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Highlights
Sinking marine snow and other particulate matter sequester carbon in the deep sea and provide a

key food supply for life there. However, such dynamics remain challenging to quantify.

This and other recent studies highlight that the sinking speeds of particles can have important

implications for the horizontal distances travelled as particles sink.

Particles with slower sinking speeds may originate from hundreds of km or more away from

sediment trap sampling systems and vary from daily to inter-annual scales.

Estimating the source location can aid in assessing how conditions at these distant locations may
relate to the strong variation in carbon sequestration and food resource supplies observed at time

series research sites.
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ABSTRACT

The biological carbon pump has been estimated to export ~5-15 Gt C yr? into the deep ocean,
and forms the principal deep-sea food resource. Irregular, intense pulses of particulate organic
carbon (POC) have been found to make up about one-third of the overall POC fluxes at a long-
term deep-sea research station influenced by coastal upwelling of the California Current, Station
M (34°50°N, 123° W, 4000 m depth). However, the drivers of these pulses have been
challenging to quantify. It has long been recognized that ocean currents can result in particles
being advected while sinking to the point of collection by a sediment trap. Thus, a sediment trap
time series can incorporate material from a dynamic catchment area, a concept sometimes
referred to as a statistical funnel. This concept raises many questions including: what are the day-
to-day conditions at the source locations of the sinking POC? And, how might such ‘ocean
weather’ and related ecosystem factors influence the intense variation seen at the seafloor? Here
we analyzed three-dimensional ocean currents from a Regional Ocean Modeling System
(ROMS) model from 2011-2017 to trace the potential source locations of particles sinking at
1000, 100, and 50 m d* from an export depth of 100 m. We then used regionally tailored satellite
data products to estimate export flux of POC from these locations. For the 100 m d* speed, the
particles had origins of up to ~300 km horizontal distance from the sediment trap location,
moored at Station M at 3400 m depth., and nearly 1000 km for the 50 m d! speed. Particle
tracking indicated that, there was considerable inter-annual variation in source locations. Particle
source locations tended to originate from the east in the summer months, with higher export and
POC fluxes. Occasionally these locations were in the vicinity of highly productive ocean features

nearer to the coast. We found significant correlations between export flux of organic carbon from
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the estimated source locations at 100 m depth to trap-estimated POC fluxes at 3400 m depth.
These results set the stage for further investigation into sinking speed distributions, conditions at
the source locations, and comparisons with mechanistic biogeochemical models and between

particle tracking model frameworks.
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1. Introduction

The biological carbon pump (BCP) is a complex set of processes that provides critical
ecosystem functions and services including the sequestration of carbon dioxide from the
atmosphere into the deep ocean where it can be removed from atmospheric climate influence for
tens to thousands of years (Khatiwala et al., 2012; Fine et al., 2017). Importantly, the BCP is a
critical regulator of biogeochemical rates and food resources for life in the deep ocean and on the
seafloor, which make up ~97% of the oceans volume (e.g. Smith et al., 2018; Grabowski et al.,
2019). Sustained observations have revealed that there can be order of magnitude variability in
the year to year flux of organic carbon in the form of ‘marine snow’ and related detritus sinking
to abyssal depths (Lampitt et al., 2010; Smith et al., 2018; Conte et al. 2018). These episodic
variations are not well represented in ocean biogeochemical models and may be a source of
considerable uncertainty in simulations of ocean carbon sequestration. This is partly because
observing them requires high-resolution sensing and sampling over multi-year scales. In many
such global biogeochemical models the flux attenuation efficiency terms are either fixed, are
allowed to vary according to mean temperature, and/or oxygen concentration derived mainly in
spatial terms (e.g. Cram et al., 2018; Marsay et al., 2015), or are driven by a mineral ballast
framework (e.g. Armstrong et al., 2001; Yool et al., 2013). Seafloor ecological models also
generally have input terms that rely on a flux that is transferred vertically (e.g. Yool et al., 2017,
Durden et al., 2017). Conditions at the origin of sinking particles set the initial sinking speed and
remineralization rate of particles, which may then vary before arriving at particular sampling
locations and depths. Using tools that can track particles from surface to seafloor, forwards or

backwards in time, can help reveal insights into the connections between surface remotely sensed
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properties and deep-sea time-series observations. Moreover, such insights will likely improve
indicators of ecosystem conditions in a variety of applications at the scales of resource
management policy implementation, such as for marine protected areas.

Since 1989, Station M has been a site for long-term biogeochemical and ecological
research in the deep sea, including the fluxes of POC and Sediment Community Oxygen
Consumption (SCOC). Results from the site have shown how seasonal upwelling and interannual
climate variation relate to changes in surface ocean productivity, export flux and ultimately to
changes in deep-sea POC fluxes and dependent communities (e.g. Smith et al., 2014; Ruhl et al.,
2014). For example, the El Nifio Southern Oscillation (ENSO) can relate to unusual daily
conditions driving POC fluxes that are lower (during El Nifio) or higher (during La Nifia) than
average. This has been linked to variations in upwelling, the introduction of new nutrients, and
net primary production and ecological shifts in surface ocean communities (e.g. Smith et al.,
2014; Lilly and Ohman, 2018). Other examples of such ‘pelagic-benthic coupling” have been
found in many studies including in the Arctic (Soltwedel et al., 2016), the central and northeast
Atlantic (Lampitt et al., 2010; Conte et al., 2019), the Gulf of Mexico (Wei et al., 2012),
continental margins (Thomsen et al., 2015) and the oligotrophic Pacific (Ruhl et al., 2008). At
the Porcupine Abyssal Plain (PAP) - Sustained Observatory POC flux and variations of deep
ecosystems have been linked to variations in the North Atlantic Oscillation through variability in
primary productivity and surface ocean ecology (e.g. Henson et al., 2012).

Pulse events (i.e. > 2 standard deviations [sd]) at Sta. M have been shown to account for
about one-third of overall particulate organic carbon (POC) fluxes (Smith et al., 2018). The
Martin-curve (sensu Martin et al. 1987) model of POC remineralization and flux estimates of

POC flux to abyssal depths reproduced the background flux well at Sta. M (Smith et al., 2018).
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However, the relatively episodic pulse fluxes showed major discrepancies with satellite-derived
estimates, where the overall Martin-curve estimated POC flux reaching ~3400 m depth was
~50% lower than the trap estimates. Such a mis-match could have important implications for
estimating the depth of carbon sequestration. In making this calculation, the export flux was
estimated from satellite data for a fixed circle over the site of 100 km radius using the algorithm
of Kelly et al. (2018). This approach makes the implicit assumption that sinking flux would have
come from this area.

The concept of the ‘statistical funnel’ frames the time-series of material collected in
sediment traps as coming from a dynamic catchment area where horizontal advection dominates
the movement of sinking particles (Siegel and Deuser, 1997). Thus, the use of a fixed spatial
integration area could miss potential particulate flux inputs coming from outside of it or dampen
variation by averaging over large areas. Previous studies that simulated catchment areas and
source locations of sinking particles have found that they can come from areas with contrasting
conditions such as specific productivity features, coastal or offshore waters, or the presence of
sea ice (e.g. Siegel et al., 2008; Hartman et al., 2010; Wekerle et al., 2018). By tracking particle
trajectories across a range of sinking speeds, we can investigate if/how events from a more
dynamic range of source location can account for the occasional mis-matches in estimated vs.
sediment trap sampled POC fluxes to the trap depth. Indeed, particle tracking can reveal the
broader range of conditions that may be related to the kind of episodic pulses of POC flux
described above.

Here we seek to understand the trajectories that connect day-to-day variations in surface
ocean conditions, i.e. ocean weather, to deep sediment trap time series. Specifically, we examine

ocean weather in terms of daily ocean currents in a three dimensional reanalysis model (Moore et
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al., 2013), as well as daily satellite estimations of export flux (EF, here defined as export from
100 m depth) as determined by the new algorithm of Kahru et al. (this volume). We used these
tools to address the following research questions: What are the likely source locations of EF for
sinking particles reaching the deep sediment trap at Sta. M? And, how well does EF at these
source locations relate to deep sediment trap samples of POC flux and SCOC? We then discuss
how this first examination of particle tracking at Sta. M reveals new insights into how episodic
events of POC flux at 3400 m depth might be driven by specific daily scale features of ocean
circulation and EF and how they accrue into long term variation, i.e. ocean weather into ocean
climate. We discuss future research directions to investigate further the role of physical,
biogeochemical, and ecological variations in driving intense POC flux variations by taking
advantage of tools in ocean circulation and biogeochemical models, satellite observations and in

situ data.

2. Methods

2.1. Overall approach

We used a combination of modelled currents and particle tracking, satellite ocean color,
and in situ sampling and sensing in the setting of the California Current. Respectively, these
tools helped us to trace the possible source locations and sinking pathways of POC fluxes to Sta.
M (34°50°N, 123° W, 4000 m depth). We then correlated these model and satellite estimated

POC fluxes to empirical POC flux and seafloor community oxygen consumption observations.
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2.2. Modeling ocean currents in three dimensions

Ocean currents were obtained from an ocean state estimate of the California Current
System built on the Regional Ocean Modeling System (ROMS; Shchepetkin and McWilliams,
2004). The model domain extends from Mexico to Washington State (30 N to 48 N) and
offshore to 134 W at 1/10-degree horizontal resolution and 42 terrain-following s-levels
(Veneziani et al., 2009). The model data are available through the Central and Northern
California Ocean Observing System (CeNCOOS). The model is forced at the surface by fields
derived from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS; Hodur
et al., 2002; Doyle et al., 2009) and at lateral boundaries by output from the HYbrid Coordinate
Ocean Model (HYCOM,; Chassignet et al., 2007). The state estimate is obtained using an
incremental form of the ROMS 4-dimensional variational data assimilation system (Broquet et
al., 2009; Moore et al., 20114, b) and available physical oceanographic data, including satellite
derived sea surface height, sea surface temperature, and sea surface salinity, as well as in situ
temperature and salinity from gliders and the Argo program. The model is run using the k-®
turbulence closure scheme for vertical mixing and in a series of sequential (k = kinetic energy
and o = the specific rate of dissipation of k), 4-day assimilation cycles each with 1 outer loop

and 10 inner loops. Instantaneous model fields on daily intervals were used for calculations here.

2.3. Tracking particles
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We used three sinking speeds representing nominally slow (50 m d*), medium (100 m d-
1y and fast sinking flux (1000 m d%). The speed of 100 m d! is justified from previous research
on sinking speeds inferred from time lagged cross correlations between climate, upwelling, net
primary production at the site (e.g. Smith et al., 2008). Similar findings have been found by
Billett et al. (1983) and Lampitt et al. (1985). The 50 and 1000 m d speeds were chosen to
investigate variations that might relate to particles sinking slower in relation to smaller particles,
or faster, potentially in relation to the intense pulse fluxes seen at the site (e.g. Smith et al.,
2018). Such fast sinking has been estimated from Chaetognanth, Pteropod and Salp fecal pellets
(Bruland and Silver, 1981; Madin, 1982; Yoon et al., 2001; reviewed in Turner, 2002), all of
which occur in the study region.

The OpenDrift particle tracking python module (Dagestad et al., 2018) was used to track
particle trajectories from their settling location at a deep sediment trap, backwards to their
potential source location. Sets of 100 particles that were randomly seeded at 3400 m depth at
longitude -123.00°E, 34.83°N on a daily basis. A random radius of 1000 m around the starting
point was used. The Euler method was used for equation solutions. At each step, model data are
interpolated to the advected particle’s trajectory. The model was run ‘backwards’ using a
negative time step. The Source location was determined when the particles reached 100 m depth
in this ‘backwards’ mode. Trajectories were computed for 10 days using the 1000 m d* speed,
40 days using the 100 m d* speed and 70 days using the 50 m d* speed. Trajectory positions

(latitude, longitude, and depth) are output for each day of the run.

2.4. Export flux (EF) estimation

10
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Satellite-derived estimates of export flux of carbon (EF, mg C m day*) were produced
at daily intervals and 4 km spatial resolution (Kahru et al., this volume). Although ocean color
products such as chlorophyll-a (Chl-a) are typically not available on a daily basis due to frequent
cloud cover, daily estimates of net primary production (NPP, mg C m day) are possible as
gap-free, daily satellite-derived photosynthetically active radiation (PAR, Einstein m2 day™?)
estimates are available. In the algorithm of Kahru et al. (this volume), PAR was assumed to drive
the daily variations in NPP while other components of the NPP model were assumed to change
more slowly. Either 5-day interpolated Chl-a data or daily optimally interpolated products (sea
surface temperature; SST) were additionally used. EF was estimated from NPP using a
modification of the Kelly et al. (2018) algorithm (Kahru et al., this volume). The EF algorithm is
an empirical fit to a regional in situ dataset of EF measurements including from near surface
sediment traps and isotopic study (Stukel et al., 2019). Although the depth at which export
occurs depends on mixing structure, the nominal export depth is 100 m set in part by the near
surface sediment trap depth. Compared to the original Kelly et al. (2018) algorithm, the
algorithm used here has a higher export efficiency (EF/NPP) and a wider dynamic range as it
was fitted to a more diverse dataset including stations from active mesoscale features such as

filaments and eddies.

2.5. POC flux sampling

We measured POC flux using McLane sequencing sediment traps moored at two depths:
600 and 50 m above bottom (mab). The collection time for each cup was typically ten days. Prior

to deployment, the trap cups were filled with 5% buffered formalin. Upon trap recovery,
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zooplankton ‘swimmers’ were removed, and ¥ of the sample was freeze-dried for analysis in
duplicate for total carbon (Perkin-Elmer or Exeter Analytical elemental analyzer, University of
California Santa Barbara Marine Science Institute Analytical Lab) and inorganic carbon (UIC
coulometer). These measurements were then corrected for salt content using AgNOs titration and
used to calculate particulate organic carbon flux. We created a single time series of sediment trap
sampled POC flux from a composite of the 600 and 50 mab series for use in this study. We
primarily use data from the 600 mab trap (3400 m depth) when available. The 3400 m depth is
therefore the depth in the ROMS model from which particles are back tracked. When 600 map
trap data were not available, the time series was infilled from the 50 mab trap where possible
based on the linear relationship of POC flux between these traps from 1989-2017. Further details

of sample processing are provided in Smith et al. (2018).

2.6. Sediment community oxygen consumption

A benthic rover (Rover Il) was used to estimate Sediment Community Oxygen
Consumption (SCOC) using a pair of respiration chambers that were inserted into the sediment
for approximately two day periods during its deployment from a few months to up to about one
year (Smith et al., 2016). Optodes were used to measure changes in oxygen over time in the
chambers, which were compared to a reference optode outside the chambers. This provided
replicate SCOC estimates with a frequency of about two days while it was deployed. Results are

presented in oxygen consumption equivalent terms of mg C m2 d*.

2.7. Analytical approach

12
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The location and time when particles reached a 100-m depth was recorded, here
generalized as the EF depth. EF values for each of these points was then recorded for that
location and time. Satellite-derived EF estimates for each of these 100 points were then recorded
for that location and time. Daily average values were then computed for each of the 100 tracked
particles. Two spatial integrations of EF for these daily average values were calculated at the
estimated source locations: 50 and 100 km radius circles, giving a total of six independent series
(three sinking speeds for each of two spatial area integrations). Given that the flux seen at the
trap is a result of particles sinking at a range of speeds, we also created a series different
composite weightings of the slow, medium and fast speed EF source locations. For the
composites, we 1) examined a form of pulse intensity weighted composites EF set by the
standard deviation (o) of POC flux at the trap, where the fast sinking location dominated at the
time of the highest o, and slow sinking at the time of the lowest o, and 2) vice versa. For 3), an
average EF that equally valued each of the speed estimates, and a set that simply used the highest
of slow, medium or fast sinking EF values from the source locations, was also created. In total
there are six series at single speeds and eight series using composites of the three speeds (Table
1).

EF and POC flux data were examined at both daily and monthly scales. Months with at
least 15 daily values were retained for a monthly correlation analysis. We have used the non-
parametric Spearman rank correlation (rs) to quantify correlations between EF from the various
source location areas and composite weightings, and POC flux, examining the sinking speed and
spatial integration series independently and as the three composite weighting of the three speeds.

To account for serial autocorrelation, a correction for the degrees of freedom was applied to

13
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estimate the p values as described by Pyper and Peterman (1998). A Spearman rank correlogram
was also generated to identify which parts of the time series were most correlated, which used a

13-month moving window.

3. Results

3.1. Source locations

The source locations of particles sinking at 50 and 100 m d* were not surprisingly spread
over a much greater area than those sinking at 1000 m d* (Figs. 1-3). The maximum spread in
the 50 m d* source locations was nearly 1000 km in its longest dimension, which ran along the
California coastline. The particles generally originated from offshore waters, but did
occasionally originate from near the coast. The 100 m d-* source locations were nearly 300 km in
both the latitudinal and longitudinal dimensions. Throughout each of the years examined there
were coherent variations in the basic tendency of the source location as indicated by the monthly
coloring in the location charts. The 100 m d* sinking particles also showed some considerable
inter annual differences where, for example, 2013 particles tending to originate from locations to
the northwest, and from late 2015 into early 2016 particles originated more often from the west.

Examples of the closest coastal approaches occurred in Mar. 2011, Jan. 2014, and Nov. 2017.

3.2. Daily EF, SCOC and POC flux

14
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EF had both notable seasonal and interannual variations, where high peaks were notably
reduced or absent from 2015 and 2016 depending on the speed (e.g. Fig. 4a,b,c). Examination of
the time series plots for each of the sinking speeds separately reveals when (and vial location
data where) there was close correspondence (or not) to sediment trap estimated POC flux and
related SCOC. The slower speeds often had higher values, in part, because locations could more
frequently approach the higher productivity nearer to shore. POC flux from the integrated cup
samples had a variance with peaks of up to about 12 standard deviations above the mean of 11.99
mg C m d* for the study period. The daily SCOC was generally less variable with occasional

peaks that tended to be more consistently in summer than POC flux.

3.3. Monthly time series of EF, SCOC and POC flux

Correlations of the monthly averaged time series of SCOC with the various EF estimates
found that the correlations ranged from 0.51 to 0.62. (Table 1, Fig. 5). Similarly, correlation
between POC flux and the EF estimates were between 0.36 and 0.55, and generally lower than
with SCOC. While the coefficients show that there are some significant connections, they are
sufficiently similar to preclude conclusive identification of any single speed or composite of
speeds as distinctly more tightly linking the surface ocean and deep-sea carbon cycling time
series. The coefficients were affected, in part, by the fact that the early part of the time series
showed a relatively ‘decoupled’ relationship between EF and the deep-sea variation in SCOC
and POC flux, particularly around 2012 (Fig. 5d). The period of highest correlation was in 2016

and 2017.
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3.3. Seasonality in source locations and seafloor dynamics

Seasonally, the average source location was most easterly in June for the slow sinking
speed and July for the medium sinking speed (Fig. 6a-f). The variance in the faster speeds was
relatively little by comparison. The highest EF values were notably in July, whereas the POC

flux and SCOC here generally highest from June to September (Fig. 6g-i).

4. Discussion

4.1. Particle settling from the California Current to Sta. M

The results here provide insights into the variability in source locations that can arise
from different sinking speeds of marine snow particles at Sta. M. Not surprisingly, the extent of
the slower sinking speed locations was much greater than the fast sinking speed. Source
locations tending towards the east can bring them closer to highly productive coastal waters,
upwelling jets and filaments. However, this movement in source location has considerable
variation from interannual to daily scales, with indications of seasonality.

The results corroborate other studies that have found that source locations for deep-sea
particulate fluxes can come from more than 100 km away. For example, investigations into the
sources locations of surface waters arriving at the Porcupine Abyssal Plain (PAP) site in the
Northeast Atlantic using a sea-surface oriented tracking model have found that sources were

highly variable by year with origins coming from nearly 1000 km distance over 90 days
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(Hartman et al., 2010). Using a combination of satellite altimeter, ship board acoustic Doppler
velocity data, modeling and drifting sediment traps, Siegel et al. (2008) estimated that deep-
moored traps, like those at Sta. M could have inputs coming from hundreds of km away for
slower sinking speeds. Wekerle et al. (2018) estimated source locations in the Fram Strait and
found that sinking speeds on the order of 100 m d can result in particles coming from specific
distant sea ice features that are thought to influence flux and vary strongly from year to year.

In the California Current Ecosystem (CCE), studies using modelled surface currents have
traced upwelling events to primary production and the growth and distribution of krill patches as
waters translate from nearshore to offshore over time (Messié and Chavez, 2017). A detailed
process study combining field observations and three-dimensional ROMS modeling in the area
overlying Station M found that subduction of particles at ocean fronts can augment sinking to
enhance vertical POC flux (Stukel et al., 2017). This subduction has also been linked to
substantial horizontal advection that complicates interpretations of export efficiency estimation
and thus estimates of EF (Kelly et al., 2018).

The results here provide examples of how specific events of ocean weather and longer
term variations can accumulate over monthly and longer timescales to drive variation in deep-sea
carbon fluxes. Like other eastern boundary current systems, the California Current is known to
have various scales of ecological forcing factors including ENSO, upwelling, and the formation
of jets, filaments and eddies of high biological productivity moving offshore. Many of the
intense peaks in EF can be traced to specific net primary production features originating at the
coast and advecting offshore. In cases where there is apparent weak correspondence between EF
and source locations and deep-sea POC and SCOC flux, we must recognize the limitations of EF

estimation form satellite where deep chlorophyll maxima and other issues add error, as well as
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error in sediment trap and oxygen consumption estimation. Interannual forcing in the region also
includes the influence of a relatively unusual phenomenon of large scale surface ocean warming
over the greater eastern North Pacific Ocean, also known as the ‘Warm Blob’ that occurred from
autumn 2014 to early 2016 (Bond et al., 2015; Gdmez-Ocampoa et al., 2018). Its effects on the
surface ocean conditions in the California Current included increased stratification, decreased
chlorophyll, primary production and phytoplankton abundance (Gémez-Ocampoa et al., 2018).
Source location EF values were consistently lower during this time as reflected in the 100 km
composite for the highest values of the two speeds (Figs. 3 and 4). The POC flux values at
abyssal depths also were consistently low for much of 2014 and 2015, although some gaps in the
record do exist. The effects of the “Warm Blob’ may also have extended through to changes in

the community composition of abyssal fauna (Kuhnz et al., this volume).

4.2 From initial Sta. M findings to improved understanding of the BCP

A key question arises from our findings and approach: does tracing possible source
locations improve the correspondence between sediment trap variation and estimates of flux
derived from satellite EF and the remineralization model of Martin et al. (1987)? We used the
equation f, = f,0(z/z0)®, where zo is export depth (here 100 m depth), f, is flux at export depth
(average EF from the source locations of the three sinking speeds), and f; is flux at depth z (here
3400-m depth), and the coefficient of flux attenuation (b). The b term here is set by the equation
of Marsay et al. (2014), were b = 0.062(x) + 0.303 and x is the median temperature for the upper
500 m of the water column (~7.7°C at Sta. M, b = 0.78). For this study period of 2011-2017, the

model estimated POC flux averaged 7.69 mg C m2 d"* whereas the trap estimated POC flux
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386  value was 12.19 mg C m?2 d?, a difference of 37%. As was found in Smith et al. (2018), the flux
387  corresponded well over time except during some of the highest trap estimates (Fig. 5e).

388 Further investigation using particle tracking and other tools will be needed to arrive at
389  more conclusive findings on the role of particle sinking speed and other factors in controlling in
390 the BCP. Various combinations physical, biogeochemical and ecosystem features present several
391  potential forms of trajectory for sinking particles (e.g. Boyd et al., 2019), some of which can be
392  understood through the kind of modeling done here. Variation in particle size, material density,
393  shape and water temperature could all play important roles in sinking speed (e.g. Marsay et al.,
394  2015; Giering, 2017). The modification of particles in terms of aggregation/disaggregation and
395 consumption and repackaging by zooplankton all add complexity to particle sinking dynamics
396 (e.g. Burd and Jackson, 2009; Wilson et al., 2013; Cavan et al., 2018). Future work could explore
397  the importance of sinking speeds and changes with time and depth more comprehensively. This
398 could include setting of sinking speed distributions through models such as that described in
399  Siegel et al. (2014). Additional formulations could look to account for the influence of strong
400 gradients at fronts, eddy kinetic energy, and temperature, which can relate to productivity,

401  metabolic rates and remineralization (e.g. Marsay et al., 2015), as well as viscosity (Taucher et
402  al., 2014).

403 Such examinations can also compare biogeochemical fluxes in outputs from ocean

404  biogeochemical models, such as the Model of Ecosystem Dynamics, nutrient Utilisation,

405  Sequestration and Acidification (MEDUSA, Yool et al., 2013) or the North Pacific Ecosystem
406  Model for Understanding Regional Oceanography (NEMURO, Kishi et al., 2007; Fiechter et al.,
407  2014). Global climate model estimates of ocean carbon sequestration are influenced by

408  remineralization depth (Kwon et al., 2009), which itself is partially determined by particle

19



409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

sinking speed. Clearer accounting for the spatio-temporal aspects of the physical,
biogeochemical and ecosystem development process is beginning to help both in the
interpretation of field data and its comparison to model data. For example, estimates of deep
particulate carbon fluxes that are derived based on steady state assumptions of remineralization
rate or sinking speed likely add considerable error (e.g. Giering et al., 2017). Vertical profiles of
particle flux with depth in reality have a mix of historical influences that may extend well prior
to the conditions observed at the time of collection. For example, the remnants of a spring bloom
may take several weeks or more to sink. The influences of zooplankton may take even longer to
manifest from their initiation, particularly for larger zooplankton that may take longer to grow.
Sinking speed distributions may change over time with modification of particles via
remineralization and interaction with zooplankton over time and depth.

Debate about the importance of smaller and larger particles in contributing to POC fluxes
and carbon sequestration persists. This is partly because the various BCP attributes that are
thought to be important are very rarely measured concurrently, and never over a seasonal bloom
and carbon export cycle in high resolution (e.g. Burd et al., 2010; Briggs et al., 2011; Giering et
al., 2017; Bol et al., 2018; Cavan et al., 2018). This uncertainty, in turn, limits how we might
constrain a distribution of sinking speeds and related factors in modeling POC fluxes.

Blooms of diatoms and other larger phytoplankton, sinking zooplankton and their exuve,
have regularly been associated with pulses of sinking POC flux (e.g. Alldredge and Gotschalk,
1989; Briggs et al. 2011, Smith 2013, 2018). Some studies have suggested that in the upper
mesopelagic, most sinking POC flux may be coming from slow sinking or small particles
(Alonso-Gonzalez et al., 2010; Durkin et al., 2015; Villa-Alfageme et al., 2016; Baker et al.,

2017). Optical and other approaches are maturing that offer promise to help quantify particle size
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and type distributions with depth over time, in various oceanographic settings (e.g. Lombard et
al, 2019). Such data will be critical to help frame and constrain new formulations to improve
model realism in quantifying sinking flux.

Monroy et al. (2019) also investigated particle sinking trajectories, in their case by
seeding the model domain with a uniform particle distribution and running the sinking
trajectories forward in time. This revealed that slower particles formed relatively non-uniform
distributions that, when moving horizontally over time, could produce variation in fluxes without
changes in the source flux of particles. This could help explain some of the intense pulse events
observed at Sta. M, where fluxes might be driven to peak in relation to one of these patches of
higher concentrations of sinking particles passing horizontally by a trap over a period of days or
more. The initiation of a forward running particle tracking framework for the California Current
will help constrain the degree to which that might be important in driving the pulses of POC flux

at Sta. M.

4.3. Understanding error in model trajectories

Current data used in the models are gridded. The model includes a vertical velocity
component and velocity values between grid points are calculated using interpolation techniques,
which leads to approximations. Using a deterministic and mechanistic approach in this context
will always yield the same result and assumes the current data and interpolation strategy to be
perfect. This approach which may not account well the site’s natural variability in the velocity
field. There is therefore a degree to which the model did not fully described currents in the

region. This mechanistic approach can be a source of error in the trajectories of the sinking
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particles. A Monte-Carlo method approach introducing local variability to the interpolated values
could produce a collection of possible currents in the region. The trajectory for each particle can
be calculated using this collection of possible currents until they intercept a reference depth (e.g.
the base of the mixed layer). This Monte-Carlo approach yields a cloud of points which define a
source region (Espinola, 2018). Each of the intercepts has the same probability to be the real
source for the particle. However, the point density gives the probability that a particle has
originated within that region.

Additionally, the model assumes a constant vertical sinking speed with respect to the
surrounding water masses. This is unlikely to reflect the speed of a particle sinking through the
majority of the full-ocean water column (McDonnell and Buesseler, 2010). Particle
transformation processes might either increase or decrease particle density, these complex
transformations occur as the particles sink (Alldredge and Gotschalk, 1989; Armstrong et al.,
2001; Boyd and Newton, 1999; Burd et al., 2010; Mayor et al., 2014; Robinson et al., 2010;
Shanks and Trent, 1980; Stemmann et al., 2004). Particle remineralization is a part of these
transformation processes, however, remineralization might also influence the particle size-class
distribution within the flux. Slow particles that are remineralizing quickly might disappear before
they can even reach the sediment trap. This might suggest that some of the particles observed in

sediment trap sampling might have been modified in the water column.

4.4. Particle tracking in ocean condition indicators

Marine resource and ecosystem managers require information that is relevant for the time

and space scales where management is applied. This often translates to large marine protected
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areas, sanctuaries and industrial lease areas that can cover areas from a few km? to vast areas of
seafloor covering more than 100,000 km?. These areas can experience remote influence over
time (Robinson et al., 2017). The model and satellite tools used here allow for the estimation of
transfers of organic carbon food resource from the surface ocean to deeper depths and the
seafloor over these large scales. Such tools may help resolve questions about what drives the
observed heterogeneity in seafloor ecology (Morris et al., 2016; Snelgrove et al., 2018). Model
particles can be seeded at the nominal expert depth across a large study domain and then
assigned a nominal sinking speed(s) and remineralization rates, to trace exported flux to depth.
While there are considerable unknowns associated with sinking speed, remineralization rates and
related issues, basic metric(s) for change in available energy to support ecological functions and
services will likely prove valuable. Food resources at depth can then be used to drive ecological
models with metrics integrated over one or more spatial domains, habitat areas, time periods or
other segmentations to address management needs. For example, it will be critical to have
environmental data to support the interpretation of change over time and disentangle
anthropogenic impact from natural change. Spatio-temporal estimates of available food resources
are critical to this. The tools used here provide a potential means to trace changes at depth to

specific ocean weather and/or climatic conditions.
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723  Table 1. Correlations between sediment trap POC flux, rover chamber estimates of SCOC, and
724  various estimations of EF from source locations resulting from 50, 100 and 1000 m d*%, including
725 50 and 100 km radius integrations of EF from the source locations, as well as averages using

726  different weighting factors. The p-values have been corrected issues arising serial autocorrelation

727  using the approach of Pyper and Peterman (1998) to adjust the degrees of freedom.

Variables SCOoC n effective n p-value POC flux n effec
Sscoc - - - - 0.46 39 1
POC flux 0.46 39 16.6 0.076 - -
EF 50 km, 50 m d! 0.46 49 19.9 0.046 0.39 58 2
EF 100 km, 50 m d! 0.45 49 20.8 0.044 0.38 58 2
EF 50 km, 100 m d* 0.62 49 16.5 0.010 0.36 58 1
EF 100 km, 100 m d! 0.61 49 16.1 0.012 0.40 58 1
EF 50 km, 1000 m d! 0.48 49 16.2 0.059 0.55 58 1
EF 100 km, 1000 m d! 0.54 49 15.3 0.040 0.48 58 1
EF 50 km, average of speeds 0.57 49 15.6 0.025 0.48 58 1
EF 100 km, average of speeds 0.57 49 15.8 0.027 0.46 58 1
EF 50 km, weighted for peaks from slow flux 0.51 48 17.1 0.038 0.44 58 2(
EF 50 km, weighted for peaks from fast flux 0.51 48 14.2 0.061 0.53 58 1
EF 100 km, weighted for peaks from slow flux 0.50 48 17.7 0.043 0.41 58 2
EF 100 km, weighted for peaks from fast flux 0.55 48 14.2 0.042 0.49 58 |
EF 50 km, highest EF of the three speeds 0.53 49 16.1 0.035 0.48 58 1
EF 100 km, highest EF of the three speeds 0.54 49 16.7 0.032 0.45 58 1

728

729  Figure Captions

730

731  Fig. 1. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m
732 depth at 50 m d. The colors indicate months of arrival at trap from January to December, 2013-
733 2017 as indicated in the graphical legend.

734

735  Fig. 2. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m
736  depth at 100 m d™. The colors indicate months of arrival at trap from January to December,

737  2013-2017 as indicated in the graphical legend.
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Fig. 3. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m
depth at 1000 m dX. Note that the spatial extend is less than in Fig. 1 and 2. The colors indicate
months of arrival at trap from January to December, 2013-2017 as indicated in the graphical

legend.

Fig. 4. Daily Sta. M time series of SCOC at the seafloor, POC flux at 3400 m depth and EF at
100 m depth at potential origins based on a) 50, b) 100 and ¢) 1000 m d* sinking speed. The EF
series has been time shifted into the future to its corresponding trap arrive time, which is 66 days

for 50 m d1, 33 days for m d%, and 3 days for the m d! speed.

Fig. 5. Monthly Sta. M time series of EF at potential origins at 100 m depth based on a) 50,
b)100 and ¢) 1000 m d sinking speeds. Also shown are the POC flux from the 3400 m depth
sediment trap and SCOC at the seafloor. The EF series has been time shifted into the future to its
corresponding trap arrive time, which is 66 days for 50 m d, 33 days for m d*!, and 3 days for
the m d* speed. Panel d) plots the Spearman rank correlation coefficients between EF and POC
flux, and EF and SCOC for a 13 month moving window over the time series. Panel e) shows the
POC flux record from the sediment trap sampling along with the equal weighting average EF
flux from the three sinking speeds with a Martin curve model applied to estimate flux at the trap

depth (see section 4.2).

Figure 6. Monthly average values of the source locations for the period 2013-2017 in terms of
latitude (a) and longitude (b) for the slow 50 m d* sinking speed, and for the 100 m d! speed
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761

762

763

764

765

766

(c,d), and 1000 m d* speed (e,f). Also shown are the monthly average EF flux from 100 m depth
for the 100 km radius (e), as well as the monthly average POC flux values from the 3400 m
sediment trap system (f) and the monthly averages for SCOC at the seafloor (g). Error bars

indicate standard deviation.
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