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Abstract: The objective of this study is to determine the accuracy of five different digital image 19 

processing techniques to map flood inundation extent with Landsat 8 - OLI satellite imagery. 20 

The May of 2016 flooding event in the Hempstead region of the Brazos River, TX, USA is used 21 

as a case study for this first comprehensive comparison of classification techniques of its kind. 22 

Five flood water classification techniques (i.e. supervised classification, unsupervised 23 

classification, delta cue change detection, normalized difference water index (NDWI), modified 24 

normalized difference water index (MNDWI)) were implemented to characterize flooded 25 

regions. To identify flood water obscured by cloud cover, a Digital Elevation Model (DEM) 26 

based approach was employed. Classified floods were compared using an Advance Fitness Index 27 
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to a ‘reference flood map’ created based on manual digitization, as well as other data sources, 28 

using the same satellite image. Supervised classification yielded the highest accuracy of 86.4%, 29 

while unsupervised, MNDWI, and NDWI closely followed at 79.6%, 77.3% and 77.1%, 30 

respectively. Delta-cue change detection yielded the lowest accuracy with 70.1%. Thus, 31 

supervised classification is recommended for flood water classification and inundation map 32 

generation under these settings. The DEM based approach used to identify cloud-obscured flood 33 

water pixels was found reliable and easy to apply. It is therefore recommended for regions with 34 

relatively flat topography. 35 

 36 

(Key Terms: Flooding; Remote Sensing; Inundation mapping; Geospatial Analysis; Image 37 

Classification.) 38 

INTRODUCTION 39 

Floods are one of the leading natural disasters which devastate agricultural crops and property, 40 

disrupt businesses, cause the loss of human lives and have huge impacts on national economies 41 

(Lakshmi, 2016). It is of concern that with the onset of climate change, flood intensities and 42 

frequencies will continue to threaten global livelihoods (Kahn et al., 2011). Thus, the current 43 

trend and future scenarios of flood risks demand accurate spatial and temporal information on the 44 

potential hazards and risks of floods. Precise knowledge of the spatial extent of inundated areas 45 

is essential both during the floods, when it is necessary to have an overall view of the 46 

phenomenon in order to plan immediate relief efforts, and for detecting deficiencies in existing 47 

food control mechanisms, which is vital for planning future mitigation activities. Only if the 48 

general public and first responders are provided with accurate information of the flood risk, and 49 

only if they are able to evaluate the risk, can they be expected to adequately respond to this 50 

threat. Implementing tools for near-real time estimation of flood magnitudes could allow better 51 

mitigation strategies by producing immediate data to scientists and decision makers. Although 52 

Floodplain mapping based on ground surveys and aerial observations provide an option, when 53 

the flooding is widespread and frequent, such methods are time-consuming, expensive and slow 54 

down the pace of assessing the impact of the flood on the economy and livelihood.  55 

An alternative is to use satellite imagery, capable of providing synoptic views of flood dynamics. 56 

The use of remote sensing for flood mitigation has become popular over the past few decades 57 

thanks to significant improvement of geospatial technologies and data availability (e.g. Sanyal 58 
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and Lu, 2004; Kahn et al., 2011). As technology is enhanced remote sensing data have emerged 59 

as a viable alternative or supplement to in situ observations due to their availability for ungauged 60 

regions. The advantages of using remotely sensed data in flood mapping are: almost a near-real 61 

time surveillance of flooding extent, the extensive spatial coverage of the data, the effectiveness 62 

and robustness of the flood mapping methods, and the relatively low cost for mapping a flood of 63 

large aerial extent.  64 

The utility of satellite remote sensing has been proven in different domains. Flood spatial extent 65 

information obtained from orbital sensors are used to calibrate and evaluate hydraulic models 66 

when there is the lack of appropriate distributed validation and calibration data in an effort to 67 

potentially improve hydrologic prediction and flood management strategies in ungauged 68 

catchments (e.g. Horritt, 2000). Such results are in turn used to inform major decisions relating 69 

to planning of National Flood Insurance policies and generation of flood hazard maps (Federal 70 

Emergency Management Agency flood map service center, 2017. Accessed January 2017, 71 

https://msc.fema.gov/portal

In recent decades, remotely sensed imagery has been used in many studies to map inundated 84 

areas over regions characterized by very different conditions in climate, morphology and land 85 

use (Schultz, 1988; Bates et al., 1997; see Smith, 1997). Much of the pioneering work on the 86 

remote sensing of floods was accomplished using the Multi-Spectral Scanner (MSS) sensor on 87 

ERTS-1 (the first Earth Resources Technology Satellite, later renamed Landsat-1), launched in 88 

). Flood zone risk assessments on personal and state properties, and 72 

decisions with regards to flood insurance premiums solely depend on these flood maps. Earth 73 

observations also provide objective information about the spatiotemporal evolution of floods 74 

occurring in the same region which has resulted in characterization of flood extent over time 75 

(Islam et al., 2010; Huang et al., 2014). Flooding is an essential factor for the well-being of floral 76 

and faunal communities in river corridors, and these observations provide supplementary 77 

information about their living conditions which are closely related to flood inundation 78 

characteristics such as extent and frequency (Robertson et al., 2001). The said values, thus, has 79 

led to the build-up of the demand for near-real time monitoring of flood disasters and are 80 

addressing the operational requirements of decision support systems used by policy makers, 81 

emergency managers and responders from international and federal to regional, state and local 82 

jurisdictions. (Joyce et al., 2009) 83 
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July 1972. With a spatial resolution of about 80 m, MSS data were used to map the extent of 89 

flooding in Iowa (Hallberg et al., 1973; Rango and Salomonson, 1974; see Smith, 1997), 90 

Arizona (Morrison and Cooley, 1973; see Smith, 1997), Virginia (Rango and Salomonson, 1974; 91 

see Smith, 1997) and along the Mississippi River (Deutsch et al., 1973; Rango and Anderson, 92 

1974; Morrison and White, 1976; see Smith, 1997). During later stages Satellite Pour 93 

l’Observation de la Terre (SPOT) multi spectral imagery were also used for flood delineation 94 

(Brouder, 1994; Oberstadler et al., 1997; Sado et al., 1997; see Sanyal and Lu, 2004). Radar 95 

imagery onboard satellites also has proved invaluable in mapping flood extent (Horritt, 2000; 96 

Schumann et al., 2007). The advantages of radar remote sensing over optical sensors are that it 97 

can penetrate through cloud cover, haze and dust since the microwave wavelengths that radar 98 

uses are not susceptible to atmospheric scattering that affects shorter optical wavelengths. This 99 

property allows detection of microwave energy under almost all weather conditions. Also, unlike 100 

optical sensors, data can be collected at any time of the day. Hess et al. (1995) used Synthetic 101 

Aperture Radar (SAR) data to study the inundation patterns on the Amazonian floodplain, Brazil. 102 

Pope et al. (1997) employed SIR-C SAR data to identify seasonal flooding cycles in marshes of 103 

the Yucatan Peninsula, Mexico. Lakshmi and Schaaf (2001) used data from the Special Sensor 104 

Microwave Imager (SSM/I) to analyze the 1993 summer flood event of Midwestern United 105 

States using satellite and ground data. In addition to capturing flood extents, flood extent maps 106 

derived from SAR sensors have been used to validate hydraulic models (Horritt et al., 2007; 107 

Hostache et al., 2009). However, limitations of the SAR include geometric and radiometric 108 

distortions that arise from inaccurate image calibration and data processing difficulties (Shumann 109 

et al., 2007; see Kahn et al., 2011). Apart from these medium resolution imageries, coarse 110 

resolution imageries like Moderate-resolution Imaging Spectroradiometer (MODIS) data (Islam 111 

et al., 2010; Kahn et al., 2011; Fayne et al., 2017) and Advanced Very High Resolution 112 

Radiometer Radiometer (AVHRR) data have been also found useful for floods of a regional 113 

dimension (Ali et al., 1987; Islam et al., 2001, 2002; see Sanyal and Lu., 2004).  114 

The Landsat suite of satellites have been of popular use for researchers throughout its history due 115 

to its availability, relatively high spatial, temporal and spectral resolutions (16-day re-visit 116 

period, 30 m and 11 bands (Landsat 8), respectively), and its extensive global-scale archive 117 

dating back to 1972. No other satellite/suite has this combination of attributes, which makes 118 

Landsat imagery of particular value to the global community. Its value has been demonstrated in 119 
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many scholarly work. Seasonal to interannual variations in stage and floodplain inundation area 120 

were mapped in the Amazon Basin (Sipple et al., 1992; Koblinsky et al., 1993; Hess et al., 1995; 121 

see Smith, 1997). Intermittently flooded areas in Kenya that are potential breeding grounds for 122 

mosquitoes that carry the dangerous Rift Valley Fever virus were mapped by Landsat Thematic 123 

Mapper ™ and airborne polarimeter data (Pope et al., 1992).  In the Indian Subcontinent, 124 

Nagarajan et al. (1993) used Landsat images and aerial photographs over the Rapti River in India 125 

to identify areas vulnerable to channel migration and floods. Recently, using Landsat 7 – ETM+ 126 

data, Ho et al. (2010) mapped flood hazard risk in the vu gia-thu bon alluvial plain in central 127 

Vietnam. 128 

The main goals of this study are to: (1) generate flood inundation maps from Landsat 8-129 

operational Land Imager (OLI) data using five different classification techniques, (2) evaluate 130 

the performance of a terrain-based approach of identifying cloud-obscured water pixels, and (3) 131 

assess the accuracy of these techniques in capturing the flood extent by validating these 132 

techniques against manual digitization of flood extent. 133 

STUDY AREA 134 

This study focused on a flood event which happened along the lower portion of the Brazos River 135 

in Texas, USA during the week of May 26th to 31st, 2016 (Figure 1). The Brazos River, with a 136 

drainage basin of about 112,500 km2, flows for more than 1900 km from its headwaters in the 137 

southern High Plains of New Mexico to its terminus at the Gulf of Mexico near Galveston, Texas 138 

(Vogel and Lopes, 2009). In the study area near Hempstead, the Brazos River is a perennial 139 

meandering river with an average gradient of 0.2 m/km and sinuosity of 1.8 (Waters and Nordt, 140 

1994).  The surrounding area itself is characterized by flat topography (greatest difference in 141 

elevation in the flooded area was found to be ~50 m) and low slope (0-5%). Climate in the study 142 

area is characterized as hot, humid summers and dry winters with high-peak streamflow events 143 

tending to occur in late spring (May, June) or early fall (September, October) (NCDC 2006; see 144 

Vogel and Lopes, 2009). Farming and ranching are major land uses in this area. Sixty to 70 145 

percent of the land area is native grassland used for livestock grazing. The remaining 30 to 40 146 

percent is used for growing crops such as wheat, cotton, and grain sorghum (Vogel and Lopes, 147 

2009). The study site is located approximately 30 km above the United States Geological Survey 148 

(USGS) gage at Brazos River near Hempstead (ID: 08111500) on the main stem of the river.  149 
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 150 

[INSERT FIGURE 1 HERE][Figure 1. (A) Location of the study area in Texas, USA. (B) The 151 

location of the study domain on the Brazos River] 152 

METHODOLOGY 153 

Satellite Image preparation 154 

For flood mapping using remotely sensed imagery, two sets of data are required. One set 155 

consisting of data acquired before (and as close as possible) to the flood event to make informed 156 

decisions about general conditions of the pre-flood environment, and the other acquired during or 157 

right after the occurrence of the flood. In this study, the Brazos River segment in the study site 158 

reached peak discharge of 4445.7 m3/s at 3 p.m. on May 27th

Due to the 16-day overpass cycle of the Landsat 8 satellite, the availability dates for images of 162 

pre-flood data are from May 12

 (recorded by USGS gage at Brazos 159 

River near Hempstead; ID: 08111500). The same gage also recorded total of 255.8 mm 160 

precipitation within 25 hours that resulted in the discharge. 161 

th, April 26th, April 10th, and March 25th (and further back). The 163 

image acquired on March 25th 2016 was used for pre-food analysis as there was no cloud cover 164 

observed over the study site (path 26/row 39). For the during-flood image, the Landsat 8 image 165 

captured on May 28th at 12 p.m. (CDT) was used. This image was the closest available, to the 166 

day of peak discharge and had low cloud cover (<20 %). Although this was 21 hours after the 167 

peak discharge occurred, the stage height only decreased about 2.5% since the peak discharge 168 

(Figure 2), indicating that the river was receding slowly after peak stage conditions. Thus, it is 169 

rational to state that image from the May 28th 2016 captured the flood extent very close to its 170 

peak extent. The two images corresponding to the aforementioned dates (March 25th and May 171 

28th) were downloaded from USGS Earth Explorer (United States Geological Survey Earth 172 

Explorer. Accessed July, 2016, http://earthexplorer.usgs.gov

[INSERT FIGURE 2 HERE] [Figure 2. Stage hydrograph, rainfall hyetograph, time of peak 174 

discharge and date of image capture. Modified from Zhang et al., (2016)] 175 

). 173 

Erdas Imagine®- 2015 Image processing software (Hexagon Geospatial, Norcross, GA, USA) 176 

was used for image pre-processing and subsequent data manipulation of this study. Downloaded 177 
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imagery were subject to Geometric and Radiometric corrections and were subset to cover only 178 

the study site, in order to prepare for image analysis of the flooded area.  179 

Cloud cover correction 180 

The existence of cloud cover/shadows is the most significant impediment for capturing the 181 

progress of floods during bad weather conditions (Lowry et al., 1981; Rashid et al., 1993; 182 

Melack et al., 1994; see Sanyal and Lu, 2004). Cloud-free data acquisition for a single date is 183 

difficult and even in this study, although the cloud cover on the entire during-flood image was 184 

less than 20%, clouds and shadows were sporadically observed in the study domain (Figure 3).  185 

[INSERT FIGURE 3 HERE] [Figure 3. Comparison of (A) Pre-flood and (B) During-flood 186 

imagery] 187 

The following procedure was adopted to correct for cloud cover/shadow. Hereinafter this 188 

procedure will be identified as the ‘DEM-based approach’ used to classify cloud-obscured water 189 

pixels. 190 

1) An infrared based false color composite (derived from band combination 5, 4, 3 for improved 191 

visualization of feature classes of interest) of the during-flood image was used to manually 192 

digitize (more details on the digitization process can be found under ‘Reference flood 193 

generation’) a flood extent polygon. The polygon was used to clip the flooded domain elevation 194 

data from a DEM (30 m resolution; 2.44 m absolute vertical accuracy expressed as the root mean 195 

square error (RMSE); downloaded from National Elevation Dataset. Accessed July, 2016, 196 

https://lta.cr.usgs.gov/NED

2) Since the entire study region is relatively flat with minimal topographical variation (elevation 198 

beneath clouded areas especially varied by less than 50 ± 2.44 m, taking RMSE into 199 

consideration) and low slope, the pixel with the maximum elevation (hereinafter referred to as 200 

‘maximum elevation pixel’) of the previously digitized flooded area was identified from the 201 

clipped DEM and used as the threshold pixel elevation to determine flooded pixels in cloud 202 

covered areas 203 

). 197 
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3) The clouds were digitized from the false color composite into a new layer. Raster calculation 204 

tools were used to extract the pixels within cloud polygons that had elevations lower than the 205 

‘maximum elevation pixel’. These pixels were classified as water and added to the digitized 206 

flood extent layer. These pixels will also be added to each classification output.  207 

[INSERT FIGURE 4 HERE]  [Figure 4. Flowchart of ‘cloud-water layer’ generation] 208 

Reference flood generation 209 

In order to have a reference flood to compare the classification techniques against, the flood 210 

water extent of the during-flood image was manually digitized. The digitization was done based 211 

on user knowledge, expertise and supplementary data sources (e.g. newspaper reports which 212 

included specific geolocations of the flood; these were used as reference points) of the Brazos 213 

flood. The digitization was performed using an infrared based false color composite of the 214 

during-flood image. A false color composite was used mainly because water features take 215 

extreme dark tones when viewed in this form and eases the task of delineating water pixels. In 216 

this delineation process, the ‘cloud-water layer’, with potential flooded areas located beneath 217 

clouds, formerly created using the ‘DEM-based approach’, was also merged to improve flood 218 

extent mapping. The digitized raster hereinafter will be referred to as the ‘reference flood’. 219 

Floodwater classification 220 

The following five feature classification techniques were employed on the flooded imagery to 221 

ascertain which performed the best in flood water pixel identification. With the exception of the 222 

Delta cue change detection technique, all other image analysis algorithms were performed on the 223 

during-flood image. Delta-cue utilized both the pre- and during-flood images.  224 

(1) Supervised Classification based on the maximum likelihood classifier  225 

Supervised Classification has been demonstrated to be a robust method to classify features of 226 

interest (Frazier and Page, 2000; Shalaby and Tateishi, 2007). The Supervised Classification 227 

technique is based on the idea that a user can select sample pixels in an image as representatives 228 

of a specific spectral signature class (end members; e.g. water). Subsequently, all the image 229 

pixels are classified based on the maximum likelihood that they are similar to one of the user-230 

defined classes.  231 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

(2) Unsupervised Classification based on the K-means classification algorithm  232 

Unsupervised classification is where the outcome of the classification processes (groupings of 233 

pixels with common characteristics) is based on automated analyses by the image analysis 234 

software. In this instance, the user does not provide sample pixels (training areas) for the 235 

software to gather information on spectral signatures. The user only specifies the desired number 236 

of output classes but otherwise does not aid in the classification process. However, it is important 237 

for the user to have knowledge of the area being classified when the groupings of pixels with 238 

common characteristics produced by the classification algorithm have to be related to actual 239 

features on the ground (such as water bodies, vegetated areas, and barren land, etc.). The K-240 

means classification algorithm used in this study is based on partitioning n number of 241 

observations into k number of clusters in which each observation belongs to the cluster with the 242 

nearest mean, serving as a prototype of the cluster (Jenson, 2015). The study region was initially 243 

classified into 8 different classes and then consolidated into four classes by the user to represent 244 

earth-features (i.e. water, vegetation, bare soil, built up).  245 

(3) Delta-cue change detection  246 

This method is based on detection and analysis of changes between two images of the same area. 247 

The pre- and during-flood imagery were used to assess the change in water pixels between the 248 

two dates. A new layer was created using the ‘new’ water (water added to the study area as a 249 

result of the flood) that was found as a result of the change detection. This layer was 250 

subsequently clipped to the pre-flood image to generate the inundation map with ‘total water’ 251 

during the flooding period.  252 

(4) Normalized Difference Water Index  253 

The Normalized Difference Water Index (NDWI) (McFeeters, 1996; see Zha et al., 2003), is a 254 

spectral water index that utilizes the Green and Near Infrared (NIR) Bands of the satellite image 255 

for the delineation of open water. NDWI (1) magnifies the higher reflectance value of water in 256 

the green band, (2) diminishes the low reflectance value of water in the NIR band and, (3) makes 257 

use of the distinguished contrast between water and land of NIR band. The NDWI is calculated 258 

as: 259 

���� =
�����−��������+���               (1) 260 
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(5) Modified Normalized Difference Water Index 261 

The NDWI values of urban land were found to be coincident with that of water in green band 262 

and NIR band. Xu (2006) proposed the use of the modified NDWI (MNDWI), where open water 263 

features are enhanced while efficiently eliminating built-up land noise and suppressing 264 

vegetation and soil noise. The MNDWI uses the Shortwave Infrared (SWIR; band 5) instead of 265 

the Near Infrared (band 4) of Landsat 8:  266 

����� =  
�����−���������+���� (2) 267 

The intention of using MNDWI in this study region, where the built-up area in the region is 268 

minimal, was more so to suppress the vegetation and soil signatures than to eliminate built up 269 

noise.  270 

The use of spectral indices involves identification of a threshold value to distinguish between 271 

water and non-water features (i.e. the minimum NDWI and MNDWI values that correspond to 272 

water). Since there were no prior studies done in this domain, experimentation was done with 273 

different threshold values to obtain the best match against the reference flood. It was found out 274 

that 0.2 (NDWI) and 0.1 (MNDWI) produced maps with the best fit  (These values were also 275 

reported by Mcfeeters, (2013) and Wang et al., (2013) as general values to be used in data 276 

deficient regions)  277 

Post processing and accuracy assessment 278 

These classification outputs were post processed through a 3×3 high-pass kernel to accentuate 279 

the water features. A high pass kernel has the effect of highlighting boundaries between features 280 

(e.g., where water body meets the vegetated land), thus sharpening edges between water and 281 

non-water pixels to enhance the edges and boundaries between water features represented in the 282 

raster.  283 

The following procedure was carried out in order to create flood maps for all five classification 284 

techniques, which also accounted for cloud-obscured flooding. All water pixels in the five raster 285 

outputs from the classifications and the cloud-water raster were reclassified as 1 and the non-286 

water pixels as 0. Subsequently the cloud-water raster was merged into the five classification 287 

outputs to create cloud-water-corrected flood maps.  288 
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In order to assess the accuracy of the cloud-water corrected flood maps, an accuracy assessment 289 

was carried out. In this study, the Advanced Fitness Index (AFI) was used to compare classified 290 

imagery against the ‘reference flood’. AFI was originally developed as an aerial statistic to 291 

compare observed inundation of satellite imagery to predicted inundation of hydraulic 292 

simulations by Bates and De Roo (2000). In this study, however, it was adapted to calculate the 293 

accuracies of classification techniques against the reference flood. The probability of a water 294 

pixel on a classified image of being an actual water pixel is calculated through this statistic. The 295 

inundated as well as non-inundated areas are taken into account in this index as intersections and 296 

unions of the flooded/non-flooded regions and calculated using: 297 

Advanced Fitness (%) =  
�����∩�����+������∩����������∪����  × 100 (3) 298 

where �����/������ is inundated/non-inundated area from the classified imagery, �����/������ 299 

is inundated/non-inundated area from the reference flood, and ����/���� is the entire calculated 300 

area from the satellite imagery/reference flood. For example, if the number of inundated pixels in 301 

a classified image intersect with 10 pixels at the reference flood layer is 10, the number of non-302 

inundated pixels in the classified image intersect with 5 pixels in the reference flood layer, and 303 

the total number of pixels (inundated and non-inundated) in both the classified image and 304 

reference image is 30, then: 305 

Advanced Fitness (%) =  
10+530  × 100 = 50% (4) 306 

The accuracy assessment was carried out separately for cloud-water-corrected maps, and for 307 

maps before cloud-water-correction (the direct outputs of classification techniques) to make 308 

inferences of the improvement of flood map raster due to use of the DEM based cloud correction 309 

approach.  310 

RESULTS AND DISCUSSION 311 

Figure 5 shows a comparison between the initially clouded regions in the during-flood image and 312 

the regions where water could be found beneath clouds, subsequent to the cloud water correction.  313 
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[INSERT FIGURE 5 HERE]  [Figure 5. (A) clouded regions in the study site as shown on a 314 

true color image and (B) potential areas where water could be logged (‘cloud-water layer’) as 315 

identified through the DEM approach, superimposed on a true color image] 316 

Raster math performed on the cloud-water layer indicates that 76.1% of the initially clouded 317 

regions were calculated as having water. This is a significant percentage of water that would not 318 

have been recognized by the classification techniques had the clouds been digitized off the 319 

original image (which would result as ‘holes’ in the raster) or left them as they were (which 320 

would result in clouds not being classified as water due to the different spectral signature).  321 

The DEM-based approach used in this study, however, has limitations. It is only meant to be 322 

applied in areas with flat topography (maximum elevation difference in entire flooded area ~50 323 

m) with a low slope gradient (0-5%). If for example, the study region’s topography was 324 

undulating, there is a possibility of flood water getting accumulated in high lying plateaus, but 325 

not necessarily in low lying areas adjacent to them. Thus, if the concept of the ‘maximum 326 

elevation pixel’ was applied to the entire study region, the low-lying areas would also portray 327 

flooded conditions which might not be the case. Another important aspect to consider when 328 

using this approach is the slope of the study domain. Even if the gradient of the study region is 329 

moderate, even though the upper areas on the gradient are flooding, the lower areas might not be 330 

necessarily flooding, and the ‘maximum elevation pixel’ might render inaccurate results. Hence 331 

the reliable and quick usage of this method is limited to very low gradient floodplains. An 332 

approach that identifies local maximum-elevation values can alleviate this limitation.  Cohen et 333 

al., (2017) developed a floodwater depth estimation tool, based on the extraction of elevation 334 

vales for each boundary pixel of flood inundation domain. This allows for local estimation of 335 

floodwater elevation.  336 

Figure 6 shows the reference flood and the inundation maps produced by the five different 337 

classification techniques. The cloud-water correction has been made to all six map outputs. (i.e. 338 

the cloud-water layer’ has been merged into all the six maps). The inundation area of the 339 

reference flood was 55.1 km2 with a maximum floodplain width of app. 10 km.  The areas that 340 

were consistently not captured by the classification techniques are circled in red.   341 
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[INSERT FIGURE 6 HERE] [Figure 6. Reference Flood and Inundation maps of different 342 

classification techniques: (A) Reference, (B) Supervised, (C) Unsupervised, (D) Delta-cue, (E) 343 

NDWI and (F) MNDWI]  344 

Table 1 illustrates the comparisons of the advanced fitness indices between the five 345 

classifications (with and without the cloud water corrections) and the reference flood. 346 

Improvements were noted in every classification technique (~ 17%) with the utilization of the 347 

cloud water correction approach. The best fitness for improved imagery was produced by 348 

supervised classification with an accuracy of 86.4% while unsupervised, MNDWI and NDWI 349 

closely followed and clustered together at 79.6%, 77.3% and 77.1%. Delta-cue change detection 350 

yielded the lowest accuracy with 70.1%.  351 

[INSERT TABLE 1 HERE] [Table 1. Comparison of the advanced fitness indices of the five 352 

classification techniques to the reference flood. (Supervised: Supervised classification, 353 

Unsupervised: Unsupervised Classification, Delta-cue: Delta-cue change detection, NDWI: 354 

Normalized Difference Water Index, and MNDWI: Normalized Difference Water Index)] 355 

It is interesting to note that although the reference flood was also created based on the same 356 

during-flood image that was used for classifications, the agreement of the classifications with the 357 

reference flood were not as high as expected. This may be attributed to the fact that when 358 

creating the reference flood, user knowledge and expertise was used to delineate water logged 359 

areas under tree canopies. If, for example, a vegetated marshy land with minimal topographical 360 

variations is surrounded with water, it is safe to assume that water would be present beneath the 361 

canopy. The classification techniques, on the other hand, cannot identify the under-canopy water 362 

in Landsat imagery given the distinct spectral signature of vegetation and its relatively course 363 

spatial resolution. Under-canopy water classification has been studied quite extensively (Adam et 364 

al., 2002; Ozesmi and Bauer, 2002) but with no robust solution. Two of the authors, (Cohen and 365 

Munasinghe) are currently developing a topography-based algorithm to address this problem as 366 

part of the U.S. Flood Inundation Map Repository project (http://sdml.ua.edu/usfimr). Another 367 

possible reason could be that debris accumulation or high sediment load in certain areas changed 368 

the floodwater spectral response resulting in it not being classified as water. However, since the 369 

reference flood was created not merely based on user expertise on identifying flooded areas on 370 
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imagery, but also supplementary data sources such as geolocations of newspaper reports and 371 

bulletins, a discrepancy between the classifications and the reference flood was noted.  372 

The supervised maximum-likelihood classification produced the best fitness of 86.4% with cloud 373 

correction, an improvement of 16.7 % from its direct classification output. This technique proved 374 

to be more sensitive than the other classification methods for detecting water bodies. This 375 

outcome is understandable in that, the sample pixels of flood water are selected based on user 376 

knowledge. Zhang et al. (2017) used this output for comparing two hydraulic models for the 377 

same study area. One might wonder why the spectral indices did not perform better than the 378 

supervised classification since water pixels extraction in these two methods is purely based on 379 

reflectance values, and intuitive thought would suggest that reflectance based feature class 380 

clustering might be more successful. However, it is of importance to understand that when 381 

selecting sample pixels to create ‘signatures’ to train the maximum likelihood classifier in 382 

supervised classification, the user creates samples representative of different types of 383 

floodwaters. The brightness values/tones of flood water can differ even on the same image as a 384 

function of water depth, turbidity, underlying land cover, and solar illumination. However, user 385 

expertise is used in this instance to take into account these different floodwaters.  386 

Classification of floodwater based on spectral indices (NDWI and MNDWI) are purely based on 387 

reflectance values. There is, therefore, a much higher probability that a floodwater pixel might be 388 

categorized into a different feature class due to the fact that spectral indices are based on domain-389 

wide threshold. The threshold that is set to differentiate between water and non-water features 390 

could, in some instances act to categorize more/less water pixels than actually present. There is 391 

no definitive method of knowing this threshold since its value is highly empirical.   392 

The results of supervised classification are comparable in nature to that of Frazier and Page 393 

(2000), where Landsat Thematic Mapper (TM) imagery were used to map water bodies in the 394 

Wagga Wagga region in south eastern Australia. As per their findings, supervised classification 395 

of the water bodies yielded an overall accuracy of 97.4%. Overall accuracy in this instance is the 396 

ratio between the total number of correctly classified water pixels divided by the total number of 397 

test pixels. However, the producer’s accuracy defined as the ratio between the numbers of pixels 398 

classified on an image to the number of pixels of that feature class in the area of interest in 399 
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reality, achieved only 59.6%. In other words, this classification was able to locate all of the 400 

major water bodies but underestimated the number of water pixels present on the image. One of 401 

the major reasons for this could be the dense vegetation present in the study area hindering the 402 

identification of water present under the canopy. Shalaby and Tateishi, (2007) used supervised 403 

classification to great effect to map land cover changes in northwestern Egypt. The change in salt 404 

marsh land on Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) yielded 405 

producer’s and user’s accuracies of 100%.  406 

The accuracies of the two spectral indices in this study were satisfactory at 79.6% (MNDWI) and 407 

77.3% (NDWI), an improvement of ~17% from its initial classification values. It has to be 408 

emphasized that the study region is highly vegetated and the results, hence, are better than 409 

expected. It is also noted that the MNDWI performed only marginally better than NDWI. We 410 

can infer that since there was no vast built-up area in the study region, the MNDWI’s utility over 411 

the NDWI is limited. However, the marginally better percentage suggests that the performance 412 

of the combinations of Green and Shortwave Infrared bands suppressed the soil and vegetation 413 

features and better accentuated the water features.  414 

Delta-cue change detection yielded the lowest classification accuracy of 70.1%. This also yielded 415 

the lowest classification accuracy even without the cloud-water-correction approach. Although 416 

70.1% is an appreciable fitness, this method grieves from certain inherent problems that could 417 

have led to this lower accuracy. Change detection is based on quantifying change of a certain 418 

feature of interest between two images of the same area. Although the pre-flood image was 419 

selected to as close to the during-flood image in order to keep other environmental variables 420 

constant, differences in atmospheric conditions, illumination, soil moistures and phenological 421 

changes in vegetation could hinder the quantification of change of water pixels between the two 422 

dates (Deer 1995: see Lu et al., 2004). Especially, even though the dates are located two months 423 

apart, the aforementioned factors could result in floodwater inundated pixels to be classified as 424 

dry in the during-flood image, yielding under predicted flood extent. 425 

CONCLUSION 426 

This study compared five floodwater identification techniques for Landsat 8- OLI imagery for a 427 

flood event over the Brazos River (Texas). Supervised classification of floodwater areas yielded 428 
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the best classification accuracy of 82.4%, while the other techniques (unsupervised classification, 429 

delta cue change detection, NDWI, MNDWI) yielded lower correspondence to the reference 430 

flood inundation map. We conclude that supervised classification, using the maximum likelihood 431 

classifier, would be the recommended option for future flood classifications. Supervised 432 

classification does, however, require the greatest degree of user input and expertise 433 

(identification of end-members) for each site. It is therefore more labor-intensive which may be a 434 

limiting factor for some applications that require a degree of automation (e.g. near-real-time 435 

flood inundation mapping).  436 

A topography-based (DEM-based) approach for estimating flooding in pixels obscured by clouds 437 

was also presented. This was used successfully to identify flood water pixels beneath clouds. The 438 

approach increased the number of water pixels available for each classification and, in turn, 439 

improved the fitness with the reference flood. We recommend this DEM-based approach for 440 

future flood classification studies conducted in areas with relatively flat topography (elevation 441 

variability ~50 m in the flooded region) and minimal topographical gradient (0-5% slope).    442 

Future research will include the development of a robust topographic/remote sensing based 443 

approach to identify water pixels beneath the vegetation canopy and the use of high spatial 444 

resolution satellite imagery and DEMs to assess efficiencies of classification algorithms. It is 445 

also envisioned to automate the cloud cover correction technique (when applicable to 446 

topographic region) and also automate the flood water classification algorithms to expedite this 447 

process. 448 
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Table 1. Comparison of the advanced fitness indices of the five classification techniques to the 568 

reference flood. (Supervised: Supervised classification, Unsupervised: Unsupervised 569 

Classification, Delta-cue: Delta-cue change detection, NDWI: Normalized Difference Water 570 

Index, and MNDWI: Normalized Difference Water Index) 571 

Classification 

Technique 

Advance Fitness Index 

(%) 

Advance Fitness Index 

(%) 

Improvement 

(%) 

 

(Without Cloud-Water 

Correction) 

(With Cloud-Water 

Correction)  

    
Supervised 69.7 86.4 16.7 

Unsupervised 63.1 79.6 16.5 

Delta-Cue 52.8 70.1 17.3 

NDWI 60.1 77.1 17.0 

MNDWI 59.8 77.3 17.5 

      
 

    

 572 

FIGURE CAPTIONS 573 

Figure 1. (A) Location of the study area in Texas, USA. (B) The location of the study domain on 574 

the Brazos River 575 

Figure 2. Stage hydrograph, rainfall hyetograph, time of peak discharge and date of image 576 

capture. Modified from Zhang et al., (2016)  577 

Figure 3. Comparison of (A) Pre-flood and (B) During-flood imagery 578 

Figure 4. Flowchart of ‘cloud-water layer’ generation 579 

Figure 5. (A) clouded regions in the study site as shown on a true color image and (B) potential 580 

areas where water could be logged (‘cloud-water layer’) as identified through the 581 

DEM approach, superimposed on a true color image 582 
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Figure 6. Reference Flood and Inundation maps of different classification techniques: (A) 583 

Reference, (B) Supervised, (C) Unsupervised, (D) Delta-cue, (E) NDWI and (F) 584 

MNDWI 585 
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