Integrated Age-Structured

 Single-Species Model for 'Ōpakapaka

WPSAR 2023

‘Ōpakapaka's role

40\%

 50\%'Ōpakapaka comprise approximately 40% of the total Deep 7 biomass as estimated by the BFISH survey
'Ōpakapaka comprise approximately 40-50\% of the total Deep 7 commercial catch based on fisher reported catch data

Why develop another model?

"CONTINUE TO PRESENT BOTH THE DEEP 7 COMPLEX AND SINGLE-SPECIES ASSESSMENTS FOR IMPORTANT SPECIES WITH SUFFICIENT INFORMATION (E.G., ‘ŌPAKAPAKA) IN NEXT BENCHMARK ASSESSMENT"
-Panel Summary Report, WPSAR 2021

- Supports the Deep 7 complex JABBA model by
- Explicitly addressing some limiting assumptions of surplus production model
- Improving our understanding of the population dynamics of 'ōpakapaka
- Revealing if differences in input data and assumptions causes differences in trend and scale of outputs

Terms of reference

"GIVEN THE LIMITATIONS ASSOCIATED WITH USING A SURPLUS-PRODUCTION MODEL ON A MULTI-SPECIES COMPLEX, IS THE SUPPLEMENTARY SINGLE SPECIES, AGE-STRUCTURED 'ŌPAKAPAKA MODEL USEFUL IN SUPPORTING THE GENERAL CONCLUSIONS FROM THE SURPLUS-PRODUCTION MODEL (BIOMASS AND MORTALITY TRENDS AND STOCK STATUS)?"

This model is not:
X A stand-alone product
X To inform single-species
management measures

This model is:
\checkmark Valuable tool for enhancing our understanding of a key species
\checkmark A foundation for future research

Modeling framework

- Assumptions of surplus production models:
- No age structure, all individuals are equivalent
- Catch and CPUE are good indicators of population size and dynamics
- Integrated, age-structured Stock Synthesis:
- Can integrate life-history components such as growth and reproduction because many aspects of the population dynamics are related to age-structure (fecundity, survival, etc.)
- Can include other types of data to get better estimates of biomass and fishing mortality
- Length data
- Weight data
- Can account for different selectivities of fleets

Input data for JABBA

Input data for Stock Synthesis

BFISH camera length composition

Video analysis of fish lengths

- 5 cm bins
- Input sample sizes were the number of primary sampling units (PSU) in a year
- Years with $N<45$ were combined
- 2017-2019
- 2020-2021

BFISH fishing length composition

- 5 cm bins
- Input sample sizes were the number of primary sampling units (PSU) in a year
- Years with $N<45$ were combined
- 2017-2018
- 2019-2021
- 2022-2023

Commercial weight composition

- Filtered for trips with 1 fish caught and under 21 lbs.
- Input sample size was number of single 'ōpakapaka trips in a year
- Weight bins were in 1lb increments (converted to kg)

Incorporating uncertainty and data weighting

- Catch - assumed known with no error
- JABBA used lognormal error with CV of 13\% (for noncommercial catch)
- Indices of abundance CVs of:
- 5-10\% for commercial
- 19-37\% for BFISH camera
- 16-28\% for BFISH fishing
- Francis adjustment to FRS CPUE to re-weight (+~11\%)
- JABBA estimated additional observation error
- Size composition
- Dirichlet-multinomial distribution for effective sample size

FISHERIES

Life history parameters

Model	r	K (carrying capacity)	$\mathrm{B}_{\text {MSY }} / \mathrm{K}$	Ψ
JABBA	0.095	9.32 million	0.315	0.747

Model	L_{∞}	K	A_{0}	$\mathrm{~L}_{\mathrm{Amin}}$	$\mathrm{A}_{\max }$	M	Length- weight A	Length- weight B	Lm_{50}	h	σ_{R}
Stock Synthesis	67.5	0.24	-0.3	6	40	0.14	$1.75 \mathrm{E}-05$	2.99	40.7	0.76	0.52

Selectivity

Selectivity

Fleet \rightarrow Commercial \triangleq BFISH Camera \rightarrow Non-Commercial + BFISH Fishing

Model Results and Performance

Biomass estimates

Harvest rate estimates

Stock Status

Model © 'Opakapaka JABBA - 'Opakapaka SS3

Convergence and global minimum

- Small gradient
- Invertible Hessian
- 50 jitter runs showed it reached global minimum

Data fits

Data fits

Size composition fits

Process error and recruitment deviations

R_{0} profile

Retrospective analysis

Conclusions

- SS model similar to JABBA results in terms of trends in biomass and mortality, and stock status
- Highlighted some differences in selectivity of the BFISH gears
- We can be confident that the limitations of surplus production models are not significantly impacting our understanding of the ‘ōpakapaka stock and its status relative to reference points

Questions

(.) NOAA

FISHERIES

Extra slides

Mean length fits

Mean weight size composition fit

Likelihood by fleet: Indices of Abundance

Changes in survey likelihoods by fleet

Likelihood by fleet: Indices of Abundance

Changes in length-composition likelihoods by fleet

