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ABSTRACT

The predictability of the logistic map is investigated for the joint impact of initial-condition (IC) and model uncertainty (bias + random
variability) as well as simulation variability. To this end, Monte Carlo simulations are carried out where IC bias is varied in a wide range
of 10−15–10−3, and, similarly, model bias is introduced in comparable range. It is found that while the predictability limit of the logistic
map can be continuously extended by reducing IC bias, the introduction of the model bias imposes an upper limit to the predictability limit
beyond which further reductions in IC bias do not lead to an extension in the predictability limit, effectively restricting the feasible joint space
spanned by the IC-model biases. It is further observed that imposing a lower limit to the allowed variability among ensemble solutions (so
as to prevent the ensemble variability from collapse) results in a similar constraint in the joint IC-model-bias space; but this correspondence
breaks down when the imposed variability limit is too high (>∼0.7 for the logistic map). Finally, although increasing the IC random variability in
an ensemble is found to consistently extend the allowed predictability limit of the logistic map, the same is not observed for model parameter
random variability. In contrast, while low levels of model parameter variability have no impact on the allowed predictability limit, there
appears to be a threshold at which an abrupt transition occurs toward a distinctly lower predictability limit.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0181705

When dynamical systems exhibit chaotic behavior, a key out-
come is that their predictability becomes limited. One common
way to measure the predictability limit is to initialize two sim-
ulations from slightly different states and observe whether and
when the two solutions diverge beyond a predefined threshold.
In this study, the logistic map is used to explore how various fac-
tors can impact the predictability limit of a simple chaotic system.
Although under certain conditions the logistic map is chaotic
and, thus, exhibits limited predictability, it is generally accepted
that this predictability limit can be extended by simply reducing
the initial difference (bias) between two simulations. However, it
is shown here that when the model is slightly wrong (biased) in

the way its parameter is prescribed, a radical change happens, and
the predictability limit becomes constrained: The predictability
limit can be extended only up to a certain limit, beyond which
further decreases in initial bias lead to no additional reduction in
the predictability limit. The consequences of this observation are
investigated in various further numerical experiments.

I. INTRODUCTION

Predictability is one of the key features of chaotic systems:
Even though they are deterministic, chaotic systems exhibit unstable
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dynamics that result in error growth over time, ultimately over-
whelming the predictive capability of any simulation that attempts
to reproduce their dynamic behavior. Traditionally, limits to pre-
dictability in chaotic systems are investigated for imperfections in
both the initial conditions (ICs) of a system and the model that is
used to predict it.1

Dependence on ICs in a perfect-model scenario can result in
various types of predictability. Intrinsic predictability is defined as
the asymptotic behavior valid for an infinitesimally small IC uncer-
tainty and is typically measured by the Lyapunov exponents of a
system.2,3 However, in real-world applications of prediction, ICs can
vary significantly both spatially and in time, resulting in varying
magnitudes of practical predictability. In these situations, describing
error growth by the leading Lyapunov exponents becomes unre-
liable, especially for the later stages of error growth.4,5 It is this
practical range of predictability that the present study is concerned
about.

Meanwhile, the fact that the numerical models developed to
represent real-world dynamical systems are not perfect imposes
an entirely different class of limitations on predictability.6 Even in
the hypothetical scenario of perfect ICs, model limitations, such
as incomplete dynamical representation, need for spatial, tempo-
ral, and/or spectral discretization, as well as imperfect knowledge of
model parameters, are all known to result in chaotic departures from
the true state.7,8 However, the complexities of addressing a multitude
of sources of model uncertainty even in low-dimensional nonlinear
systems render it exceedingly prohibitive to systematically address
their impact on predictability. The present study aims to address this
complication for the combined impacts of IC and model uncertainty
for the simple one-dimensional logistic map.

The logistic map9 has been the subject of numerous studies
focused on the chaotic properties of nonlinear systems. Through
variations in a single parameter, it exhibits long-term behavior
that ranges from stably convergent (single-valued and periodic) to
chaotic that is easily visualized through bifurcation diagrams and
attractor plots. In addition to its practical applications in various
types of population growth studies, it is commonly used to explore
the general properties of nonlinear chaos. For recent applications
and comprehensive reviews, see Refs. 10–15.

In the present study, the predictability of the logistic map is
investigated through an ensemble approach. Ensembles are Monte
Carlo simulations, where representing the probabilistic nature of
the underlying nonlinear system is otherwise computationally pro-
hibitive, such as in complex numerical weather prediction (NWP)
models.16 Being approximations to the underlying true probabil-
ity density function (PDF) of the model state, ensembles introduce
a further degree of complexity to account for to fully investigate
predictability in nonlinear chaotic systems. It is important to also
note that the requirement to maintain sufficient ensemble vari-
ability becomes an additional important consideration. This is a
common issue encountered in ensemble-based state-only and joint
state-and-parameter estimation applications.17–20

This article presents a broad view of the combined impact
of IC uncertainty, model uncertainty, and ensemble variability on
the practical predictability of the one-dimensional logistic map.
To appeal to a broad readership, a holistic approach is followed,
and mathematical intricacies are avoided, with the goal and hope

of inspiring further in-depth technical studies on the subject
matter.

II. THE LOGISTIC MAP

The logistic map is one of the most frequently employed recur-
rence models to study the chaotic behavior of nonlinear systems. Its
equation is given as follows:

xi+1 = rxi(1 − xi), (1)

where the predicted variable xi+1 only depends on its value at the
previous iteration (i) and the parameter r. The values of x are
bounded within [0, 1] for the r values [0, 4], which also controls the
behavior of the logistic map, as measured by the asymptotic values of
xn for a large n. For r ∈ [0, 1], x converges to 0. For r ∈ [1, 3], x con-
verges to (r − 1)/r. Between r ∈ [3, ∼3.56995], a behavior typically
referred to as period-doubling cascade21 occurs, where a conver-
gent x becomes periodic with the number of periods n doubling at a
rate of

δ = lim
n→∞

xn−1 − xn−2

xn − xn−1

≈ 4.6692. (2)

Here, δ is known as the Feigenbaum constant22 and xn represents
the value of (asymptotic) x, where period doubling for n occurs (i.e.,
where the number of periods becomes 2n). Then finally, for most val-
ues within r ∈ [∼3.56995, 4], the chaotic regime emerges, although
there are still narrow windows of r where stability reappears. A
well known example is the stable period-3 cycle23 that begins at

r = 1 +
√

8. The rich asymptotic behavior of the logistic map can
be summarized by its bifurcation diagram as shown in Fig. 1.

III. ON THE RELATIONSHIP OF THE LOGISTIC MAP

AND LINEAR RESPONSE THEORY

An important point needs to be made concerning the linear
response theory (LRT) prior to the discussion of results. LRT is
a commonly utilized mathematical tool in the analysis of a cer-
tain class of dynamical systems that, for small perturbations, allows
them to be expressed as Taylor expansions for rigorous mathemat-
ical analysis. However, it is a well known fact that some simple
dynamical systems such as the logistic map do not obey LRT,24,25

and the discrepancy between this behavior and the seemingly suc-
cessful application of LRT in higher-dimensional dynamical systems
has been extensively studied (see, for example, the discussions in
Refs. 26–28). Although this viewpoint is generally valid for most
high-dimensional and/or stochastic dynamic systems, there still are
real-world phenomena, especially at smaller atmospheric scales that
involve a cloud-water phase transition and convective initiation that
directly impact simulations of convective weather systems, where
the validity of LRT is not well established. Therefore, in the present
study, the lack of applicability of LRT to the logistic map is con-
sidered of secondary importance, especially considering the compu-
tational advantages that allow a large number of simulations to be
performed spanning a wide range of parameter values considered.

IV. UNCERTAINTY, BIAS, AND RANDOM VARIABILITY

Before a detailed discussion of the study results, a clear dis-
tinction needs to be made between the terms uncertainty, bias, and
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FIG. 1. The bifurcation diagram of the logistic map for r∈ [2.5, 4]. Convergent model values for the given r are expressed as probability (%) to revisit a particular x range of
width 0.01 and rescaled to improve discernibility.

variability that will be frequently used. Specifically, total uncertainty
is defined as the sum of bias and random variability. This study uti-
lizes a Monte Carlo approach,29 where slightly different simulations
are obtained by slightly varying the initial conditions and model
properties. These slight variations, along with a predefined bias,
represent the total uncertainty that is introduced to a particular sim-
ulation. For example, the total initial-condition uncertainty 1x0 is
represented as the sum of a prescribed bias 1x0 and randomly drawn
deviations 1x′ according to a prescribed variability σ1x0 , i.e., 1x0

= 1x0 + 1x′ with 1x′ ∼ N(0, σ1x0). Similarly, if model uncer-
tainty is also present, then it is represented by the sum of a pre-
scribed model parameter bias and variability as 1r = 1r + r′ with
r′ ∼ N(0, σ1r).

V. PREDICTABILITY

The goal of the present study is to investigate the practical pre-
dictability of the logistic map, given a small difference between two
simulations. Since in the chaotic regime for r, the long-term solu-
tions generally are not convergent, the definition of predictability
here aims to capture a threshold at which such divergence exceeds
a predefined ratio of the total signal. Also, because the logistic map
solutions are bound within the range [0, 1], such a threshold can
be specified as a ratio of this range. In the present study, this ratio
is arbitrarily defined as 10%, corresponding to an absolute allowed
difference between two solutions to be 1thresh = 0.1. Beyond this
threshold, it is deemed that predictability is lost.

A graphical demonstration of error growth is provided in Fig. 2,
for which 50 Monte Carlo simulations are generated for r = 3.7,

where total IC uncertainty 1x0 is obtained as the sum of bias
1x0 ∈ {10−3, 10−6, 10−9, 10−12, 10−15} and random variability with
σ1x0 = 0.1 × 1x0. It can be observed that the rate of error growth
is exponential for simulations initialized with a wide range of IC
uncertainty but slows down as error saturation is approached. It
should be noted here that much smaller IC uncertainty values than
what is shown are not simulated to avoid issues with numerical
precision impacting the analyses of error.30,31

For each level of IC bias, it is then possible to determine the
corresponding predictability limit, as shown in Fig. 3, as the iter-
ation number when the predictability threshold is first exceeded.
Figure 3 (black lines) clearly demonstrates that the predictability
limit of the logistic map can be steadily extended by reducing the
magnitude of the IC bias, although at varying rates depending on the
model parameter value itself (but saturating to climatic variability at
high bias, not shown). It is also worth noting that the predictability
limit depicted here is an average obtained from simulations initial-
ized with various initial conditions within the range [0, 1], which in
reality is, of course, also a function of the specific initial condition
imposed.

VI. MODEL BIAS

In practical applications, the degree to which a particular model
is correctly constructed is critically important to obtain accurate
simulations. In the logistic map, the single parameter “r” controls
the behavior of the model, which needs to be specified empirically in
practical applications. For example, in population dynamics models,
from where the use of the logistic equation originates, population
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FIG. 2. Time evolution of a median absolute error (thick lines) for various IC bias values (colors), with r = 3.7. Error is relative to the assumed threshold of 0.1, which results
in a nominal threshold (100, dashed black line). The 10th and 90th percentiles are shown as thin lines.

growth is typically described by the empirical parameters “relative
growth rate coefficient” and “carrying capacity of the population,”
which both contribute to the parameter r,32,33 and cannot be assumed
to be known perfectly.

The more complex behavior of predictability in the presence of
an additional model bias is illustrated in Fig. 3 (magenta and green
lines), where two simulations now also differ as the model param-
eter bias 1r is varied. Several interesting facts are apparent in this

FIG. 3. Predictability limit of the logistic map as a function of IC bias, calculated for different model parameter values (line style) and model parameter bias values (line color).
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FIG. 4. Time evolution of the normalized median absolute error (thick lines) for various model and IC bias values. All error values are relative to the error for the combination
1r = 10−6, 1x0 = 10−6 (thick black line). The resulting normalized error threshold (0.1) is shown as the dashed black line. The 10th and 90th percentiles are shown as
thin lines around the respective median errors.

scenario. First, model bias generally leads to lower predictability
values at any given model parameter specification. This suggests a
generally reduced “return on investment” to improve a model’s pre-
dictability limit by the pure effort to lower the IC uncertainty. In
other words, one gains a smaller increment in the predictability limit
by the same amount of incremental reduction in IC uncertainty.

But even more importantly, in the presence of a model bias,
the predictability limit also becomes abruptly flat when certain IC
uncertainty levels are reached. Thus, when a model bias is present,
one has only a limited window of opportunity to improve the pre-
dictability limit by lowering IC uncertainty. At that limit, effort
needs to be shifted to improving one’s model itself before any further
gains in predictability can be achieved.

VII. MODEL SOLUTION VARIABILITY

In Fig. 2, it is already demonstrated that in the absence of a
model bias, the emerging model solution variability, as measured
by the difference between the respective 10th and 90th percentiles,
remains stable until error saturation occurs. However, the picture
changes remarkably when a model bias is introduced. The com-
bined impact of model and IC biases on the resulting solutions is
demonstrated in Fig. 4. In the base simulation (thick black line), both
the IC and the model biases are set to 10−6. Two more simulations
are then carried out at the same IC bias but using a progressively
higher model bias. The final simulation then increases the IC bias to
5 × 10−5.

The impact of the higher model bias on the variability among
the simulations is striking. It can be observed that at a constant IC

bias, an increased model bias results in lower simulation variability.
This suggests that as model bias increases, it becomes the dominant
factor in restricting the variability among perturbed simulations. For
IC bias to contribute again to maintaining simulation variability, it
needs to be also further increased (i.e., the difference between green
and orange lines). The result is that model and IC biases cannot be
independently controlled if maintaining sufficient model solution
variability is a requirement.

One good example for the need to maintain variability can be
given from some NWP applications. NWP is an initial/boundary
value problem where in any given cycle, the first step, known as
data assimilation, comprises obtaining optimal ICs using the most
recent observations to maximize the quality of the subsequent fore-
cast. The sensitive nature of weather forecasts on initial conditions
was demonstrated as early as in Lorenz’s own contributions to chaos
theory.34

Typically, atmospheric data assimilation combines information
from two independent sources: The model state from a previous
forecast cycle and the observed state from the atmospheric mea-
surements not yet accounted for in the present forecast cycle. This
necessitates the knowledge of uncertainty in both sources.35 A com-
mon approach to estimating model uncertainty is the use of Monte
Carlo forecasts, also known as ensembles.36 However, maintaining
sufficient variability in such ensembles is critical, especially when
the prediction system is continuously cycled for long periods of time
and ensembles tend to converge toward a particular region of the
PDF. This leads to the systematic application of more weight to
the model state, thereby disregarding the information content from
new observations. This issue is known as filter divergence in NWP
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FIG. 5. (a) Standardized model solution variability and (b) predictability limit as constrained where standardized variability is greater than 0.50, as a function of IC and model
biases as well as reference model parameter value. The gray areas in panel (b) indicate where the predictability limit is not allowed for the given standardized variability lower
limit.

applications,37–40 and to avoid it, special care is taken to maintain a
sufficiently high ensemble variability.

VIII. IMPACT OF MODEL SOLUTION VARIABILITY ON

PREDICTABILITY LIMIT

As seen in the examples shown in Figs. 2 and 4, the
parameter space spanned by IC and model uncertainties can lead
to a wide range of model solutions with variations in both the
median and the variability of the ensemble solutions. A two-step
standardization approach is adopted here to bring these solutions to
a common reference frame that accounts for these variations. First,

a nonparametric form of normalization is applied as follows:

Vi = Pi
90 − Pi

10

Pi
50

. (3)

Here, Pi
N represents the Nth percentile of the distribution valid

at the ith iteration, and the difference between the 90th and the
10th percentiles is normalized by the median (50th percentile)
of the corresponding distribution. Normalized variability Vi are
further averaged over corresponding error growth periods to filter
out temporal variability.

Despite normalization, variability V tends to increase more
than three-fold with increasing IC bias (not shown). Therefore, an
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FIG. 6. Maximum allowed IC bias, as estimated from model bias vs from minimum allowed standardized variability (>0.50), using estimates from all model parameter (r)
values sampled. Upper-left inset: Correlation coefficient R as a function of the maximum allowed standardized variability. Lower-right inset: Correlation coefficient R as a
function of the model parameter.

additional step of standardization is introduced by dividing nor-
malized variability by the corresponding normalized variability at

zero model bias, as V̂ = V/V0, where V is normalized variability,
V0 is the corresponding normalized variability at zero model bias,

and V̂ is the resulting standardized variability. This is shown in
detail in Fig. 5(a), where it can be observed that, while there is a
tendency for the variability to increase with increasing IC bias, a
sufficiently large model bias leads to the collapse of variability that
occurs along a diagonal line in the IC-model-bias space. To prevent
such collapse, Monte Carlo simulations can be restricted to a min-
imum level of standardized variability that would then lead to the
constrained predictability limit shown in Fig. 5(b), for the example
when standardized variability is greater than 0.50, i.e., when stan-
dardized variability is allowed to be reduced at most to 50% of its
original value. Under this restriction, the theoretical maximum pre-
dictability limit is achieved only at combinations of very small IC
and model bias values. A wider range of model bias values is allowed
only if IC bias is also increased accordingly but at the cost of reduced
predictability.

IX. PREDICTABILITY LIMIT UPPER BOUND:

EQUIVALENCE BETWEEN MODEL BIAS AND

STANDARDIZED VARIABILITY

It is established so far that the predictability limit of the
logistic map can be bounded both by the existence of model bias
(Fig. 3) and limitations imposed by a minimum standard variability
among Monte Carlo simulations (Fig. 5). Specifically in Fig. 3, for a

given level of model bias, the predictability limit can be increased
only up to a certain value of IC bias, at which point growth in
the predictability limit ceases. Similarly in Fig. 5, at an assumed
level of model bias, the predictability limit can be increased with a
decreased IC bias but only up to a certain limit that is determined by
the allowed minimum standardized variability. Furthermore, it was
also shown in Fig. 4 that increasing model bias directly results in
reduced solution variability as was indicated by the decrease in the
difference between the 10th and the 90th percentiles. In Fig. 6, this
anecdotal relationship is generalized for a wide range of parameter
values.

The main scatterplot in Fig. 6 indeed confirms that there
is a clear linear relationship (R2 = 0.891, F(104) = 836, p = 5.94
× 10−51) between the restricting IC bias that constrains predictabil-
ity limit empirically (through minimum allowed standardized vari-
ability, x axis) and theoretically (through model bias, y axis). While
this regression relationship is obtained over all sampled model
parameter values, the lower-right panel also confirms that it remains
strong when tested separately against individual model parame-
ter values. Furthermore, the upper-left panel shows the regression
coefficient when the predictability limit is constrained by a range
of minimum allowed standardized variability values (0.05–0.95).
Indeed, the strength of the linear relationship between empirical
and theoretical predictability limits remains high for a wide range
of constraints but breaks down at ∼0.7 (70% of allowed variability),
suggesting that there is a trade-off between how strict one can be to
maintain ensemble variability and how representative the resulting
attainable range of predictability limit values are.
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FIG. 7. Constrained average predictability limit of the logistic map (color shading) as a function of IC and model random variability (horizontal axes) and allowed parameter
space (vertical axis), where standardized variability is greater than 0.5. Predictability limit is averaged over all IC bias, model bias, and model parameter values sampled.

X. IMPACT OF MODEL SIMULATION VARIABILITY ON

PREDICTABILITY LIMIT

So far, the focus has been on how the predictability limit is
impacted by the restrictions imposed by model solution variability.
However, obviously, the variability in these Monte Carlo solutions is
possible only because of the inherent variability in how the simula-
tions are generated. Recall that simulations are so far randomized
only in how a specific IC value x0 is drawn from the assumed
Gaussian distribution in IC variability with σ1x0 = 0.1 × 1x0, as
explained in Sec. III. Here, a more rigorous analysis is presented for
the impact of generalized variability in both the ICs and the model
parameter.

In Fig. 7, the dual impact of IC and model parameter random
variability on allowed parameter space and average predictability
limit is shown. Allowed parameter space is a measure of how model
solution variability restricts the predictability limit to certain com-
binations of IC and model biases [i.e., Fig. 5(b)]. It is defined as
the ratio of the number of parameter combinations allowed to the
total number of parameter combinations. The average predictabil-
ity limit is obtained likewise. This is carried out for all combinations
of IC and model parameter random variability (i.e., σ1x0 and σ1r,
respectively) along the horizontal axes.

From Fig. 7, one can observe that the increase in IC variabil-
ity consistently leads to improved average predictability regardless
of model parameter variability. This means that an ensemble needs
to be constructed with sufficient (random) variability in ICs to
maximize the allowed predictability limit of the logistic map sim-
ulations. Meanwhile, introducing random variability to the simu-
lations’ model parameter value does not appear to result in any
improvements in the allowed predictability limit. Highest values
of predictability limit occur below 10−2, at which point a quick

transition occurs from a lower to a higher allowed percentage of
parameter space. However, this is also accompanied by generally
smaller values of the average predictability limit, indicating a trade-
off between how much of the parameter space one would like to have
at their disposal vs the sacrifice in the average predictability limit.

XI. SUMMARY

The present study revisits the chaotic regime of the logistic
map with an emphasis on how several factors impact its predictabil-
ity. The logistic map has been extensively studied for its long-term
behavior, both for its critical dependence on the initial-condition
(IC) and for model uncertainty. To generalize this existing body of
work, the analysis of the impact of the combined Monte Carlo-based
uncertainties in ICs and model specification is expanded by impos-
ing limits on how much long-term model solutions are allowed to
vary. The study is then generalized by accounting for how the Mon-
tel Carlo simulations are generated where both ICs and the model
parameter are varied jointly. The findings can be summarized as
follows:

• In the absence of model uncertainty, the predictability limit of
the logistic map can be extended continuously by reducing IC
bias. In this scenario, Monte Carlo simulations also exhibit stable
variability among long-term solutions.

• When a model bias is introduced, the predictability limit becomes
progressively lower. Furthermore, a fundamental change occurs
where the predictability limit becomes bounded and cannot be
extended beyond a specific level of IC bias. To improve pre-
dictability beyond this upper bound also requires lowering model
bias.
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• A standardization approach is introduced so that the
variability among Monte Carlo simulations becomes comparable
among experiments initialized with different IC and model biases.
Using standardized variability as a minimum constraint results in
significant restrictions on how much of the IC-model-bias space
is attainable.

• A statistical equivalence is demonstrated for how one can arrive
at an estimate of the maximum predictability limit through model
bias and simulation variability limitations, respectively. However,
this relationship holds only when the limitation on minimum
variability is not too strict. Otherwise, the allowed combinations
of IC and model biases become too restrictive compared to those
implied by the theoretical predictability limit.

• Finally, in terms of random variability, it is shown that specifying
sufficient variability in the ICs is critical to extend the predictabil-
ity limit of the resulting simulations. Meanwhile, accounting for
the ensemble variability of the model parameter results in no
discernible impact. In contrast, beyond a threshold, a quick tran-
sition occurs toward a larger percentage of the allowed space of
IC and model uncertainties, but at the cost of a reduced average
predictability limit.

XII. DISCUSSION

It is well known that in some dynamical systems, predictabil-
ity is constrained and cannot be extended indefinitely by reducing
the uncertainty of ICs. The best example is that of the atmosphere,
where Lorenz’s seminal work and others that followed demonstrated
that scale interactions and error energy cascade from turbulent to
synoptic and larger scales result in strict limitations to the pre-
dictability of the atmosphere.41–45 There are, of course, additional
sources of error that limit predictability, such as those that arise from
insufficient knowledge of the dynamical system, simplifications that
are necessary to simulate them numerically, and existence of scales
that cannot be resolved explicitly, given computational limitations.46

The impact of such imperfections on predictability has generally
been addressed in the linear approximation limit and the result-
ing Lyapunov exponents that are valid only for infinitesimally small
perturbations.47

It is shown here that when IC and model uncertainties coexist,
there can be profound impacts on the predictability of a nonlin-
ear dynamical system. Even in the one-dimensional logistic map
whose predictability limit can be extended with a reduced IC bias,
model bias results in an upper bound of predictability, beyond which
a further decrease in IC bias leads to no further improvement.
This is significant because a restricted predictability limit is typi-
cally associated with scale interactions and upscale growth of error
in a dynamical system. It is shown here that such behavior is not
exclusive to models with interacting scales.

Another noteworthy outcome is regarding the high correlation
found between the theoretical and the empirical predictability limit
upper bounds obtained through model bias and simulation vari-
ability considerations, respectively. While this is expected because
model bias leads to a smaller variance among Monte Carlo solu-
tions, it is noteworthy that this relationship is valid only up to
a certain degree of restriction in simulation variability. There is,
thus, an apparent trade-off between the need to maintain variability

among simulations and to maximize the allowed predictability limit
of the underlying model, especially when the restriction on ensem-
ble variability is high. This is a very important additional constraint
to account for in ensemble design.

Finally, this study reveals that introducing model parameter
variability in an ensemble yields no measurable impact on the pre-
dictability limit of the logistic map, whereas IC variability clearly
results in extended predictability. In fact, it is shown that extensive
parameter variability can lower the average predictability that can
be attained. While it is plausible that sensitivity to a single parame-
ter that controls a model’s behavior may be too high to counteract
the potential benefits of accounting for its variability in an ensem-
ble, that such sensitivity does not exist in IC variability is somewhat
surprising and worthy of future investigation. Nevertheless, because
the logistic map is a chaotic system that does not obey the linear
response theory (LRT), the extension of the validity of findings here
to higher-order dynamical systems that obey the LRT is an open
question and will be addressed in future studies.
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