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Examination oBathymodiolus childressi nutritional sources, isotopic niches, and food-web

linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models.
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S.W., Ruppel, C.
ABSTRACT

Chemosynthetic environments support distinct benthic communities capable of utilizing
reduced chemical compounds for nutrition. Hundreds of methane seeps have been documented
along the U.S. Atlantic margin (USAM), and detailed investigations at a few seeps have revealed
distinct environments containing mussels, microbial mats, authigenic carbonates, and soft
sediments. The dominant musdgdthymodiolus childressi, contains methanotrophic
endosymbionts but is also capable of filter feeding and stable isotope analysis (SIA) of mussel-
shell periostracum suggests that these mussels are mixotrophic, assimilating multiple food
resources. However, it is unknown whether mixotrophy is widespread or varies spatially and
temporally. We used SIAEC, 5°N, andd**S) and an isotope mixing model (MixSIAR) to
estimate resource contributionBochildressi and characterize food webs at two seep sites
(Baltimore Seep; 400 m and Norfolk Seep; 1500 m depths) along the USAM, and applied a

linear mixed-effects model to explore the role of mussel population density and tissue type in
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influencing SIA variance. After controlling fordation and temporal variation, isotopic
variability was a function of proportion of live esels present and tissue type. Isotopic
differences were also spatially discrete, possiéliecting variations in the underlying carbon
source at the two sites. Low mus8EIC values (~ -63%o) are consistent with a dependence
microbial methane. However, MixSIAR results reveateixotrophy for mussels at both sites,
implying a reliance on a mixture of methane andigphankton-derived particulate organic
material. The mixing model results also reveal pafon density-driven patterns, suggesting
that resource use is a function of live mussel dbone. Mussel isotopes differed by tissue type,
with gill having the lowes8™N values relative to muscle and mantle tissuese@as mass
balance equations, up to 79% of the dissolved amaogcarbon (DIC) of the pore fluids within
the anaerobic oxidation of the methane zone ivddrirom methane and available to fuel upper
slope deep-sea communities, such as fidhgso(mmina rugosa andSymphurus nebul osus),
echinoderms@dontaster robustus, Echinus wallis, andGracilechinus affinis), and shrimp,
(Alvinocaris markensis). The presence of these seeps thereby increaseséhall trophic and
community diversity of the USAM continental slofg&gven the presence of potentially hundreds
of seeps within the region, primary productioneds may serve as an important, yet

unguantified, energy source to the USAM deep-sea@mment.

Key words: stable isotopes, MixSIABathymodiolus childressi, methane seeps,

chemosynthesis, mixotrophy, trophic ecology

Introduction:
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Hundreds of methane seeps have been discoveraglithlon).S. Atlantic margin (USAM)
north of Cape Hatteras (Skarke et al., 2014). §iecific characterizations at a few of the newly
discovered seeps (Quattrini et al., 2015; Rost,€2@15; Prouty et al., 2016a; Bourque et al.,
2017; McVeigh et al., 2018) revealed communitiemposed of microbial mats and mussel beds
that are patchily distributed and range in sizenfseveral cm (small mats and few individuals of
mussels) to large expanses of mussel beds (Quttiah, 2015; CSA Ocean Sciences Inc et al.,
2017). These seep inhabitants are associated peétifie locations of gas emissions (Ruppel et
al. 2017; McVeigh et al., 2018). The dominant missaeU.S. Atlantic seeps are from the
bathymodiolin group, known to harbor endosymbictiemoautotrophs and methanotrophs in
their gills (Childress et al., 1986; Cavanaughl etl®87; Duperron et al., 2009). They are also
able to filter feed (Page et al., 1990; 1991), ptadly providing mussels with essential nitrogen
(Pile and Young, 1999). Mussel sizes varied withese beds, suggesting continual recruitment
of mussels over time (Quattrini et al., 2015). WdasBathymodiolus heckerae occurs at the
Blake Ridge seep (Van Dover et al., 20@)childress was recently identified as the dominant
mussel from two seep sites near Baltimore and Modanyons (Coykendall et al. 2019).
Bathymodiolus childressi hosts methanotrophic endosymbionts that fix megh{@nooks et al.,
1987; Duperron et al., 2007, 2013; Kellermann gt28l12), as well as potentially hosting sulfur-
oxidizing thiotrophic symbionts (Assie et al., 201dowever, the relative role of
chemoautotrophy, methanotrophy, and heterotroplgy, (€nergy from filter feeding) for U.S.
Atlantic populations oB. childressi mussels is unknown.

Mussel species and their presence/absence, abunaarttspatial extent provide clues about
the source and persistence of reduced compourgisr(ethane, sulfur) to fuel endosymbionts

in the local environment (e.g., Duperron et al120.aming et al., 2018), as well as larger-scale
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processes that influence carbon and nitrogen gBelsker et al., 2010). Therefore, seep bivalves
are associated with specific habitats, and theiribution is influenced by physico-chemical
conditions (Van Dover, 2000; Heyl et al., 2007; Bupn et al., 2013). Dietary sources of sulfur
for these mussels are unknown (Dattagupta et@04)2 butB. childressi sulfur isotopes from

Gulf of Mexico (GOM) seeps suggest seawater su(fitf& ~ 20%.) as a dietary source (Brooks
et al., 1987; Riekenberg et al., 2016). Recent vibgricoykendall et al. (2019) confirmed the
presence of a single Type 1 methanotrophic symigiéammoproteobacteria) within mussel gill
tissue from Baltimore and Norfolk seeps. Howewaussels within the Norfolk seeps also
contained epibiotic sulfur-oxidizing epsilonprotackeria (Coykendall et al. 2019), consistent
with sulfur-oxidizing epsilonproteobacterial seqoes inBathymodiolus species from the GOM
(Assie et al., 2016) and depleted §ifS values from a few USAM mussels (Prouty et al,
2016a). Therefore, the degree to which sulfur @eidi provide energy to the mussels is
unknown (Assie et al., 2016), may be site speddint could be related to mussel health
condition (e.g., Dattagupta et al., 2004). The alleeep trophic ecology and important food
resources utilized by mussels and seep associdtessa newly discovered seeps have yet to be
examined.

Stable isotope analysis (SIA) is useful for disaggrcomplex food webs, particularly in
remote environments like the deep sea and partigwdiseeps (see reviews by Levin, 2005,
Van Dover, 2007, Levin et al., 2016). Photosynttaly derived material has a distiri¢tC
range (-25 to -15%.), whereas microbial methanegueat seeps is isotopically depleted@
(<-50%0) and is associated with |&&4%°C values for fauna housing chemoautotrophic and
methanotrophic endosymbionts and heterotrophicddliat consume seep-derived organic

matter (e.g., free-living bacteria; Fry and Sh&@84; Van Dover, 2007; Thurber et al., 2010).
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Microbes involved in anaerobic oxidation of meth&A®M) via sulfate reduction kinetically
discriminate for the lighter isotopes during meta, resulting in mussel tissue that is
isotopically depleted if°C and®*S. Thus, large variability in sulfur and carbontigsc
composition of mussels could be used to reveatrthpbic and methanotrophic symbioses.
Because isotopes are assimilated into tissuesdifdrent turnover times (Deudero et al., 2009),
SIA can provide temporally and spatially integrategbhic estimates used to understand and
define trophic linkages among species and comnasmiDattagupta et al., 2004).

Seep fluids in the USAM originate from various sms, fueled by methane generated
largely from microbial decomposition of organic teat which is also referred to as microbial or
biogenic methane (Paull et al., 1995; Prouty e8l16a; Pohlman et al., 2017). THEC of
methane ranges between -109 to -61.1%. at dep#S0f 2200 m at seeps near Baltimore
Canyon, Cape Fear, and Blake Ridge (Paull et 295,12000; Pohlman et al., 2015, 2017).
Correspondin@'*C measurements of soft tissues from chemosynthetisels at Blake Ridge
(3"3C = -55.7 + 1.9%0; Van Dover et al., 2003) and muskell periostracum and authigenic
carbonate from seeps near Norfolk and Baltimorg@as §™°C ~ -49 to -47%o [carbonate], -
57%o [periostracum]; Prouty et al., 2016a) providaaxy for determining the carbon source
fueling these seeps and are also consistent witici@bial methane source (Brooks et al., 1987).
However, while methane may be a dominant carborcsawithin these seeps, it is unclear
whether the source contribution varies spatiallyeonporally within and across these seep
environments. Comparisons of multiple mussel tisggél, mantle, and muscle) that have
different turnover rates can provide insight iremporal variability in the methane source

assimilated by the tissues and among different elysspulations.
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For this study, we used SIA and mixing models (M) to estimate the relative
contribution of different energy substrates andrasiithe role of chemoautotrophy,
methanotrophy, and heterotrophyRochildressi populations. Here, we used mussel tisSie
to infer stable isotope composition of the methsmerce an@d**S to differentiate between
thiotrophic and methanotrophic nutritional modeisielar mixed effects models (LMMs) were
used to examine the role of tissue type (mantle,nguscle) and mussel population density in
isotope variability within the mussels, while canlling for sampling location and temporal
variation. Lastly, we used stable carbon and né@noigotopes to examine the overall seep food
web at two sites.

This study is the first to characterize the isatammpositions of gill, muscle, and mantle
tissues oB. childressi at two primary seep sites within the USAM. By gm&ting metrics of
seepage (i.e§"°C values), mixing models, and estimates of musselilation densities, this
study provides insight into whether mussels exhibjphic plasticity and niche partitioning over
time, across different sizes of mussel habitatsearvironmental conditions, which would enable
survival in areas with fluctuating energy sourdeekenberg et al., 2016, 2018). For example,
variability in mussel stable isotopes across tissuild reflect spatio-temporal variability in the
methane flux and source. By examining the isotoproposition of seep associates, our goal is
to characterize deep-sea food webs at these nesdgwtred seeps. Ultimately, this research
helps to constrain the role of seeps in overalogical productivity along the USAM and their

potential influence in global elemental cycling.

2.0 Methods:

2.1 Study site
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Two large USAM methane seep environments were tigaged in 2012, 2013, 2015, and 2017
(Fig. 1). Seeps near the southern edge of BaltifGargyon (BCS) are located on the continental
slope, between 366-450 m (Bourque et al., 201 7)tdNoCanyon seeps (NCS) are deeper
(1457-1602 m) than BCS and located about 20 kmhsoiuthe thalweg of Norfolk Canyon. For
more detailed site descriptions, see Bourque €2@l.7).Bathymodiolus childressi occurs at

both seep sites (Coykendall et al., 2019). Thespsseontain areas of large and small mussel
patches (living and dead), microbial mats, and @aake rocks (Bourque et al., 2017). NCS had
more variable mussel patch sizes than BCS, withsgiympulations ranging in size from small
patches of a few individuals to densely packedifi¢hat were several hundred square meters

(Fig. 1, Demopoulos et al., 2014; CSA Ocean Sciemhee et al., 2017).

2.2 Sample collection

Collections occurred during four research cruigezdl12, 2013, 2015, and 2017 (Supplementary
Table 1). Multiple gear types, including push coresnotely operated vehicle (ROV) suction

and grab samples, and Niskin bottles were usedtipke sediments, fauna, and seawater. Water
samples were collected at various water depthguiskin bottles mounted on the vessel’s
conductivity-temperature-depth (CTD) rosette andewdtered for particulate organic matter
(POM; 0.7um GFF).In situ collections were conducted using the RQAraken 2 (University of
Connecticut, 2012)]Jason Il (Woods Hole Oceanographic Institute [WHOI], 2013DV Alvin
(WHOI), andGlobal Explorer (Oceaneering, 2017). Macrobenthic invertebratesfishes were
collected using either the suction systems or taeipulator arms on the ROVs, while sediments
were collected using T-handle push cores (31.7>c80 cm) operated by the manipulator arm.
Additional water samples were collected using Nidsottles attached to the ROVs. Mussels

were collected in a range of habitat patch sizégraas fish and non-mussel invertebrate



159  collections were opportunistic. Feeding groups vessigned to fauna based on a classification

160 devised by Demopoulos et al. (2017).

161 2.3 Image analysis to estimate mussel population density

162  The ROVs conducted slow speed (0.5 kts, 0.26 ndeovransects of variable lengths across

163  multiple habitat types. During transects, the gidameras were set on wide angle and

164  positioned to record in front of the ROV at a cetesnt angle. The science cameras on the ROVs
165 included an Insite Mini-Zeus HD video camedaspn), Kongsberg OE14-502 HIX(aken), and

166  Ocean Pro HDGlobal Explorer), all with scaling lasers (10 cm apart). Each iagptured

167  from the video was georeferenced for habitat amal@nly video collected while the vehicles

168  were in transect configuration with lasers on aiitth wdequate visibility to enable habitat and

169  faunal descriptions was used in the analysis; atbetions of the video were excluded. The

170  video and/or still images taken during sample otibe were split into two categories

171  representing low (<25%) and high (25-100%) live sshipopulation density.

172 2.4 Sableisotope analysis

173 Dissections of fish and invertebrate tissues oecliat sea prior to processing for stable

174  isotopes. For consistency, tissue was removed $ionitar body regions based on taxa (e.g.,
175 muscle from the dorsal region of fishes; caudalgsof shrimps; leg muscle for crabs; mantle,
176  qill, and adductor muscle for molluscs; legs fattler stars; gonads for urchins; and polyps for
177  corals). Tissue samples were dried to a constaightvat 50 C to 60 C, ground to a fine

178  powder, and weighed into tin capsules. Invertebsamples were acidified with 10% platinum
179  chloride to remove inorganic carbon. POM filtergevdried and treated with 1.0 N hydrochloric

180 acid, then scraped into tin boats. Sediment saswpdze homogenized prior to drying and
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acidified with 1.0 N phosphoric acid before weighinto tin boats. Samples were analyzed for
5"*C andd™N composition referenced to Vienna PeeDee Belenamiteatmospheric nitrogen
gas, respectively. Analyses were conducted at iWgisin State University using a Costech
(Valencia, USA) elemental analyzer interfaced vaitGV instruments (Manchester, UK)
Isoprime isotope ratio mass spectrometer. Sultopes were analyzed at Washington State
University Stable Isotope Core Laboratory usingGSE010 Costech elemental analyzer
coupled with a Delta PlusXP Thermo-Finnigan cordumiflow isotope ratio mass spectrometer.
Sulfur isotope ratiosst*S) were referenced relative to VCDT (Vienna Canpaablo Troilite).
Precision 08*°C ands™N was verified using egg albumin calibrated agalfational Institute

of Standards reference materials. Analytical amcynf5>*S was verified using an internal lab
standard referenced to International Atomic Eneékggncy standards. Reproducibility of all
isotopes was monitored using organic referencalatds and sample replicates (Fry, 2007;
Demopoulos et al., 2017) within £0.2%o for all thisetopes. Isotope ratios were expressed in
standard delta notatiod*’C, §*°N, ands**S as per mil (%o). Reporteéd®C values were taken
from analyzed acidified samples a3tdN and&*’S values from non-acidified samples to avoid
the potential artifact associated with acidificat{®innegar and Polunin, 1999). Voucher
specimens were preserved at sea in 10% formalinegeafollowing isotope dissections and
later identified to the lowest possible taxon ia thb. Several mussel samples dissected for
isotope analysis were photographed with a rulet,ranssel-shell length estimates (mm) were

made using image analysis.
2.5 Statistical analysis

Correlations of isotope dat&'{C, 3°N, andd**S) were tested using Pearson Product

Moment Correlation for subsets of the data withiessand tissues, and with mussel size. LMMs
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were used to examine whether there were tissuglsaate, and proportion of live mussel
differences id™*C, °N, and3®**S values. We built a model set for each isotopggBumental
Tables 2-4) by first constructing a fully saturateddel that estimated the isotopic value as a
three-way interaction between tissue, year, angdgtmn live mussel, along with the random

intercept. Details regarding model analysis areoumn Supplementary Materials.

In order to estimate mussel isotopic niche sizndard ellipse areas corrected for sample
size (SEA) and the Bayesian SEA (SEwere calculated using the SIBER packages (Jackson
et al., 2011; Demopoulos et al., 2017, 2018) ireRson 3.5.0 (R Development Core Team,
2018) for mussel populations based on tissue, asiig mussel density. Specific details regarding
the niche analysis can be found in the Supplem&faigtrials. SEA can be used to approximate
trophic diversity and variance in available resegrat the baseline. SIBER was also used to
examine mussel trophic structure by calculatingftfiewing Layman metrics (Layman et al.,
2007; Jackson et al., 2011; Demopoulos et al., 2PAT8):5"°C range (CR)3™N range (NR),
mean distance to centroid (CD), mean nearest neiglistance (MNND) and standard deviation
of nearest neighbor distance (SDNND). Food-webtlergestimated by NR, while CR
represents the overall food-web width, providindj\gersity metric of available basal sources
and/or variation in the isotope ranges of thesecgsu CD estimates overall trophic diversity and
is influenced by the degree of species spacingatope space. MNND estimates trophic
redundancy, where lower numbers indicate food watisa high proportion of species that have
similar trophic ecologies and hence, higher tropadundancy. Low SDNND values represent

even distribution of trophic niches within isotogeace.

The MixSIAR stable isotope mixing model (Stock &emmens, 2016) was used to

estimate proportional contributions of differenbfbresources to the mussels’ diet. The sources

10



227  were inferred using the mussel stable isotope aladaare consistent with the known ecology of
228 B.childress (e.g., Riekenberg et al., 2016). We used a simap@roach to that described by

229  Riekenberg et al. (2016) to identify inferred faedources t®. childress, as well as the general
230 guidance to mixing model applications suggeste@Mullips et al. (2014). Specific details

231 regarding the analysis can be found in the Suppiteh®laterials. MixSIAR analysis was run
232 using muscle tissue, with site (BCS, NCS) as alffieifect for an initial model run. Following
233  the outcome of the LMMs, we re-ran the MixSIAR stimate resource contribution to mussels
234  as a function of mussel population density (highoar) by muscle tissue for each site. Both
235 mussel population density and site were includefikad effects in this follow-up model.

236  Because there is potentially an isotopic contrdoutf the symbionts to gill and mantle tissues

237  (Streams et al., 1997), we chose to analyze onlchauissue in MixSIAR.
238

239 3. Results

240  3.1. Isotoperesults

241 A total of 564 samples (312 from BCS and 252 fro@S\ Tables 1 and 2; Fig. 2),

242 representing 6 phyla, were analyzed. Bottom wa@VIRit seeps was depletedfC and™N

243  relative to bottom POM collected in the non-segpiahs (Table 2). Stable carbon isotope values
244  of many of the fauna fell between two primary endrhers, phytoplanktor8t°C > -25%.) and

245  methane-derived carbon (< -40%o). Microbial matsicliwere only sampled at NCS, had

246  similar 3C values (-29.4%o) relative to organic matter framface sediments (-30.7 + 8.2%o).

247  3.2. Mussel stable isotope characteristics
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The three different types & childress tissues (mantle, gill, and muscle) had
overlapping isotope values for ba@'C ands'®N (Supplemental Fig. 1, Table 1), and isotopic
differences exist between populations of musseladat the two sites and among tissues
sampled. For the BCS populations, mantle had tvegband muscle the highé$tC values,
and muscle and mantle both had a negative skewp(&upntal Fig. 1, Supplemental Table 5).
Gill had the lowess™N values compared to mantle and muscle, and gillaantle3*°N data
had a positive skew. There were no observable astissige differences i8*'S, but all tissue
5*'S data had a negative skew. For NCS populationsclemwas higher if**C relative to gill
and mantle, with gill having a negative skew. Masahd gill tissues had the highest and lowest
8™N values, respectively. There was a slight multisiatistribution with a negative skew in
muscled™®N at NCS, with peaks at ~0 and 3%.. There were rsefable among-tissue
differences i5**S, and none of the data had skew.

Across both sites, significant correlations ocatiretweers**C ands**N values for
mantle tissuep=0.236, p=0.005). These significant correlatiores@nsistent with the linkages
between food assimilation and resource use andsmonding isotope values, providing support
for the application of mixing models (Riekenber@kt 2016), including MixSIAR.

Correlation analysis between size and tissue igsteyas conducted to identify if mussel
individual size (length) played a role in isotopmmposition. Mussel length measurements were
recorded from a subset of specimens from 2012, ,281i82017. Sizes ranged from 58-104 mm
for BCS (n=24) and 27-118 mm for NCS (n=33). ForS\\@here was no significant correlation
between mussel size and eitB&IC, §'°N, or 3**S for any of the tissues. For BCS mussels, gill
and mantl&°N were significantly correlated with mussel siz#l{(@=0.552, p=0.004; mantle:

p=0.416, p=0.043). However, mussel length was noetated withd"*C for any tissue.

12
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3.3. Role of site, habitat, tissue type, and time in mussel isotope variance

Using LMMs, we addressed which factors, includisgaxiated interactions, drive
isotope variability across populations (% live nelsstissue type, site [BCS vs. NCS], and
sampling year). Fa°C, the top model was the full model, which had3died factors and all
possible 2-way and 3-way interactiong(iRarginal)=0.21, Kconditional)=0.45] (Supplemental
Table 2). The % best model within 2AICc of this top model included all three factorsle
interactions: live mussel x year and tissue x yaad, the % best model included all 3 factors,
plus the interactions: live x site and tissue xry€ar3*N, the top model included all 3 factors
and the interaction: live mussel x yeaf(iRarginal)=0.32, Kconditional)=0.76] (Supplemental
Table 3). Lastly, using the subset of data analjaed*S from a single year, there were three
models within 2AAICc values. The top model included two predictdike mussel, tissue, and
their interaction [Rmarginal)=0.13, Kconditional)=0.77] (Supplemental Table 4). TH& 2
model included live mussel only antf Bighest model included live mussel and tissue.tfpe
each isotope, the top models withid&ICc were averaged and predictions were estimatied.
average trends showed that regardless of tissee aypas with more live mussel (categorized as
“high”) had lowerd™N values, nominally lowed™C values (particularly for samples collected
in 2013; see Supplemental Fig. 2), and higi& values (Figs. 3 and 4). The top models for all
three isotopes showed a substantial differencedstthe Rmarginal) and the fconditional),
indicating that the random effect explained a lgyg®ortion of the variance. On average, NCS

was slightly more enriched in the heavy isotop@ssall three elements (Supplemental Fig. 3).

3.4. Isotope niche area estimates
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Because the LMM analysis indicated that the mussébpe data are a function of tissue type
(mantle, gill, and muscle) and relative mussel dgrisigh and low), we used SIBER analyses to
determine whether the two mussel populations (B@ENCS) were isotopically different in
terms of overall niche space, based on tissuedgdedensity. The standard ellipse areas (SEA
and SEA) for gill samples from NCS mussels were highentiram BCS (Table 3,
Supplemental Fig. 4). However, there was no diffeeein SEA in the rest of the tissue pairs
(muscle and mantle). The greatest overlap betwigeia SEA was for gill tissue, followed by
mantle, then muscle tissue. Within sites, $E# gill was less than mantle for both sites (NCS:
p=0.03, BCS: p=0.003). In terms of overall troptiiicersity using data for all tissues, mussels
from BCS had a higher CR than from NCS (Table 4.p805), indicating a greater resource
pool, diversity of available food resources, andjicater variability in the isotope values of
those resources. In contrast, NCS mussels hadriifRéhan BCS mussels (p=0.002), implying
a greater diversity of nitrogen sources and/oralality of the isotopic values of available
nitrogen sources. There was no difference in Chsisbent with similar overall trophic diversity
between the two populations of mussels. Lower NNIDNCS (p=0.048) indicates greater
overall trophic redundancy and overlap in feedirahes.

In order to identify whether mussels have differgméd isotopic niches with different
mussel densities (low or high), based on the LMMlgsis, we examined Skfand SEA for
NCS and BCS populations relative to mussel dessfieparately by tissue). There were no
differences in SEAvalues as a function of mussel densities at BEggrdless of tissue type
(Supplementary Table 6). However, gill tissues fld@S populations had significantly higher

SEAg values in high density mussel beds compared ttother density areas.
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3.5. Mixing model results (MixSIAR)

Isotope results suggested that mussels assimilagety of food resources (Table 1,
Supplemental Figs. 1 and 3). Patterns in mussklesisotope data supported our decision to use
MixSIAR to estimate resource contributions basedhoee criteria (Riekenberg et al., 2016), as
follows: 1) the large standard deviation in theaepe data for the mussel tissues (Table 1)
supports the hypothesis that mussel nutrition vesiveld from multiple sources (Barnes et al.,
2008; Riekenberg et al., 2016), 2) the mustial data were multimodal, also indicative of
assimilation of multiple sources (Supplemental Ejg.and 3) the significant correlations among
mussel isotopes was consistent with the valuegiliggd directly to food resources.

While it is difficult to quantify all the possibleod sources at these two different sites
(NCS and BCS), four sources (Table 5) were choseause they bounded the isotope data with
a tight fit (Supplemental Fig. 5; e.g., Phillipsagt 2014), they represent feasible sources
available in the environment, and all four souncese based on actual measurements available
for the region. However, because site-specific smwalues were not available for all four
sources, the same isotopic values for sources uger for both sites, and the model was run to
estimate the proportional contribution of eachhafse sources to muscle tissue by location (BCS
or NCS). The four sources are further defined devis (Table 5): a detrital source of
phytoplankton based on average values from twarsaditraps deployed at 603 m (Baltimore)
and 1364 m (Norfolk) deptt3C: -22.3 + 0.2%05™°N: 5.0 + 0.1%0; Mienis et al., 2017; Prouty
et al., 2017) and published seawater sulfate vdarese region §*S: 20.5 + 0.2%o; Heyl et al.,
2007). The contribution of sulfur-oxidizing (thiofshic) microbes to mussel diets was estimated

using published sulfur-oxidizing microbial isotopalues from the GOMBeggiatoa: 5*°C: -32.8

+ 1.8%o0,5"°N: -3.5 + 2%0; Demopoulos et al., 2010), and a sediS value indicative of seep
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hydrogen sulfide®’S: -6.6 + 1.4%0; Heyl et al., 2007). Because onlg aricrobial sample was
available from NCS (Table 2), we used the publisheddes to provide a better-resolved estimate
of this resource, including error estimates. Basethe shape of the tetrahedron and spread of
5"C data, we assumed two possible methane sourses\iro separate methane pools: Seep-1
and Seep-2. Seep-1 had very IBWC (-100.4 + 7.6%0) values based &C from porewater
methane measured in the region between BaltimatéNanfolk canyons (Pohiman et al., 2017),
low 3N from microbial samples (-3.5 + 2.0%0; Demopoulbsle 2010), and publisheit*s
seawater sulfate values (20.5 + 0.2%0; Heyl e28l07). Seep-2 had slightly high®rC, based
on average methane values from BCS bottom wat8r46 -69.6%.; Pohiman et al., 2015) and
porewater from cores collected at Blake Ridge (R63:1%o; Paull et al., 1995). For this second
methane source, we assumed a high#t value based on sediment samples collected at BCS
and NCS (4.8 + 1.2%o), and lod“S values indicative of seep sulfur (-6.6 + 1.4%oyHs al.,
2007).

The proportion of the diet for each of the fouderembers at NCS and BCS was similar
(Fig. 5). For BCS, Seep-1 yielded the highest ¢oation to muscle tissue (median: 32%, range
25-39%), followed by phytodetritus (23-38%), Seef2?-43%), and thiotrophic microbes (0.1-
16%). The sum of the two methane-derived seep ss\ficand 2) exceeded all other sources
(range: 46-82%). For NCS, phytodetritus (media®oand Seep-1 (37%) had the highest
contribution, followed by Seep-2 (median: 20%, I4) and thiotrophic microbes (median:

1.5%, 0.1-6.9%).

Because the covariate for density of mussels {svhigh) improved the fit of the
LMMs, we re-ran the MixSIAR analysis using the sdm& sources as above, to examine

possible differences in resource contribution basecelative abundance of live mussels. This
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363  analysis only included th&3C andd™N data because there was not sufficient replicatiibhin

364 these mussel categories &S (BCS: No,= 6 and Nig=4, NCS: Ny, = 4 and Nign = 6 for low

365 and high categories, respectively). For NCS, highsity mussels had the highest contribution of
366  Seep-2 (Fig. 6), followed by similar proportionsS¢ep-1, thiotrophic microbes, and

367 phytodetritus. For low density mussels, the patteas similar, but the contribution of

368  phytodetritus and Seep-1 was higher than in thie-density mussel beds. Contribution from

369 thiotrophic microbes was low overall, regardlessnossel densities. For BCS low density

370 mussel beds, Seep-1 and phytodetritus yieldedigtes$t contributions, followed by Seep-2 and
371  thiotrophic microbes. There appeared to be a $jigigher contribution of Seep-2 in high

372  density mussel beds compared to low-density muydseisredible intervals overlapped. See

373 supplementary information for more details regagdifixSIAR assumptions.

374  3.7. USAM seep food webs

375 In addition toB. childressi, other taxa collected at the BCS that exhib& values

376  indicative of utilizing chemosynthetic productioff% to -28%o) included the fish&ysommina
377  rugosa andSymphurus nebulosus, andthe asteroidDdontaster robustus (Fig. 2). Dysommina

378 rugosa andS. nebulosus had a wide range in isotope values. Several eéxer, including

379 mobile species (mesopelagic fishes, several creates}, and suspension feeders (e.g., sessile
380 coral, zoanthid, and anemone taxa) collected iriprity to the BCS were enriched 1fC

381 relative toB. childressi, D. rugosa, S. nebulosus, andO. robustus, (Table 2; Fig. 2), consistent
382  with reliance on phytodetritus as a primary carbouarce. Although fewer taxa were collected
383 and analyzed from NCS, all of the taxa analyzedhited 3*°C values consistent with utilizing a
384 chemosynthetic derived food source (Table 2; FiginZluding the on®. heckerae collected.

385
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4. Discussion

4.1. Identification and availability of methane

Previous work along the USAM indicates thatrobial methane is the dominant carbon
sourceat the Baltimore and Norfolk seep sites (Proutglet2016a). Therefore, gill tissd&’C
values from these seeps shordflect a similar methane-carbon source at bo#s sitith little
isotopic fractionation associated with methanotiogmdosymbionts. All mussel tissues from
both sites had"*C values (Table 1) that overlap with bottom watetlmane>'C values (-67.6
%0, Pohlman et al., 2015), with some tissue-spedifierences. These differences may reflect
different composition and concentrations of lipidatbohydrates, and proteins, as well as
fractionation that occurs within the sediments ttumicrobial activity (e.g., Becker et al., 2010)
For example, lows™C values might be associated with the contributiblipids (e.g., Post et al.,
2007). The mussé=C data presented here were not lipid correctedusecspecific
mathematical lipid correction factors for deep-skamosynthetic mussels do not exist. Depleted
13C values of mantle and corresponding high C:N \&(@e5, Table 1) are consistent with higher
amounts of lipids and carbohydrates, and conselyyémtver proportional contributions of
protein, known for mussel mantle tissues (Riou.e2810). In contrast, muscle tissue C:N
values remained low (mean: 4.0) with little vawati consistent with higher protein (and hence,
higher N) content of adductor muscle. Thus, despibtle differences among tissues, mussel

isotopic composition is consistent with assimilatad microbial methane.

Stable carbon isotope data from this study alsblerestimates of available microbial
methane as a food source within the zone of AOML(Eeng et al., 2015). Assumptions for this
estimate are that tH°C of authigenic carbonate represents a mixtureafvater DIC and

methane (Prouty et al., 2016b; 47.3 + 0.16%. (NCG8)-@9.2 + 0.21%. (BCS), th&#°C values
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of B. childress reflect those of ascending methane (as discuss®meep and seawater DIC is
0.56%0 (BCS) and 0.47%0 (NCS) (Prouty et al., 2018ased on a mass balance calculation,
76% (NCS) and 79% (BCS) of the DIC of the poredduwithin the shallow AOM zone is
derived from microbial methane and the rest froewsger DIC. This calculation assumes that
the authigenic carbona®®’C integrates th&"C signature of the available DIC pool. Given that
there is a small carbon isotopic fractionation et carbonate and bicarbonate during the
precipitation of calcium carbonate minerals (~2.B®@manek et al., 1992), this would lead to an
underestimate in the fractional contribution of haate. In other words, the actual isotopic value
of DIC pool may be more depleted than the carbovaige used in the calculation, so the
percent contribution of microbial methane may beregreater. With both seep sites covering a
large areal extent of seafloor (CSA Ocean Scieluest al., 2017), our results suggest that
methane seepage on the USAM provides significaoiuams of potential carbon energy to fuel
upper slope deep-sea communities, including mettiatdransferred into mussel tissue
biomass, which is then available as a food sowa®me heterotrophic species (e.g., fishes and

sea stars) found within the seep environment @&ig.

4.2. Dual symbioses (methanotrophs vs. thiotrophs)

As discussed above, methane-derived seep soumédqu the greatest contribution to the
diet of the NCS and BCS mussels. However, MixSt&Bults estimated a small contribution
from thiotrophic microbes (0.1-16%), with assimiiat potentially derived from sulfur-oxidizing
epsilonproteobacterial ectobionts (e.g., Assid.e2816; Coykendall et al., 2019), and/or
through consumption of free-living sulfur oxidizefmimals with sulfide-oxidizing (thiotrophic)

symbionts typically record th&“S of the substrate used by their symbionts (Vetter Fry
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1998). In contrast, animals with methanotrophayeal$ as those without methanotrophic
symbionts, integrate seawafgfS (Brooks et al., 1987; Duperron et al., 2011).r8esi of sulfur
are additionally influenced by biogeochemical ayglvithin the seep environment. Little to no
fractionation ind>S occurs during sulfide oxidation by chemoautotioftacteria (Fry et al.,
1983; Vetter and Fry, 1998; Canfield, 2001), wittid subsequent isotopic fractionation of
sulfur during assimilation by the mussel tissuesngistent with Prouty et al. (2016a), 78S of
B. childressi tissues were mostly positive, but depleted redattivseawater sulfate (20%.; Heyl et
al., 2007), indicating possible mixed reliance eawater sulfate aridS-depleted sulfur from
AOM reactions (e.g., Vetter and Fry, 1998; Yamanetkal., 2003), including potentially
thiosulfate (Chambers and Trudinger, 1979; Halatlal., 1998). Specifically, thiotrophic
symbionts (e.g., epibionts) and/or consumptiorredéfiving sulfide oxidizers via filter feeding
(Yamanaka et al., 2003; 2015) represent possibthamesms for acquiring depleted sulfide
(Becker et al., 2014). While our study la¢ksitu measurements @S (e.g., sediment
porewater) to provide context, based on the restilidcVeigh et al. (2018) and Heyl et al.
(2007) at other seeps along the USAM, there isaefit hydrogen sulfide to fuel thiotrophs.
Given that sedimer®**S values range from 2.4 to 5.5%. (Prouty et al.,62(b), assimilating
free-living thiotrophic bacteria is a feasible wayobtain the lighf*S incorporated into mussel
tissues. Building upon previous work, results fritms study using MixSIAR stable isotope
mixing model indicate that the estimated contribaitirom thiotrophic endmembers was low

overall, highlighting the dominant role of methamophs inB. childressi.

4.3 Role of mixotrophy
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While B. childressi harbors methanotrophic endosymbiotic bacteria,groding evidence
supports the presence of thiotrophic episymbiossig et al., 2016B. childressi is also
capable of filter feeding since it maintains a fiimeal gut (Page et al., 1990). Examin3ig\
values from different mussel tissues provides imsigto the relative contribution of
heterotrophy to mussel nutrition. Nitrogen isotepéues are comparable Bo childressi values
from the GOM (Brooks et al., 1987; Riekenberg et2016). Mussel populations from the GOM
supplement nitrogen requirements through seleéti®ding on nitrogen-rich bacterioplankton,
based on variability in tissi°N (Pile and Young, 1999). However, BCS and NCSugs8°N
values were lower than those in the animals rebanphytodetritus-based food webs in nearby
Baltimore and Norfolk canyons (> 5%o0; CSA Ocean 8ces Inc et al., 2017; Demopoulos et al.,
2017) and lower thad™N values of sediments (4.8%.) and bottom POM (3 [N&®! 6 [BCS]
%o, Table 2). This suggests that $&N derived from filter feeding on suspended mategtalld
represent a small fraction of their assimilated. dexSIAR results were also consistent with
mussel reliance on phytodetritus to a degree. Mtisseies with slightly negative or lo&/°N
values (e.g., close to zero) may result from maeettescrimination of nitrogen sources at high
concentrations (Lee and Childress, 1996). Therefored'*N values may be derived from a
local nitrogen source (e.g., activity of autotraphacteria, Becker et al., 2010, 2014; Rodrigues
et al., 2013; Feng et al., 2015). Likewise, dietagtributions from free-living microbes are also
possible with musseéf=C values reflecting consumption of free-living naatbtrophic bacteria
through filter feeding.

Assimilation of isotopically light nitrate or anumium by the symbionts (Rodrigues et

al., 2013) may also explain the low musSeN values Bathymodiolus childressi can assimilate

ammonium, nitrate, and free amino acids (Lee ¢18B2), with assimilation of ammonium and
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nitrate specifically occurring in the symbiont-caining tissue (e.g., gills and mantle). Gill
tissues, known to host endosymbionts, had the [odvas (-2.2 to 3.5%0), potentially due to
limited fractionation of N from its source (e.g.h@&her ammonium, nitrate, or both) to
assimilated nitrogen in the gill. Mantle tissuesyméso contain symbionts (Streams et al., 1997),
and theird™N values were intermediate between gill and mugable 1, Supplemental Fig. 1),
possibly reflecting fractionation associated wghtopic routing between tissue types and/or
contribution from potential endosymbionts. Simigrichment between mantle and gill tissues
was reported foB. heckerae (Van Dover et al., 2003), which is consistent viftase mussels

primarily relying on organic matter provided by ti#¢ symbionts.

4.4. 1sotopic niches and resource contributions to mussels

Differences among isotopes and between isotoplesi¢SEA) by location (between sites
or among individuals within a same population) mef{ect micro-scale differences in the
symbiosis activity (Nedoncelle et al., 2014-for seisshell differences), source methane isotopic
composition, and/or mussel metabolic function (agssue differences). Large ranges$itC
(BCS, CR values) for mussel tissues may be dubdoges in the methane isotopic composition
associated with microbial alteration within theisgeht, which has also been shown to vary over
short distances (Joye et al., 2010). For examptljmone collection, BC$"*C values ranged
from -67.8 to -59.0%0, and for NCS, -66.6 to -59.7Riekenberg et al. (2016) indicated that
boundaries or edge effects influenced the “seeptritution to mussel populations; seep source
contributions dominated at the edge of mussel battier than in the interior of the beds, which
was contrary to expectations. Based on LMM resuléesfound that larger patches were

associated with lowe¥"3C, 3*°N, and highe5**S, whereas smaller patches generally had
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mussels with highe¥'3C, 5'°N and lowers*'S (Fig. 4). Patchiness in resource contribution
within a small patch or large bed of mussels suiggbsat resource availability is variable on the
scales of meters to 10s of meters. Findings fronteaearch tested at different seep settings,
such as those linked to diapirs (e.g., Blake Ridgedt seeps where methane is derived from
thermogenic processes, would clarify the role oéseli patch size on seep-derived energy use.
The LMM results suggest temporal changes in regouse, with isotopic variance among
sampled tissues indicating different turnover tiraed differences in food sources on a seasonal
scale. For transplantd®i childressi in the GOM, 100% tissue turnover of carbon, nigrogand
sulfur isotopes had not occurred after one yeggesting that mussel tissues integrate their diet
over longer time scales (Dattagupta et al., 20Bd¥ed on these slow turnover rates, we propose
that tissue measurements at BCS and NCS represegtdted food resources starting with the
year prior to collection or even longer. Due tostslow turnover times, we might not expect
isotope differences to be evident between the AuZQE2 and May 2013 mussel collections
(within a year) from the same site; however, LMMgictedd™*C and3'°N values (Fig. 3,
Supplemental Fig. 2) illustrate temporal differesyoghich may result from changes in the
relative utilization of different resources duestmsonally variable inputs and/or temporal and
spatial variability in the isotopic values of thaotl resources (e.g., seasonal phytodetrital input).
However, on longer time scales, there does notapéede large fluctuations in the isotopic
value of the methane reservoir given similaritiesAeen gill (this study) and periostracum
(Prouty et al., 2016a)-°C values. In the future, results from our estirmateresource
contribution could be evaluated over the organidifespans by employing a similar isotope
study to mussel shell periostracum given the snhityl@etween gill and periostracum isotope

values.
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523 For a subset of mussels at B@SN isotopic differences in mussels were based orselus
524  size, suggesting ontogenetic changes in nitrogesuree contributions. This relationship may be
525 related to a reliance on phytodetritus relativeltemosymbionts during mussel settlement versus
526  acquisition of endosymbionts after settlement (Legret al., 2018). Trask and Van Dover (1999)
527  also documented ontogenetic variation in mussébgecomposition, with bot&*C andd™N

528 data positively correlated with mussel size at ser@imilarly, Riekenberg et al. (2016, 2018)
529 observed an ontogenetic shift to Iove&7C values with increased mussel shell size in GOM

530 mussels. We did not find a correlation betw8EIC and mussel size, which is inconsistent with
531 these previous studies. However, it is possibletttemussels we collected on USAM had

532 already undergone an ontogenetic shift in resouseg from reliance on POM to chemosynthesis
533 (e.g., Laming et al., 2018), but because of thgean mussel sizes that was analyzed, this

534 change was missed. Stable isotope analysis of iismees from a range of size classes would
535 improve our understanding of diet changes with mugowth.

536

537  4.5. Seep food webs

538 Previous food-web studies at seeps suggest trmbtaxfound along a gradient of available
539 food resources, with some degree of mixing betvalemosynthetic and phytodetrital-derived
540 foods (Levin and Michener, 2002), and that the epbé&influence of seep-derived nutrition can
541  be patchy (Demopoulos et al., 2010; Levin et &16). At BCS and NCS, this influence was

542  variable. Interms of basal sources, bottom wa@W was depleted it’C at both seep sites,

543  possibly due to the contribution of isotopicallghi, free-living bacteria present in the bottom
544  water or suspended sediment, consistent with iszthp light microbes §°C = -29.4%o) that

545  were isolated from surface sediments at NCS. Oiyetaxa collected from the two seeps
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546  exhibitedsC values consistent with reliance on chemosyntigtduction. From BCS, fauna
547  utilizing seep production included the sea Sarobustus and fished. rugosa andS. nebul osus.
548  While there are no published diet data@rrobustus, congeners are considered omnivores,
549  scavengers, and deposit feeders, and generallyiec@nsrganic matter within the sediment

550 environment (Jangoux and Lawrence 1982). The fidhasigosa andS. nebulosus, are

551  generally infaunal pickers (Demopoulos et al., 20likely consuming sediment fauna depleted
552 in *C. They were common on complex seep habitats aflibBower Baltimore Canyon site,
553  were intimately associated with benthic seep fest(e.g., bubble plumes, live and dead mussel
554  shells), and likely exhibit little movement once referred habitats (Ross et al., 2015). Since
555  these fishes occur widely in other non-seep hahitheir utilization of chemosynthetic material
556  seems facultative. In addition, while the aver8f€ value for the polychaetgyalinoecia cf.

557 tubicola indicates that these taxa rely on photosynthéyicrived material, several individuals
558  were isotopically light (-23.9 and -25.2%o), signifg potential utilization of seep-derived

559  organic matter that is depleted'fiC. However, the measur&C values indicate that most
560 other taxa collected from the BCS environment, frmtmary consumers to higher-order

561 consumers, relied on photosynthetically derivechnig matter, consistent witi>C values (-

562  22.2%0) measured from fresh organic matter collectesediment traps (Prouty et al., 2017;
563 Mienis et al., 2017). The deeper seep environmelNCS also hosted several heterotrophic
564 invertebrate species that utilized chemosynthebduyction, including the shrimp#él{inocaris
565 markensis) and urchinsEchinuswallisi, Gracilechinus affinis). A single specimen @.

566  heckerae was collected at NCS, representing the first aerwe of this species north of Blake
567  Ridge.Bathymodiolus heckerae is known to have both thiotrophic and methanotioph

568 endosymbionts (Cavanaugh et al., 1987; Van Doval.,€2003), utilizing seawater DIC and
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569 methane as a carbon source. THE values (-35.1 to -33.7%o) froB heckerae collected from
570 NCS were enriched itfC compared to previously published isotope values 8. heckerae (-
571  55.7%0; Van Dover et al., 2003). This species isvikmdo harbor four phylotypes of symbionts:
572  two thiotrophic, one methanotroph group, and anatheg groups with the methylotrophs

573  (Becker et al., 2010). DifferencesBnheckerae andB. childressi 3*°C values may be attributed
574  to the relative contribution of dual symbioses (ma@iotrophs vs. thiotrophs), given that these
575 two mussel species were collected in the same Bezause certain mobile seep-associates
576  found at NCS appear to rely on chemosyntheticadiywed nutrition, the contribution of seep
577  energy to the adjacent deep-sea benthos alongSAd&Umay be significant.

578

579 5. Conclusion

580 Overall, nutrition at the BCS and NCS is fuelednmgrobial methane, chemosynthetic

581  bacteria, photosynthetically derived detritus, andpended POM. The combination of food
582  resources identified in MixSIAR analysis indicatleat while USAMB. childressi are

583  mixotrophic, their dominant source is methane. fiireeg chemoautotrophs on surfaces or in
584  the water column can serve as food for depositsasgension feeders (Demopoulos et al.,

585 2010). Bacterial mats were extensive in some asbasrved on the ROV dives, and they may
586  serve as a significant source of nutrients to #mhos (Levin and Mendoza, 2007). The high
587 diversity of isotopic compositions present at bgiths indicates substantial trophic complexity
588 that may result from high microbial diversity (Depomlos et al., 2010), as well as spatially
589 variable food resources available in different nelbgd habitats (Fig. 4). The presence of these
590 seeps and the variety of food resources availalttenincrease the overall trophic diversity for

591 the canyon and slope environments present indlgisn. Given that hundreds of seafloor
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methane seeps within the region remain to be ctearaed, primary production present at seeps

may serve as an important, yet unrealized, energsce to the USAM deep-sea environment.
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Table 3. Isotope niche area f%estimates (sample size-corrected standard elips® SEA; and Bayesian
SEA, SEA), including 95% credible intervals calculated frtme isotopic values from different mussel tissues
found in BCS and NCS. Bold values were significahigher (p<0.05) than other tissues within the saite
(e.g., BCS mantle vs. muscle), underlined valupsesent significant differences between sitestierdame
tissue pairs.

SEAc SEA 95% ClI

N
BCS
Gill 54 6.13 595 451 7.84
Mantle 52 10.72 1036 7.79 13.74
Muscle 54 8.00 7.81 5.89 10.19
NCS
Gill 87 8.11 7.93 6.46 9.83
Mantle 86 10.67 1040 8.54 12.88
Muscle 37 6.28 6.03 4.23 8.28

Table 4. Mean probability values of Layman metfasBCS and NCS mussel populations.
Values in bold were significantly higher (p< 0.@4&n corresponding seep pair.

NR: 8N range; CR3">C range, CD: distance to centroid; NND: nearesjim®or distance;
SDNND: standard deviation of nearest neighbor dista

BCS 95% ClI NCS 95% ClI
NR 1.10 0.71to0 1.48 1.87 1.49 to 2.27
CR 2.89 2.50to 3.27 2.01 1.66 to 2.42
CD 1.19 1.04t0 1.34 1.14 0.99 to0 1.30
NND 1.70 14310191 1.39 1.18t0 1.62
SDNND 0.00 -0.011t00.35 0.63 0.33100.94



Table 5. Isotopic endmembers (mean, standard d@vjatsed in the MixSIAR model to estimate propmntl
contributions to mussel populations. Values aretyas published data and results presented irstindky.

&"C (%) 3N (%)  *'S (%)
Sources n Mean SD Mean SD Mean SD References:
Phytodetritus 5 -22.3 0.2 50 0.1 205 0.25"3C, 5" N: This study3*S: Heyl et al., 2007

Thiotrophic 5'*C, 8°N: Demopoulos et al., 2018>'S:
microbes 4 -32.8 18 -35 20 -6.6 1.4Heyletal., 2007

3"*C: Pohlman, 2018%"N: Demopoulos et
Seep-1 4 -100.4 7.6 -35 20 205 0.2, 20105%S: Heyl et al., 2007

3C: Paull et al., 1995, Pohlman, 2085N:
Seep-2 3 676 23 48 12 -6.6 1l.4thisstudyd*S: Heyl et al., 2007



Figure 1. Map of the U.S. Mid-Atlantic margin wited boxes indicating the location of the Baltimarel
Norfolk Canyon seeps, where samples were acquir@12-2013, 2015, and 2017. White circles in@icat
seep sites identified by Skarke et al. (2014),thechames on the outer shelf indicate the majdf-bheaking
canyons. The inset shows the location of the migiimthe broader context of the margin. Multibedata and
bottom photographs of A) Baltimore (BCS) and B) fét (NCS) seeps with points representing the saspl
collected from seeps for stable isotope analysed.dquare = mussels, white square = microbial wigte
circle = other fauna, white triangle = sediment] arhite diamond = POM. Bottom images representypes
of habitats encountered at both sites, includingdand small mussel patches.
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Figure 2. Averagé™C versuss™N (%o + SD) for POM, microbial mat, consumers, andace sediments (0-2
cm) collected from (A) Baltimore and (B) Norfolkeges. Colors represent general feeding strategidsyed =
benthos, blue = water column, purple = mixed dietsfe = utilize chemosynthetic material, greennknown.
Symbols represent different feeding groups. For P8&bottom, M=midwater, and S=surface. For mussels,
Bc=Bathymodiolus childressi, Bh=B. heckerae, G=gill, Ma=mantle, Mu=muscle.
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Figure 3. Averaged linear mixed model predictiamsrf the averaged top model ®FC, §'°N, ands>*S. The
top models fob'*C ands™®N contained all three variables (Tissue, Live, ¥edr), whereas the model fo#'S
was built using data from only 2013. Vertical bagpresent 95% confidence intervals.
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Figure 4. Visualization of the seep environment8@6 and NCS and the effect of live mussel dermitgtable
isotope composition ddathymodiolus childress mussels based on LMM results.
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Figure 5. MixSIAR results based &athymodiolus childressi isotope data illustrating the
relative contribution (median + 95% credible int@s) of 4 sources to muscle tissue by site.
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Figure 6. MixSIAR results based &athymodiolus childressi 3**C andd™N isotope data
illustrating the relative contribution (median t%%redible intervals) of 4 sources to muscle
tissues at each site based on mussel density cete@ow and high).
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Supplemental Table 1. Collection locations foragpa samples. Bin refers to the sample
container: BK = basket, BBB = biobox bow, BBP =lma port, BBS = biobox starboard, BBC
= biobox center, EK = Ekman sampler, Q = quiver, ¥®ellogg quiver, S = suction, PC = push
core, NB = niskin bottle, NA = Information not aladle. # Ind refers to the number of
individual specimens sampled for stable isotopdyaisa whereas as n is the number of isotope
samples taken.

Seep Year Station Bin Latitude Longitude Depth (m#Ind n
Baltimore Aug2012 ROV-2012-NF-07 BBB 38.0437 -7Z58 403 1 3
BBC 38.0435  -73.8261 401 2 2
BBC 38.0438 -73.8258 402 3 9
Q3 38.0438 -73.8256 403 1 1
Q4 38.0440 -73.8256 401 2 2
S2 38.0437 -73.8259 403 9 9
S3A 38.0438 -73.8256 402 2 2
S3B 38.0438  -73.8257 402 9 11
S5 38.0439 -73.8257 401 2 2
S7 38.0439 -73.8256 401 10 10
ROV-2012-NF-08 BBB 38.0490 -73.8215 410 3 9
BBC 38.0496 -73.8208 420 1 3
Q3 38.0438 -73.8257 402 1 1
S1 38.0472 -73.8216 408 29 33
S3A 38.0497 -73.8211 421 1 3

S3B 38.0496  -73.8211 420 1
S4 38.0438  -73.8256 402 16 16
S8 38.0490  -73.8215 411 15 42

Sep 2012 ROV-2012-NF-14 S1 38.0433 -73.8149 496 17
S2 38.0498 -73.8217 406 3 3
S4 38.0487 -73.8269 359 2 2
S5 38.0474 -73.8274 374 5 5
S6 38.0515  -73.8231 381 4 4
S7 38.0508  -73.8236 382 4 4
S8 38.0497 -73.8218 403 1 1
NA 38.0498  -73.8217 406 2 2
2M0a1y3 ROV-2013-RB-689  BK 38.0479  -73.8241 389 3 3
BBB 38.0482  -73.8277 363 6 18
BBP 38.0485 -73.8219 400 5 15
BBS 38.0479 -73.8218 400 5 14
EK 38.0503 -73.8219 401 4 12

KQ4 38.0480 -73.8273 365 1

NA 38.0479 -73.8241 389 1

14



Norfolk

Aug
2013

July
2015

May
2017

May
2013

NB

Q10

S black

S blue

S green
NF-2013-011 NB
NF-2013-015 NB
NF-2013-017 NB
AT29-04-4807 PC04

PC10
AT29-04-4808 PCO1

PC10
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May
2017

HRS1704-GEX03-009

HRS1704-GEX03-011
HRS1704-GEX03-022
HRS1704-GEX03-023

PC
PCO8
Qo1
QO02A
Q02B
Q04
Qo5
Q06
QO7A
QO7B
Qo8
Q15
Q16
Q17A
Q17B
Q18

Q7
BBP

NB
BBS

36.8708
36.8709
36.8713
36.8709
36.8708
36.8710
36.8718
36.8714
36.8715
36.8716
36.8713
36.8710
36.8715
36.8717
36.8717
36.8715

36.8715

36.8715
36.8722
36.8722

-74.4730
-74.4729
-14.4774
-74.4746
-74.4729
-74.4746
-74.4783
-74.4762
-14.4777
-74.4763
-14.4773
-74.4746
-74.4763
-74.4781
-74.4781
-14.4777

-74.4762

-744764
-74.4758
-74.4757

1457
1457
1487
1476
1456
1476
1485
1480
1487
1483
1487
1476
1483
1487
1487
1487

1482

1491
1492
1494

1 1
1 1
1 2
3 3
4 8
2 4
5 10
5
3
2
5 10
2
1 1
5 13
1 1
2 2
7 21
27
1
11 33
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Supplemental Table 2. Model selection tablesfS€ linear mixed model set. The random effect
in the model was a random intercept with collectioin) nested within site (Baltimore or
Norfolk). The full model had a three-way interaatioetween all the variables: Live (live mussel
cover; high or low), Tissue (gill, mantle, or mwsgland Year (2012, 2013, or 2017; treated as
categorical variables). If a model contained aarmttion term, all lower-order terms in that
interaction were also included in the model. Thieimmm o shows the Akaike weight for each model,
R?(m) shows the marginal’Rand R(c) shows the conditional’R

M odel Parameters AICc  AAICc o  R’m) R*0)
Full (Live x Tissue x Year) 211534.13 0.00 0.45 0.21 0.45
Live x Year + Tissue x Year 151535.37 1.24 0.24 0.21 0.45
Live x Tissue + Live x Year + Tissue x Year 171536.90 277 0.11 0.21 0.45
Live + Tissue x Year 131537.07 2.94 0.10 0.20 0.43
Live x Tissue + Tissue x Year 151538.66 4,53 0.05 0.20 0.43
Tissue x Year 12 1539.28 5.15 0.03 0.16 0.40
Tissue + Live x Year 111551.39 17.25 0.00 0.17 0.42
Live x Tissue + Live x Year 131552.02 17.89 0.00 0.17 0.42
Live + Tissue + Year 91552.97 18.84 0.00 0.16 0.40
Tissue 6 1553.24 19.11 0.00 0.12 0.34
Live + Tissue 7 1553.57 19.44 0.00 0.13 0.35
Year + Live x Tissue 111553.64 19.51 0.00 0.17 0.40
Live x Tissue 9 1554.22 20.08 0.00 0.13 0.35
Tissue + Year 8 1555.03 20.89 0.00 0.13 0.36
Live x Year 9 1593.96 59.83 0.00 0.08 0.27
Live + Year 7 1595.70 61.57 0.00 0.08 0.25
Year 6 1598.81 64.68 0.00 0.02 0.21
Null 4 1599.27 65.14 0.00 0.00 0.19
Live 5 1599.81 65.68 0.00 0.01 0.18
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Supplemental Table 3. Model selection tablesfoN linear mixed model set. The random effect
in the model was a random intercept with collectioin) nested within site (Baltimore or
Norfolk). The full model had a three-way interaatioetween all the variables: Live (live mussel
cover; high or low), Tissue (gill, mantle, or mwsgland Year (2012, 2013, or 2017; treated as
categorical variables). If a model contained aarguttion term, all lower-order terms in that
interaction were also included in the model. Thieimlom o shows the Akaike weight for each model,
R?(m) shows the marginal’Rand R(c) shows the conditional’R

M odel Parameters AICc  AAICc o R*m) R¥0)
Tissue + Live x Year 11 945.81 0.00 0.88 0.32 0.76
Live x Tissue + Live x Year 13 950.99 5.19 0.07 0.32 0.76
Live x Year + Tissue x Year 15 951.60 5.79 0.05 0.32 0.77
Live x Tissue + Live x Year + Tissue x Year 17957.05 11.24 0.00 0.32 0.77
Full (Live x Tissue x Year) 21 962.67 16.86 0.00 0.32 0.76
Live + Tissue + Year 9 964.65 18.84 0.00 0.35 0.72
Year + Live x Tissue 11 969.67 23.86 0.00 0.35 0.72
Live + Tissue 7 970.55 24.75 0.00 0.20 0.60
Live + Tissue x Year 13 970.63 24.82 0.00 0.35 0.72
Live x Tissue 9 97555 29.74 0.00 0.20 0.60
Live x Tissue + Tissue x Year 15975.85 30.04 0.00 0.35 0.72
Tissue 6 976.12 30.31 0.00 0.17 0.52

Tissue + Year 981.11 35.30 0.00 0.18 0.53
Tissue x Year 12 986.93 41.12 0.00 0.18 0.53

(00]

Live x Year 9 1051.16 105.35 0.00 0.24 0.60
Live + Year 7 1062.71 116.90 0.00 0.21 0.55
Live 5 1067.87 122.06 0.00 0.03 0.40
Null 4 1069.99 124.18 0.00 0.00 0.35
Year 6 1074.37 128.56 0.00 0.01 0.34

Supplemental Table 4. Model selection tablesf3 linear mixed model set. The random effect
in the model was a random intercept with collec(ioin) nested within site (Baltimore or
Norfolk). The full model had an interaction betwdwmath the variables: Live (live mussel cover;
high or low) and Tissue (gill, mantle, or muschégar was not included because of inadequate
sample size in 2012 (n=0) and 2017 (n=3). If a rhodetained an interaction term, all lower-
order terms in that interaction were also inclutethe model. The columa shows the Akaike
weight for each model, ¥m) shows the marginal’Rand F(c) shows the conditional’R

M odel Parameters AICc  AAICc o R m) R%*c)
Full (Live x Tissue) 9 295.35 0.00 0.37 0.13 0.77
Live 5 295.84 049 0.29 011 0.77
Live + Tissue 7 296.52 1.17 021 0.12 0.77
Null 4 298.76 3.41 0.07 0.00 0.79
Tissue 6 298.99 365 0.06 0.01 0.78
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Supplemental Table 5. Skewness$biC, §*°N, ands**S for different tissue types sampled from
the mussel8athymodiolus childressi collected at BCS and NCS. Negative values are sttewe
left and positive values are skewed right. The lpremwere calculated using the D’Agostino test
for skewness, and significant values (p < 0.05)sai@vn in bold.

Baltimore Canyon Norfolk Canyon
Tissue 8°C 3N 8%'s 8°C 3N 8%
Gill -0.04 0.89 -1.63 -1.27 0.04 0.10
p=0.899 p=0.008 p=0.007 p<0.001 p=0.875=00855
Mantle -0.85 1.44 -1.23 0.21 -0.13 -0.76
p=0.012 p<0.001 p=0.036 p=0.405 p=0.605=0p157
Muscle -1.25 0.30 -1.47 -0.55 -0.81 0.34

p=0001 p=0322 p=0014 p=0131 p=0.03p=0.544

Supplemental Table 6. Isotope niche ared)(&stimates (sample size-corrected
standard ellipse area, SEAand Bayesian SEA, SEA including

95% credible intervals calculated from the isotoftues from

different mussel tissues as a function of mussesitieat BCS and NCS. Bold
values were significantly different (p < 0.05).

SEA: SEAs 95% ClI

N

Baltimore

Gill high 35 4.75 4.49 3.21 6.36
low 19 6.90 6.21 3.93 10.11

Mantle high 34 8.96 8.55 594 12.04
low 18 10.81 9.46 6.12 16.15

Muscle high 35 7.52 7.12 5.04 10.03
low 19 6.90 6.55 3.86 10.27

Norfolk

Gill high 69 9.24 9.02 7.13 11.49
low 18 2.25 2.10 1.27 3.41

Mantle high 68 10.95 10.65 8.40 1351
low 18 7.41 6.69 4.05 10.95

Muscle high 26 4.34 4.00 2.74 6.16
low 11 3.39 2.82 1.55 5.69
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Supplemental Figure 1: Kernel density plots of lktéotope values froBathymodiolus

childressi tissue, for Baltimore (BCS) and Norfolk (NCS).
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Supplemental Figure 2. LMM model predictions 87C, 3*°N, and**S versus tissue and
collection year in high (red) and low (blue) depsitussel beds.
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Supplemental Figure 3. Boxplots&fC, §*°N, ands®*S at the two study sites (Baltimore
Canyon and Norfolk Canyon seeps).
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Supplemental Figure 4. Raw mussel isotope data B@8 (open symbols) and NCS (closed
symbols) for each of the different tissues and @ased standard ellipse areas (SfEfor gill,
mantle, and muscle tissues. SBAlues are included in Table 3.
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Supplemental Figure 5. Graphical representatiquobfgons fitted around mussel isotope data
from NCS (orange) and BCS (blue) with the verti@g@ey) representing trophic resources (Table
5). Phy= phytodetritus, Thio = thiotrophic microbes
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