the aquaculture industry with a powerful predictive tool for estimating production potential. This model is the first attempt to apply Dynamic Energy Budget (DEB) theory to a macroalga of the order Laminariales. The process-based model presented in this study allowed us to better understand growth limitations as they relate to the behavior of the model.

4.1 Growth Limitation

In several model simulations, predictions of early *S. latissima* growth seemed to indicate a limitation in carbon (C) assimilation due to a low modeled specific relaxation rate, j_l, by photosynthetic SU2 processing the light-dependent reactions of photosynthesis. There is some evidence that a lack of C reserve occurs in the field during winter due to lower irradiance; *S. latissima* individuals older than a year were shown to have a decrease in blade C content mid-winter suggesting consumption of stored carbohydrates (Sjøtun, 1993). New sporophytes would
not have this carbohydrate pool to draw upon and would exclusively depend on photosynthesis to acquire C. The decrease in C content observed by Sjøtun (1993) suggests that C dynamics may be limiting *S. latissima* growth, but substrate limitation was not directly examined by this author. In simulations where irradiance was the initial limiting factor for growth, the early season model underestimation of field growth may reflect an outsized impact of the temperature correction of \(\dot{k}_1 \) on the specific relaxation rate, \(j_1 \), in comparison to irradiance. As with many DEB parameters, \(\dot{k}_1 \) is difficult to estimate directly based on empirical data and our assumption of dependence on temperature as in other algae (Kooijman, 2010; Lavaud et al., 2020) may not be as relevant to *S. latissima*. As ocean temperature seasonal trends trail behind irradiance changes (Brady-Campbell et al., 1984), *S. latissima*’s early season growth could be driven by this early season increase in irradiance rather than water temperature change. More data are necessary to confirm why the *S. latissima* DEB model underestimates winter growth.

Other than an increase in irradiance, day length could also impact seasonal growth patterns. Broch and Slagstad’s (2012) *S. latissima* model used the rate of change of day length in a photoperiodic effect function to mimic growth seasonality. These authors relied on the hypothesis that *S. latissima* is a “seasonal anticipator” with endogenous circadian rhythms (Kain, 1989). Seasonal anticipators are posited to grow strategically in response to a trigger. Other kelps such as *Laminaria hyperborea* and *Laminaria digitata* have been shown to have free-running seasonal growth patterns, which suggests control by endogenous circadian rhythms (Schaffelke and Lüning, 1994). Species-specific evidence for this circadian hypothesis is lacking including the mechanism for what would trigger *S. latissima*’s photoperiodic response. If this is the case, substrate uptake or reserve mobilization parameters may be adjusted in the model in response to a trigger to temporarily favor early winter growth.
Another possible reason for underestimation of early season C dynamics may be a lack of energy gain at night. *S. latissima*’s carbon dioxide exchange rate is not closely correlated with irradiance because carbon dioxide uptake by the alga continues into the dark (Mortensen, 2017). On average, 11% of *S. latissima*’s carbon fixation happens in the dark (Kremer and Markham, 1979). The linkage between the light-dependent and light-independent reactions is modeled in our study as an immediate transference. In other words, when there is no irradiance input, the assimilation of carbohydrates to the C reserve is zero. However, adding this layer of physiological accuracy could reduce model efficiency without increasing predictive capacity.

In some instances, N was the limiting factor to growth, as shown by more rejected C by the growth SU, for example, in Pt. Judith Pond sites in Dec and Jan of year 1, resulting in lower predicted length as compared to field observations. The low resolution of N forcing could limit our interpretation of the results, but our N data show general agreement with long-term monitoring at the University of Rhode Island Graduate School of Oceanography (Reed and Oviatt, 2020). The seasonal dynamics of N in Narragansett Bay matches that of many sites around New England with higher concentrations of N in the October-March and reduced summer N concentrations (Townsend 1991, Reed and Oviatt, 2020). Nitrogen has been well-documented as a major force limiting primary production across the ocean (Duce et al., 2008). N limitation of *S. latissima* growth may be a reasonable expectation later in the year as inorganic N availability is thought to facilitate late winter and early spring *S. latissima* growth (Ahn et al., 1998).

To increase the ability to accurately understand growth limitation with this DEB model, localized N uptake data in response to changing N concentrations would be useful. Ecotypic differences in N nutrition have been observed both in Nova Scotia (Canada, Espinoza and Chapman, 1983) and when comparing Long Island Sound (New York) kelps with kelps from
Maine (Gerard, 1997). In this study, Espinoza and Chapman’s (1983) N uptake data from St. Margaret’s Bay was chosen for calibration over their Bay of Fundy data because the April-November seasonal depletion of nitrate was more similar to Narragansett Bay conditions than the year-round nitrate replete conditions of the Bay of Fundy. Kelp individuals from St. Margaret’s Bay also had greater nitrate accumulation ability (Espinoza and Chapman, 1983). The seasonal dissolved inorganic nitrogen patterns were comparable for the Long Island Sound and Maine kelps that Gerard (1997) analyzed, but the Long Island Sound plants (geographically closer to our kelp from Narragansett Bay) accumulated larger N reserves, which allowed for a ramping up of photosynthetic component production. Such ability to store nitrogen over winter months has been documented (Nielsen et al., 2014) and may explain the observed pattern of C reserve limitation in our model. Year-long simulations would most likely provide different conclusions when N availability in the environment decreases (Reed and Oviatt, 2020).

The chemical composition of available N for assimilation may have an effect on N limitation. Nitrate was the primary N source used in this model primarily due to lack of complete ammonium data to include in the forcing. Including ammonium, however, may allow for more accurate predictions of growth dynamics as ammonium has been hypothesized to be a more efficient N source for macroalgae especially in low light conditions because it may be assimilated passively through diffusion (Harrison and Hurd, 2001). One argument for leaving out ammonium is to simplify dynamics, as a different substrate composition would require another reserve pool, although pools of different N forms may be combined and uptake rates for different N sources averaged. Another reason is that S. latissima has been shown to have a higher maximum uptake of nitrate compared to ammonium: ammonium saturation was observed at concentrations of 10 μM whereas nitrate saturation was not observed until 30 μM (Ahn et al.,
The greater variation in nitrate uptake could cause nitrate to have a more important role in shaping *S. latissima* growth dynamics. The caveat to using these rates to understand dynamics broadly is that kelp individuals used in this study came from ammonium rich and nitrate poor habitat (Ahn et al., 1998), which may have some effect on the reported uptake rates.

4.2 Sensitivity Analysis

The high sensitivity of the state variables to the temperature related parameters is a logical outcome of the central role of temperature in DEB theory. Since the temperature correction is applied to such a large number of rates in the organism, the high sensitivity to these values is reasonable. It is also an argument for caution in regional calibration of the Arrhenius relationship. The sensitivity of the *S. latissima* model to the fraction of rejection flux incorporated back in i-reserve (κ_{E_i}) contrasts with the lack of sensitivity of Lorena et al. (2010)’s microalgae model to the same parameter. Different metabolic pathways, storage capacities, and efficiencies might be responsible for these differences between a phytoplankton species and a macroalgae. More experimental work focusing on the dynamics of internal and external N concentration in controlled settings should help confirm the calibration of this parameter. The sensitivity of the model to the yield factor of C reserve on photons and on CO$_2$ (y_{IC} and y_{CO_2C} respectively), reflects the generality of photosynthesis reactions; a change in these parameters would involve important modifications of the physiological processes involved in photosynthesis. Since these processes are well known and established, it reinforces our confidence in the model. The high sensitivity of the model to the yield factor of C reserve to structure ($y_{E_C,i}$) in comparison to the small but nonzero impact of the yield factor of N reserve to structure ($y_{E_N,i}$) might be reflective of the greater amount of C reserve required by the chemical
composition of the structure. This greater proportion of C may also be the reason the majority of
the impactful parameters are related to C dynamics. The state variables had a small sensitivity to
reserve turnover parameters, which calibration may be challenging due to the difficulty to relate
these abstract parameters to observed data. It is, therefore, encouraging that the sensitivity to
these values was low. This analysis should increase our overall confidence in the values of the
calibrated parameters and the reliability of the model as the most sensitive parameters are those
in which we can have highest assurance.

4.3 Model Application

Limitations to broader geographic use of this parameter set center around the plasticity of
S. latissima and the existence of ecotypes in this species. The differentiation of ecotypes occurs
when individuals have an acclimation range related to their habitat of origin (Gerard, 1988). For
instance, *S. latissima* individuals from New York have been shown to have a different
physiological response to temperature in a lab setting than individuals from Maine (Gerard,
1988). In the context of this study, Narragansett Bay (RI, U.S.A.) is located towards the southern
boundary of *S. latissima* distribution range (Taylor, 1972); kelps from this location likely have
different physiological rates than in northern neighboring states. The existence of multiple
ecotypes of this species suggests that some parameters, such as the temperature parameters or
maximum assimilation rates of substrates, require regional adjustment, particularly in the Arctic.
Additionally, the model assumption regarding the proportionality of surface area to volume
impedes prediction of blade shape plasticity, which is a characteristic of *S. latissima* related to
drag (Buck and Buchholz, 2005). Since the blade thickness and amount of blade ruffling could
impact the relationship between surface area and volume, some adjustments to the model may be
warranted in regions where blade plasticity results in thicker thalli as the surface area to volume relationship would be impacted. Determining a mechanism for how blade type changes in response to hydrodynamic conditions would provide a clearer picture of overall growth dynamics.

Further research on the mechanisms for frond loss, blade plasticity, and regional parameter information have the potential to improve this DEB model. A better understanding of the physiological cause for apical frond loss would allow this process to be included in mechanistic models in a more meaningful way than modeling erosion as a response to one correlated variable such as length or age. Aging mechanisms within DEB theory (Kooijman, 2010), based on the production of harmful compounds may also be of interest to model frond loss. Finally, underwater carbon dioxide uptake data and more regionally appropriate oxygen production data in response to variable irradiance would be useful to better calibrate parameters linked to *S. latissima* photosynthesis.

Our model establishes a baseline for *S. latissima* DEB parameters and further testing of the model equations from Lavaud et al. (2020). This tool facilitates analyzing local growth limitations as they relate to modeled responses to changing environmental conditions. Our *S. latissima* DEB model is a first step towards estimating kelp aquaculture production in the U.S.A. In future work, this *S. latissima* DEB model could be coupled with a DEB model for *C. virginica* (Lavaud et al., 2017) and the Regional Ocean Modeling System (ROMS) with a Carbon Silicate Nitrogen Ecosystem (CoSiNE) model (Chai et al, 2009) to predict growth potential at sites in the Northeastern U.S.A. Supporting macroalgae aquaculture is an important avenue to work towards the vital goals of feeding a growing human population and while combatting climate change.
Acknowledgements

This study would not have been possible without the valuable contributions of the aquaculture farmers working with us to grow kelp for two years: Cindy and John West of Moonstone Oysters, Russ and Thomas Blank of Rome Point Oyster Farm, Trip Whilden of Wickford Oyster Co, and Perry Russo of Matunuck Oyster Farm. Dave Ullman and Chris Kincaid provided assistance in the initial project development. Thomas Guyondet facilitated collaborations around this project. Dawn Outram at the Marine Science Research Facility at URI’s Narragansett Bay Campus and Kelly Addy conducted water analyses. Candace Oviatt and Laura Reed shared their nitrogen data, which is funded by EPA, NOAA-CHRP and RI DEM. T. Ben-Horin provided assistance collecting reproductive kelp. J. Barnes, A. Barry, R. Derouin, E. Ferrante, I. Gray, K. Hannibal, C. Jenkins, A. Mauk, L. Sebesta, and A. Wetzel provided lab and field assistance. S. McWilliams, D. Ullman, M. Gomez-Chiarri, L. Josephs, and K. Gorospe provided feedback on previous versions of the manuscript.

Funding: This work is supported by the National Oceanic and Atmospheric Administration Saltonstall-Kennedy grant [17GAR008], NSERC grant [497065-2016], the National Science Foundation under EPSCoR Cooperative Agreement #OIA-165522 and the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Hatch Formula project 1011478.

Table 1. Model equations with environmental conditions: T = temperature (K), I = irradiance (mol γ m⁻² h⁻¹), DIC = dissolved inorganic carbon (mol DIC L⁻¹), and N = nitrate and nitrite concentration (NO₃⁻ and NO₂⁻ L⁻¹).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_T = \exp\left(\frac{T_{AL}}{T_0} - \frac{\bar{T}A}{T}\right)) [1 + \exp\left(\frac{T{AL}}{T_0} - \frac{\bar{T}A}{T}\right)] [1 + \exp\left(\frac{T{AL}}{T} - \frac{T_{AH}}{T_H}\right)] [1 + \exp\left(\frac{T_{AH}}{T} - \frac{T_{AH}}{T_0}\right)]</td>
<td>Temperature correction</td>
</tr>
<tr>
<td>(J_{EN} = J_{ENm}C_T \frac{[N]}{[N] + K_N})</td>
<td>Specific assimilation rate of N</td>
</tr>
<tr>
<td>(J_{CO_2} = \frac{J_{CO_2m}C_T \frac{[DIC]}{[DIC] + K_C}}{[DIC] + K_C})</td>
<td>Specific CO₂ uptake rate from photosynthetic SU1</td>
</tr>
<tr>
<td>(J_1 = \frac{\rho_{PS} \lambda I_\alpha_1}{1 + \frac{I_\alpha_1}{k_1 C_T}})</td>
<td>Specific relaxation rate from photosynthetic SU2</td>
</tr>
<tr>
<td>(J_{O2} = \frac{M_V}{W} J_1 Y_1 O_2 W_{O2})</td>
<td>Oxygen production rate</td>
</tr>
<tr>
<td>(J_{EC} = \left(\frac{1}{J_{ECm}C_T \frac{1}{1 + \frac{1}{J_1/Y_1C}} + \frac{1}{J_{ECm}C_T \frac{1}{1 + \frac{1}{J_1/Y_1C}}}}\right)^{-1})</td>
<td>Specific assimilation rate of C from photosynthetic SU3</td>
</tr>
<tr>
<td>(J_{EC} = m_{EC}(k_{EC}C_T - \bar{r}))</td>
<td>Specific catabolic flux of N or C reserve</td>
</tr>
<tr>
<td>(\dot{r} = \frac{1}{M_V} \frac{dM_V}{dt})</td>
<td>Net specific growth rate</td>
</tr>
<tr>
<td>(J_{EC}^M = \min(J_{EC}, J_{EM}C_T))</td>
<td>Specific maintenance flux from N or C reserve</td>
</tr>
<tr>
<td>(J_{EC} = J_{EC} - J_{EC}^M)</td>
<td>Specific growth flux from N or C reserve</td>
</tr>
<tr>
<td>If (J_{EC}^M < J_{ECm}C_T)</td>
<td>Specific maintenance flux from structure</td>
</tr>
<tr>
<td>(J_{EM} = \sum_t \left(J_{EM}^t - J_{EM}^t C_T - J_{EM}^t \right)Y_{EMV})</td>
<td>Specific maintenance flux from structure</td>
</tr>
</tbody>
</table>
\[j_{VG} = \left[\sum_i \left(\frac{j_{E_i} y_{E_i}}{j_{VG}} \right)^{-1} \left(\frac{j_{E_i} y_{E_i}}{j_{VG}} \right)^{-1} \right]^{1/4} + j_v^M \]
Gross specific growth rate

\[J_{Eli} = \frac{j_{Ei}}{j_{VG}} \]
Specific flux of rejected C or N from growth SU

\[\frac{d}{dt} m_{E_i} = j_{E_i} - j_{E_i} C + \kappa_{E_i} J_{E_i} - \dot{m}_{E_i} \]
Dynamics of the N or C reserve

\[\frac{d}{dt} M_V = \dot{r} M_V \]
Dynamics of structural mass

\[W_d = (w_v + m_{E_i} w_{EC} + m_{Ea} w_{EN}) M_V \]
Whole *S. latissima* blade dry weight

\[L_w = \left(\frac{W_d}{3.87 \times 10^{-3}} \right)^{1/109} \]
Physical length

Table 2. *S. latissima* DEB model parameters and units resulting from fitting the model to the compiled literature and field data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter description</th>
<th>Parameter Units</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j_{E_i A m})</td>
<td>Maximum volume specific nitrogen assimilation</td>
<td>mol N mol V(^{-1}) h(^{-1})</td>
<td>(1.5 \times 10^{-4})</td>
<td>Fitted from data by Espinoza and Chapman (1983)</td>
</tr>
<tr>
<td>(K_N)</td>
<td>Half-saturation concentration for (\text{NO}_3^-) and (\text{NO}_2^-) uptake</td>
<td>mol (\text{NO}_3^-) and (\text{NO}_2^-) L(^{-1})</td>
<td>(2.5 \times 10^{-6})</td>
<td>Fitted from data by Espinoza and Chapman (1983)</td>
</tr>
<tr>
<td>(j_{CO_2 m})</td>
<td>Maximum volume specific CO(_2) uptake rate</td>
<td>mol CO(_2) mol V(^{-1}) h(^{-1})</td>
<td>0.0075</td>
<td>This study</td>
</tr>
<tr>
<td>(K_C)</td>
<td>Half-saturation concentration for CO(_2) uptake</td>
<td>mol CO(_2) L(^{-1})</td>
<td>(4 \times 10^{-7})</td>
<td>This study</td>
</tr>
<tr>
<td>(\rho_{PSU})</td>
<td>Photosynthetic unit (PSU) density</td>
<td>mol PSU mol V(^{-1})</td>
<td>0.5</td>
<td>Fitted from data by Johansson and Snoeijs (2002)</td>
</tr>
<tr>
<td>(b_I)</td>
<td>Binding probability of a photon</td>
<td>-</td>
<td>0.5</td>
<td>Fitted from data by</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Units</td>
<td>Value</td>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>α_i</td>
<td>Specific photon arrival cross section</td>
<td>m2 mol PSU$^{-1}$</td>
<td>1</td>
<td>Fitted from data by Johansson and Snoeijs (2002)</td>
</tr>
<tr>
<td>k_i</td>
<td>Dissociation rate of photosynthetic products</td>
<td>mol γ mol PSU$^{-1}$ h$^{-1}$</td>
<td>0.075</td>
<td>Fitted from data by Johansson and Snoeijs (2002)</td>
</tr>
<tr>
<td>γ_{IC}</td>
<td>Yield of C reserve per photon</td>
<td>mol γ mol C$^{-1}$</td>
<td>10</td>
<td>Lavaud et al. (2020)</td>
</tr>
<tr>
<td>γ_{CO_2C}</td>
<td>Yield of C reserve per CO$_2$</td>
<td>mol CO$_2$ mol C$^{-1}$</td>
<td>1</td>
<td>Lavaud et al. (2020)</td>
</tr>
<tr>
<td>γ_{LO_2}</td>
<td>Yield factor of photon to O$_2$</td>
<td>mol O$_2$ mol γ^{-1}</td>
<td>0.125</td>
<td>Lavaud et al. (2020)</td>
</tr>
<tr>
<td>j_{ECAm}</td>
<td>Maximum volume specific carbon assimilation</td>
<td>mol C mol V$^{-1}$ h$^{-1}$</td>
<td>0.282</td>
<td>This study</td>
</tr>
<tr>
<td>k_{EN}</td>
<td>N reserve turnover rate</td>
<td>h$^{-1}$</td>
<td>0.04</td>
<td>Lavaud et al. (2020)</td>
</tr>
<tr>
<td>k_{EC}</td>
<td>C reserve turnover rate</td>
<td>h$^{-1}$</td>
<td>0.02</td>
<td>Lavaud et al. (2020)</td>
</tr>
<tr>
<td>j_{ENM}</td>
<td>Volume specific maintenance cost paid by N reserve</td>
<td>mol N mol V$^{-1}$ h$^{-1}$</td>
<td>4 * 10$^{-6}$</td>
<td>This study</td>
</tr>
<tr>
<td>j_{ECM}</td>
<td>Volume specific maintenance cost paid by C reserve</td>
<td>mol C mol V$^{-1}$ h$^{-1}$</td>
<td>1 * 10$^{-6}$</td>
<td>This study</td>
</tr>
<tr>
<td>γ_{ENV}</td>
<td>Yield factor of N reserve to structure</td>
<td>mol N mol V$^{-1}$</td>
<td>0.04</td>
<td>Lorena et al. (2010)</td>
</tr>
<tr>
<td>γ_{ECV}</td>
<td>Yield factor of C reserve to structure</td>
<td>mol C mol V$^{-1}$</td>
<td>1</td>
<td>This study</td>
</tr>
<tr>
<td>κ_{E_i}</td>
<td>Fraction of rejection flux incorporated back in i-reserve</td>
<td>-</td>
<td>0.9</td>
<td>This study</td>
</tr>
<tr>
<td>T_A</td>
<td>Arrhenius temperature</td>
<td>K</td>
<td>6314.3</td>
<td>This study</td>
</tr>
<tr>
<td>T_0</td>
<td>Reference temperature</td>
<td>K</td>
<td>293.15</td>
<td>This study</td>
</tr>
</tbody>
</table>
\(T_H \) Upper boundary of temperature tolerance

\(T_L \) Lower boundary of temperature tolerance

\(T_{AH} \) Arrhenius temperature outside

\(T_{AL} \) Arrhenius temperature outside

\(w_v \) Molar weight of structure

\(w_{EC} \) Molar weight of C reserve

\(w_{EN} \) Molar weight of N reserve

\(w_{O_2} \) Molar weight of \(O_2 \)

Table 3. Data from literature and this study used to calibrate the *S. latissima* DEB model.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Data</th>
<th>Experimental conditions</th>
<th>Time period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espinoza and Chapman</td>
<td>Nova Scotia, Canada</td>
<td>(\text{NO}3^-) uptake ((\mu g \text{ N g}\text{DW}^{-1} \text{ h}^{-1}))</td>
<td>(T = 9) and (18) °C ([\text{N}] = \text{from 2.5 to 88 * 10}^{-6} \text{ M NO}_3^-)</td>
<td>Discrete measurements</td>
</tr>
<tr>
<td>Johansson and Snoeijss</td>
<td>Sweden</td>
<td>Measured (O_2) evolution ((\mu mol \text{ O}2 \text{ kg}\text{DW}^{-1} \text{ s}^{-1}))</td>
<td>(T = 14) °C (I = 0-900 \mu \text{E m}^{-2} \text{ s}^{-1})</td>
<td>Discrete measurements</td>
</tr>
<tr>
<td>*Davison (1987)</td>
<td>Germany</td>
<td>Photosynthesis rates ((\mu mol \text{ C g}_\text{ww}^{-1} \text{ h}^{-1}))</td>
<td>(T = 0-30) °C with (5) °C intervals (I = 200 \mu \text{E m}^{-2} \text{ s}^{-1})</td>
<td>Discrete measurements</td>
</tr>
<tr>
<td>*Fortes and Lünings</td>
<td>Germany</td>
<td>Specific growth rate ((%) \text{ d}^{-1})</td>
<td>(T = 0, 5, 10, 15,) and (20) °C (I = 70 \mu \text{E m}^{-2} \text{ s}^{-1})</td>
<td>7 days</td>
</tr>
</tbody>
</table>
Germany, UK, France, and Norway

*Bolton and Lüning (1982)
Specific growth rate
T° = 0, 5, 10, 15, 20, and 23 °C
I = 50 µE m⁻² s⁻¹
7 days

*Davison and Davison (1987)
Relative growth rate
T = 0, 5, 10, 15 and 20 °C
I = 60 µE m⁻² s⁻¹
1 month

Rhode Island, USA

This study
Blade length (cm) and N:C ratio (mol mol⁻¹)
T = 1.5-20 °C
[N] = 0-1 * 10⁻⁵ mol NO₃⁻ and NO₂⁻ L⁻¹
[C] = 1.836 * 10⁻³ mol DIC L⁻¹
[NO₃⁻] = 0-1 * 10⁻⁵ mol NO₃⁻ and NO₂⁻ L⁻¹
[N] = 0-1 * 10⁻⁵ mol NO₃⁻ and NO₂⁻ L⁻¹
[C] = 1.836 * 10⁻³ mol DIC L⁻¹

I = 0-2 * 10⁶ daily µE m⁻² h⁻¹

*Used only to build the Arrhenius relationship.

Table 4. Length of *S. latissima* blades in cm (± SD) at the end of the growing season in each site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narragansett Bay North</td>
<td>67.9 (± 22.6)</td>
<td>50.5 (± 13.0)</td>
</tr>
<tr>
<td>Narragansett Bay South, Line 1</td>
<td>133.4 (± 78.8)</td>
<td>65.3 (± 22.5)</td>
</tr>
<tr>
<td>Narragansett Bay South, Line 2</td>
<td>73.2 (± 17.6)</td>
<td>20.0 (± 6.8)</td>
</tr>
<tr>
<td>Pt. Judith Pond North, Line 1</td>
<td>74.8 (± 18.3)</td>
<td>80.1 (± 23.1)</td>
</tr>
<tr>
<td>Pt. Judith Pond North, Line 2</td>
<td>81.0 (± 34.8)</td>
<td>46.9 (± 14.7)</td>
</tr>
<tr>
<td>Pt. Judith Pond South, Line 1</td>
<td>85.9 (± 37.1)</td>
<td>63.8 (± 26.3)</td>
</tr>
<tr>
<td>Pt. Judith Pond South, Line 2</td>
<td>87.3 (± 32.0)</td>
<td>47.1 (± 10.9)</td>
</tr>
</tbody>
</table>
Figure 1. *S. latissima* DEB model conceptual framework (adapted from Lavaud et al., 2020).

The large oval represents the algae and the surrounding area is its environment. Grey rounded rectangles are the model forcing variables. White rectangles are the state variables of the model, representing the main pools of mass in the modeled organism. Circles are synthesizing units, processing key metabolic transformations. Dotted arrows represent fluxes of mass leaving the main model system either through excretion or use in maintenance. Grey arrows depict where the temperature correction is applied to a reaction.
Figure 2. Map of growing sites (triangles) for *S. latissima* on Rhode Island oyster farms.

Figure 3. Irradiance forcing used in all sites for year 1 (a) and year 2 (b) of the field study converted from the radiative forcing from the North American Regional Reanalysis.
Figure 4. Arrhenius relationship for *S. latissima* estimated using multiple growth and photosynthesis datasets from: Bolton and Lüning (1982; squares; orange for kelp from France, yellow for Norway, purple for Germany, green for the UK), Fortes and Lüning (1980; blue diamonds), Davison and Davison (1987; red asterisk), and Davison (1987 circles; blue for sporophytes rearing temp 0 °C, orange for 5 °C, yellow for 10 °C, purple for 15 °C, and green for 20 °C). The adjusted R-squared statistic for the fit of the curve to the data points is 0.551 (p-value = 2.74 10^{-11}).
Figure 5. Predicted (lines) and observed (points) a) N uptake from Espinoza and Chapman (1983) at 9 °C (black circles) and 18 °C (grey diamonds) and b) Oxygen production from Johansson and Snoeijis (2002).
Figure 6. Measured temperature (°C; a,b) and nitrate and nitrite concentrations (µmol L⁻¹; c,d) from year 1 (left panels) and year 2 (right panels). Narragansett Bay lines are in dark blue (North site 1), purple (South site 1), and light blue (South site 2). Pt. Judith Pond lines are in orange (North site 1), yellow (North site 2), brown (South site 1) and black (South site 2). Observed N concentrations are indicated by black dots.
Figure 7. *Saccharina latissima* blade length (cm) during year 1 (top row) and year 2 (bottom row). Dots and diamonds with error bars depict the mean observed length from the field data and their standard deviation, respectively. Lines are the predicted length from the *S. latissima* DEB model. Lines and dots in black are the first *S. latissima* line planted at a site, and lines and diamonds in grey depict the second *S. latissima* line planted later in the year.
Figure 8. Rejected fluxes of C (a,b) and N (c,d) from the growth SU back to reserves at Pt. Judith Pond in year 1 (left panels) and year 2 (right panels). Black is for the North *S. latissima* line and the grey is for the South line on all plots.
Figure 9. Temperature correction factor (a), irradiance (b), specific relaxation rate from photosynthetic SU2 (c) and carbon assimilation rate resulting from photosynthetic SU3 (d) at Pt. Judith Pond during year 2. Black is for the North S. latissima line and the grey is for the South line.
Figure 10. Graphic presentation of the results of the sensitivity analysis of the state variables Z_I, Z_J, and k_l to model parameters as measured by the L1 sensitivity function.