

1
2 MR. BRYAN LEGARE (Orcid ID : 0000-0001-6791-0293)

3
4
5 Article type : Regular Paper

6
7
8 After the nursery: regional and broad-scale movements of sharks tagged in the Caribbean.

9 Running head: After the Nursery broad-scale shark movements

10 Bryan Legare^{1,2*}

11 Bryan DeAngelis³

12 Gregory Skomal⁴

13 ¹ Center for Coastal Studies, 5 holway Avenue, Provincetown MA 02657, USA

14 ² University of Massachusetts, Department of Environmental Conservation, Amherst, MA, 01003

15 ³Massachusetts Marine Fisheries, New Bedford, MA 02740, USA

16 ⁴ The Nature Conservancy, North America Oceans and Coasts, URI Bay Campus, Narragansett, RI 02882, USA

17
18 Key words: Coastal Sharks, Regional Management, Acoustic Telemetry, Data Sharing, Broad-
19 scale movements.

20 * To whom correspondence should be addressed: E-mail: Blegare@coastalstudies.org

21
22
23
24
This is the author manuscript accepted for publication and has undergone full peer review but has
25 not been through the copyediting, typesetting, pagination and proofreading process, which may
26 lead to differences between this version and the [Version of Record](#). Please cite this article as [doi:
27 10.1111/MAEC.12608](https://doi.org/10.1111/MAEC.12608)

28 This article is protected by copyright. All rights reserved

25

26

27

28

29

30

31

32

33 **Abstract:** Broad-scale movements (10s-100s km) of highly migratory species, such as sharks,
34 present unique management challenges as fish migrate across international boundaries, thereby
35 exposing them to different levels of anthropogenic pressure. Lemon sharks and blacktip sharks
36 are well-studied throughout their range in the western North Atlantic, but broad-scale
37 movements in the Caribbean region are largely unknown. Utilizing 10 years (2004-2014) of
38 acoustic and conventional tagging data, this study presents the post-nursery movements of young
39 of the year (YOY) and juvenile blacktip ($n = 198$) and lemon ($n = 130$) sharks tagged in the
40 United States Virgin Islands (USVI). A total of five (2.5%) blacktip sharks were recaptured by
41 recreational and commercial fishers in the greater Caribbean and as far north as the southeastern
42 coast of the United States, moving between 2-2200 km and crossing a minimum of six
43 international boundaries. Of the acoustically-tagged blacktip ($n = 88$) and lemon ($n = 45$) sharks,
44 28 (32%) and 16 (24%), respectively, were detected outside the boundaries of the nursery area in
45 which they were tagged, dispersing throughout the USVI territory; blacktip sharks were
46 acoustically detected beyond territorial waters as far as Florida, US (1881 km). Both species
47 transited through local marine protected areas but did not establish residency resulting in little
48 protection. This is the first study to examine connectivity between blacktip shark populations of
49 the USVI and the east coast of the United States.

50 **Introduction**

51 A thorough understanding of migration and movement patterns is essential for the
52 sampling, monitoring, and sustainable management of fish populations (Musick, Burgess,
53 Cailliet, Camhi, & Fordham, 2000). For species with high residency in a specific management
54 zone, migration across political boundaries is limited. However, fish that cross political,
55 jurisdictional, and/or management boundaries (e.g., marine protected areas [MPAs]; national,
56 state, or territorial boundaries) can be exposed to varying and often conflicting management
57 regimes and levels of enforcement (Dulvy et al., 2014; Pittman, Monaco, et al., 2014). The
58 greater Caribbean region presents a challenging management scenario as it contains numerous
59 small island nations and territories, each with different management goals and capacities in very
60 close proximity. As a result, the management areas of each country are, for many fish species,
61 smaller than their potential movements (Dwyer et al., 2020; Pittman, Monaco, et al., 2014). To
62 manage highly migratory species (HMS) effectively and equitably, it is imperative that common
63 resources be identified through research on the broad-scale movements (10s-100s km), and
64 levels of connectivity, of fish populations between management regions.

65 In the western North Atlantic (WNA), a number of studies have examined the movements
66 of blacktip and lemon sharks off the southeast coast of the US (SE-US; (Carlson, Sulikowski, &
67 Baremore, 2006; Castro, 1996; Reyier et al., 2014), in the Gulf of Mexico (GOM; (MR Heupel
68 & Hueter, 2002; M. Heupel & Simpfendorfer, 2005; Passerotti & Baremore, 2012), and in The
69 Bahamas (Feldheim, Gruber, & Ashley, 2001; Gledhill et al., 2015; Gruber, De Marignac, &
70 Hoenig, 2001). While both species have been shown to move between The Bahamas and the SE-
71 US (Reyier et al., 2014), connectivity between these regions and the Caribbean remains poorly
72 studied. Although there are limited data about the broad-scale movement of both species, much
73 has been inferred from genetics and life history characteristics (Ashe et al., 2015; Carlson et al.,
74 2006; Gledhill et al., 2015). For example, differences in life history traits between blacktip
75 sharks in the GOM and those off the SE-US are indicative of separate stocks (Carlson et al.,
76 2006), yet blacktips in Belize and Yucatan are genetically similar to those in The Bahamas
77 (Gledhill et al., 2015). For the lemon shark, genetic analyses indicate fine-scale population
78 structure and limited exchange within the WNA (Ashe et al., 2015). To strengthen our
79 understanding of stock structure in these two species, and the subsequent implications for
80 international management, additional movement data are warranted from the Caribbean region,

81 which supports small, more isolated nurseries (DeAngelis, 2006; DeAngelis et al., 2008; Legare
82 et al., 2015; Legare et al., 2018).

83 Collecting broad-scale movement data on HMS, such as sharks, is difficult as habitat use
84 and migratory paths can be distinctly different, often hundreds or thousands of kilometers apart,
85 at different life stages (Musick et al., 2000). Monitoring efforts need to be spatially complete to
86 avoid population hyperstability, which produces stable catch indices while the population
87 declines and results in an overestimation of the total population (Erisman et al., 2011).
88 Hyperstability is particularly a problem in fish species that form aggregations or perform long
89 distance migrations (Erisman et al., 2011), which has been demonstrated in blacktip and lemon
90 sharks during different life stages (Castro, 1996; Kajiura & Tellman, 2016; Reyier et al., 2014).

91 In the Caribbean, a handful of studies have examined the abundance and habitat use of
92 elasmobranchs in the coastal waters of the United States Virgin Islands (B. DeAngelis, 2006; B.
93 M. DeAngelis, McCandless, Kohler, Recksiek, & Skomal, 2008; Legare, Kneebone, DeAngelis,
94 & Skomal, 2015; Legare, Skomal, & DeAngelis, 2018). This work has identified important shark
95 nursery habitat for blacktip and lemon sharks in the USVI and the spatiotemporal movements of
96 these species while utilizing these nurseries (B. DeAngelis, 2006; Legare et al., 2015; Legare et
97 al., 2018). On a broader scale, Kohler and Turner (2019) provided a recent summary of
98 conventional tag and recapture data for these two species, but acknowledged the need to
99 complement this information with electronic tagging methods.

100 In this study, we supplemented conventional tagging data (Kohler and Turner, 2019) with
101 acoustic telemetry data to examine the regional and broad-scale movements of blacktip and
102 lemon sharks when they emigrate from nurseries. In doing so, we examined population
103 connectivity among and between regions of the WNA while also relating these movements to the
104 complex political matrix of the region.

105 **Materials and Methods**

106 *Region*

107 In this study, the Caribbean region included the political boundaries of the following:
108 Puerto Rico and the United States Virgin Islands (USVI), which are unincorporated territories of
109 the United States; the independent nations of the Dominican Republic, the British overseas

110 territories of the Turks and Caicos Islands (TCI), and the British Virgin Islands (BVI); and the
111 British constitutional monarch of The Bahamas (Figure 1).

112 The broad-scale movements of blacktip and lemon sharks in this region were derived
113 from conventional tagging and acoustic telemetry data collected over the period of 2004-2014.
114 Sharks were captured, tagged, and released on the islands of St. Thomas (51.5 km²) and St. John
115 (32 km²), which comprise two of three major islands of the USVI (Figure 1). The coasts of both
116 islands are characterized by long-shore bays with extensive coral reef assemblages on narrow
117 shelves (Zitello et al., 2009). Conventional tagging was conducted throughout both islands from
118 2004-2012, while acoustic tagging was conducted exclusively in Fish Bay and Coral Bay during
119 2006-2012. These embayments provide important nursery habitat for blacktip and lemon sharks
120 on the island of St. John (Legare et al., 2015); both contain extensive seagrass meadows, fringing
121 mangroves, and coral reefs (Costa, Kendall, Edwards, Kagesten, & Battista, 2013).

122 Shark tagging methods, locations, and dates are summarized by DeAngelis (2006),
123 DeAngelis et al. (2008), and Legare et al. (2015). In short, intense sampling was conducted in
124 2004 (22 days from June to August) and 2005 (38 days in January, March, May, July, and
125 December). Annual trips were then conducted from 2006-2012 between May and August for a
126 total of 26 sampling days. An additional three sampling days were conducted in January of 2011.
127 The demersal longline gear and sampling procedures were modeled after the methodology of the
128 Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey (Nancy E.
129 Kohler & Turner, 2001). Longline gangions comprised 25-50 circle hooks (size 12/0, O. Mustad
130 & Son, Gjøvik, Norway) with barbs depressed attached to 50 cm of 0.16 cm stainless cable and
131 100 cm of 0.64 cm braided nylon line, which was clipped to the mainline and baited with
132 Atlantic mackerel (*Scomber scombrus*), Atlantic bonito (*Sarda sarda*), little tunny (*Euthynnus*
133 *alleratus*), and/or barracuda (*Sphyraena barracuda*); soak time was 30-60 minutes. In addition,
134 opportunistic rod-and-reel, seine, and hand-line sampling was conducted to increase sample size
135 when appropriate. Upon haulback, sharks were removed from the line and sex, fork length (FL),
136 and total length (TL) were recorded. Small sharks (< 1 m FL) were tagged through the dorsal fin
137 with a blue rototag (Dalton-Henly, Nettlebed, Oxford, England) and larger sharks were tagged
138 with a M-tag inserted at the base of the dorsal fin using standard methods (Kohler and Turner,
139 2001).

140 A brief summary of recaptures of these sharks is reported in Kohler and Turner (2019)
141 and, following their recommendations, this paper provides more extensive analysis supplemented
142 with electronic acoustic tags. For sharks that were acoustically tagged in Fish Bay and Coral Bay
143 (Figure 1), individually coded transmitters (models V9-2L, V13-1L, V13-H, Vemco Ltd., Nova
144 Scotia) were surgically implanted using the methodology of Heupel and Hueter (2001) these
145 sharks were also conventionally tagged. Shark movements were monitored using 8-12 passive
146 acoustic receivers (Models VR2, VR2W, Vemco, Nova Scotia, Canada) placed in Fish Bay from
147 2006-2013 and 5-32 in Coral Bay from 2008-2013 (See Legare et al., 2015). In addition, data
148 were also collected by >100 receivers placed and maintained on the islands of St. John, St.
149 Thomas, St. Croix, Vieques, and Culebra by the University of the Virgin Islands, National
150 Oceanic and Atmospheric Administration Biogeography, National Marine Fisheries Service
151 (Galveston, Texas), the University of Massachusetts, Amherst, and the Florida Atlantic Coast
152 Telemetry Network (FACT). These receivers were deployed for varying durations during this
153 study (Brownscombe, Cooke, & Danylchuk, 2017; Doerr & Hill, 2013; Kendall, Monaco, &
154 Winship, 2016; Pittman & Legare, 2010).

155 Broad-scale movements were defined as any movement beyond the nursery areas in
156 which the sharks established residency, as quantified by previous studies (B. DeAngelis, 2006;
157 B. M. DeAngelis et al., 2008; Legare et al., 2015; Legare et al., 2018). These movements were
158 calculated as the linear distance between the initial capture location and the recapture or
159 detection location. Time at liberty and size at capture were used to estimate age and maturity
160 stage at time of final detection and/or recapture based on previously published estimates
161 (Baremore & Passerotti, 2013; Carlson et al., 2006; Freitas, Rosa, Gruber, & Wetherbee, 2006).
162 For the blacktip shark, median age at maturity was assumed to be 6.7 and 5.0 years for females
163 and males off the SE-US and 5.7 and 4.5 years for females and males in the GOM, respectively
164 (Baremore & Passerotti, 2013; Carlson et al., 2006). Total days present and number of visits (a
165 single visit is defined as a period of residency without a day absent) to areas outside the nursery
166 and specific MPAs. When data were sufficiently available, residency indices for areas beyond
167 the nursery area were calculated by taking the number of days present by the number of days
168 monitored (Knip, Heupel, & Simpfendorfer, 2012).

169 **Results**

170 *Tagging*

171 Between June 2004 and May 2012, 198 blacktip sharks ranging from 43-92 cm FL (mean
172 = 52 ± 6 cm) were tagged and released on St. Thomas and St. John (Table 1); 108 (55%) were
173 captured in Fish Bay and 77 (39%) in Coral Bay. All were fitted with conventional tags and 88
174 were also fitted with acoustic tags. In total, 195 (98%) were less than 75 cm FL (n = 95 females;
175 n = 100 males), representing young of the year (YOY) individuals (Carlson et al., 2006). A total
176 of three blacktips (1.5%) were captured in a MPA including one within the National Park
177 (Mary's Creek) and two in the St Thomas East End Reserve at Cas Cay (Table1; Figure 1).
178 These represent the only blacktip sharks that were captured within a MPA boundary.

179 During the same period, 130 lemon sharks ranging from 48-139 cm FL (mean = 62 ± 14
180 cm) were tagged including 68 (52%) in Fish Bay and 42 (32%) in Coral Bay (Table 1); 45 were
181 tagged with acoustic transmitters. In total, 115 (88%; n = 59 female, n = 56 male) were YOY
182 sharks less than 73 cm FL (Freitas et al., 2006). The remaining 12% (15 sharks) represent sharks
183 between 1-5 years of age, thereby providing evidence of a small number of individuals using
184 these areas for multiple years after birth. A total of 16 lemon sharks (13%) were captured in a
185 MPA including six within the National Park (Mary's Creek) and 10 in the St Thomas East End
186 Reserve at Cas Cay and Lagoon Point (Table1; Figure 1). These represent the only lemon sharks
187 that were captured within a MPA boundary.

188 *Recaptures*

189 A total of five (2.5%) blacktip sharks and no lemon sharks were recaptured outside of the
190 embayment in which they were tagged. These sharks, which were all tagged in Fish Bay, were
191 recaptured 2.5-2207.0 km away after 177- 2471 days at liberty (Table 2; Figure 2, 3). Two of
192 these sharks were recaptured off the island of St. John: B1 in Enigh Pond (3.5 km) after 177 days
193 and B2's dorsal fin, which was found 213 days post release on the shore of Chocolate Hole about
194 2.5 km from the tagging location (Table 2, Figure 2). Both of these recaptured sharks traveled
195 west and away from the Virgin Islands National Park or Virgin Islands National Coral
196 Monument (Table 3, Figure 2).

197 Three blacktip sharks were recaptured outside the territorial waters of the USVI (Table 2,
198 Figure 3). One of these sharks (B3) was acoustically tagged in Fish Bay on 7/11/2009 and

199 subsequently recaptured and released in Fish Bay on 6/9/2010. This shark was tracked in Fish
200 Bay until 5/27/2012 (1051 days; 2.9 yrs post release). B3 was then detected on 15 different days
201 along the south coast of St John until its last detection in Coral Bay on 1/24/2013 (1293 days; 3.5
202 yrs post release possibly due to battery life; Figure 3). B3 was ultimately recaptured 21 km from
203 Fish Bay by a fisher in the British Virgin Islands after 1635 days (4.5 yrs) at liberty (Figure 3).
204 The fisher processed the shark, discovered the acoustic transmitter, and reported the recapture to
205 the British Virgin Islands Department of Natural Resources. The remaining two recaptured
206 blacktip sharks were caught off the SE-US and reported to the Cooperative Shark Tagging
207 Program (N. E. Kohler & Turner, 2019). B4 was a male recaptured off Cape Canaveral Florida,
208 1970 km from the tagging location, by a commercial gillnetter after 745 days (2 yrs) at liberty
209 (Table 2; Figure 3). B5 was a male caught 2207 km from the tagging location on Jekyll Island,
210 Georgia by a surf fisher after 2471 days at liberty (Table 2; Figure 3). Based on published growth
211 curves (Baremore & Passerotti, 2013; Carlson et al., 2006) and time at liberty, B5 was the only
212 recaptured blacktip shark that was mature at the time of capture after 6.8 years at liberty.

213 At a minimum, the two blacktip sharks (B4, B5) recaptured off the SE-US must have
214 moved from the US territorial waters of the USVI and Puerto Rico through the jurisdictions of
215 the Dominican Republic, the Turks and Caicos, The Bahamas, and the US, and ultimately landed
216 in the state waters of Florida and Georgia (Figure 3).

217 *Acoustic Detections*

218 A total of 88 blacktip sharks was acoustically tracked for a total of 1,868,901 detections.
219 Of the 88 blacktip sharks acoustically tagged, 87 were a maximum of 1 year old based on growth
220 estimates (Baremore & Passerotti, 2013; Carlson et al., 2006). Twenty-eight blacktip sharks
221 (32%) were acoustically detected outside the boundaries of the embayment in which they were
222 tagged (Table 1, Figure 2). These sharks were tracked from 1-1881 km from Fish Bay or Coral
223 Bay and were at liberty for 1-960 days (Figure 2); all were still immature at the time of last
224 detection. Of these fish, all but one moved into MPAs for 1-10 days (mean = 4.2 ± 3.0 days): 19
225 were detected in the Virgin Islands National Park, 14 detected in the National Monument, and
226 one within the Hind Bank Marine Conservation District (MCD) south of St Thomas (Figure 2,
227 Table 3). Three males and no females were detected beyond the waters of the USVI: two on
228 receivers around Culebra and one on a receiver off the coast of Port St Lucie Florida (Figures

229 2,3). Four blacktip sharks tagged in Fish Bay were also detected in Coral Bay, but only for a
230 limited time (days/hours); no blacktip sharks tagged in Coral Bay moved into Fish Bay (Figure
231 1). Considering both acoustic and manual recaptured fish, male blacktip sharks were tracked
232 between 0.7 – 2207 km (n=13; mean = 472 ± 884 km), whereas female blacktip sharks were
233 tracked between 0.8 -21 km (n= 21; mean = 8 ± 13 km).

234 A total of 45 lemon sharks was acoustically tracked for a total of 278,507 detections. Of
235 the 45 lemon sharks acoustically tagged, 42 were a maximum of 1 year old based on growth
236 estimates (Freitas, Rosa, Gruber, & Wetherbee, 2006). Sixteen lemon sharks (24%) were
237 detected 1-28 km from Fish Bay or Coral Bay and were at liberty for 1- 624 days (Table 2;
238 Figure 2); no sex-specific patterns were identified. Eleven of the twelve lemon sharks were
239 detected within the Virgin Islands National Park (Table 2, Figure 2) for time periods ranging
240 from 1-17 days (mean = 3.2 ± 4.5 days). The remaining shark (L12) was the largest lemon shark
241 acoustically tagged in this study at 103 cm FL. L12, a male tagged in Fish Bay on 5/10/2011,
242 was monitored for 624 days and, during this time, was detected in Fish Bay 25 times for a total
243 of 39 days. This equals a residency index in Fish Bay of 0.07 8 with an average stay of 1.5 ± 1.1
244 days (mean \pm sd). When outside Fish Bay, L12 was also detected for 67 days in National Park
245 waters, which results in a residency index of 0.10. L12 remained in National Park waters
246 between 1-8 days (1.7 ± 1.7 days) each visit. Two lemon sharks exhibited connectivity between
247 nursery areas as one shark tagged in Coral Bay was detected in Fish Bay and one shark tagged in
248 Fish Bay moved into Coral Bay, but neither remained for more than one day.

249 **Discussion**

250 This study is the first to examine the movements of YOY and juvenile lemon and
251 blacktip sharks when they leave nursery areas in the USVI. These efforts identified broad-scale
252 regional movements within the territory, into adjacent MPAs, and into the waters of adjacent
253 nations, as well as connectivity with populations off the SE-US. In this study, three (1.5%) of the
254 tagged blacktip sharks moved over minimum (straight-line) distances up to 2207 km and passed
255 through the jurisdictional waters of at least six countries. Of the 198 blacktip and 130 lemon
256 sharks tagged, only blacktip sharks were detected beyond the waters of the USVI.

257 As suggested by Kohler and Turner (2019), this study combines conventional
258 tag/recapture data with acoustic tagging data to better understand the broader movements of two

259 tropical shark species over a period of ten years. The use of both datasets strengthens our
260 findings by not only increasing our sample size, but also through the incorporation of fisheries-
261 independent (acoustic) data. It is impractical to place acoustic receivers throughout the entire
262 range of any highly migratory species. Therefore, the coupling of multiple datasets is essential,
263 and should be a priority of fisheries agencies and researchers (Hazen et al., 2012; N. E. Kohler &
264 Turner, 2019; Pittman & Legare, 2010). Moreover, while the number of blacktip sharks
265 acoustically detected outside the nursery areas speaks to the general movement of sharks
266 throughout the USVI, the recapture of a shark in the BVI provided additional data from areas
267 that lack acoustic receivers. The creation of data sharing networks between researchers helps to
268 fill in spatial gaps (Crossin et al., 2017; Donaldson et al., 2014; Pittman & Legare, 2010). Dense
269 receiver arrays in the USVI provide detail within the territory, with the high priority of
270 understanding movements between spawning aggregations, nursery habitats, and MPAs. The
271 exchange of data between the Caribbean Acoustic Telemetry Network (Pittman & Legare, 2010)
272 and others along the SE-US have shown to be a valuable partnership in this study.

273 After birth, neonatal blacktip and lemon sharks spend most of their time (average 73-
274 95%) within the confines of the nursery areas during the first months to a year (Legare et al.,
275 2015). It is believed these nurseries are refuges providing protection from larger predators and
276 ample food resources that enhance survival (B. M. DeAngelis et al., 2008; A. C. Henderson,
277 Jourdan, & Bell, 2016; Michelle R. Heupel, Carlson, & Simpfendorfer, 2007; Legare et al.,
278 2015). Neither species studied here exhibited similar residency or site fidelity to any monitored
279 area once outside the nursery areas (Fish Bay or Coral Bay). As previously reported, the majority
280 of sharks (blacktip and lemon) vacated the nursery areas within the first year of life, dispersing
281 throughout late summer to early winter (Legare et al., 2015). The movements described in this
282 study were indicative of transitory behavior over a broader scale (M.R. Heupel & Hueter, 2001)
283 and not associated with establishing residency in adjacent areas or gradually expanding their
284 home range beyond the bounds of their initially established nursery areas (Legare et al., 2015).
285 Even fish that transited from one nursery area to another (i.e., Fish Bay to Coral Bay or vice
286 versa) did not remain more than one consecutive day.

287 *Blacktip Movements*

288 In this study, we examined the movement of blacktip sharks between the USVI and the
289 SE-US, which is a minimum distance of 1800-2200 km. Of the 10,293 blacktip sharks tagged in
290 the WNA by the Cooperative Shark Tagging Program from 1962-2013, these were the only two
291 sharks to demonstrate connectivity between these two regions (N. E. Kohler & Turner, 2019),
292 and this study identified a third using acoustic telemetry. Despite the significantly lower effort
293 associated with our conventional tagging, our recapture rate of 2.5% was very similar to that
294 reported by Kohler and Turner (2.6%; 2019). These broad-scale movements were not seemingly
295 associated with size/age/maturity (Figure 2), as these blacktip sharks ranged from 1.0-6.7 years
296 and included juveniles and one adult.

297 Blacktip shark movements along the SE-US and GOM have been characterized as
298 seasonal migrations driven by water temperature (Heithaus et al., 2007; Michelle R. Heupel,
299 Simpfendorfer, Olsen, & Moland, 2012). Nursery areas in these regions are known to be vacated
300 by winter, but conventional tag recaptures and the return of up to 50% of acoustically tagged fish
301 during the first two years suggests some degree of philopatry (Hueter, Heupel, Heist, & Keeney,
302 2004). Similarly, previous work has shown that most, but not all, blacktip sharks emigrate from
303 nurseries in the USVI by winter, however none of them return to re-establish residency in these
304 bays (Legare et al., 2015). The longest continuously tracked blacktip in the current study was a
305 female that remained in Fish Bay for 2.9 years. That individual was captured by a fisher in the
306 BVI 1.6 years after departing the nursery. Twice the number of females were detected in USVI
307 waters than males, and none were detected or captured farther than 57 km away. This is
308 consistent with movement patterns suggested by genetic analyses (mtDNA data) conducted on
309 YOY and juveniles sampled off the SE-US and GOM, which indicates that females have higher
310 site fidelity to their natal region, while males make larger migrations among regions (Hueter et
311 al., 2004). Indeed, in this study, all three long distance movements (1881-2207 km) to the SE-
312 US were males and females were not tracked beyond the 21 km.

313 *Lemon Shark Movements*

314 In this study, we found that post-nursery movement patterns of lemon sharks varied from
315 other studies conducted throughout the region (Casselberry et al., 2020; A. Henderson,
316 Katherine, & Calosso, 2010; Newman, Handy, & Gruber, 2011; Reyier et al., 2014). While
317 lemon sharks in these other areas establish secondary nurseries and long-term residency adjacent

318 to primary nursery areas (Chapman et al., 2009; Kessel et al., 2016), we found that the areas
319 immediately adjacent to the nursery areas of Fish Bay and Coral Bay are not heavily utilized by
320 lemon sharks. Mature lemon sharks in the USVI exhibit long-term (110-1339 days) residency on
321 reefs south of St. Thomas (Pickard et al., 2016) and immature lemon sharks have been shown to
322 establish long-term residency (350-1427 days) around St. Croix (Casselberry et al., 2020;
323 Pickard et al., 2016). The lemon sharks in the nursery areas of Fish Bay and Coral Bay have a
324 seasonal residency pattern of highest abundance in the summer and the majority are absent
325 during the winter (Legare et al., 2015). No lemon sharks were recaptured outside of their
326 respective tagging bay and those that were acoustically detected were in the area outside of the
327 habitat for days, not months. The exception in this study, L12 (the largest acoustically tagged
328 lemon shark), exhibited similar residency to that found by Casselberry et al. (2019) and Pickard
329 et al. (2016), suggesting long-term residency in the region. In comparison, the residency L12
330 exhibited (Residency index 0.06) within the nursery area it was captured in is much lower than
331 the YOY sharks tagged in Coral Bay or Fish Bay with an average residency of 0.73 ± 0.33 and
332 0.86 ± 0.20 (average \pm sd) respectively reported in Legare et al. (2015). This indicates that L12 is
333 using a bigger area than was monitored. Given the behavior of L12 and the limited movements
334 of our lemon sharks (maximum distance of 28 km), these findings support the genetic analyses
335 conducted by (Ashe et al., 2015), who found restricted female-mediated gene flow within the
336 Northern Hemisphere. When considering the limited movement described here, the strong site
337 fidelity identified in adult (Pickard et al., 2016), immature (Casselberry et al., 2020) and YOY
338 lemon sharks (Legare et al., 2015), and limited genetic flow (Ashe et al., 2015), lemon sharks
339 would benefit greatly from local protection. To better put this into perspective, population size
340 and estimates of mortality are needed to understand post-nursery area movement.

341 The significance of these results are further highlighted when mortality is considered.
342 Although mortality has not been estimated for blacktip or lemon sharks in the Virgin Islands,
343 high mortality has been estimated in nursery areas throughout their range (Gruber et al., 2001;
344 M. R. Heupel & Simpfendorfer, 2002). We did not attempt to measure mortality in this study,
345 but some inferences can be made because at least 32% of the blacktip and 24% of lemon sharks
346 survived long enough to be detected outside of the nursery area in which they were tagged. This
347 infers maximum mortality rates of 68% and 76%, respectively, in nursery areas. The mortality
348 rate of YOY lemon sharks ranges from 35-65% in The Bahamas (Gruber et al., 2001) and from

61-92% for blacktip sharks within nurseries along the west coast of Florida (Gruber et al., 2001; M. R. Heupel & Simpfendorfer, 2002). If blacktip mortality in USVI nurseries is consistent with Florida nurseries, the three blacktip sharks that traveled >1800 m represent 4-15% of surviving sharks. Nursery areas are expected to provide protection from predation suggesting that once they vacate, sharks are exposed to greater predation pressures. During capture, several sharks had predatory wounds suggesting that even while in the nursery area, predators are a threat. Predation could explain why none, but the largest lemon shark (L12), established long-term monitoring in any adjacent waters.

Trans-jurisdictional Movement and Management

As these fish move within and away from the boundaries of the USVI, they are subject to recreational and commercial fishing pressure. As they travel throughout the greater Caribbean, the sharks are only afforded protection when crossing into territorial waters of the British Virgin Islands and The Bahamas (Table 3). Although the Turks and Caicos Islands prohibits commercial export of shark products, both the TCI and the Dominican Republic have no restrictions on take (Table 3). In federal and state waters of the SE-US, GOM, and US Caribbean, blacktip and lemon shark landings are controlled by a minimum size, bag limit, and commercial quotas; in addition, the state of Florida prohibits the landing of lemon sharks, but has no minimum size for blacktips (Table 3). Although regulations in the USVI are consistent with those in US federal waters, enforcement in the region remains a problem (Legare et al., 2015).

The MPAs around St. Thomas and St. John were established to protect essential habitat, such as coral reefs or mangroves, and commercially important species such as Nassau grouper (*Epinephelus striatus*) or Red Hind (*Epinephelus guttatus*; Pittman, Bauer, et al., 2014); none were established to protect sharks and only one of the five prevents harvest. For an MPA to be effective, it must encompass the movements of the species at risk (Pittman, Monaco, et al., 2014). The MPAs transited in this study offered little protection to the sharks that used Fish Bay and Coral Bay as nursery areas. The MCD (Figure 2) is ~ 12 x 4.5 km and ~ 45 km², which is smaller than the movements described herein (Table 2) and for most (4 of 6) of lemon sharks tracked in Pickard et al. (2016) and Casselberry et al. (2020). To better protect sharks in the USVI, larger areas would be required to prohibit shark fishing. A recent analysis conducted by Dwyer et al. (2020) estimated the minimum size of 50 km wide for a MPA designed to protect

379 mobile sharks, which is approximately the longitudinal distance from the BVI to Puerto Rico. To
380 protect sharks from fishing pressure in the Virgin Islands, the entire territory would need to be
381 considered.

382 Three of the five blacktip sharks recaptured in this study were killed and only one was
383 mature at the time, based upon existing age and growth estimates (Carlson et al., 2006).
384 Although both blacktip and lemon sharks are monitored by fisheries-independent and dependent
385 surveys in state and federal waters along the SE-US and in the GOM, no long-term monitoring
386 exists for the territorial waters of the US Caribbean. As nursery areas of the USVI are producing
387 blacktip sharks that migrate to the SE-US, population hyperstability could be established as
388 catches remain stable along the SE-US and the population declines in the USVI. Unfortunately,
389 such a situation would not be detected unless monitoring efforts are established in the US
390 Caribbean and additional genetic analyses are performed. The results of this study further
391 emphasize the need for broad regional monitoring of shark populations to fully understand the
392 health and status of the blacktip and lemon shark populations throughout their range.

393 Acknowledgments

394 This research was supported by funding from grants from: NOAA Coral Reef
395 Conservation Program (award NAO4NMF46330 343), University of Puerto Rico Sea Grant PD-
396 259 and (Project No. R-31-1-10), New England Biolabs Foundation, NOAA Center for
397 Sponsored Coastal Ocean Research, University of Puerto Rico (award NA17OP2919), Project
398 AWARE, NMFS Highly Migratory Species Management Division, Silver Spring, MD, Peter and
399 Carol Bouyoucos, and Federal Aid in Sportfish Restoration. We thank the following: Sharon
400 Coldren and the Coral Bay Community Council for support and logistics; Phil Strenger (R/V
401 GEV) for vessel time and local expertise; Maho Bay Camps, Inc. for housing; Randy Brown,
402 Randy Fish, and Jamie Irving of the Virgin Islands Environmental Research Station for the use
403 of their equipment and field logistics; Dr. Richard Nemeth (University of the Virgin Islands), Dr.
404 Andy Danylchuk (University of Massachusetts, Amherst), Dr. Simon Pittman (NOAA
405 Biogeography Branch), and Dr. Joy Young from the FACT array for data sharing. This is
406 Massachusetts Division of Marine Fisheries Contribution Number YYY.

407 At the time this field work (animal handling) was performed, the University of the Virgin
408 Islands did not have an Animal Welfare Committee and an institutional permit was not required.

409 Rather, all animal handling procedures were conducted using guidelines established by the
410 American Fisheries Society and American Society of Ichthyology and Herpetology, and all
411 efforts were made to minimize animal stress and suffering. Surgical procedures were approved
412 by the University of the Virgin Islands Center for Marine and Environmental Science policies
413 and guidelines. Permission to capture fish and conduct experiments including tagging and
414 tracking inside waters managed by the Department of Planning and natural Resources fell under
415 PERMIT NO. STT 025-11.

416 References

417 Ashe, J. L., Feldheim, K. A., Fields, A. T., Reyier, E. A., Brooks, E. J., O'Connell, M. T., . . .
418 Chapman, D. D. (2015). Local population structure and context-dependent isolation by
419 distance in a large coastal shark. *Marine Ecology Progress Series*, 520, 203-216.
420 doi:10.3354/meps11069

421 Baremore, I. E., & Passerotti, M. S. (2013). Reproduction of the blacktip shark in the Gulf of
422 Mexico. *Marine and Coastal Fisheries*, 5(1), 127-138.

423 Brownscombe, J. W., Cooke, S. J., & Danylchuk, A. J. (2017). Spatiotemporal drivers of energy
424 expenditure in a coastal marine fish. *Oecologia*, 183(3), 689-699. doi:10.1007/s00442-
425 016-3800-5

426 Caribbean Fishery Management Council (CFMC) (2020). Title 50 Chapter VI Part 622.
427 Retrieved from <https://www.caribbeanfmc.com/regulations>

428 Carlson, J., Sulikowski, J., & Baremore, I. (2006). Do differences in life history exist for blacktip
429 sharks, (*Carcharhinus limbatus*) from the United States South Atlantic Bight and Eastern
430 Gulf of Mexico? *Environmental Biology of Fishes*, 77(3), 279-292. doi:10.1007/s10641-
431 006-9129-x

432 Casselberry, G. A., Danylchuk, A. J., Finn, J. T., DeAngelis, B. M., Jordaan, A., Pollock, C. G., . . .
433 Skomal, G. B. (2020). Network analysis reveals multispecies spatial associations in the
434 shark community of a Caribbean marine protected area. *Marine Ecology Progress Series*,
435 633, 105-126.

436 Castro, J. I. (1996). Biology of the Blacktip Shark, *Carcharhinus Limbatus*, off the Southeastern
437 United States. *Bulletin of Marine Science*, 59(3), 508-522.

438 Chapman, D.D., Babcock, E.A., Gruber, S.H., Dibattista, J.D., Franks, B.R., Kessel, S.A., ...
439 Feldheim, K.A. (2009). Long-term natal site-fidelity by immature lemon sharks
440 (*Negaprion brevirostris*) at a subtropical island. *Molecular Ecology*, 18(16), 3500-3507.
441 Costa, B. M., Kendall, M. S., Edwards, K., Kagesten, G., & Battista, T. A. (2013). Benthic
442 Habitats of Fish Bay, Coral Bay and the St. Thomas East End Reserve.
443 Crossin, G. T., Heupel, M. R., Holbrook, C. M., Hussey, N. E., Lowerre-Barbieri, S. K., Nguyen,
444 V. M., . . . Cooke, S. J. (2017). Acoustic telemetry and fisheries management. *Ecological
445 Applications*, 27(4), 1031-1049. doi:doi:10.1002/eap.1533
446 DeAngelis, B. (2006). *The distribution of elasmobranchs in St. Thomas and St. John, United
447 States Virgin Islands with an emphasis on shark nursery areas*. (Masters Thesis),
448 University of Rhode Island, Kingston Rhode Island,
449 DeAngelis, B. M., McCandless, C. T., Kohler, N. E., Recksiek, C. W., & Skomal, G. B. (2008).
450 First characterization of shark nursery habitat in the United States Virgin Islands:
451 evidence of habitat partitioning by two shark species. *Marine Ecology Progress Series*,
452 358, 257-271. doi:10.3354/meps07308
453 Department of Environmetnal and Coastal Resources (DCR) (2019). Cruising guide to the Turks
454 and Cacos Island. Retrieved from <https://www.gov.tc/decr/regulation-enforcement/forms-permits-fees>
455
456 Doerr, J. C., & Hill, R. L. (2013). Home Range, Movement Rates, and Habitat Use of Queen
457 Conch, *Strombus gigas*, in St. John, U.S. Virgin Islands. *Caribbean Journal of Science*,
458 47(2-3), 251-259, 259.
459 Donaldson, M. R., Hinch, S. G., Suski, C. D., Fisk, A. T., Heupel, M. R., & Cooke, S. J. (2014).
460 Making connections in aquatic ecosystems with acoustic telemetry monitoring. *Frontiers
461 in Ecology and the Environment*, 12(10), 565-573. doi:doi:10.1890/130283
462 Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., . . .
463 Francis, M. P. (2014). Extinction risk and conservation of the world's sharks and rays.
464 *elife*, 3, e00590.
465 Dwyer, R. G., Krueck, N. C., Udyawer, V., Heupel, M. R., Chapman, D., Pratt, H. L., . . .
466 Simpfendorfer, C. A. (2020). Individual and Population Benefits of Marine Reserves for
467 Reef Sharks. *Current Biology*, 30(3), 480-489.e485.
468 doi:<https://doi.org/10.1016/j.cub.2019.12.005>

469 Erisman, B. E., Allen, L. G., Claisse, J. T., Pondella, D. J., Miller, E. F., & Murray, J. H. (2011).
470 The illusion of plenty: hyperstability masks collapses in two recreational fisheries that
471 target fish spawning aggregations. *Canadian Journal of Fisheries and Aquatic Sciences*,
472 68(10), 1705-1716. doi:10.1139/f2011-090

473 Feldheim, K. A., Gruber, S. H., & Ashley, M. V. (2001). Population genetic structure of the
474 lemon shark (*Negaprion brevirostris*) in the western Atlantic: DNA microsatellite
475 variation. *Molecular Ecology*, 10(2), 295-303. doi:10.1046/j.1365-294X.2001.01182.x

476 Freitas, R., Rosa, R., Gruber, S., & Wetherbee, B. (2006). Early growth and juvenile population
477 structure of lemon sharks *Negaprion brevirostris* in the Atol das Rocas Biological
478 Reserve, off north-east Brazil. *Journal of Fish Biology*, 68(5), 1319-1332.

479 Florida Fish and Wildlife Conservation (FWC). (2018). *Florida Saltwater Recreational Fishing*
480 Regulations. Retrieved from Florida Fish and Wildlife Conservation Commission,
481 Tallahassee Florida:

482 Georgia Department of Natural Resources (GADNR) (2019). <https://coastalga.dnr.org/>

483 Gledhill, K. S., Kessel, S. T., Guttridge, T. L., Hansell, A. C., Bester-van der Merwe, A. E.,
484 Feldheim, K. A., . . . Chapman, D. D. (2015). Genetic structure, population demography
485 and seasonal occurrence of blacktip shark *Carcharhinus limbatus* in Bimini, the
486 Bahamas. *Journal of Fish Biology*, 87(6), 1371-1388. doi:doi:10.1111/jfb.12821

487 Gruber, S. H., De Marignac, J. R. C., & Hoenig, J. M. (2001). Survival of Juvenile Lemon
488 Sharks at Bimini, Bahamas, Estimated by Mark–Depletion Experiments. *Trans Am Fish
489 Soc*, 130(3), 376-384. doi:10.1577/1548-8659(2001)130<0376:sojlsa>2.0.co;2

490 Hazen, E. L., Maxwell, S. M., Bailey, H., Bograd, S. J., Hamann, M., Gaspar, P., . . . Shillinger,
491 G. L. (2012). Ontogeny in marine tagging and tracking science: technologies and data
492 gaps. *Marine Ecology Progress Series*, 457, 221-240.

493 Heithaus, M. R., Burkholder, D., Hueter, R. E., Heithaus, L. I., Pratt, J. H. L., & Carrier, J. C.
494 (2007). Spatial and temporal variation in shark communities of the lower Florida Keys
495 and evidence for historical population declines. *Canadian Journal of Fisheries and
496 Aquatic Sciences*, 64(10), 1302-1313. doi:10.1139/f07-098

497 Henderson, A., Katherine, M., & Calosso, M. (2010). Preliminary assessment of a possible
498 lemon shark nursery in the Turks & Caicos Islands, British West Indies. *Caribbean J Sci*,
499 46(1), 29-38.

500 Henderson, A. C., Jourdan, A., & Bell, K. (2016). Assessing the incidental value of a marine
501 reserve to a lemon shark *Negaprion brevirostris* nursery. *Aquatic Conservation: Marine*
502 *and Freshwater Ecosystems*, 26(3), 482-491. doi:10.1002/aqc.2627

503 Herrera, A., Betancourt, L., Silva, M., Lamelas, P., & Melo, A. (2011). Coastal fisheries of the
504 Dominican Republic. *Coastal fisheries of Latin America and the Caribbean*, 44, 175-217.

505 Heupel, M., & Hueter, R. (2002). Importance of prey density in relation to the movement patters
506 of juvenile blacktip sharks (*Carcharhinus limbatus*) within a coastal nursery area. *Mar*
507 *Freshw Res*, 53, 543-550. doi:10.1071/MF01132

508 Heupel, M., & Simpfendorfer, C. (2005). Quantitative analysis of aggregation behavior in
509 juvenile blacktip sharks. *Mar Biol*, 147(5), 1239-1249. doi:10.1007/s00227-005-0004-7

510 Heupel, M. R., Carlson, J. K., & Simpfendorfer, C. A. (2007). Shark nursery areas: concepts,
511 definition, characterization and assumptions. *Mar Ecol Prog Ser*, 337, 287-297.
512 doi:10.3354/meps337287

513 Heupel, M. R., & Hueter, R. E. (2001). *Use of an automated acoustic telemetry system to*
514 *passively track juvenile blacktip shark movements*. Netherlands: Kluwer Academic
515 Publisher.

516 Heupel, M. R., & Simpfendorfer, C. A. (2002). Estimation of mortality of juvenile blacktip
517 sharks, *Carcharhinus limbatus*, within a nursery area using telemetry data. *Canadian*
518 *Journal of Fisheries and Aquatic Sciences*, 59(4), 624-632. doi:10.1139/f02-036

519 Heupel, M. R., Simpfendorfer, C. A., Olsen, E. M., & Moland, E. (2012). Consistent movement
520 traits indicative of innate behavior in neonate sharks. *Journal of Experimental Marine*
521 *Biology and Ecology*, 432-433, 131-137.
522 doi:<http://dx.doi.org/10.1016/j.jembe.2012.07.013>

523 Hueter, R. E., Heupel, M. R., Heist, E. J., & Keeney, D. B. (2004). Evidence of Philopatry in
524 Sharks and Implications for the Management of Shark Fisheries. *Journal of Northwest*
525 *Atlantic Fishery Science*, 35, 239-247. doi:10.2960/J.v35.m493

526 Kajiura, S. M., & Tellman, S. L. (2016). Quantification of Massive Seasonal Aggregations of
527 Blacktip Sharks (*Carcharhinus limbatus*) in Southeast Florida. *PLoS One*, 11(3),
528 e0150911. doi:10.1371/journal.pone.0150911

529 Kendall, M. S., Monaco, M. E., & Winship, A. (2016). Baffling telemetry detections can be
530 useful: an acoustic receiver design to monitor organisms along reserve boundaries and
531 ecotones. *Animal Biotelemetry*, 4(1). doi:10.1186/s40317-015-0095-y

532 Kessel, S. T., Hansell, A. C., Gruber, S. H., Guttridge, T. L., Hussey, N. E., & Perkins, R. G.
533 (2016). Three decades of longlining in Bimini, Bahamas, reveals long-term trends in
534 lemon shark *Negaprion brevirostris* (Carcharhinidae) catch per unit effort. *Journal of*
535 *Fish Biology*, 88(6), 2144-2156. doi:10.1111/jfb.12987

536 Knip, D. M., Heupel, M. R., & Simpfendorfer, C. A. (2012). Habitat use and spatial segregation
537 of adult spottail sharks *Carcharhinus sorrah* in tropical nearshore waters. *Journal of Fish*
538 *Biology*, 80(4), 767-784. doi:10.1111/j.1095-8649.2012.03223.x

539 Kohler, N. E., & Turner, P. A. (2001). Shark Tagging: A Review Of Conventional Methods and
540 Studies. *Envir Biol of fishes*, 60(1), 191-224. doi:10.1023/a:1007679303082

541 Kohler, N. E., & Turner, P. A. (2019). Distributions and Movements of Atlantic Shark Species:
542 A 52-Year Retrospective Atlas of Mark and Recapture Data. *Marine Fisheries Review*,
543 81(1), 1-92. doi:<https://doi.org/10.7755/MFR.81.2.1>

544 Legare, B., Kneebone, J., DeAngelis, B., & Skomal, G. (2015). The spatiotemporal dynamics of
545 habitat use by blacktip (*Carcharhinus limbatus*) and lemon (*Negaprion brevirostris*)
546 sharks in nurseries of St. John, United States Virgin Islands. *Marine Biology*, 162(3),
547 699-716. doi:10.1007/s00227-015-2616-x

548 Legare, B., Skomal, G., & DeAngelis, B. (2018). Diel movements of the blacktip shark
549 (*Carcharhinus limbatus*) in a Caribbean nursery. *Environmental Biology of Fishes*,
550 101(6), 1011-1023. doi:10.1007/s10641-018-0755-x

551 Virgin Islands Fisheries (Protected speceis) Order S.I. No. 28 of 2014, (2014).

552 Musick, J. A., Burgess, G., Cailliet, G., Camhi, M., & Fordham, S. (2000). Management of
553 Sharks and Their Relatives (Elasmobranchii). *FISHERIES*, 25(3), 9-13.

554 Newman, S., Handy, R., & Gruber, S. (2011). Ontogenetic diet shifts and prey selection in
555 nursery bound lemon sharks, *Negaprion brevirostris*, indicate a flexible foraging tactic.
556 *Envir Biol of fishes*, 1-12. doi:10.1007/s10641-011-9828-9

557 NMFS. (2018). *HMS Compliance guide: Recreational Fishing for Atlantic Billfish, Swordfish,*
558 *Sharks and Tunas*. Retrieved from ational Oceanic and Atmospheric Administration,
559 NMFS, Highly Migratory Species Management Division Silver Spring, Maryland

560 Passerotti, M., & Baremore, I. (2012). *Updates to age and growth parameters for blacktip shark,*
561 *Carcharhinus limbatus, in the Gulf of Mexico*. SEDAR-20-WP-18. SEDAR

562 Pickard, A. E., Vaudo, J. J., Wetherbee, B. M., Nemeth, R. S., Blondeau, J. B., Kadison, E. A., &
563 Shivji, M. S. (2016). Comparative Use of a Caribbean Mesophotic Coral Ecosystem and
564 Association with Fish Spawning Aggregations by Three Species of Shark. *PLoS One*,
565 11(5), e0151221. doi:10.1371/journal.pone.0151221

566 Pittman, S. J., Bauer, L. J., Hile, S., Jeffrey, C. F., Davenport, E. D., & Caldow, C. (2014).
567 Marine protected areas of the US Virgin Islands: ecological performance report.

568 Pittman, S. J., & Legare, B. (2010). Preliminary results from the Caribbean Acoustic Tracking
569 Network (CATn): A data sharing partnership for acoustic tracking and movement
570 ecology of marine animals in the Caribbean Sea.

571 Pittman, S. J., Monaco, M. E., Friedlander, A. M., Legare, B., Nemeth, R. S., Kendall, M. S., . . .
572 Caldow, C. (2014). Fish with chips: tracking reef fish movements to evaluate size and
573 connectivity of Caribbean marine protected areas. *PLoS One*, 9(5), e96028.
574 doi:10.1371/journal.pone.0096028

575 Reyier, E. A., Franks, B. R., Chapman, D. D., Scheidt, D. M., Stolen, E. D., & Gruber, S. H.
576 (2014). Regional-Scale Migrations and Habitat Use of Juvenile Lemon Sharks
577 (*Negaprion brevirostris*) in the US South Atlantic. *PLoS One*, 9(2), e88470.
578 doi:10.1371/journal.pone.0088470

579 Techera, E. J., & Klein, N. (2014). *Sharks: conservation, governance and management*:
580 Routledge.

581 United States Virgin Islands Department of Planning and Natural Resources (DNR). (2016).
582 COMMERCIAL & RECREATIONAL FISHER'S INFORMATION BOOKLET. St
583 Thomas, VI.

584 Zitello, A. G., Bauer, L. J., Battista, T. A., Mueller, P. W., Kendall, M. S., & Monaco, M. E.
585 (2009). Shallow-Water Benthic Habitats of St. John, US Virgin Islands.

586

587

588

589

590

591

592

593 Figure legends:

594 Figure 1. The southeastern US and Caribbean region showing national jurisdictional boundaries
595 (grey lines). Inset: the United States Virgin Islands of St. Thomas and St. John with tagging
596 locations for blacktip and/or lemon sharks, numbered as (1) Brewer's Bay, (2) Lindberg Bay, (3)
597 Water Island, (4) Cas Cay, (5) Lagoon Point, (6) Megan's Bay, (7) Water Bay, (8) Grass Cay, (9)
598 Chocolate Hole, (10) Mary's Creek, (11) Fish Bay, and (12) Coral Bay. Marine protected areas
599 are indicated by (A) Hind Bank, (B) Grammanik Bank, (C) Virgin Islands Coral Monument, (D)
600 Virgin Islands National Park, and (E) St Thomas East End Reserve.

601 Figure 2. Acoustic detections of blacktip (X) and lemon sharks (●) tagged in Fish Bay (A) and
602 Coral Bay (B) showing movement along the north and south coasts of St. John to the shelf edge
603 and to the Spanish Virgin Island of Culebra, Puerto Rico to the West. Each symbol represents the
604 final location of an individual shark. Marine Protected Areas are shaded grey.

605 Figure 3. Long distance movements of blacktip sharks that left Fish Bay and were recaptured
606 (red) or acoustically detected (black). Area disputed between United States Federal Waters (US-
607 FED) and the Dominican Republic denoted by (●).

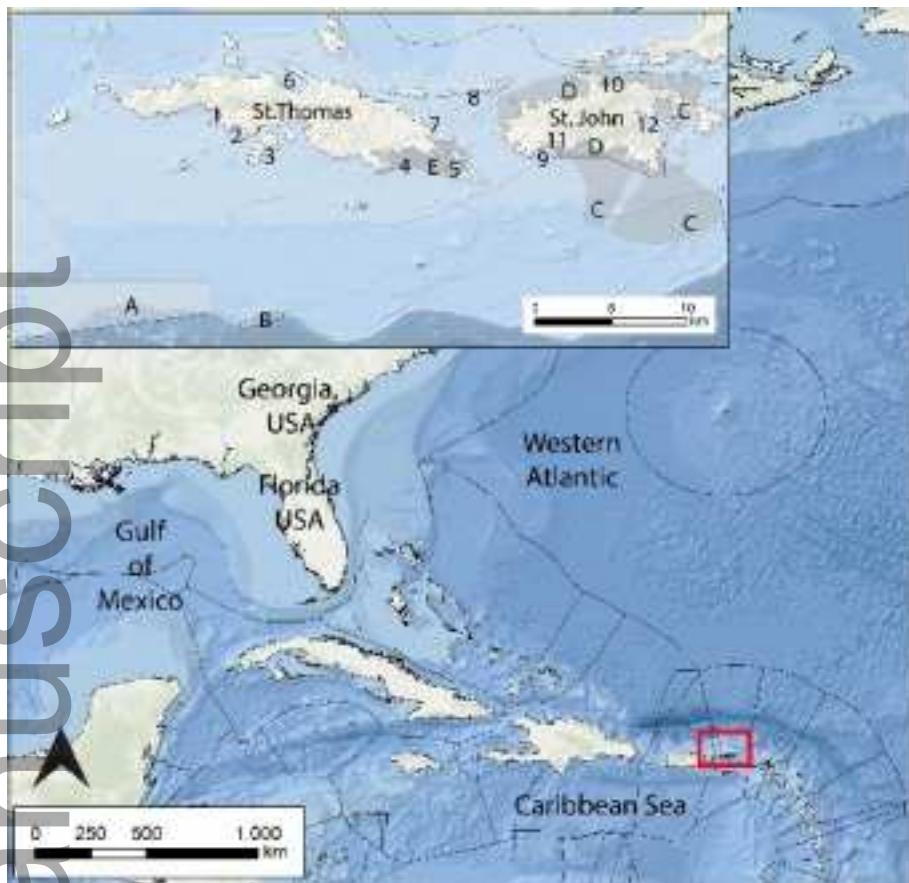
Author's Note

Table 1. Tagging data for blacktip and lemon sharks tagged and released from 2003-2012 around St. Thomas and St. John, USVI; (N) indicates number of acoustically tagged individuals.

	Location	Fork Length (cm)				
		n	Mean	Max	Min	SD
Blacktip	Brewers Bay, St Thomas	1	55	55	55	-
	Cas Cay, St Thomas	2	51	51	51	0.0
	Coral Bay, St John	77 (58)	51	66	44	4.3
	Fish Bay, St John	108 (30)	51	77	43	5.3
	Lindberg Bay, St Thomas	1	57	57	57	-
	Mary's Creek, St John	1	54	54	54	-
	Megans Bay, St Thomas	5	60	68	45	11.0
	Water Bay, St Thomas	2	88	91	84	4.9
	Water Island, St Thomas	1	50	50	50	-
Total		198	52	91	43	14.0
Lemon	Brewers Bay, St Thomas	2	73	91	54	26.2
	Cas Cay, St Thomas	2	72	75	69	4.5
	Coral Bay, St John	42 (23)	58	70	48	5.4
	Fish Bay, St John	68 (22)	61	103	51	10.6
	Grass, St Thomas	2	124	130	119	7.4
	Lagoon Point, St Thomas	8	65	139	52	29.8
	Mary's Creek, St John	6	61	78	51	10.5
Total		130	62	139	48	11.2

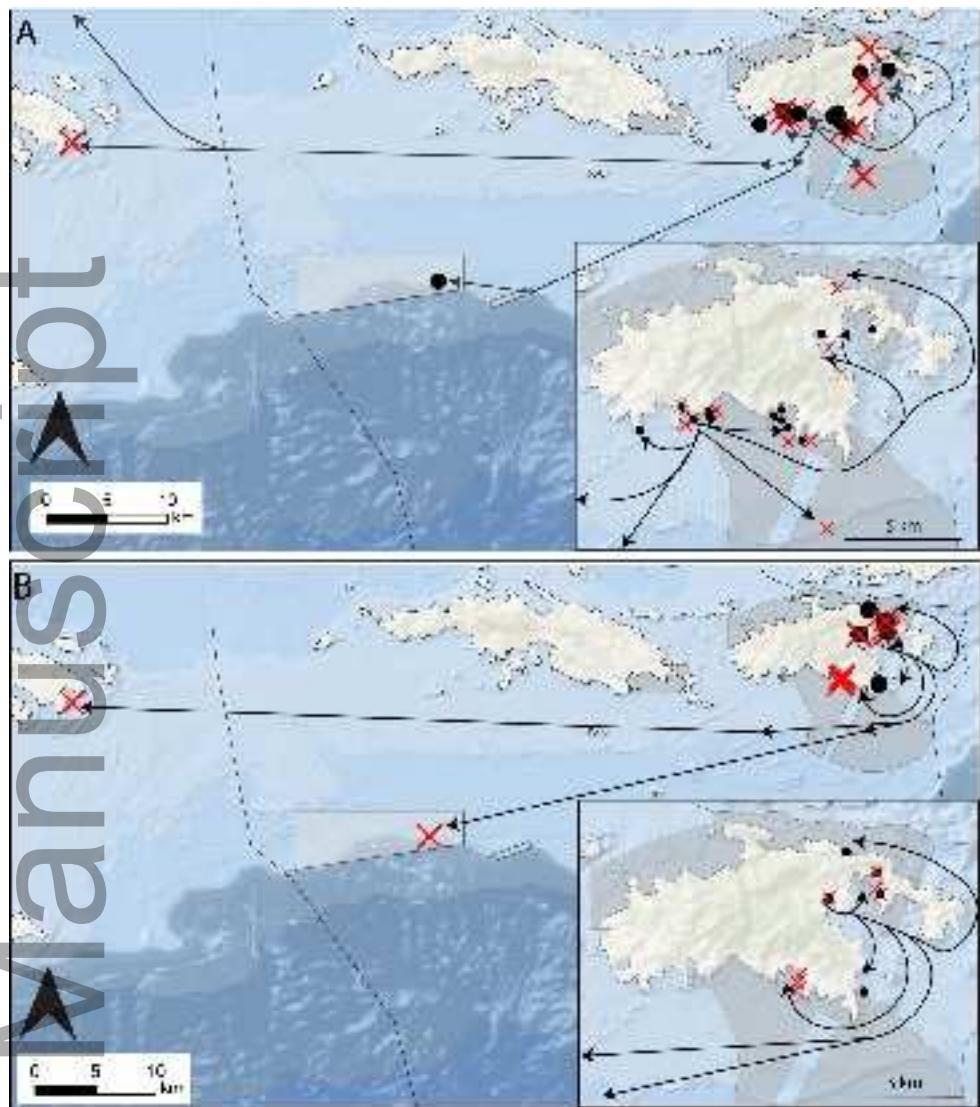
1 Table 2. Summary of straight line distances traveled by blacktip and lemon sharks tagged and
 2 released from 2003-2012 around St. Thomas and St. John, including number of sharks observed
 3 entering a MPA and minimum number of national boundaries crossed; bold indicates mature at
 4 time of capture.

Recaptured Sharks					
	Shark ID	Distance (km)	Days at Liberty	MPA (n)	Boundaries (n)
Blacktip	B1	2	177	0	0
	B2	3	213	0	0
	B3	21	1635	2	1
	B4	1969	745	0	6
	B5	2207	2471	0	7
Acoustically Tracked Sharks					
	Sharks (n)	Distance (km)	Days at Liberty	MPA (n)	Boundaries (n)
Blacktip	2	0-1	6	2	0
	18	1-5	98	18	0
	4	5-10	261	4	0
	1	10-50	41	1	1
	2	50-100	734	1	1
	1	1881	321	0	6
	Sharks (n)	Distance (km)	Days at Liberty	MPA (n)	Boundaries (n)
Lemon	1	0-1	8	0	0
	13	1-5	109	11	0
	2	5-10	15	2	0

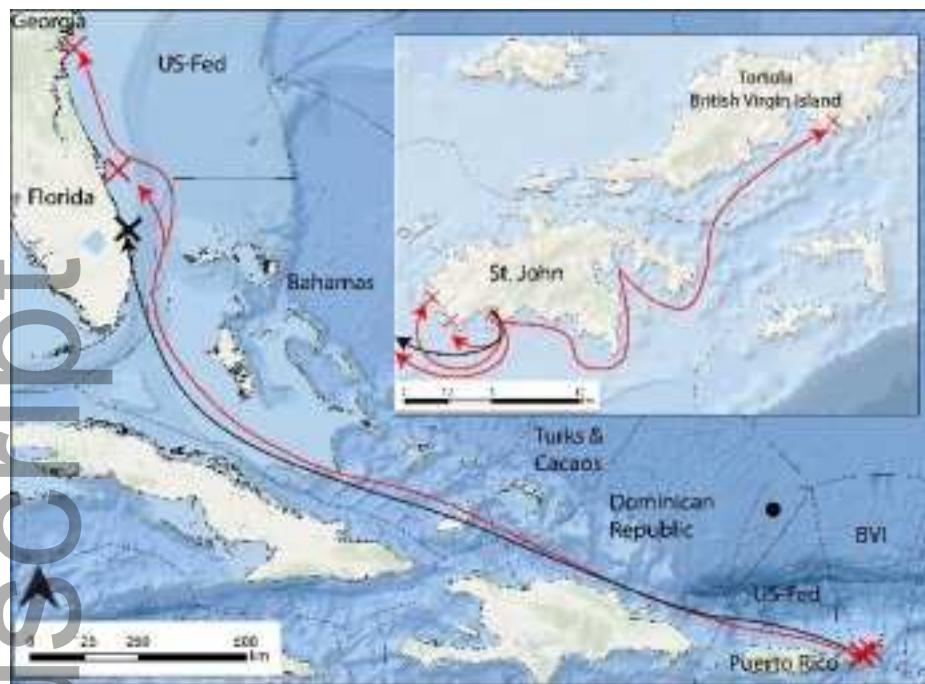


Author Manuscript

1 Table 3. Summary of blacktip and lemon shark fishing regulations in each jurisdiction transited during this study. Gray indicates areas
 2 in which both blacktips and lemon sharks are protected.


Jurisdiction	Regulations	Minimum Size (FL)	Commercial Quota	Recreational Bag Limit	Source
United States Federal waters	Federal permit required	137 cm	YES	1	(NMFS, 2018)
USVI Territory	Federal permit required	137 cm	YES	1	(DNR, 2016)
Virgin Islands National Park	Rod and Reel federal permit required	137 cm	NA	1	(DNR, 2016)
Virgin Islands Coral Monument	Rod and Reel federal permit required	137 cm	NA	1	(DNR, 2016)
St. Thomas East End Reserve	Rod and Reel federal permit and local permit	137 cm	NA	1	(NMFS, 2018)
Grammanik Bank	Seasonal Rod and Reel federal permit required	137 cm	YES	1	(CFMC, 2016)
Hind Bank Conservation District	No fishing of any kind	NA	NA	NA	(CFMC, 2016)
Puerto Rico	Federal permit	137 cm	YES	1	(CFMC, 2016)
British Virgin Islands	Only sustenance shark fishing allowed.	NA	NA	NA	(MNRL, 2014)
Dominican Republic	Permit required	None	No limit	No limit	(Herrera et al. 2011)
Turks and Caicos	Permit required	None	X	No limit	(DCR 2019)
The Bahamas	Shark sanctuary	NA	NA	NA	(Techera & Klein 2014)
Florida, USA	No minimum size for blacktip, lemon prohibited	None	YES	1	(FWC, 2018)
Georgia, USA	Federal permit required	137 cm	YES	1	(GADNR, 2019)

Author Manuscript


maec_12608_f1.jpg

Author Manuscript

maec_12608_f2.jpg

Author Manuscript

maec_12608_f3.jpg