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Next-generation sequencing of reduced-representation genomic libraries provides a 25 

powerful methodology for genotyping thousands of single nucleotide polymorphisms 26 

(SNPs) among individuals of non-model species. Utilizing genotype data in the absence 27 

of a reference genome, however, presents a number of challenges. One major challenge is 28 
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the tradeoff between splitting alleles at a single locus into separate clusters (loci), creating 29 

inflated homozygosity, and lumping multiple loci into a single contig (locus), creating 30 

artifacts and inflated heterozygosity. This issue has been addressed primarily through the 31 

use of similarity cutoffs in sequence clustering. Here, two commonly employed, post -32 

clustering, filtering methods (read depth and excess heterozygosity) used to identify 33 

incorrectly assembled loci are compared with haplotyping, another post-filtering 34 

clustering approach. Simulated and empirical data sets were used to demonstrate that 35 

each of the three methods separately identified incorrectly assembled loci; more optimal 36 

results were achieved when the three methods were applied in combination. The results 37 

confirmed that including incorrectly assembled loci in population-genetic datasets 38 

inflates estimates of heterozygosity and deflates estimates of population divergence. 39 

Additionally, at low levels of population divergence, physical linkage between SNPs 40 

within a locus created artificial clustering in analyses that assume markers are 41 

independent. Haplotyping SNPs within a locus effectively neutralized the physical 42 

linkage issue without having to thin data to a single SNP per locus. We introduce a Perl 43 

script that haplotypes polymorphisms, using data from single or paired-end reads, and 44 

identifies potentially problematic loci. 45 

Keywords: population genomics, non-model species, single nucleotide polymorphisms 46 

Introduction 47 

 The field of population genetics, empowered by high-throughput DNA 48 

sequencing, is rapidly expanding the potential for high resolution demographic, genomic, 49 

and evolutionary analyses of non-model organisms (Mardis 2008). The technology has 50 

not yet reached the point where sequencing the full genome of many samples is cost or 51 

labor-efficient, so most studies rely on reduced-representation libraries to provide a 52 

manageable number of single-nucleotide polymorphisms (SNPs) to survey across 53 

individuals (Altshuler et al. 2000). Currently, there are several library-preparation 54 

approaches and bioinformatics procedures used to identify and genotype hundreds to 55 

thousands of SNPs in a panel of individuals (e.g. Okou et al. 2007; Van Tassell et al. 56 

2008). One form of library preparation (restriction-site associated DNA or RAD) takes 57 

advantage of the relative frequency of restriction endonuclease sites to tailor the number 58 

of fragments sequenced (Puritz et al. 2014b). The major challenge for most RAD 59 
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sequencing projects applied to non-model organisms is to assemble a high quality set of 60 

homologous sequences with minimal missing data across the greatest number of 61 

individuals, without use of a reference genome (Davey et al. 2011). This challenge has 62 

been met with many solutions and mixed degrees of success (Puritz et al. 2014a; Puritz et 63 

al. 2014b). 64 

 Assembling a RAD dataset requires separation of reads into clusters 65 

corresponding to a single location on a haploid set of chromosomes (hereafter, single-66 

copy locus). The challenge, therefore, is to identify highly similar sequences that occupy 67 

different chromosomal locations (hereafter, multi-copy loci). These multi-copy loci 68 

include paralogs, transposons, and other, non-allelic similar sequences (Hohenlohe et al. 69 

2011; Peterson et al. 2012) that may artificially cluster together during assembly. There 70 

are several approaches to detect multi-copy loci such as quantitative PCR (e.g. D’haene 71 

et al. 2010) or phylogenetic analysis of homologous sequences (e.g. Cannon & Young 72 

2003), but none of these are cost-effective for the volume of data typical of a RAD 73 

population genetics dataset. The problem is especially challenging for taxa with recent 74 

whole genome duplications followed by partial “diploidization”, such as salmonids 75 

(Christensen et al. 2013). 76 

 Identification and elimination of multi-copy loci in SNP datasets begins during 77 

bioinformatics assembly and filtering. An initial step in clustering reads is to select a 78 

cutoff for the number of base differences allowed among reads that are assembled into a 79 

contiguous sequence alignment (contig), what will thereafter be considered as 80 

corresponding to a single-copy locus (e.g. Catchen et al. 2011). A stringent cutoff can be 81 

applied at this step to restrict the number of multi-copy loci; however, divergent alleles 82 

within a single locus may be split into different contigs (over-splitting) and this can 83 

inflate observed homozygosity, compromising downstream analyses that depend on 84 

unbiased estimates of heterozygosity (Catchen et al. 2011; Harvey et al. 2015; Ilut et al. 85 

2014). Alternatively, a lower sequence similarity threshold can be used to avoid over-86 

splitting and post-assembly approaches can be employed to filter the dataset and identify 87 

potential multi-copy loci (Ilut et al. 2014). 88 

 One post-assembly filtering approach is based on the observation that read depths 89 

derived from single-locus clusters theoretically form a distribution around a mean read 90 
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depth (Emerson et al. 2010). Contigs with abnormally high read depth often signal the 91 

presence of multi-copy loci (Emerson et al. 2010), meaning that secondary peaks or 92 

outliers in a frequency distribution of read depth per contig may indicate suspect 93 

alignments and can be used to choose thresholds for single- vs. multi-copy loci. A second 94 

filtering approach (Hohenlohe et al. 2011) relies on the occurrence of fixed or near-fixed 95 

differences between non-allelic loci which causes an excess of heterozygotes above the 96 

expected 50% for bi-allelic SNPs. Filters that employ this approach tend to eliminate 97 

SNP loci with proportions above this level or that deviate significantly from either 98 

Hardy-Weinberg or binomial expectations (Hohenlohe et al. 2011; Parchman et al. 2012). 99 

A third filtering approach, haplotyping, relies on the fact that closely linked SNPs can 100 

constitute haplotypes of which a diploid individual can have no more than two (Ilut et al. 101 

2014; Peterson et al. 2012). Consequently, contigs that contain reads with three or more 102 

haplotypes within an individual can be flagged for inspection or removed (Parchman et 103 

al. 2012; Peterson et al. 2012). Unlike a filter for excess heterozygosity, which relies on 104 

significant divergence between alleles at multi-copy loci, identifying excess haplotypes 105 

within individuals only requires that there are two or more variable SNP sites within a 106 

contig. The number of individuals exhibiting reads with more than two haplotypes can 107 

then be used as a cut off to eliminate possible multi-copy loci. These filters are designed 108 

to eliminate multi-copy or artifactual contigs from population genomic datasets, and 109 

though many researchers may wish to identify true paralogous loci (potential sites of 110 

evolutionary innovation) in their data, the loci identified by these filters will often result 111 

from a variety of assembly and scoring errors also. 112 

 Closely linked SNPs can also pose complications in data analysis when 113 

associations due to linkage are treated as a statistical association among loci resulting 114 

from consanguinity, selection, or population structure (Kaeuffer et al. 2007). Over time 115 

scales of population-level processes, SNPs within a fragment of a few hundred base pairs 116 

in length are expected to exhibit background linkage disequilibrium (LD), and thus 117 

should not be considered independent markers (Falush et al. 2003; Kaeuffer et al. 2007). 118 

This presents a dilemma for researchers who wish to glean as much information as 119 

possible from their data as the total observed SNPs will be greater than the number of 120 

segregating loci. In addition, considering that SNPs contain less information per-locus 121 
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than multi-allelic markers such as microsatellite loci (Morin et al. 2009), thinning the 122 

dataset to one SNP per locus reduces the total information content. Fortunately, the 123 

information content of all SNPs in a dataset can be preserved and physical linkage 124 

artifacts removed by haplotyping SNPs within segregating loci. 125 

 Here, we explore the efficacy of using read depth, excess heterozygosity, and 126 

haplotyping, sequentially, separately, and in combination to identify multi-copy loci for 127 

elimination from a SNP dataset. We evaluated filter performance by using four simulated 128 

RAD datasets containing multi-copy loci, generated with a combination of either high or 129 

low mutation rate and either simple or complex evolutionary history. We also evaluated 130 

an empirical data set generated from a marine fish with low population structure and high 131 

genetic diversity. Finally, we examined bias and precision in estimating population-132 

genetic parameters by retaining and considering all SNPs as independent loci, thinning to 133 

a single SNP per contig, or haplotyping SNPs within contigs. 134 

 135 

Methods 136 

Simulated RAD data  137 

 Sequence reads from a double-digest RAD library (i.e., paired reads of fixed-138 

length, allelic sequences) were simulated using the simrrls Python script (D. Eaton, 139 

Yale), creating reads of a user-specified library type. The EggLib library (De Mita & Siol 140 

2012) was used to specify demographic parameters that affect allelic coalescence and 141 

simulate sequences under those conditions. Two large, randomly mating populations that 142 

diverged from a common, homogenous population 4N generations in the past, followed 143 

by bi-directional gene exchange (m = 0.01) until 0.1N generations in the past (after this, 144 

m = 0) were simulated, and 1,000 loci from 40 individuals (20 per population) were 145 

sampled. To introduce multi-copy loci (in this case double-copy) another pair of 146 

populations, with the same demographic history but which had diverged from the first 147 

pair of populations 20N generations in the past, followed by zero gene exchange, were 148 

simulated. From this second pair of populations, sequences from 50 of the 1000 loci (5%) 149 

were sampled and combined with reads from the first pair of populations. The resulting 150 

dataset contained 950 single-copy and 50 multi-copy loci. Simulated sequences consisted 151 

of paired 100 base pair (bp) forward and reverse reads, with the number of reads per 152 
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locus per individual specified with a gamma distribution (k = 1.6, θ = 20) with a mean of 153 

k*θ = 32, mode of (k-1)*θ = 12, and a 95% probability interval of 2.6 - 97.2. These 154 

simple, multi-copy datasets also included sequencing errors and insertion-deletion 155 

mutations introduced at default rates (P = 0.001 per site). Data were simulated at lower 156 

(N = 35,000) and higher (N = 70,000) population sizes, with a constant mutation rate (µ = 157 

7x10-9

 168 

), thus creating low and high genetic diversity, simple datasets. Simulations for the 158 

larger population also included a low but positive rate of recombination within fragments 159 

(ρ = 4Nr= 10, sites = 100). Complex multi-copy datasets also were generated to explore 160 

the performance of filtering for older, more divergent multi-copy loci which may feature 161 

fixed-site or nearly-fixed differences. Both sequence datasets (low/high diversity) were 162 

duplicated, and for reads from the 50 multi-copy loci derived from the second pair of 163 

populations the 5th G of every odd read was changed to an A and the fourth G of every 164 

even read was changed to a T. While this procedure did not create fixed differences 165 

between locus copies from each population pair, it increased the likelihood of divergent 166 

haplotypes over in situ mutation alone. 167 

Empirical data 169 

 Empirical data consisted of a reduced-representation, genomic library of red 170 

drum, Sciaenops ocellatus, created using a modified version of the double-digest, 171 

restriction-associated DNA sequencing (ddRAD) protocol of Peterson et al. (2012).  The 172 

data set was composed of 100 bp paired-end reads for 40 individuals sampled from two 173 

localities (Lower Laguna Madre and Sabine Lake, Texas). These localities, while 174 

demographically independent over a single generation, are part of the same western 175 

“regional population” of red drum (Hollenbeck 2016), and could thus be considered to 176 

consist of one or two clusters of individuals. Details of library construction can be found 177 

in Puritz et al. (2014a) and data be obtained from NCBI’s Short Read Archive (SRA) 178 

under Accession SRP041032. 179 

 180 

Reference construction, read mapping, variant calling, and preliminary filtering 181 

 Both simulated and empirical data were processed using the dDocent pipeline v.2 182 

(Puritz et al. 2014a) which facilitates efficient construction of a reference genome 183 
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(catalog of putatively-orthologous sequences), quality trimming of sequence reads, 184 

alignment-based mapping of trimmed reads to the reference, and calling of polymorphic 185 

positions by using a probabilistic model and considering a priori sampling units. For both 186 

simulated and empirical data, the reference set was created from unique, untrimmed 187 

sequences that were present at least twice within individuals (K1=2) and at least twice 188 

among individuals (K2=2), and then clustered at no less than 80% sequence similarity 189 

(c=0.8), from which a consensus sequence was derived. These parameters are expected to 190 

bypass the majority of sequencing errors, which are expected to occur in only a single 191 

sequence, and provide effective clustering of even divergent alleles within loci, with the 192 

possibility of clustering reads from multi-copy loci with similar sequences (Ilut et al. 193 

2014). Quality-trimmed reads were mapped by alignment to the reference consensus 194 

sequences, using mapping parameter values of 1, 3, and 5 for match score, mismatch 195 

cost, and gap-opening penalty, respectively. Variant calling was performed with 196 

FREEBAYES (Garrison & Marth 2012) on BAM files of aligned reads. Polymorphisms 197 

(which initially included complex, insertion-deletion, multi-allelic, and bi-allelic variants) 198 

were filtered for quality and missing data with a combination of VCFTOOLS (Danacek et 199 

al. 2011) and vcflib (E. Garrison Boston College) in addition to the filtering below (see 200 

Supplemental Information). 201 

 202 

Multi-copy locus elimination by variant filtering and haplotyping 203 

 Three approaches for post-clustering, filtering of multi-copy loci (read depth, 204 

excess heterozygosity, and haplotyping) were investigated using both empirical and 205 

simulated data. Full details of filtering routines are described in Supplemental 206 

Information. The first (Scheme 1) was applied to individual SNPs and employed the three 207 

filtering approaches sequentially in the order read depth (a), excess heterozygosity (b), 208 

and haplotyping (c). In this scheme each filtering step received only data remaining after 209 

a previous filtering step. Schemes 2 and 3 were applied jointly to all the SNPs in a contig 210 

rather than to individual SNPs. Scheme 2 employed the three filtering approaches 211 

separately (a-c); while Scheme 3 employed the three approaches separately but then 212 

combined results from all three. For comparison, a fourth dataset (Scheme 4) was 213 

generated with no filtering for multi-copy loci. 214 
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 To filter multi-copy loci based on read depth (Schemes 1, 2a, and 3), SNPs were 215 

filtered by mean read depth across individuals, with cutoffs determined empirically for 216 

both simulated and empirical datasets (see Results and Discussion). In Scheme 1, only 217 

high depth SNPs were removed; in Schemes 2a and 3, entire SNP-containing contigs 218 

were removed if any of the constituent SNPs failed to pass the filter. To filter paralogs 219 

based on excess heterozygosity (Schemes 1, 2b, and 3), the proportion of heterozygotes at 220 

each SNP locus was estimated using VCFTOOLS. For SNPs with >50% heterozygotes, a 221 

χ2

 For simulated data, the number of multi-copy loci that were eliminated at each 236 

step and in each filtering scheme were recorded (Table 1). For empirical data, where the 237 

true number of multi-copy loci was unknown, the total number of contigs eliminated with 238 

each filter was recorded (Table 2). 239 

 test was used to assess whether each conformed to expectations of Hardy-Weinberg 222 

equilibrium (HWE) and a correction for multiple tests (Benjamini & Hochberg 1995) was 223 

applied. In Scheme 1, SNPs significantly in excess of 50% heterozygotes were removed; 224 

in Schemes 2b and 3, any contig with one or more SNPs in excess of 50% heterozygotes 225 

and not in HWE was removed. To filter multi-copy loci based on haplotyping (Schemes 226 

1, 2c, and 3), a custom Perl script was employed (Supplemental Information).  The script 227 

identifies multi-SNP genotypes for each individual at each contig, compares this to a 228 

catalog of haplotypes (spanning both read pairs) for each individual at each contig, and 229 

flags homozygotes errantly called heterozygotes, based on genotyping error, and true 230 

heterozygotes with more than two haplotypes. In addition, the script discards variants 231 

observed in only one or two reads as sequencing errors. The user is able to set a cut-off 232 

for the number of genotyping errors and for extra haplotype-containing individuals 233 

allowed per contig, and for missing data. In this study cut-offs were set such that if one or 234 

more individuals had >2 haplotypes at a contig, that contig was removed. 235 

 240 

Population statistics and effects of physical linkage 241 

 To examine possible effects of filtering multi-copy loci and physical linkage on 242 

estimates of population-genetic parameters, the empirical dataset was filtered using 243 

Schemes 1, 3, and 4. For Schemes 1 and 3, the haplotyping filter was run on data with no 244 

minor allele frequency (MAF) cut-off because rare alleles, while not necessarily desirable 245 
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for many population genetic analyses, are quite useful in identifying excess haplotypes at 246 

a locus within individuals. After initial haplotype filtering, SNPs were filtered using a 247 

MAF cut-off where the least common allele had to be observed at least twice in a given 248 

dataset (MAF ≥2/2N alleles), and then the data were re-haplotyped (without further 249 

filtering). For schemes 1 and 3, filtered datasets were thinned to a single SNP per contig 250 

(the first SNP, by default) for comparison to data sets containing all filtered SNPs 251 

(unthinned) and haplotypes (Table 3). For Scheme 4, only thinned and unthinned data 252 

sets were compared. 253 

 Two simulated, simple datasets, one of low and one of high genetic diversity, 254 

were generated for comparison with the empirical dataset. For both of these simulated 255 

datasets, SNP loci were filtered for ≤ 95% missing data for consistency with the 256 

empirical dataset and then filtered using a MAF of ≥2/2N. Analyses for each dataset were 257 

run with and without simulated multi-copy loci (removed manually), and thinned datasets 258 

were compared to unthinned datasets. After filtering with greater stringency for missing 259 

data (50% vs. 95%; Supplemental Information), these datasets consisted of ~5-10% of the 260 

original 1,000 contigs. Additionally, for datasets where multi-copy loci had been 261 

removed, data were haplotyped for comparison to thinned and unthinned data sets as 262 

above (Table 4). 263 

 GENODIVE (Meirmans & Van Tienderen 2004) was used to generate estimates of 264 

the effective number of alleles (AE) and the inbreeding coefficient (GIS) for each of the 265 

three datasets (one empirical, two simulated) and an estimate of unbiased population 266 

divergence (G''ST) between pairs of samples within datasets. G''ST is a measure of 267 

divergence, calibrated to the maximum possible divergence given the number of alleles at 268 

a locus, and consequently permits a direct comparison between bi-allelic loci (i.e., SNPs) 269 

and multi-allelic loci (haplotyped contigs) (Hedrick 2005; Meirmans & Hedrick 2011). 270 

Confidence intervals for GIS and G''ST were generated using 10,000 bootstrap replicates 271 

across loci. Population assignment probability to two clusters (K=2) were calculated 272 

using the program STRUCTURE, with the admixture model and correlated allele 273 

frequencies (Pritchard et al. 2000). No a priori population membership information was 274 

specified; runs consisted of 100,000 samples after 100,000 generations of burn-in. 275 
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Because there were two simulated populations, and two localities (from a single regional 276 

population) from which empirical data were generated, assignment was estimated at K=2. 277 

 278 

Results 279 

Multi-copy loci filtering of simulated data 280 

 A total of 1,000 contigs from the low variability, simple and complex sequences 281 

were reconstructed using dDocent, as were 1,000 contigs from the high variability, 282 

simple sequences. In each case, the 50 multi-copy loci (contigs with reads from both 283 

population pairs) were reconstructed into a single contig each, as expected (Table 1). 284 

However, a total of 1002 contigs, including 950 single-copy loci and 47 of the multi-copy 285 

loci, were reconstructed from the high variability, complex dataset. Of the three 286 

remaining (expected) multi-copy loci, one contig contained only reads from the second 287 

population pair (in effect becoming a single-copy locus). The other two expected, multi-288 

copy loci were divided into two contigs each (total of four). One was split into two 289 

contigs but each contig contained reads from each population pair, while the other split 290 

into two contigs where each contig contained only reads from the second population pair. 291 

Hereafter these five are referred to as anomalous, multi-copy loci. 292 

 Results of filtering by Schemes 1-3 are shown in Table 1. Overall, filtering by 293 

Scheme 3 (combined) was more effective than Scheme 1 (sequentially) and, in most 294 

cases, than Scheme 2 (separately). When applied sequentially to individual SNPs 295 

(Scheme 1), each filter removed data needed by the subsequent filter to identify multi-296 

copy loci, making overall filtering less effective. The three filters applied separately 297 

(Scheme 2) were variously effective at eliminating multi-copy loci. The most effective 298 

filter alone, excess heterozygosity, did achieve 100% success eliminating multi-copy loci 299 

in the simulation involving the low-diversity, high-complexity dataset. When run 300 

separately, haplotyping was the least effective filter in terms of removal of multi-copy 301 

loci. However, haplotyping performed well in both high-complexity datasets and was 302 

more effective than depth filtering in the high-diversity, high-complexity dataset. This is 303 

due to the fact that multi-copy loci in high complexity datasets exhibited more divergent 304 

haplotypes, increasing the chance of recognizing extra haplotypes within individuals. 305 

Haplotyping also identified multi-copy loci not identified by the other two filters applied 306 
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under Scheme 3, including all five of the anomalous, multi-copy loci from the high 307 

diversity, high complexity dataset. 308 

 Filtering in general was least effective in high-diversity datasets. This resulted 309 

from less effective mapping of higher variability reads onto contigs, thus reducing clarity 310 

of patterns needed to identify multi-copy loci. For example, mean depth for SNPs from 311 

multi-copy loci was 48.2 (range 13.5-69.0) and 47.3 (10.1-69.0) for the simple and 312 

complex, high-diversity datasets, respectively, versus 53.8 (18.3-72.6) and 53.2 (10.9-313 

72.6) for the simple and complex, low-diversity datasets, respectively. No substantial 314 

difference was observed in depth for SNPs from single-copy loci (means 28.4, 28.5, 28.3, 315 

28.4). This pattern can be better understood by inspecting frequency distributions of 316 

mean depth across loci (Figure 1a). SNPs from multi-copy loci are shifted to the left in 317 

high-diversity datasets relative to low-diversity datasets and into depth bins constituting 318 

the first mode of the bi-modal distribution. Because of this shift more SNPs from multi-319 

copy loci fell below the selected depth cutoff (maximum mean of 45 reads/individual). 320 

Similarly, values of and deviations between observed and expected heterozygosity were 321 

smaller in high-diversity datasets (0.237/0.241 and 0.244/0.244 mean observed/expected 322 

heterozygosity in simple and complex datasets, respectively) than low-diversity datasets 323 

(0.272/0.255 and 0.287/0.262 mean observed/expected heterozygosity in simple and 324 

complex datasets, respectively). Consequently, fewer loci exhibited excess 325 

heterozygosity when tested for deviations from HWE. Finally, a higher proportion of 326 

multi-copy loci with >2 haplotypes failed to be mapped within a single individual in 327 

high-diversity datasets, resulting in decreased efficiency of the haplotyping filter (Table 328 

1). More permissive mapping parameters were not explored here, but it is possible that 329 

for datasets from populations with high genetic diversity (i.e., with a wide and 330 

overlapping range of sequence divergence between and within multi-copy and single-331 

copy loci, respectively), less stringent initial mapping values would render these filters 332 

more effective. 333 

 334 

Multi-copy loci filtering of empirical data 335 

 Reference construction for the 40 red drum individuals resulted in 40,329 contigs 336 

(Table 2). A total of 124,500 variants were scored from reads mapped to these reference 337 
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sequences, but only 79% of contigs contained variants. The average number of variants 338 

per variable contig was 3.7, which made these data similar to the simulated, low-diversity 339 

datasets (4.1 variants/contig) rather than simulated, high-diversity datasets (7.2 340 

variants/contig). While the actual number of multi-copy loci in the empirical dataset was 341 

unknown, it likely is comparable to other non-polyploid, bony fishes (e.g <5% in 342 

stickleback, Ilut et al. 2014), and some results are still salient without this context. For 343 

example, the distribution of read depth was unimodal and highly skewed (Figure 1b), 344 

with some contigs exhibiting obvious depth excesses (e.g., mean 4,918 reads/individual, 345 

versus an overall mode of 20). These contigs BLAST to known multi-copy loci such as 346 

ribosomal RNA genes. However, the observation of a single mode made it difficult to 347 

choose an effective read-depth threshold for discriminating multi-copy loci. Working 348 

from the assumption that the majority of loci were single-copy, and that the observed 349 

peak corresponds to the mean depth for these loci, several cutoffs meant to approximate 350 

an upper confidence limit associated with the mode were examined: 2X the mode, the 351 

mode plus the difference between the mode and the minimum mean depth (mode+mode-352 

min), and the 3rd quartile. The first (2X the mode) proved to be the least stringent for this 353 

dataset (read depth 40, approximately the 80th percentile) and was chosen as the 354 

experimental cutoff to potentially allow more multi-copy loci to remain in the data prior 355 

to excess heterozygosity and haplotype-based filtering. As with the simulated data, these 356 

filters removed fewer contigs than the depth filter, especially when applied sequentially 357 

and not strictly across entire contigs (Table 2); when applied in a combined manner, the 358 

heterozygosity and haplotype filters removed an additional 1,555 (of 5,912 total) contigs 359 

not flagged by the depth filter. Subsequently, the frequency distribution of depth for 360 

SNPs flagged by either excess heterozygosity or haplotyping was compared to the 361 

unfiltered distribution in an attempt to estimate an effective cutoff for read depth. While 362 

the depth distribution of flagged loci is shifted to the right as compared to the distribution 363 

of all loci, and most loci with high depth are flagged by excess heterozygosity and 364 

haplotyping filters (Figure 1b), 58.3% of SNPs the were below the selected experimental 365 

cutoff (40). One strategy would be to remove only contigs flagged by multiple filters, 366 

with the caveat that some multi-copy loci will remain (Table 1). The advantage of this 367 
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strategy, however, depends on the effect of retaining multi-copy loci on downstream 368 

analyses. 369 

 370 

Linkage, haplotypes, and population parameters 371 

 For the empirical dataset there was no clear difference among estimated 372 

population-genetic parameters based on all SNPs, haplotypes, or thinned SNPs, despite 373 

haplotypes having a higher effective number of alleles (greater heterozygosity) per locus 374 

than SNPs (Table 3). Sequential versus combined filtering schemes also had little effect 375 

on estimated values. Estimates of inbreeding (GIS) were negative and of similar 376 

magnitude with overlapping confidence intervals, reflecting high genetic diversity and 377 

effective population size in red drum (Gold et al. 2001; Turner et al. 2002). Estimates of 378 

population divergence (G''ST

 There were larger differences among population statistics estimated from all 381 

SNPs, haplotypes, and thinned SNPs for simulated datasets which had multi-copy loci 382 

removed (Table 4). Population divergence estimated from haplotypes was larger than that 383 

from all or thinned SNPs. This may reflect increased power to resolve divergence with 384 

haplotypes or a sensitivity of G''

) were similarly small, but confidence intervals did not 379 

include zero.  380 

ST to the number of alleles or heterozygosity (Kalinowski 385 

2002; Meirmans & Hedrick 2011). GIS

 Another pattern appeared when assignment probabilities from STRUCTURE using 389 

all SNPS, haplotypes, and thinned SNPs in the empirical dataset were compared. While 390 

the mean level of assignment of samples into one of two clusters was small, reflecting 391 

low levels of population divergence, the variance in probability of individual assignment 392 

was much greater for the dataset of all SNPs than for haplotyped or thinned SNPs (Figure 393 

2). This does not appear to result from the dataset of all SNPs being more informative, as 394 

the thinned and all-SNPs datasets had similar G''

 values, alternatively, while different, had wide 386 

and overlapping confidence intervals, suggesting difficulty in accurately calculating a 387 

precise genome-wide estimate for this parameter based on so few loci. 388 

ST values (0.0014 ±0.0499 vs. 0.0012 395 

±0.0484, mean ± standard deviation of thinned vs. all SNPs, respectively). Rather, when 396 

the analysis was run with SNPs in tight physical linkage, artificial clusters were formed 397 

on the mistaken interpretation that LD was the result of population structure. In contrast, 398 
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the simulated, low-diversity datasets did not show this pattern. Instead individuals were 399 

assigned back to their correct group with considerably higher posterior probability (mean 400 

>0.97). This reflects the higher degree of population divergence in simulated datasets 401 

than in the empirical dataset, and suggests a greater opportunity for artifacts when the 402 

level of population divergence is small.  403 

 404 

Discussion 405 

 Haplotyping SNPs within a contig provides a method to remove additional multi-406 

copy loci or otherwise artifact-prone contigs from RAD datasets when used in 407 

combination with depth and excess heterozygosity filters. Both simulated and empirical 408 

datasets filtered with all three methods exhibited less heterozygosity than unfiltered 409 

datasets, and without the added burden of splitting single-copy loci resulting from using 410 

high similarity cutoffs for clustering sequences into contigs. When robust filtering, like 411 

that demonstrated here, is not applied to RAD datasets without a full reference genome, 412 

multi-copy loci (i.e. paralogs, transposons, and other, non-allelic similar sequences) will 413 

often be retained in the final dataset and this can lead to biased results in population 414 

genetic analyses. For example, there was higher heterozygosity (lower GIS values) in 415 

datasets with no filtering of multi-copy loci as compared to those where multi-copy loci 416 

had been filtered (Table 3) or manually removed (Table 4); this is likely due to SNPs 417 

segregating independently in separate copies of multi-copy loci but being clustered into a 418 

single contig. This artifactual heterozygosity deflated measures of overall population 419 

divergence (G''ST

 Nevertheless, the consequences of downward biases in estimates of inbreeding 426 

and population divergence caused by retaining multi-copy loci are not easy to predict, 427 

and depend on the intended purpose of the data. In situations of very low but non-zero 428 

population divergence, an increase in total heterozygosity could conceivably mask 429 

), although not substantially in the empirical datasets. This finding may 420 

reflect a higher proportion of multi-copy loci in simulated data relative to the empirical 421 

data, suggesting that artificially reduced heterozygosity is less of a problem for data 422 

derived from genomes with fewer multi-copy loci. However, the percentage of multi-423 

copy loci falling below a given similarity cutoff, and therefore likely to be assembled 424 

incorrectly, will generally be difficult to predict a priori for non-model species. 425 A
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divergence, and would provide biased estimates of gene flow and dispersal. For analyses 430 

that depend on unbiased and accurate estimates of heterozygosity or allele frequency 431 

spectra, the retention of paralogous loci may be more serious. For example, analyses such 432 

as genome scans depend on accurate estimates of neutral population divergence to 433 

identify outliers. Artific ial downward bias in estimates of global levels of divergence 434 

might lead to more false positives for loci under directional selection, while multi-copy 435 

loci might be identified as being under balancing selection (Foll & Gaggiotti 2008). This 436 

prediction should be true regardless of the bioinformatic pipeline used to produce the 437 

final marker dataset, although pipelines that reconstruct fewer multi-copy loci and less 438 

often over-split alleles would naturally produce superior results in downstream analyses.  439 

 The results indicated that haplotyping is also a straightforward way to manage 440 

closely linked SNPs within a contig without loss of information content caused by 441 

thinning. Ignoring linkage can produce misleading results in analyses that assume 442 

observed LD is a result of demographic or evolutionary processes. This issue is 443 

potentially problematic for datasets that feature high diversity within and among 444 

populations and low divergence between populations, as was manifest in the clustering 445 

results from STRUCTURE. These results suggest that caution is warranted when using 446 

linked SNPs from populations with low expected genomic divergence to estimate 447 

assignment probabilities.  448 

Finally, while it seems intuitive that haplotyped datasets retain more information 449 

than thinned SNP datasets, population statistics in this study from filtered datasets were 450 

quite similar between thinned SNP and haplotype datasets. In this case this may reflect 451 

that the sheer number of SNPs recovered overcame any loss of signal associated with 452 

thinning (Kalinowski 2002; Willing et al. 2012). However, analyses that rely on locus-453 

by-locus measures of divergence or linkage disequilibrium such as genetic mapping (e.g. 454 

Ball et al. 2010), estimates of identity, parentage, or kinship (e.g. Lopéz Herráez et al. 455 

2005), and LD based estimates of effective population size (e.g. Waples & Do 2010), will 456 

find added benefit to haplotyping SNPs rather than thinning to a single SNP per contig 457 

because of the increased discriminatory power of additional alleles per locus. 458 
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 575 

Data Accessibility 576 

 577 

Empirical Illumina sequences data for red drum be obtained from NCBI’s Short Read 578 

Archive (SRA) under Accession SRP041032. Scripts for generating the simulated 579 

sequence data as well as some automated filtering have been posted to github 580 

(https://github.com/jpuritz/). 581 

Tables 582 

 583 

Table 1. Results of filtering of simulated ddRAD datasets. For each simulated 584 

condition (low/high diversity, simple/complex), contigs were filtered sequentially by 585 

depth, observed heterozygosity (HO), and haplotyping (Scheme 1), filtered separately by 586 

depth, heterozygosity, or haplotyping (Schemes 2a-c), or filtered in combination (Scheme 587 

3). Values recorded in each filtering step are number of simulated, multi-copy loci 588 

filtered divided by the total simulated, multi-copy loci available. The number of multi-589 

copy loci available to filter at each step may not necessarily match the number remaining 590 

in a previous step because some number of multi-copy loci were eliminated in 591 
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intermediate filtering steps not directed towards multi-copy loci. The third through fifth 592 

columns list the total number of contigs reconstructed by the dDocent pipeline, the 593 

number of multi-copy loci clusters recovered, and the number of SNPs scored across all 594 

clusters. The last columns are the number of simulated multi-copy loci remaining after 595 

filtering and the number of those multi-copy loci observed to possess more than two 596 

haplotypes. 597 

 598 

Table 2. Results of filtering of the empirical ddRAD dataset. The number of reference 599 

contigs and contigs containing variants (≥1 SNP) from the dDocent pipeline, as well as 600 

the total SNPs before filtering, are shown. Rows list the number of contigs that were 601 

filtered sequentially by depth, observed heterozygosity (HO

 607 

), and haplotyping (Scheme 602 

1), filtered separately by depth, heterozygosity, or haplotyping (Scheme 2a-c), or filtered 603 

in combination (Scheme 3). The number of contigs and SNPs retained with basic but no 604 

multi-copy loci specific filtering also are shown (Scheme 4). For each scheme, the final 605 

remaining number of contigs and SNPs with ≤ 5% missing data are listed. 606 

Table 3. Dataset characteristics and population statistics for red drum from Lower 608 

Laguna Madre and Sabine Lake, TX, USA. Data were filtered for minor allele 609 

frequency (MAF >1/2N alleles). Results are shown from three multi-copy loci filtering 610 

schemes: SNPs filtered by each method sequentially (Scheme 1), all SNPs from contigs 611 

identified in combination (Scheme 3), or no multi-copy loci filtering (Scheme 4). Number 612 

of remaining contigs (#contigs) and SNPs (#SNPS) for each filtering scheme are shown 613 

for datasets of all SNPs, haplotypes, or thinned SNPs. Listed for each are number of 614 

alleles recovered, effective number of alleles (AE), and estimates and 95% confidence 615 

intervals for the inbreeding coefficient (GIS) and for population divergence (GST

 617 

''). 616 

Table 4. Dataset characteristics and population statistics for simulated data with 618 

simple haplotypes. Data from two simulations (low and high variability) are shown with 619 

and without multi-copy loci removed from final datasets. Data were filtered for minor 620 

allele frequency (MAF > 1/2N alleles). The number of remaining contigs (#contigs) and 621 

SNPs (#SNPs) are shown for datasets of all SNPs, haplotypes, or thinned SNPs. Listed 622 
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for each are number of alleles recovered, effective number of alleles (AE), and estimates 623 

and 95% confidence intervals for the inbreeding coefficient (GIS) and for population 624 

divergence (GST

Figure Legends 626 

''). 625 

 627 

Figure 1. Frequency distribution of mean number of reads per locus 628 

(depth/coverage): a) simulated ddRAD data with ‘simple’ haplotypes; and b) empirical 629 

ddRAD data from red drum. Arrows in each figure indicate the chosen read-depth cutoff 630 

above which contigs are flagged as multi-copy loci. 631 

 632 

Figure 2. Bar plots of posterior probability of individual assignment for 39 red 633 

drum to K=2 clusters, using the program STRUCTURE for three versions of the 634 

ddRAD dataset.  635 
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data     

diversity 

multi-copy 

haplotypes 

total contigs 

reconstructed 

# multi-      

copy contigs 
# SNPs 

filtering 

scheme 

filter by 

depth 
filter by Ho 

filter by                 

# haplotypes 

multi-copy        

loci left 

multi-copy         

loci >2 haps 

low simple 1,000 50 3,641 

1 30/50 (60%) 0/15 (0%) 2/15 (13%) 13 5 

2a 47/50 (94%) -- -- 3 -- 

2b -- 49/50 (98%) -- 1 -- 

2c -- -- 37/49 (76%) 12 2 

3     combined filters: 0   

low complex 1,000 50 3,714 

1 28/50 (56%) 3/18 (17%) 1/15 (7%) 14 5 

2a 49/50 (98%) -- -- 1 -- 

2b -- 50/50 (100%) -- 0 -- 

2c -- -- 46/50 (92%) 4 1 

3     combined filters: 0   

high simple 1,000 50 7,097 

1 17/50 (34%) 0/32 (0%) 4/32 (13%) 28 16 

2a 42/50 (84%) -- -- 8 -- 

2b -- 40/50 (80%) -- 10 -- 

2c -- -- 35/50 (70%) 15 14 

3     combined filters: 7   

high complex 1,002* 52 (47)* 7,187 

1 16/52 (31%) 5/36 (14%) 7/31 (23%) 24 17 

2a 42/52 (81%) -- -- 10 -- 

2b -- 47/52 (90%) -- 5 -- 

2c -- -- 44/52 (85%) 8 6 

3     combined filters: 2   
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reference 

contigs 

# contigs ш1 

SNP 

total SNPs               

before filtering 

filtering 

scheme 

filter by depth             

(2X mode) 
filter by Ho 

filter by               

# haplotypes 

remaining         

contigs ;ч5%Ϳ 

remaining             

SNPs ;ч5%Ϳ 

40,329 31,758 124,500 

1 3,727 30 1,553 5,677 13,280 

2a 4,274 -- -- 6,826 20,182 

2b -- 353 -- 10,621 32,160 

2c -- -- 2,554 8,332 20,647 

3 combined filters: 5,912  5,271 12,664 

4  no paralog filtering  10,886 33,679 
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multi-copy filtering # contigs markers # SNPs # alleles (AE) GIS (95%CI) GST''  (95%CI) 

1. sequential 4,932 

all SNPs 9,964 19,928 (1.31) -0.0103 (-0.0145:-0.0062) 0.0032 (0.0019:0.0045) 

haplotypes 9,964 14,691 (1.61) -0.0108 (-0.0155:-0.0060) 0.0032 (0.0015:0.0049) 

thin SNPs 4,932 9,864 (1.31) -0.0102 (-0.0162:-0.0043) 0.0037 (0.0018:0.0057) 

3. combined 4,590 

all SNPs 9,476 18,952 (1.30) -0.0094 (-0.0136:-0.0052) 0.0030 (0.0017:0.0044) 

haplotypes 9,476 13,868 (1.62) -0.0096 (-0.0142:-0.0049) 0.0029 (0.0011:0.0047) 

thin SNPs 4,590 9,180 (1.31) -0.0085 (-0.0145:-0.0025) 0.0034 (0.0014:0.0055) 

4. none 9,870 
all SNPs 26,787 53,574 (1.36) -0.0719 (-0.0764:-0.0675) 0.0027 (0.0020:0.0035) 

thin SNPs 9,870 19,740 (1.34) -0.0441 (-0.0505:-0.0377) 0.0027 (0.0014:0.0039) 
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data 

diversity 

multi-copy 

loci 
# contigs markers # SNPs # alleles (AE) GIS (95%CI) GST'' (95%CI) 

low no 55 

all SNPs 151 302 (1.38) -0.0142 (-0.0390:0.0107) 0.2107 (0.1626:0.2591) 

haplotypes 151 167 (1.68) -0.0067 (-0.0422:0.0271) 0.2677 (0.1972:0.3405) 

thin SNPs 55 110 (1.35) 0.0039 (-0.0428:0.0515) 0.2656 (0.1729:0.3559) 

low yes 99 
all SNPs 474 948 (1.69) -0.4592 (-0.4874:-0.4300) 0.0782 (0.0595:0.0979) 

thin SNPs 99 181 (1.58) -0.3641 (-0.4361:-0.2891) 0.1426 (0.0871:0.2037) 

high no 80 

all SNPs 359 718 (1.32) 0.0205 (-0.0014:0.0421) 0.2328 (0.2034:0.2617) 

haplotypes 359 378 (2.16) 0.0099 (-0.0170:0.0383) 0.3272 (0.2736:0.3804) 

thin SNPs 80 160 (1.34) 0.0105 (-0.0303:0.0509) 0.2148 (0.1652:0.2653) 

high yes 123 
all SNPs 753 1506 (1.59) -0.3520 (-0.3755:-0.3275) 0.1089 (0.0926:0.1256) 

thin SNPs 123 246 (1.51) -0.2582 (-0.3237:-0.1908) 0.1360 (0.0978:0.1758) 
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