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Abstract: The objective of this study is tteterminethe accuracy of five different digital image
processing techniques to map flood inundation extent with Land<at Bsatellite imagery.
TheMay of2016fl ooding event in the Hempstead region of the Brazos RiverlJBAX is used

as a casesstudyr this first comprehensive comparison of classification techniques of its kind.
Five floodwater classification techniqueisg( supervised classification, unsupervised
classification, delta cue change detection, normalized difference water(MidexX), modified
normalized difference water indédNDWI)) wereimplemented to characterize floatle

regions. Lo, identify flood water obscured by cloud cov@®igatal Elevation Model DEM)

based approachasemployed. Classified floodserecompared using an Advance §s Index
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to a ‘reference floothap created based on manual digitization, as a®titherdatasources,

using the same satellite imagupervised classification yielded the highest accuracy of 86.4%,
while unsupervised, MNDWIland NDWI closely followed at 79.6%, 77.3% and 77.1%,
respectively. Deltaue change detection yielded the lowest accuracy with 70.1%. Thus,
supervised.elassification is recommended for flood water classificatiomandation map
generation.under these settings. The DEM based approactoudedtify cloud-obscured flood
water pixels'wasoundreliableandeasyto appl. It is thereforeecommended for regions with

relatively flattopography.

(Key Terms: Fleoding; Remote Sensing; Inundation mapping; Geospatial Analysge
Classification)

INTRODUCTION
Floods are one of the leadingtural disasterswhich devastategricultural crops and property,
disrupt businessesause the loss tfuman lives and have huge impacts on national economies
(Lakshmi,2026)It is of concern that with the onset of climate charilged intensities and
frequencies will ontinue to threaten global livelihoods (Kadtral., 2011). Thus e current
trend and-future scenarios of flood risks demand accurate spatial and temponzdtioih on the
potential.hazards and risks of floodse&lseknowledge of the spatial extent of inundated areas
is essential both during the floods, when it is necessary to have an overall Whew of
phenomenon in order to plan immediegief efforts,and for detecting deficiencies in existing
food contrel'mechasms,whichis vital for planningfuture mitigation activitiesOnly if the
general publie/and first responders are provided with accurate infornotios flood risk, and
only if they are able to evaluate the risk, tdagybe expected to adequatelyperd to this
threat.Implementing tools fonearreal time estimation of flood magnitudes could allow better
mitigation strategies by producimgmediatedata toscientists and decision makefdthough
Floodblainmapping based on ground surveys and aerial observations provide an option, when
the floodingis'widespreadnd frequentsuch methods are tirensuming, expensive astbw

down thepace,ofassessing the impact of the flood on the economy and livelihood.

An alternative is to use satellite imagery, capable of providing synoptic wiefled dynamics.
The use of@emotesensing for flood mitigation has become popolr the past few decades
thanks tosignificant improvement of geospatial technologiegdata availabilitye.g. Sanyal
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and Lu, 2004; Kahet al., 2011). As technology is enhanced remote sensing data have emerged
as a viable alternative or supplemenirtsitu observations due to their availabilityr ungauged
regions. The advantages of using remotely sensed data in flood mapp&ighasta neasreal

time surveillanceof flooding extent theextensive spatial coveragéthedata, the effectiveness

and robustness of the flood mapping methods, and the relatively low cost for mapping a flood of
large aerial extent.

The utility of satellite remote sensing has been provedifferent domainsFlood spatial extent
information“obtained from orbital sensors are used to calibrate and evaluatelicydodels
when there‘is'the lack of appropriate distributed validation and calibratiaimndat effort to
potentially improve hydrologic prediction and flood management strategiegauged
catchmentsei:gzHorritt, 200Q. Suchresultsare in turn used to inform major decisions relating
to planningsof=National Flood Insurance policies and generation of flood hazardfedpsal
Emergency Management Agency flood map service ce2dé7. Accessed January 2017,
https://msc.fema.gov/porjalFlood zoneisk assessments personal and state properties, and

decisions'with regards to flood insurance premiums solely depend on these floo&antps.
observations-also provide objective information abousgatidemporal evolution of floods
occurring in the'same regievhich has resulted in characterization of flood extent over time
(Islametal’;2010; Huangt al., 2014).Flooding is an essential factor for the wedling of floral
andfaunal communities in river corridgrand these observations provide supplementary
information about their living conditionghich are closelyelated to flood inundation
characteristics such as extent and frequéRopertsoret al., 2001). The said values, thus, has
led to the buileup of thedemand fonearreal timemonitoring of flood disasters arale
addressingithesoperational requirements of decision support systems used by policy makers
emergency ‘managers and responders from international and federal to regienahdstacal
jurisdictions.(Joyceet al., 2009)

In recentdecadesiemotely sased imagery has been used in many studies to map inundated
areas over regions characterized by very different conditionsnatel, morphology and land
use Schultz, 1988; Bateat al., 1997;seeSmith, 1997). Much of the pioneering work on the
remote sensing of floods was accomplished using the Bp#itral Scanner (MSS) sensor on
ERTS1 (the first Earth Resources Technology Satellite, later renamed Ldndgatnchedn
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July 1972. With a spatial resolution of about 80 m, MSS data were used to map the extent of
floodingin lowa (Hallberget al., 1973; Rango and Salomonson, 1974; see Smith, 1997),
Arizona (Morrison and Cooley, 1978¢e Smith, 1997), Virginia (Rango and Salomonson, 1974;
see Smith, 1997) aralong the Mississippi River (Deutsehal., 1973; Rango and Anderson,
1974; Morrisen and White, 1976; see Smith, )9®uring later stages Satellite Pour
I'Observation de la TerreSPOT) multi spectral imagery were also used for flood delineation
(Brouder, 19947 Oberstadlerral., 1997; Sadet al., 1997; see Sanyal and Lu, 200Radar

imagery onboard satellites alsas proved invaluable in mapping flood extent (Horritt, 2000;
Schumanret al., 2007). The advantages of radar remote sensing over qg@icadrs are that it

can penetratesthrough cloud cover, haze and dust since the microwave wavelengths that radar
uses are net susceptible to atmospheric scattering that affects shorter optical wavelengths. This
property allows detection of microwave energy under almost all weather conditisasunlike
optical sensors, data can be collected at any time of the dayettéksd 995) used Synthetic
Aperture Radar (SAR) data to study the inundation patterns on the Amazonian floodlain, B
Popeet al. (1997) employed SIR-C SAR data to identify seasonal flooding cycles in marshes of
the Yucatan Peninsula, Mexidoakshmi and Schaaf (2001) used data from the Special Sensor
Microwave.lmager (SSM/I) to analyze the 1993 summer flood event of MidwestéedU

States using satellite and ground data. In addition to capturing flood extents, flaudesgbs
derived from SAR sensors have been used to validate hydraulic middaiit €t al., 2007;
Hostachest.al., 2009).However, limitations of the SAR incledgyeometric and radiometric
distortionsdthatarise from inaccurate image calibration and data processing diff(@htesann

et al., 2007psee Kahe al., 2011). Apart from these medium resolution imageries, coarse
resolution imageries lik#loderaterelution Imaging Spectroradiometer (MODIS) datsgm

et al., 2010; Kahret al., 2011;Fayneet al., 2017) and Advanced Very High Resolution
Radiometer,Radiometer (AVHRR) data have been also found useful for floods of a regional
dimension (Aliet al., 1987; Islanet al., 2001, 2002; see Sanyal and Lu., 2004).

The Landat suite of satellites havmen of popular use for researdtroughout its historgue
to itsavailability, relatively high spatial, temporal and spectral resolutionsdagre-visit
period, 30 m and 11 banflsandsat 8)respectively) andits extensive globascalearchive
dating back to 19720 other satellitssuite has thisombination of attributes, which makes

Landsat imagery of particular value to the global commutigyalue has beenednonstrated in

This article is protected by copyright. All rights reserved



120
121
122
123
124
125
126
127
128

129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

many scholarly work. Seasonal to interannual variations in stage and floodplain inundation are
were mapped in the Amazon Basin (Sipglal., 1992; Koblinskyet al., 1993; Hesst al., 1995;
seeSmith, 1997). mtermittentlyflooded areag Kenyathat are potential breeding grounds for
mosquitoes that carry the dangerous Rift Valley Fever virus were mappeshéisat Thematic
Mapper ™ and airborne polarimeter data (Peia., 1992). In the Indian Subcontinent,

Nagarajaret al.{(1993) used Landsat images and aerial photographs over the Rapti River in India
to identify"areas vulnerable to channel migration andd$. Recently, using Landsat EFM+

data,Ho etal"(2010) mapped flood hazard risk in the vu gia-thu bon iallyplain in central

Vietnam.

The mainigoals of this studye to:(1) generate flood inundatianaps from Landsat 8
operationallzand Image©O(LI|) data using five different classification techniqu@$ evaluate
the performancef a terrainbased approaadbf identifying cloud-obscuredater pixels and (3
assess thaccuracy of these techniquescaptuing the flood extent by validating these
techniques againstanual digitization of flood extent.

STUDY AREA
This studyfecused on a flood event which happened al@igwer portion of théBrazos River
in TexaspUSA during the week bfay 26" to 31, 2016 (Figure 1)The Brazos River, with a
drainage basin of about 112,500%flows for more than 1900 km from its headwaters in the
southern High.Plains of New Mexico to its terminus at the Gulf of Mexico near Galydexas
(Vogel and Lopes, 2009 the study area near Hempstead, the Brazos River is a perennial
meandering'river with an average gradient of 0.2 m/km and sinuosity of 1.8 (Waters and Nordt,
1994). The surrounding area itself is characterized by flat topography (gredezendé in
elevation in thesflooded area was found to be ~50 m) and low slope (@Ebftate in the study
area is characterized as hotmid summers and dry winters with higbaistreamflow events
tending toseceur in late spring (May, June) or early fall (September, Oc{dlieDC 2006; see
Vogel andilcopes, 2009). Farming and ranching are major land uesarea. Sixty to 70
percent of thesdland area is native grassland used for livestock grazing. Thangrg@ito 40
percent is used for growing cropschas wheat, cotton, and grain sorghum (Vogel and Lopes,
2009). The study site is located amamately30 km above the United Stat@gologicalSurvey
(USGS) gage at Brazos River near Hempstead (ID: 08111500) on the main stemvef the ri
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150
151 [INSERT FIGURE 1 HERE][Figure 1. (A) Location of the study area in Texas, USA.TB2

152 location of the study domain on the Brazos River]

153 METHODOLOGY

154  Satellite Image preparation

155  For flood mapping using remotely sensed imagery, two sets of data are reqogesktO

156  consisting of data acquired before (and as close as possible) to the flood event to onalesl inf
157  decisions @bout general conditions of the pre-flood environment, and the other acquirgdrduri
158  right afterthe"occurrence of the flood. In this spuithe Brazos River segment in the study site
159  reached peak discharge4445.7 ni/s at 3 p.m. on May 27(recorded by USGS gage at Brazos
160  River nearHempstead; ID: 08111500he samegagealsorecorded totabf 255.8 mm

161  precipitationwithin 25 hourghat resulted in the discharge.

162  Due to the:l@ay overpass cycle of the Landsat 8 satellite, the availability dates for images of
163  pre-flood datarefrom May 12", April 26", April 10", andMarch25" (and further back The

164 image acquired oiarch25" 2016 was used for pre-food analyassthere was no cloud cover
165  observed over the study site (path 26/row 39). For the during-fioage the Landsat 8nage

166  capturedbi'May28" at 12 p.m. (CDTyvas usedThis image was the closest available, to the
167  day of peak dischargend fad low cloud cover (<20 %). Although this was 21 hours after the
168  peak discharge,occurred, the stage height only decrabset?.5% since the peak discharge
169  (Figure 2)yindicating tht the river was receding slowly after peak stage conditions. Thus, it is
170  rational to State that image from the M2§" 2016 captured the flood extent very close to its
171  peakextent The two images corresponding to the aforementioned dates (Mdtem@Slay

172 28") werexdownloaded from USGSarth Explorer (nited States Geological Survey Hart

173 Explorer. Aceessed July, 2016, http://earthexplorer.usgk.gov

174 [INSERT EIGURE 2 HERE] [Figure 2.Stagehydrograph, rainfall hyetograph, time of peak
175 discharge and date of image captWedified from Zhangt al., (2016)]

176  Erdas Imagine®2015 Image processing softwakekagon Geospatial, Norcross, GA, USA
177  was used for image pygocessing and subsequent data manipulation of this study. Downloaded
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imagery were subject to Geometric and Radiometric corrections and wereteutzseer only
the study site, in order to prepdoe image analysis of the flooded area.

Cloud cover correction

The existence of cloud cover/shadows is the migsiificantimpedimenfor captuing the
progress of floods during bad weather conditions (Lostgl., 1981; Rashiet al., 1993;
Melacket al., 1994;see Sanyal and Lu, 200£€loudfree data acquisition for a single date is
difficult and even in this study, although the cloud cover orettieeduring-flood imagevas

less than 20%;clouds and shadavesesporadically observed in the study domgtigure 3)

[INSERT FIGURE 3 HERE] [Figure 3. Comparison of (A) Pre-flo@hd(B) During-flood

imagery]

The following procedure was adopted to correct for cloud cover/shatkreinafter this
procedure.will be identified as thBEM-based approach’ useddtassify cloudobscuredvater

pixels.

1) An infrared.basethlse color compositedérived from band combination 5, 4, 3 foproved
visualization ofifeature classes of interest) of the duilimgd imagewas usedo manually

digitize (more“details on the digitization process) be found under #erence flood
generationaflood extent polygonThe polygorwas used to clip thtooded domain elevation

data from'a DEM30 m resolution2.44 m absolute vertical accuracy expressed as the root mean
square error (RMSEyJownloaded fronNational Elevation DatasefAccessed July, 2016,

https://lta.cr.usgs.qov/NED

2) Since theentirestudy region iselatively flat with minimal topographical variatigalevation
beneath clouded areas especially varied by lessSthar?.44 m, taking RMSE into
consideratiohand low slopethe pixel with the maximum elevatig¢hereinaftereferedto as
‘maximumeelevation pixel’pf thepreviously digitized flooded area was identifiedm the
clipped DEMand used as the threshold pixel elevation to determine flooded pixelsdn cl

covered areas

This article is protected by copyright. All rights reserved



204  3) The clouds were digitized from tfese color composite into a new layRiaster calculation
205 tools were used textract the pixelsvithin cloud polygons that had elevationsverthan the
206 ‘maximum elevation pixel'These pixels were classified as water and added to the digitized

207 flood extent layer. These pixels will also be added to each classification output.

208 [INSERT FIGURE 4 HERE] [Figure 4. Flowchart of ‘cloudvater layer generatign

209  Reference flood generation

210 In order to.have a reference flood to compare the classification techrigamst, the flood

211 water extent.of'the durinfjood image was manually digitized. The digitization was done based
212 on user knowledge, expertise and supplementary data sources (e.g. newspaper reports which
213 included specific geolocations of the flood; thesse used as reference points) of the Brazos
214  flood. The_digitization was performed using an infrared bé&ssd color composite of the

215  duringfloodimage. A false color composite was used mainly because water féakares

216  extreme darktones when viewedthis formand eases the taskdelineatingwater pixels. In

217 this delineation process, the ‘clougter layer, with potential flooded areas located beneath

218  clouds,formerly created using the ‘DEMased approachias also mergeid improve flood

219  extentmappings, The digitized raster hereinafter will be mefé to as the ‘reference flood’

220 Floodwater classification

221  The following five feature classification techniques were employed on the floodgeiynto

222 ascertain which performed the best in flood water pixel identification. Withxtteppgon of the
223 Delta cue change detecti@chniqueall other image analysagorithmswere performed on the

224  during-flood image. Delta-cue utilized both the pre- and during-flood images.

225 (1) Supervised Classification based on the maximum likelihood classifier

226  Supervised Classification has been demonstrated to be a robust method to classify features of

227 interest (Fraer and Page, 2000; Shalaby and Tateishi, 2007). The Supervised Classification

228 technique is based on the idea that a user can select sample pixels in an image as representatives
229  of a specific spectral signature clgesad members; e.g. water). Subsequeatlythe image

230 pixelsare classifiedased on the maximum likelihodidat they are similar to one tife user

231  definedclasses
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(2) Unsupervised Classification based on the K-means classification algorithm

Unsupervised classificatiaa where the outcomaf the classification procességoupings of

pixels with common characteristids)based on automated analybgshe image analysis

software. In thisnstancethe user does not provide sample pixels (training areas) for the
software to.gather information on spectral signatures. The user only spéafessired number

of output classes but otherwise does not aid in the classification process. Howevapatiant

for the userto'have knowledge of the area being classified when the groupings of pixels with
common characteristics produced by the classification algorithm have to be related to actual
features on the/ground (such as water bodies, vegetated areas, and barren land, Ietc.). The
means classifieation algorithm used in this study is based on partitionumgber of

observations int& number of clusters in which each observation belongs to the cluster with the
nearest mean, serving as a prototyptefcluster (Jensp2015. The study region was initially
classified into 8 different classes and then consolidated into four classes by the user to represent
earthfeatures (i.e. water, vegetation, bare soil, built up).

(3) Delta-cue 'change detection

This methed-issbased on detection and analysis of changes betwapragesof the same area
The pre- and durinffeod imagery were used to assess the change in water pixels between the
two datesA'new layer was created using the ‘new’ water (watkted to the study area as a
result of the flood) that was found as a result of the change detection. This layer was
subsequently clipped to the giteod image to generate the inundation map vdtal water’

during the flooding period.

(4) Normalized Difference Water 1ndex

The Normalized Difference Water Index (NDWI) (McFeeters, 198& Zhat al., 2003, is a

spectral waterindex that utilizes the Green and Near Infrared (NIR) Bands of the satellite image
for the delineation of open water. NDWI (1) magnifies higher reflectance value of water in

the greendoand2] diministesthe low reflectance value of watertimee NIR band and, (3) makes

use of the distinguished contrast between water and land of NIRTHamdlDWI is calculated

as:

NDWI = Green—NIR (1)
Green+NIR
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261 (5) Modified Normalized Difference Water Index

262  The NDWI values of urban land were found to be coincident with that of water in green band
263 and NIR band. Xu (2006) proposed the use of the modified NDWI (MNDWI), where open water
264 features are enhanced while efficiergliminatingbuilt-up land noise and suppressing

265 vegetation_and soil noise. The MNDWI uses the Shortwave Infr&edR; band 5) instead of

266  the Near Infrared (band 4) of Lasat 8

Grenn—SWIR

267 MNDW] = 2SR )

Green+SWIR

268  Theintentionsof usingMNDWI in this studyregion, where the builtp area in the region is
269  minimal, wasmare so to suppress the vegetation and soil signatures than to eliminate built up
270  noise.

271 The use of spectral indices involves identification of a threshold value itogdish between
272 water and nomvater feature$i.e. the minimum NDWI ad MNDWI values that correspond to
273  water) Since there were no prior studies done in this domain, experimentatsaiome with
274  different threshold values to obtain the best match against the reference floodfotimehsut
275  that0.2 (NDWI) and 0.1 (MNDWI) produced maps witie besfit (These valuewerealso

276 reported.byMcfeeters(2013) and Wanet al., (2013)as general valuds be used in data

277  deficient regionp

278  Post processing and accuracy assessment

279  These classification outputs were post processed through a 3xgdsglkernel to accentuate

280 the water features. A high pass kernel has the effect of highlighting boundaries between features
281 (e.g., whereswater body meets the vegetated land), thus simayeelgies between water and

282  nonwateripixels to enhance the edges and boundaries between water features represented in the
283  raster.

284  The following procedure was carried ontdrder to create flood maps for all five classification
285 techniqueswhieh also accented for cloud-obscured floodingll water pixels in the five raster
286  outputs from the classificatiomsd the cloudvater rastewere reclassified as 1 and the non
287  water pixels as GBubsequentlyhie cloudwater raster was merged into the five classdiitca

288  outputs to createloudwatercorrectedlood maps.
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289 In order to assess the accuracy ofdloeid-water corrected flood mapsn accuracy assessment
290 was carried out. In this study, the Advanced Fithiedex (AFIl)was used to compare classified
291 imagery against the ‘reference flooAFI was originally developed as an aerial statistic to

292 compare gbserved inundation of satellite imagery to predicted inundation of hydraulic

293  simulationsbyBates and De Roo (2000). In this study, however, it was adaptetttdate the
294  accuracies,of classification techniques against the reference Tloegbrobability of a water

295 pixel on"a‘'classified image of being an actual water pixel is calculataagtinthis statisticThe
296 inundatedas'well as non-inundated areas are taken into account in this indersestions and

297 unions of the flooded/non-flooded regions and calculated using:

. IA NIA +NIA NNIA
298 Advanced Fitness (%) = —22 —re/7"obs " 7ref

x 100 (3)

AobsYAref

299  wherelA,,sINTA, ;s is inundated/nomundated area from th#assifiedimagery IA, . /NIA,..¢

300 is inundated/nofnundated area from the reference flood, dpg/A..f is the entire calculated
301 area from the.satellite imagery/reference fldéal. example, if the number of inundated pixals
302 a classified imagetersect with 10 pixels at threference floodayeris 10, the number of nen
303 inundated.pixelsn the classified imagentersectwith 5 pixels in thereference floodayer, and
304 the total number of pixels (inundated and {nwmdated) in both the classified image and

305 reference image is 3then:

306 Advanced Fitness (%) = %:;5 x 100 = 50% 4)
307 The accuracy assessment was carried out separately forvedwecorrected maps, and for
308 maps before cloudratercorrection (the direct outputs of classification techniques)ake

309 inferences.efhe improvementf flood map raster due to use of thEM based cloud correction

310 approach!

311 RESULTSAND DISCUSSION
312  Figure 5 shews a comparison between the initially clouded regions in the during-floodeintage

313  the regions where water could be found beneath clouds, subsequent to the cloud watiencorrec
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314 [INSERT FIGURE 5 HERE] [Figure 5 (A) clouded regions in the study site as shown on a
315 true color imageand(B) potential areas where water could be logged (‘cloater layer) as

316 identified through the DEM approach, superimposed on a true color image]

317 Raster math"performed on the cloud-water layer indicates that 76.1% of theyimitaited

318 regionswere calculated dsaving waterThis is a significant percentage of water that wowdd
319 have been recognized by the classification techniques had the clouds been digitized off the
320 original image (whiclwould resultas‘holes’ in the raster) or left them as they were (which

321 wouldresultin‘elouds not being classified as water due to therdifitespectral signature).

322 The DEMbased approach used in this study, howehes limitations. It ionly meant to be

323 applied in areas with flat topograpfimaximum elevation difference in entiteoded area ~50

324  m)with a low slope gradie0-5%). If for example, the study regisntopographywas

325 undulatinggthere is a possibility of flood water getting accumulated in high lyingupsateut

326  not necessarily-in low lying areas adjacent to them. Thus, if the concept of thentmaxi

327 elevation pixel"was applied to the entire study region]ahelying areas would also portray

328 flooded conditions which might not be the case. Another important aspect to cortséter w

329 using thisapproach is the slope of the study domain. Even if the gradient of the stoialysreg
330 moderate; even though the upper areas on the gradient are flooding, the lower areas might not be
331 necessarily flooding, and the ‘maximum elevation pixel’ might render inaccesaits. Hence

332 the reliablesand,quick usage of this method is limiteekery low gradient floodplain®\n

333 approach thatidentifidecal maximurrelevation values can alleviate this limitation. Coben

334 al., (2017) developed a floodwater depth estimation tool, based on the extraction of elevation
335 valesfor each boundary pixel of flood inundation domain. This allows for local estimation of

336 floodwater elevation.

337  Figure 6 showsithe reference flood and the inundation maps produced by the five different
338 classification.technique3he cloud-water correction has been made to all six map outputs. (i.e.
339 the cloud=water layer’ has been merged into all the six maps). The inundation trea of

340 reference flood was5.1km? with a maximum floodplain width of app. Kn. The areas that

341  wereconsistentlynot captured by the classification techniques are circled in red.
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342 [INSERT FIGURE 6 HERE] [Figure 6 Reference Flood and Inundation maps of different
343 classification techniques: (A) Reference, (B) Supervised, (C) Unsupervised, (Drieitg)
344 NDW!I and (F MNDWI]

345 Table lillustrates the comparisons of the advanced fitness indices between the five

346 classificationgwith and without the cloud water correctiomss)d the reference flood.

347 Improvements were noted in every classification technigu& $o)with the utilization of the
348  cloud water correction approache best fithes®r improved imagery was produced by

349  supervised-classification with an accuracy of 86.4% while unsupervised, MNDWIRWd N
350 closely followed and clustered together at 79.6%, 77.3% and 77.1%.dDelthange detection
351 yielded the lowest accuracy with 70.1%.

352 [INSERT TABLE 1 HERE] [Table 1 Comparison of the advanced fitness indicetheffive

353 classification techniques to the reference flood. (Supervised: Supervised classification,
354 Unsupervised: Unsupervised Classification, Delia: Deltacue change detection, NDWI:
355 Normalized Difference Water Index, and MNDW!I: Normalized Difference Water Ihdex)

356 Itis interestingto note that although the reference flood was iedated based on the same

357 duringflood.image that was used for classifications,ageeement athe classificationsvith the

358 reference floodvere not as high as expected. This may be attributed to the fact that when

359 creating the reference flood, user knowledge and expertise was used to delineate water logged
360 areas under.tree canopies. If, for example, a vegetated marshy land with rfopogahphical

361 variationsis surrounded with water, it is safe to assume that water would be present beneath the
362  canopy. The“classification techniques, on the other hand, cannot identify the under-canopy wate
363 in Landsatimagery given the distinct spectral signature of vegetation andtitgeetglcourse

364  spatial resolution. Undaranopy water classification has been studjeite extensively (Adarat

365 al., 2002; Ozesmi and Bauer, 2002) but with no robust solution. Two of the authors, (Cohen and
366 Munasinghe).are currently developing a topograpased algorithm to address this problem as

367 part of the,U.S. Flood Inundation Map Repository project (http://sdml.ua.edu/usfinuther

368  possible reason could be that debris accumulation or high sediment load in cedsiohanged
369 the floodwater spectral response resulting in it not being classified as water. However, since the

370 reference flood was created not merely based onexpertise on identifying flooded areas on
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imagery, but also supplementary data sources such as geolocations of newspapan@port
bulletins, a discrepancy between the classifications and the reference flood was noted.

The supervised maximutikelihood classificationproduced the best fithess of 86.4% with cloud
correction,"an“improvement of 16.7 % from its direct classification output. Thisi¢ge proved

to be more sensitive than the other classification methods for detectingoadies. This

outcome is understandable in that, the sample pixels of flood water are selected based on user
knowledge. Zhanet al. (2017) used this output for comparing two hydraulic models for the
same study area. One might wonder why the spectral indices did not perform bettee than t
supervised elassification since water pixels extraction in these two methods is purely based on
reflectance values, and intuitive thought would suggest that reflectance based feature class
clusteringsmight be more successful. However, it is of importance to understanthémat

selecting sample pixels to create ‘signatures’ to train the maximum likelihood classifier in
supervised classification, the user creates samples representative of different types of
floodwaters. The brightness valltesies of flood water can differ even on the same image as a
function of water depth, turbidity, underlying land cover, and solar illumination. Hoyveser

expertisesissused in this instance to take into account these different floodwaters.

Classifieaton of floodwater based on spectral indices (NDWI and MNDWI) are purely based on
reflectance values. There is, therefore, a much higher probability that a ditsvgwxel might be
categorized.into a different feature class due to the fact that spectral indices are based en domain
wide threshold: The threshold that is set to differentiate between water andisrrieatures

could, in some instances act to categorize more/less water pixels than actually present. There is

no definitive method of knowing this threshold since its value is highly empirical.

The results of supervised classification are comparable in nature to that of Frazier and Page
(2000), where LLandsat Thematic Mapper (TM) imagery were used to map water bodies in the
Wagga Waggarregion in situeastern Australia. As per their findings, supervised classification

of the water bodies yielded an overall accuracy of 97.4%. Overall accuracy in this instance is the
ratio between the total number of correctly classified water pixels divided by ahadatber of

test pixels. However, the producer’s accuracy defined as the ratio between thesmirpbesls

classified on an image to the number of pixels of that feature class in the area of interest in
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reality, achieved only 59.6%. In other words, tiassification was able to locate all of the

major water bodies but underestimated the number of water pixels present on thélingage

the major reasons for this could be the dense vegetation present in the study areahimsl
identification of vater present under the canopy. Shalaby and Tateishi, (2007) used supervised
classification:to great effect to map land cover changes in northwestern Egypt. The change in salt
marsh land.onl andsat Thematic Mapper (TM) and Enhanced Thematic Mapper (E€Medlyi

producer'stand user’s accuracies of 100%.

The accuracies,of the two spectral indices in this study were satisfactory at 79.6% (MNDWI) and
77.3% (NDWH), an improvement ofL7% from its initial classification valuelt has to be
emphasized/that théusly region is highly vegetated and the results, hence, are better than
expected.stiszalso noted that the MNDWI performed only marginally beaarNDWI. We

can infer thatssince there was no vast khultarea in the study region, the MNDWI's utilityey

the NDWI'is limited. However, the marginally better percentage suggests that the performance
of the combinations of Green and Shortwave Infrared bands suppressed the soil andivegetat

features and better accentuated the water features.

Delta-cue chage detection yielded the lowest classification accuracy of 70 b also yieldd

the lowest classification accuracy even without the cleatercorrection approach. Although
70.1%is an appreciable fitness, this method grieves from certain inherent problems that could
have led tosthis.lower accuracy. Change detection is based on quantifying change @f a certa
feature of interest between two images of the same area. Although-fleodrenage was

selected to as'close to the durftmpd image in order to keep other environmental variables
constant, differences in atmospheric conditions, illumination, soil moistures amolqijieal

changes in vegetation could hinder the quantification of change of water pixels betwsen the
dates (Deer=1995: see kual., 2004). Especially, even though the dates are located two months
apart, thesaferementioned factors could result in floodwater inundated pixels to be classified as

dry in the.during-flood image, yielding under predicted flood extent.

CONCLUSION
This study compared five floodwater identification techniques for Land€ait Bimagery for a

flood event over the Brazos River (Texas). Supervised classification of floodwederyielded
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429 the best classification accuracy of 82.4%, while the other techniques (unsupelagsécation,
430 delta cue change detection, NDWI, MNDWI) yielded lower correspondence to the reference
431  flood inundation map. We conclude that supervised classification, using the maxkalinotd
432  classifier, would be the recommended option for future flood classifications v&guer

433  classification.does, however, require the greatest degree of user input andexpert

434  (identification of eneémembers) for each site. Ittiserefore more labeintensive which may be a
435  limiting factorfor some applications that require a degree of automatignneareattime

436  flood inundation mapping).

437 A topographybased (DEMbased) approach for estimating flooding in pixels obscured by clouds
438  was also presented. This was used successfully to identify flood water pixels beneath clouds. The
439  approachinereased the number of water pixels available for each classification and, in turn,

440 improved thesfitness with the reference flood. We reconthtieis DEM-based approach for

441  future flood classification studies conducted in areas with relativaglydpography (elevation

442  variability ~50 m in the flooded region) and minimal topographical gradeb#o slope).

443  Future research will include the development of a robust topographic/remote sensthg bas
444  approach tesidentify water pixels beneath the vegetation canopy and the use of high spati
445  resolutien’satellite imagend DEMSs to assess efficiencies of classification algoriths

446  also envisioned tautomatehe cloud cover correction technique (when applicable to

447  topographie.egion) and also automateftbed water classification algorithnts expedite this

448 process
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568 Table1l. Comparison of the advanced fitness indices of the five classification techragbes t
569 reference flood. (Supervised: Supervised classification, Unsuperussdpervised

570 Classification, Deltecue: Deltacue change detection, NDWI: Normalized Difference Water
571 Index, and MNDWI: Normalized Difference Water Index)

Classifications,. Advance Fitness Index Advance FitnessIndex  Improvement
Technique (%) (%) (%)
(Without CloudWater (With Cloud-Water
Correction) Correction)
Supervised 69.7 86.4 16.7
Unsupervised 63.1 79.6 16.5
DeltaCue 52.8 70.1 17.3
NDWI 60.1 77.1 17.0
MNDWI 59.8 77.3 17.5
572
573 FIGURE CAPTIONS

574  Figurel. (A) Location of the study area in Texas, USA. (B) The location of the study domain on
575 the.Brazos River

576  Figure 2. Stage hydrograph, rainfall hyetograph, time of peak discharge and date of image
577 capture. Modified from Zhang al., (2016)

578  Figure 3. Comparison of (A) Prood and(B) During-flood imagery
579  Figure4. Flowchart of ‘cloudwater layer’ generation

580 Figure5. (A)elouded regions in the study site as shown on a true color image and (B) potential
581 areas where water could be logged (‘clavater layer’) as identified througheh

582 DEM approach, superimposed on a true color image
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583 Figure6. Reference Flood andundation maps of different classification techniques: (A)
584 Reference, (B) Supervised, (C) Unsupervised, (D) Drlg-(E) NDWI and (F)
585 MNDWI
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