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Highlights 20 

Sinking marine snow and other particulate matter sequester carbon in the deep sea and provide a 21 

key food supply for life there. However, such dynamics remain challenging to quantify.  22 

 23 

This and other recent studies highlight that the sinking speeds of particles can have important 24 

implications for the horizontal distances travelled as particles sink.  25 

 26 

Particles with slower sinking speeds may originate from hundreds of km or more away from 27 

sediment trap sampling systems and vary from daily to inter-annual scales.  28 

 29 

Estimating the source location can aid in assessing how conditions at these distant locations may 30 

relate to the strong variation in carbon sequestration and food resource supplies observed at time 31 

series research sites.   32 

 33 

 34 

  35 
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ABSTRACT 36 

 37 

The biological carbon pump has been estimated to export ~5-15 Gt C yr-1 into the deep ocean, 38 

and forms the principal deep-sea food resource. Irregular, intense pulses of particulate organic 39 

carbon (POC) have been found to make up about one-third of the overall POC fluxes at a long-40 

term deep-sea research station influenced by coastal upwelling of the California Current, Station 41 

M (34°50’N, 123° W, 4000 m depth). However, the drivers of these pulses have been 42 

challenging to quantify. It has long been recognized that ocean currents can result in particles 43 

being advected while sinking to the point of collection by a sediment trap. Thus, a sediment trap 44 

time series can incorporate material from a dynamic catchment area, a concept sometimes 45 

referred to as a statistical funnel. This concept raises many questions including: what are the day-46 

to-day conditions at the source locations of the sinking POC? And, how might such ‘ocean 47 

weather’ and related ecosystem factors influence the intense variation seen at the seafloor? Here 48 

we analyzed three-dimensional ocean currents from a Regional Ocean Modeling System 49 

(ROMS) model from 2011-2017 to trace the potential source locations of particles sinking at 50 

1000, 100, and 50 m d-1 from an export depth of 100 m. We then used regionally tailored satellite 51 

data products to estimate export flux of POC from these locations. For the 100 m d-1 speed, the 52 

particles had origins of up to ~300 km horizontal distance from the sediment trap location, 53 

moored at Station M at 3400 m depth., and nearly 1000 km for the 50 m d-1 speed. Particle 54 

tracking indicated that, there was considerable inter-annual variation in source locations. Particle 55 

source locations tended to originate from the east in the summer months, with higher export and 56 

POC fluxes. Occasionally these locations were in the vicinity of highly productive ocean features 57 

nearer to the coast. We found significant correlations between export flux of organic carbon from 58 
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the estimated source locations at 100 m depth to trap-estimated POC fluxes at 3400 m depth. 59 

These results set the stage for further investigation into sinking speed distributions, conditions at 60 

the source locations, and comparisons with mechanistic biogeochemical models and between 61 

particle tracking model frameworks.  62 

 63 

  64 
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1. Introduction 65 

 66 

The biological carbon pump (BCP) is a complex set of processes that provides critical 67 

ecosystem functions and services including the sequestration of carbon dioxide from the 68 

atmosphere into the deep ocean where it can be removed from atmospheric climate influence for 69 

tens to thousands of years (Khatiwala et al., 2012; Fine et al., 2017). Importantly, the BCP is a 70 

critical regulator of biogeochemical rates and food resources for life in the deep ocean and on the 71 

seafloor, which make up ~97% of the oceans volume (e.g. Smith et al., 2018; Grabowski et al., 72 

2019). Sustained observations have revealed that there can be order of magnitude variability in 73 

the year to year flux of organic carbon in the form of ‘marine snow’ and related detritus sinking 74 

to abyssal depths (Lampitt et al., 2010; Smith et al., 2018; Conte et al. 2018). These episodic 75 

variations are not well represented in ocean biogeochemical models and may be a source of 76 

considerable uncertainty in simulations of ocean carbon sequestration. This is partly because 77 

observing them requires high-resolution sensing and sampling over multi-year scales. In many 78 

such global biogeochemical models the flux attenuation efficiency terms are either fixed, are 79 

allowed to vary according to mean temperature, and/or oxygen concentration derived mainly in 80 

spatial terms (e.g. Cram et al., 2018; Marsay et al., 2015), or are driven by a mineral ballast 81 

framework (e.g. Armstrong et al., 2001; Yool et al., 2013). Seafloor ecological models also 82 

generally have input terms that rely on a flux that is transferred vertically (e.g. Yool et al., 2017; 83 

Durden et al., 2017). Conditions at the origin of sinking particles set the initial sinking speed and 84 

remineralization rate of particles, which may then vary before arriving at particular sampling 85 

locations and depths. Using tools that can track particles from surface to seafloor, forwards or 86 

backwards in time, can help reveal insights into the connections between surface remotely sensed 87 
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properties and deep-sea time-series observations. Moreover, such insights will likely improve 88 

indicators of ecosystem conditions in a variety of applications at the scales of resource 89 

management policy implementation, such as for marine protected areas. 90 

Since 1989, Station M has been a site for long-term biogeochemical and ecological 91 

research in the deep sea, including the fluxes of POC and Sediment Community Oxygen 92 

Consumption (SCOC). Results from the site have shown how seasonal upwelling and interannual 93 

climate variation relate to changes in surface ocean productivity, export flux and ultimately to 94 

changes in deep-sea POC fluxes and dependent communities (e.g. Smith et al., 2014; Ruhl et al., 95 

2014). For example, the El Niño Southern Oscillation (ENSO) can relate to unusual daily 96 

conditions driving POC fluxes that are lower (during El Niño) or higher (during La Niña) than 97 

average. This has been linked to variations in upwelling, the introduction of new nutrients, and 98 

net primary production and ecological shifts in surface ocean communities (e.g. Smith et al., 99 

2014; Lilly and Ohman, 2018). Other examples of such ‘pelagic-benthic coupling’ have been 100 

found in many studies including in the Arctic (Soltwedel et al., 2016), the central and northeast 101 

Atlantic (Lampitt et al., 2010; Conte et al., 2019), the Gulf of Mexico (Wei et al., 2012), 102 

continental margins (Thomsen et al., 2015) and the oligotrophic Pacific (Ruhl et al., 2008). At 103 

the Porcupine Abyssal Plain (PAP) - Sustained Observatory POC flux and variations of deep 104 

ecosystems have been linked to variations in the North Atlantic Oscillation through variability in 105 

primary productivity and surface ocean ecology (e.g. Henson et al., 2012). 106 

Pulse events (i.e. ≥ 2 standard deviations [sd]) at Sta. M have been shown to account for 107 

about one-third of overall particulate organic carbon (POC) fluxes (Smith et al., 2018). The 108 

Martin-curve (sensu Martin et al. 1987) model of POC remineralization and flux estimates of 109 

POC flux to abyssal depths reproduced the background flux well at Sta. M (Smith et al., 2018). 110 
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However, the relatively episodic pulse fluxes showed major discrepancies with satellite-derived 111 

estimates, where the overall Martin-curve estimated POC flux reaching ~3400 m depth was 112 

~50% lower than the trap estimates. Such a mis-match could have important implications for 113 

estimating the depth of carbon sequestration. In making this calculation, the export flux was 114 

estimated from satellite data for a fixed circle over the site of 100 km radius using the algorithm 115 

of Kelly et al. (2018). This approach makes the implicit assumption that sinking flux would have 116 

come from this area. 117 

The concept of the ‘statistical funnel’ frames the time-series of material collected in 118 

sediment traps as coming from a dynamic catchment area where horizontal advection dominates 119 

the movement of sinking particles (Siegel and Deuser, 1997). Thus, the use of a fixed spatial 120 

integration area could miss potential particulate flux inputs coming from outside of it or dampen 121 

variation by averaging over large areas. Previous studies that simulated catchment areas and 122 

source locations of sinking particles have found that they can come from areas with contrasting 123 

conditions such as specific productivity features, coastal or offshore waters, or the presence of 124 

sea ice (e.g. Siegel et al., 2008; Hartman et al., 2010; Wekerle et al., 2018). By tracking particle 125 

trajectories across a range of sinking speeds, we can investigate if/how events from a more 126 

dynamic range of source location can account for the occasional mis-matches in estimated vs. 127 

sediment trap sampled POC fluxes to the trap depth. Indeed, particle tracking can reveal the 128 

broader range of conditions that may be related to the kind of episodic pulses of POC flux 129 

described above.  130 

Here we seek to understand the trajectories that connect day-to-day variations in surface 131 

ocean conditions, i.e. ocean weather, to deep sediment trap time series. Specifically, we examine 132 

ocean weather in terms of daily ocean currents in a three dimensional reanalysis model (Moore et 133 
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al., 2013), as well as daily satellite estimations of export flux (EF, here defined as export from 134 

100 m depth) as determined by the new algorithm of Kahru et al. (this volume). We used these 135 

tools to address the following research questions: What are the likely source locations of EF for 136 

sinking particles reaching the deep sediment trap at Sta. M? And, how well does EF at these 137 

source locations relate to deep sediment trap samples of POC flux and SCOC? We then discuss 138 

how this first examination of particle tracking at Sta. M reveals new insights into how episodic 139 

events of POC flux at 3400 m depth might be driven by specific daily scale features of ocean 140 

circulation and EF and how they accrue into long term variation, i.e. ocean weather into ocean 141 

climate. We discuss future research directions to investigate further the role of physical, 142 

biogeochemical, and ecological variations in driving intense POC flux variations by taking 143 

advantage of tools in ocean circulation and biogeochemical models, satellite observations and in 144 

situ data. 145 

 146 

 147 

2. Methods 148 

 149 

2.1. Overall approach 150 

 151 

We used a combination of modelled currents and particle tracking, satellite ocean color, 152 

and in situ sampling and sensing in the setting of the California Current. Respectively, these 153 

tools helped us to trace the possible source locations and sinking pathways of POC fluxes to Sta. 154 

M (34°50’N, 123° W, 4000 m depth). We then correlated these model and satellite estimated 155 

POC fluxes to empirical POC flux and seafloor community oxygen consumption observations.  156 
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 157 

2.2. Modeling ocean currents in three dimensions 158 

 159 

Ocean currents were obtained from an ocean state estimate of the California Current 160 

System built on the Regional Ocean Modeling System (ROMS; Shchepetkin and McWilliams, 161 

2004).  The model domain extends from Mexico to Washington State (30 N to 48 N) and 162 

offshore to 134 W at 1/10-degree horizontal resolution and 42 terrain-following s-levels 163 

(Veneziani et al., 2009). The model data are available through the Central and Northern 164 

California Ocean Observing System (CeNCOOS). The model is forced at the surface by fields 165 

derived from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS; Hodur 166 

et al., 2002; Doyle et al., 2009) and at lateral boundaries by output from the HYbrid Coordinate 167 

Ocean Model (HYCOM; Chassignet et al., 2007). The state estimate is obtained using an 168 

incremental form of the ROMS 4-dimensional variational data assimilation system (Broquet et 169 

al., 2009; Moore et al., 2011a, b) and available physical oceanographic data, including satellite 170 

derived sea surface height, sea surface temperature, and sea surface salinity, as well as in situ 171 

temperature and salinity from gliders and the Argo program. The model is run using the k-ω 172 

turbulence closure scheme for vertical mixing and in a series of sequential (k = kinetic energy 173 

and ω = the specific rate of dissipation of k), 4-day assimilation cycles each with 1 outer loop 174 

and 10 inner loops. Instantaneous model fields on daily intervals were used for calculations here. 175 

 176 

2.3. Tracking particles 177 

 178 
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We used three sinking speeds representing nominally slow (50 m d-1), medium (100 m d-179 

1) and fast sinking flux (1000 m d-1). The speed of 100 m d-1 is justified from previous research 180 

on sinking speeds inferred from time lagged cross correlations between climate, upwelling, net 181 

primary production at the site (e.g. Smith et al., 2008). Similar findings have been found by 182 

Billett et al. (1983) and Lampitt et al. (1985). The 50 and 1000 m d-1 speeds were chosen to 183 

investigate variations that might relate to particles sinking slower in relation to smaller particles, 184 

or faster, potentially in relation to the intense pulse fluxes seen at the site (e.g. Smith et al., 185 

2018). Such fast sinking has been estimated from Chaetognanth, Pteropod and Salp fecal pellets 186 

(Bruland and Silver, 1981; Madin, 1982; Yoon et al., 2001; reviewed in Turner, 2002), all of 187 

which occur in the study region.   188 

The OpenDrift particle tracking python module (Dagestad et al., 2018) was used to track 189 

particle trajectories from their settling location at a deep sediment trap, backwards to their 190 

potential source location. Sets of 100 particles that were randomly seeded at 3400 m depth at 191 

longitude -123.00°E, 34.83°N on a daily basis. A random radius of 1000 m around the starting 192 

point was used. The Euler method was used for equation solutions.  At each step, model data are 193 

interpolated to the advected particle’s trajectory. The model was run ‘backwards’ using a 194 

negative time step. The Source location was determined when the particles reached 100 m depth 195 

in this ‘backwards’ mode. Trajectories were computed for 10 days using the 1000 m d-1 speed, 196 

40 days using the 100 m d-1 speed and 70 days using the 50 m d-1 speed. Trajectory positions 197 

(latitude, longitude, and depth) are output for each day of the run.   198 

 199 

2.4. Export flux (EF) estimation 200 

 201 
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Satellite-derived estimates of export flux of carbon (EF, mg C m-2 day-1) were produced 202 

at daily intervals and 4 km spatial resolution (Kahru et al., this volume). Although ocean color 203 

products such as chlorophyll-a (Chl-a) are typically not available on a daily basis due to frequent 204 

cloud cover, daily estimates of net primary production (NPP, mg C m-2 day-1) are possible as 205 

gap-free, daily satellite-derived photosynthetically active radiation (PAR, Einstein m-2 day-1) 206 

estimates are available. In the algorithm of Kahru et al. (this volume), PAR was assumed to drive 207 

the daily variations in NPP while other components of the NPP model were assumed to change 208 

more slowly. Either 5-day interpolated Chl-a data or daily optimally interpolated products (sea 209 

surface temperature; SST) were additionally used. EF was estimated from NPP using a 210 

modification of the Kelly et al. (2018) algorithm (Kahru et al., this volume). The EF algorithm is 211 

an empirical fit to a regional in situ dataset of EF measurements including from near surface 212 

sediment traps and isotopic study (Stukel et al., 2019). Although the depth at which export 213 

occurs depends on mixing structure, the nominal export depth is 100 m set in part by the near 214 

surface sediment trap depth. Compared to the original Kelly et al. (2018) algorithm, the 215 

algorithm used here has a higher export efficiency (EF/NPP) and a wider dynamic range as it 216 

was fitted to a more diverse dataset including stations from active mesoscale features such as 217 

filaments and eddies. 218 

 219 

2.5. POC flux sampling 220 

 221 

We measured POC flux using McLane sequencing sediment traps moored at two depths: 222 

600 and 50 m above bottom (mab). The collection time for each cup was typically ten days. Prior 223 

to deployment, the trap cups were filled with 5% buffered formalin. Upon trap recovery, 224 
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zooplankton ‘swimmers’ were removed, and ¾ of the sample was freeze-dried for analysis in 225 

duplicate for total carbon (Perkin-Elmer or Exeter Analytical elemental analyzer, University of 226 

California Santa Barbara Marine Science Institute Analytical Lab) and inorganic carbon (UIC 227 

coulometer). These measurements were then corrected for salt content using AgNO3 titration and 228 

used to calculate particulate organic carbon flux. We created a single time series of sediment trap 229 

sampled POC flux from a composite of the 600 and 50 mab series for use in this study. We 230 

primarily use data from the 600 mab trap (3400 m depth) when available. The 3400 m depth is 231 

therefore the depth in the ROMS model from which particles are back tracked. When 600 map 232 

trap data were not available, the time series was infilled from the 50 mab trap where possible 233 

based on the linear relationship of POC flux between these traps from 1989-2017. Further details 234 

of sample processing are provided in Smith et al. (2018). 235 

 236 

2.6. Sediment community oxygen consumption  237 

 238 

A benthic rover (Rover II) was used to estimate Sediment Community Oxygen 239 

Consumption (SCOC) using a pair of respiration chambers that were inserted into the sediment 240 

for approximately two day periods during its deployment from a few months to up to about one 241 

year (Smith et al., 2016). Optodes were used to measure changes in oxygen over time in the 242 

chambers, which were compared to a reference optode outside the chambers. This provided 243 

replicate SCOC estimates with a frequency of about two days while it was deployed. Results are 244 

presented in oxygen consumption equivalent terms of mg C m-2 d-1. 245 

 246 

2.7. Analytical approach 247 
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 248 

The location and time when particles reached a 100-m depth was recorded, here 249 

generalized as the EF depth. EF values for each of these points was then recorded for that 250 

location and time. Satellite-derived EF estimates for each of these 100 points were then recorded 251 

for that location and time. Daily average values were then computed for each of the 100 tracked 252 

particles. Two spatial integrations of EF for these daily average values were calculated at the 253 

estimated source locations: 50 and 100 km radius circles, giving a total of six independent series 254 

(three sinking speeds for each of two spatial area integrations). Given that the flux seen at the 255 

trap is a result of particles sinking at a range of speeds, we also created a series different 256 

composite weightings of the slow, medium and fast speed EF source locations. For the 257 

composites, we 1) examined a form of pulse intensity weighted composites EF set by the 258 

standard deviation (σ) of POC flux at the trap, where the fast sinking location dominated at the 259 

time of the highest σ, and slow sinking at the time of the lowest σ, and 2) vice versa. For 3), an 260 

average EF that equally valued each of the speed estimates, and a set that simply used the highest 261 

of slow, medium or fast sinking EF values from the source locations, was also created. In total 262 

there are six series at single speeds and eight series using composites of the three speeds (Table 263 

1). 264 

EF and POC flux data were examined at both daily and monthly scales. Months with at 265 

least 15 daily values were retained for a monthly correlation analysis. We have used the non-266 

parametric Spearman rank correlation (rs) to quantify correlations between EF from the various 267 

source location areas and composite weightings, and POC flux, examining the sinking speed and 268 

spatial integration series independently and as the three composite weighting of the three speeds. 269 

To account for serial autocorrelation, a correction for the degrees of freedom was applied to 270 
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estimate the p values as described by Pyper and Peterman (1998). A Spearman rank correlogram 271 

was also generated to identify which parts of the time series were most correlated, which used a 272 

13-month moving window. 273 

 274 

 275 

3. Results 276 

 277 

3.1. Source locations 278 

 279 

The source locations of particles sinking at 50 and 100 m d-1 were not surprisingly spread 280 

over a much greater area than those sinking at 1000 m d-1 (Figs. 1-3). The maximum spread in 281 

the 50 m d-1 source locations was nearly 1000 km in its longest dimension, which ran along the 282 

California coastline. The particles generally originated from offshore waters, but did 283 

occasionally originate from near the coast. The 100 m d-1 source locations were nearly 300 km in 284 

both the latitudinal and longitudinal dimensions. Throughout each of the years examined there 285 

were coherent variations in the basic tendency of the source location as indicated by the monthly 286 

coloring in the location charts. The 100 m d-1 sinking particles also showed some considerable 287 

inter annual differences where, for example, 2013 particles tending to originate from locations to 288 

the northwest, and from late 2015 into early 2016 particles originated more often from the west. 289 

Examples of the closest coastal approaches occurred in Mar. 2011, Jan. 2014, and Nov. 2017.  290 

 291 

3.2. Daily EF, SCOC and POC flux 292 

 293 
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EF had both notable seasonal and interannual variations, where high peaks were notably 294 

reduced or absent from 2015 and 2016 depending on the speed (e.g. Fig. 4a,b,c). Examination of 295 

the time series plots for each of the sinking speeds separately reveals when (and vial location 296 

data where) there was close correspondence (or not) to sediment trap estimated POC flux and 297 

related SCOC. The slower speeds often had higher values, in part, because locations could more 298 

frequently approach the higher productivity nearer to shore. POC flux from the integrated cup 299 

samples had a variance with peaks of up to about 12 standard deviations above the mean of 11.99 300 

mg C m-2 d-1 for the study period. The daily SCOC was generally less variable with occasional 301 

peaks that tended to be more consistently in summer than POC flux.  302 

 303 

3.3. Monthly time series of EF, SCOC and POC flux 304 

 305 

Correlations of the monthly averaged time series of SCOC with the various EF estimates 306 

found that the correlations ranged from 0.51 to 0.62. (Table 1, Fig. 5). Similarly, correlation 307 

between POC flux and the EF estimates were between 0.36 and 0.55, and generally lower than 308 

with SCOC. While the coefficients show that there are some significant connections, they are 309 

sufficiently similar to preclude conclusive identification of any single speed or composite of 310 

speeds as distinctly more tightly linking the surface ocean and deep-sea carbon cycling time 311 

series. The coefficients were affected, in part, by the fact that the early part of the time series 312 

showed a relatively ‘decoupled’ relationship between EF and the deep-sea variation in SCOC 313 

and POC flux, particularly around 2012 (Fig. 5d). The period of highest correlation was in 2016 314 

and 2017.  315 

 316 
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3.3. Seasonality in source locations and seafloor dynamics  317 

 318 

Seasonally, the average source location was most easterly in June for the slow sinking 319 

speed and July for the medium sinking speed (Fig. 6a-f). The variance in the faster speeds was 320 

relatively little by comparison.  The highest EF values were notably in July, whereas the POC 321 

flux and SCOC here generally highest from June to September (Fig. 6g-i). 322 

 323 

 324 

4. Discussion 325 

 326 

4.1. Particle settling from the California Current to Sta. M 327 

 328 

The results here provide insights into the variability in source locations that can arise 329 

from different sinking speeds of marine snow particles at Sta. M. Not surprisingly, the extent of 330 

the slower sinking speed locations was much greater than the fast sinking speed. Source 331 

locations tending towards the east can bring them closer to highly productive coastal waters, 332 

upwelling jets and filaments. However, this movement in source location has considerable 333 

variation from interannual to daily scales, with indications of seasonality.  334 

The results corroborate other studies that have found that source locations for deep-sea 335 

particulate fluxes can come from more than 100 km away. For example, investigations into the 336 

sources locations of surface waters arriving at the Porcupine Abyssal Plain (PAP) site in the 337 

Northeast Atlantic using a sea-surface oriented tracking model have found that sources were 338 

highly variable by year with origins coming from nearly 1000 km distance over 90 days 339 
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(Hartman et al., 2010). Using a combination of satellite altimeter, ship board acoustic Doppler 340 

velocity data, modeling and drifting sediment traps, Siegel et al. (2008) estimated that deep-341 

moored traps, like those at Sta. M could have inputs coming from hundreds of km away for 342 

slower sinking speeds. Wekerle et al. (2018) estimated source locations in the Fram Strait and 343 

found that sinking speeds on the order of 100 m d-1 can result in particles coming from specific 344 

distant sea ice features that are thought to influence flux and vary strongly from year to year.  345 

In the California Current Ecosystem (CCE), studies using modelled surface currents have 346 

traced upwelling events to primary production and the growth and distribution of krill patches as 347 

waters translate from nearshore to offshore over time (Messié and Chavez, 2017). A detailed 348 

process study combining field observations and three-dimensional ROMS modeling in the area 349 

overlying Station M found that subduction of particles at ocean fronts can augment sinking to 350 

enhance vertical POC flux (Stukel et al., 2017). This subduction has also been linked to 351 

substantial horizontal advection that complicates interpretations of export efficiency estimation 352 

and thus estimates of EF (Kelly et al., 2018).  353 

The results here provide examples of how specific events of ocean weather and longer 354 

term variations can accumulate over monthly and longer timescales to drive variation in deep-sea 355 

carbon fluxes. Like other eastern boundary current systems, the California Current is known to 356 

have various scales of ecological forcing factors including ENSO, upwelling, and the formation 357 

of jets, filaments and eddies of high biological productivity moving offshore. Many of the 358 

intense peaks in EF can be traced to specific net primary production features originating at the 359 

coast and advecting offshore. In cases where there is apparent weak correspondence between EF 360 

and source locations and deep-sea POC and SCOC flux, we must recognize the limitations of EF 361 

estimation form satellite where deep chlorophyll maxima and other issues add error, as well as 362 
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error in sediment trap and oxygen consumption estimation. Interannual forcing in the region also 363 

includes the influence of a relatively unusual phenomenon of large scale surface ocean warming 364 

over the greater eastern North Pacific Ocean, also known as the ‘Warm Blob’ that occurred from 365 

autumn 2014 to early 2016 (Bond et al., 2015; Gómez-Ocampoa et al., 2018). Its effects on the 366 

surface ocean conditions in the California Current included increased stratification, decreased 367 

chlorophyll, primary production and phytoplankton abundance (Gómez-Ocampoa et al., 2018). 368 

Source location EF values were consistently lower during this time as reflected in the 100 km 369 

composite for the highest values of the two speeds (Figs. 3 and 4). The POC flux values at 370 

abyssal depths also were consistently low for much of 2014 and 2015, although some gaps in the 371 

record do exist. The effects of the ‘Warm Blob’ may also have extended through to changes in 372 

the community composition of abyssal fauna (Kuhnz et al., this volume).  373 

 374 

4.2 From initial Sta. M findings to improved understanding of the BCP 375 

 376 

A key question arises from our findings and approach: does tracing possible source 377 

locations improve the correspondence between sediment trap variation and estimates of flux 378 

derived from satellite EF and the remineralization model of Martin et al. (1987)? We used the 379 

equation fz = fz0(z/z0)
-b, where z0 is export depth (here 100 m depth), fz0 is flux at export depth 380 

(average EF from the source locations of the three sinking speeds), and fz is flux at depth z (here 381 

3400-m depth), and the coefficient of flux attenuation (b). The b term here is set by the equation 382 

of Marsay et al. (2014), were b = 0.062(x) + 0.303 and x is the median temperature for the upper 383 

500 m of the water column (~7.7°C at Sta. M, b = 0.78). For this study period of 2011-2017, the 384 

model estimated POC flux averaged 7.69 mg C m-2 d-1 whereas the trap estimated POC flux 385 
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value was 12.19 mg C m-2 d-1, a difference of 37%. As was found in Smith et al. (2018), the flux 386 

corresponded well over time except during some of the highest trap estimates (Fig. 5e). 387 

Further investigation using particle tracking and other tools will be needed to arrive at 388 

more conclusive findings on the role of particle sinking speed and other factors in controlling in 389 

the BCP. Various combinations physical, biogeochemical and ecosystem features present several 390 

potential forms of trajectory for sinking particles (e.g. Boyd et al., 2019), some of which can be 391 

understood through the kind of modeling done here. Variation in particle size, material density, 392 

shape and water temperature could all play important roles in sinking speed (e.g. Marsay et al., 393 

2015; Giering, 2017). The modification of particles in terms of aggregation/disaggregation and 394 

consumption and repackaging by zooplankton all add complexity to particle sinking dynamics 395 

(e.g. Burd and Jackson, 2009; Wilson et al., 2013; Cavan et al., 2018). Future work could explore 396 

the importance of sinking speeds and changes with time and depth more comprehensively. This 397 

could include setting of sinking speed distributions through models such as that described in 398 

Siegel et al. (2014). Additional formulations could look to account for the influence of strong 399 

gradients at fronts, eddy kinetic energy, and temperature, which can relate to productivity, 400 

metabolic rates and remineralization (e.g. Marsay et al., 2015), as well as viscosity (Taucher et 401 

al., 2014).  402 

Such examinations can also compare biogeochemical fluxes in outputs from ocean 403 

biogeochemical models, such as the Model of Ecosystem Dynamics, nutrient Utilisation, 404 

Sequestration and Acidification (MEDUSA, Yool et al., 2013) or the North Pacific Ecosystem 405 

Model for Understanding Regional Oceanography (NEMURO, Kishi et al., 2007; Fiechter et al., 406 

2014). Global climate model estimates of ocean carbon sequestration are influenced by 407 

remineralization depth (Kwon et al., 2009), which itself is partially determined by particle 408 
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sinking speed. Clearer accounting for the spatio-temporal aspects of the physical, 409 

biogeochemical and ecosystem development process is beginning to help both in the 410 

interpretation of field data and its comparison to model data. For example, estimates of deep 411 

particulate carbon fluxes that are derived based on steady state assumptions of remineralization 412 

rate or sinking speed likely add considerable error (e.g. Giering et al., 2017). Vertical profiles of 413 

particle flux with depth in reality have a mix of historical influences that may extend well prior 414 

to the conditions observed at the time of collection. For example, the remnants of a spring bloom 415 

may take several weeks or more to sink. The influences of zooplankton may take even longer to 416 

manifest from their initiation, particularly for larger zooplankton that may take longer to grow. 417 

Sinking speed distributions may change over time with modification of particles via 418 

remineralization and interaction with zooplankton over time and depth. 419 

Debate about the importance of smaller and larger particles in contributing to POC fluxes 420 

and carbon sequestration persists. This is partly because the various BCP attributes that are 421 

thought to be important are very rarely measured concurrently, and never over a seasonal bloom 422 

and carbon export cycle in high resolution (e.g. Burd et al., 2010; Briggs et al., 2011; Giering et 423 

al., 2017; Bol et al., 2018; Cavan et al., 2018). This uncertainty, in turn, limits how we might 424 

constrain a distribution of sinking speeds and related factors in modeling POC fluxes.  425 

Blooms of diatoms and other larger phytoplankton, sinking zooplankton and their exuve, 426 

have regularly been associated with pulses of sinking POC flux (e.g. Alldredge and Gotschalk, 427 

1989; Briggs et al. 2011, Smith 2013, 2018). Some studies have suggested that in the upper 428 

mesopelagic, most sinking POC flux may be coming from slow sinking or small particles 429 

(Alonso-González et al., 2010; Durkin et al., 2015; Villa-Alfageme et al., 2016; Baker et al., 430 

2017). Optical and other approaches are maturing that offer promise to help quantify particle size 431 
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and type distributions with depth over time, in various oceanographic settings (e.g. Lombard et 432 

al, 2019). Such data will be critical to help frame and constrain new formulations to improve 433 

model realism in quantifying sinking flux.  434 

Monroy et al. (2019) also investigated particle sinking trajectories, in their case by 435 

seeding the model domain with a uniform particle distribution and running the sinking 436 

trajectories forward in time. This revealed that slower particles formed relatively non-uniform 437 

distributions that, when moving horizontally over time, could produce variation in fluxes without 438 

changes in the source flux of particles. This could help explain some of the intense pulse events 439 

observed at Sta. M, where fluxes might be driven to peak in relation to one of these patches of 440 

higher concentrations of sinking particles passing horizontally by a trap over a period of days or 441 

more. The initiation of a forward running particle tracking framework for the California Current 442 

will help constrain the degree to which that might be important in driving the pulses of POC flux 443 

at Sta. M. 444 

 445 

4.3. Understanding error in model trajectories 446 

 447 

Current data used in the models are gridded. The model includes a vertical velocity 448 

component and velocity values between grid points are calculated using interpolation techniques, 449 

which leads to approximations. Using a deterministic and mechanistic approach in this context 450 

will always yield the same result and assumes the current data and interpolation strategy to be 451 

perfect. This approach which may not account well the site’s natural variability in the velocity 452 

field. There is therefore a degree to which the model did not fully described currents in the 453 

region. This mechanistic approach can be a source of error in the trajectories of the sinking 454 



22 
 

particles. A Monte-Carlo method approach introducing local variability to the interpolated values 455 

could produce a collection of possible currents in the region. The trajectory for each particle can 456 

be calculated using this collection of possible currents until they intercept a reference depth (e.g. 457 

the base of the mixed layer). This Monte-Carlo approach yields a cloud of points which define a 458 

source region (Espinola, 2018). Each of the intercepts has the same probability to be the real 459 

source for the particle. However, the point density gives the probability that a particle has 460 

originated within that region. 461 

Additionally, the model assumes a constant vertical sinking speed with respect to the 462 

surrounding water masses. This is unlikely to reflect the speed of a particle sinking through the 463 

majority of the full-ocean water column (McDonnell and Buesseler, 2010). Particle 464 

transformation processes might either increase or decrease particle density, these complex 465 

transformations occur as the particles sink (Alldredge and Gotschalk, 1989; Armstrong et al., 466 

2001; Boyd and Newton, 1999; Burd et al., 2010; Mayor et al., 2014; Robinson et al., 2010; 467 

Shanks and Trent, 1980; Stemmann et al., 2004). Particle remineralization is a part of these 468 

transformation processes, however, remineralization might also influence the particle size-class 469 

distribution within the flux. Slow particles that are remineralizing quickly might disappear before 470 

they can even reach the sediment trap. This might suggest that some of the particles observed in 471 

sediment trap sampling might have been modified in the water column.  472 

 473 

4.4. Particle tracking in ocean condition indicators  474 

 475 

Marine resource and ecosystem managers require information that is relevant for the time 476 

and space scales where management is applied. This often translates to large marine protected 477 
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areas, sanctuaries and industrial lease areas that can cover areas from a few km2 to vast areas of 478 

seafloor covering more than 100,000 km2. These areas can experience remote influence over 479 

time (Robinson et al., 2017). The model and satellite tools used here allow for the estimation of 480 

transfers of organic carbon food resource from the surface ocean to deeper depths and the 481 

seafloor over these large scales. Such tools may help resolve questions about what drives the 482 

observed heterogeneity in seafloor ecology (Morris et al., 2016; Snelgrove et al., 2018). Model 483 

particles can be seeded at the nominal expert depth across a large study domain and then 484 

assigned a nominal sinking speed(s) and remineralization rates, to trace exported flux to depth. 485 

While there are considerable unknowns associated with sinking speed, remineralization rates and 486 

related issues, basic metric(s) for change in available energy to support ecological functions and 487 

services will likely prove valuable. Food resources at depth can then be used to drive ecological 488 

models with metrics integrated over one or more spatial domains, habitat areas, time periods or 489 

other segmentations to address management needs. For example, it will be critical to have 490 

environmental data to support the interpretation of change over time and disentangle 491 

anthropogenic impact from natural change. Spatio-temporal estimates of available food resources 492 

are critical to this. The tools used here provide a potential means to trace changes at depth to 493 

specific ocean weather and/or climatic conditions. 494 

 495 
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Table 1. Correlations between sediment trap POC flux, rover chamber estimates of SCOC, and 723 

various estimations of EF from source locations resulting from 50, 100 and 1000 m d-1, including 724 

50 and 100 km radius integrations of EF from the source locations, as well as averages using 725 

different weighting factors. The p-values have been corrected issues arising serial autocorrelation 726 

using the approach of Pyper and Peterman (1998) to adjust the degrees of freedom.  727 

Variables SCOC n effective n p-value   POC flux n effective n 

SCOC  -  -  -  -  0.46 39 16.6 

POC flux 0.46 39 16.6 0.076   -  -  - 

EF 50 km, 50 m d-1 0.46 49 19.9 0.046  0.39 58 23.6 

EF 100 km, 50 m d-1 0.45 49 20.8 0.044  0.38 58 24.6 

EF 50 km, 100 m d-1 0.62 49 16.5 0.010  0.36 58 19.5 

EF 100 km, 100 m d-1 0.61 49 16.1 0.012  0.40 58 19.1 

EF 50 km, 1000 m d-1 0.48 49 16.2 0.059  0.55 58 19.1 

EF 100 km, 1000 m d-1 0.54 49 15.3 0.040  0.48 58 18.1 

EF 50 km, average of speeds 0.57 49 15.6 0.025  0.48 58 18.4 

EF 100 km, average of speeds 0.57 49 15.8 0.027  0.46 58 18.7 

EF 50 km, weighted for peaks from slow flux 0.51 48 17.1 0.038  0.44 58 20.6 

EF 50 km, weighted for peaks from fast flux 0.51 48 14.2 0.061  0.53 58 17.1 

EF 100 km, weighted for peaks from slow flux 0.50 48 17.7 0.043  0.41 58 21.4 

EF 100 km, weighted for peaks from fast flux 0.55 48 14.2 0.042  0.49 58 17.1 

EF 50 km, highest EF of the three speeds 0.53 49 16.1 0.035  0.48 58 19.0 

EF 100 km, highest EF of the three speeds 0.54 49 16.7 0.032   0.45 58 19.7 

 728 

Figure Captions 729 

 730 

Fig. 1. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m 731 

depth at 50 m d-1. The colors indicate months of arrival at trap from January to December, 2013-732 

2017 as indicated in the graphical legend. 733 

 734 

Fig. 2. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m 735 

depth at 100 m d-1. The colors indicate months of arrival at trap from January to December, 736 

2013-2017 as indicated in the graphical legend. 737 
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 738 

Fig. 3. Sta. M source locations for particles reaching a trap at 3400 m depth, sinking from 100 m 739 

depth at 1000 m d-1. Note that the spatial extend is less than in Fig. 1 and 2. The colors indicate 740 

months of arrival at trap from January to December, 2013-2017 as indicated in the graphical 741 

legend. 742 

 743 

Fig. 4. Daily Sta. M time series of SCOC at the seafloor, POC flux at 3400 m depth and EF at 744 

100 m depth at potential origins based on a) 50, b) 100 and c) 1000 m d-1 sinking speed. The EF 745 

series has been time shifted into the future to its corresponding trap arrive time, which is 66 days 746 

for 50 m d-1, 33 days for m d-1, and 3 days for the m d-1 speed. 747 

 748 

Fig. 5. Monthly Sta. M time series of EF at potential origins at 100 m depth based on a) 50, 749 

b)100 and c) 1000 m d-1 sinking speeds. Also shown are the POC flux from the 3400 m depth 750 

sediment trap and SCOC at the seafloor. The EF series has been time shifted into the future to its 751 

corresponding trap arrive time, which is 66 days for 50 m d-1, 33 days for m d-1, and 3 days for 752 

the m d-1 speed. Panel d) plots the Spearman rank correlation coefficients between EF and POC 753 

flux, and EF and SCOC for a 13 month moving window over the time series. Panel e) shows the 754 

POC flux record from the sediment trap sampling along with the equal weighting average EF 755 

flux from the three sinking speeds with a Martin curve model applied to estimate flux at the trap 756 

depth (see section 4.2). 757 

 758 

Figure 6. Monthly average values of the source locations for the period 2013-2017 in terms of 759 

latitude (a) and longitude (b) for the slow 50 m d-1 sinking speed, and for the 100 m d-1 speed 760 
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(c,d), and 1000 m d-1 speed (e,f). Also shown are the monthly average EF flux from 100 m depth 761 

for the 100 km radius (e), as well as the monthly average POC flux values from the 3400 m 762 

sediment trap system (f) and the monthly averages for SCOC at the seafloor (g). Error bars 763 

indicate standard deviation.  764 

 765 

 766 
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