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Abstract: 17 

Integrated stock assessments specify a distribution for multiple data types, and these distributions 18 

control the relative leverage assigned to each datum.  A decade of research has demonstrated that 19 

(1) proper data weighting is necessary to avoid bias resulting from overweighting noisy age- and 20 

length-composition data; (2) sampling data can be pre-processed to estimate the likely sampling 21 

variance for composition data; and (3) using random effects to estimate time-varying parameters 22 

can improve the fit to data while also changing statistical leverage, and thereby serve a similar 23 

role to reweighting data.  However, there are also unresolved questions including: (A) Is it more 24 

appropriate to model age and length data as proportions-at-age and as an index for the total, or as 25 

a series of indices-at-age? (B) Are correlated residuals appropriately addressed via data 26 

weighting or do they require additional model changes (i.e., time-varying parameters)? (C) How 27 

to efficiently communicate information about sampling imprecision and model errors between 28 

sampling and stock-assessment teams?  (D) how does model-based expansion of sampling data 29 

affect data weighting? And (E) how to address alternative hypotheses about factors driving poor 30 

fit to data?  Here, we argue that stock assessment errors can be classified using four categories:  31 

sampling bias (e.g., changes in survey coverage), sampling imprecision (e.g., finite sample 32 

sizes), assessment model bias (e.g., incorrect demographic assumptions) and assessment model 33 

imprecision (e.g., random effects).  This categorization has several implications with resulting 34 

practical recommendations.  For example, we define Percent Excess Variance (PEV) from the 35 

ratio of input sample size (the measured variance of sampling imprecision) and effective sample 36 

sizes (the variance of assessment-model residuals).  We propose calculating PEV as standardized 37 

diagnostic measuring the net effect of survey bias and assessment model bias and imprecision.  38 

We demonstrate PEV in a simulation experiment fitted using the Woods Hole Assessment Model 39 
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(WHAM) conditioned upon Gulf of Alaska walleye pollock, where unacknowledged fishery 40 

selectivity results in a PEV of 77% and this is eliminated when correctly specifying a time-41 

varying estimation model.  We also argue that model-based expansion of data inputs using 42 

auxiliary information can mitigate sampling bias, while also measuring sampling imprecision for 43 

spatially unrepresentative surveys.  Similarly, including random effects can similarly mitigate 44 

model bias while increasing model imprecision when the demographic model has little 45 

explanatory power.  Finally, we observe that down-weighting compositional data for a given 46 

fleet fails to propagate information about model residuals when interpreting abundance indices or 47 

reference points for that same fleet.  When PEV is large for important fleets, we therefore 48 

encourage focused research to explain the sources of these errors rather than simply 49 

downweighting without propagating information about residuals.  However, we acknowledge a 50 

continuing role for automated data weighting for less important fleets, although we recommend 51 

explicit hypotheses about potential sources of errors in those cases.   52 

 53 

Keywords:  Data weighting; stock assessment; state-space model; random effects; data 54 

standardization;  55 

 56 
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1.   Integrated assessment models, and weighting data in fleets 58 

High-quality stock assessments are one important component of effective fisheries 59 

management (Hilborn et al., 2020).  In the US for example, stock assessments are central to the 60 

system of accountability measures ensuring that regional fisheries management councils do not 61 

set fishing levels above those associated with long-term policy objectives (Methot et al., 2014). 62 

For stock assessments to provide accurate management advice, their observation components 63 

(data likelihoods) need to appropriately reflect the information content in the data.  However, this 64 

continues to be a major challenge despite decades of research.   65 

Modern “integrated” stock assessments typically incorporate many different types of 66 

information (Maunder and Punt, 2013).  To do so, they typically require specifying one or more 67 

“fleets,” where each fleet can then be associated with common types of data: 68 

1. Removals:  Some fleets have a measurement of total landings, discards, or both for year t 69 

(𝑐𝑐𝑡𝑡).  Surveys are sometimes assumed to have negligible removals, although catches in a 70 

bottom trawl survey for recovering stocks can sometimes represent a substantial fraction of 71 

fishing mortality; 72 

2. Index of abundance:  Additionally, some fleets will provide records of catch and effort at a 73 

fine scale, allowing design- or model-based estimators to be applied to estimate an index of 74 

abundance (𝑏𝑏𝑡𝑡); 75 

3. Age/length/sex composition:  Finally, some fleets will have catches that are subsampled, 76 

where these subsamples are then measured for age, length, and/or sex.  These records can 77 

then be expanded to estimate the proportion of the population (or fleet removals) within a 78 

given age/length/sex category a (𝑝𝑝𝑎𝑎,𝑡𝑡), and we refer to these as composition data in the 79 

following.   80 
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Other types of data are also widespread including (but not limited to) conventional tags, weight-81 

at-age matrices, and maturity-at-age ogives, but we focus on these three in subsequent 82 

discussions.  We also note that some assessment models (e.g., Stock Synthesis: Methot and 83 

Wetzel, 2013) are designed to fit removals (𝑐𝑐𝑡𝑡) and abundance indices (𝑏𝑏𝑡𝑡) separately from 84 

compositions (𝑝𝑝𝑎𝑎,𝑡𝑡), while others (e.g., SAM: Berg and Nielsen, 2016) are fitted to data that 85 

represent a combination of these types, either via fitting to removals at age (𝑐𝑐𝑎𝑎,𝑡𝑡 ≡ 𝑐𝑐𝑡𝑡𝑝𝑝𝑎𝑎,𝑡𝑡) or 86 

indices-at-age (𝑏𝑏𝑐𝑐,𝑡𝑡 ≡ 𝑏𝑏𝑡𝑡𝑝𝑝𝑎𝑎,𝑡𝑡).   87 

Importantly, most fleets will have two or more of these data types simultaneously.  For 88 

example, many fisheries are sampled to provide a measure of removals as well as composition 89 

data, and many surveys are conducted to measure an index of abundance and age/length/sex 90 

composition.  In these examples, respectively, the composition data helps to interpret the 91 

removals or abundance index by providing an estimate of fishery or survey selectivity.  92 

However, composition data will also be informative about the relative size of different cohorts as 93 

well as total mortality rates, in particular when selectivity-at-age for that fleet is relatively 94 

constant over time.  In these cases, composition data plays a dual role of informing fleet 95 

selectivity (a measurement process for that specific fleet) as well as tracking cohorts through the 96 

population (an aspect of population dynamics for the stock as a whole).   97 

 Even for stocks with a well-funded monitoring program, abundance indices typically 98 

have a coefficient of variation of 5% or greater, and this is then fitted using a lognormal 99 

distribution.  By contrast, the same monitoring program might sample 100s-1000s of fishes for 100 

age, and 1000-10,000s for length each year, and these are often fitted using a multinomial 101 

distribution.  The integrated model then identifies parameter estimates by maximizing a joint log-102 

likelihood, which is calculated as the sum of log-likelihoods for each fleet and data type 103 
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individually.  In this case, if the multinomial distribution is specified for age or length-104 

composition data using a sample size of 100s or 1000s and selectivity-at-age is constant over 105 

time, then the statistical leverage for composition data on estimates of cohort size (and resulting 106 

trends in abundance) will typically be much greater than the leverage for abundance indices or 107 

other data types.  Therefore small mis-specification of the processes affecting age/length/sex 108 

composition data can override the information arising from abundance indices.   109 

A well-known series of papers have reviewed these topics previously (Francis, 2017, 110 

2014, 2011), and have advocated for various methods for “tuning” the multinomial sample size 111 

associated with age/length/sex composition data.  However, two major developments have also 112 

occurred since these reviews, namely: (1) increased use of age-structured state-space models 113 

fitted to indices-at-age, and (2) increased use of standardization models to pre-process data 114 

inputs to mitigate bias arising from climate-driven or logistically-constrained sampling issues.  In 115 

particular, an assessment model might allow for time-varying selectivity, which decreases the 116 

statistical leverage of composition data on estimates of abundance trends and in some sense 117 

replaces the action of tuning sample sizes (Xu et al., 2020).  Similarly, improved standardization 118 

of input data might improve model fit and thereby reduce the need to downweight available data 119 

(Thorson and Haltuch, 2018).  These developments provide new options to deal with poor fit and 120 

high leverage for composition data, and can accomplish a similar role as tuning input sample 121 

sizes.  However, we will follow past papers in using the term “data-weighting” for procedures 122 

that explicitly tune (or estimate weights) for composition data.   123 

These two developments have therefore given new importance to the following five 124 

questions: 125 
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1. Is it more appropriate to model age and length sampling data as proportions-at-age and use a 126 

separate index for the total index of abundance or removals (i.e., similar to Stock Synthesis), 127 

or should these be combined in a series of indices-at-age (i.e., similar to SAM)?  128 

2. Are correlated residuals appropriately addressed via data weighting or do they require 129 

additional model changes (i.e., time-varying parameters)?  130 

3. How can survey and analytical teams efficiently communicate information about sampling 131 

imprecision for routine use in stock assessments?   132 

4. How does model-based expansion of sampling data affect the process or interpretation of 133 

data weighting?   134 

5. How should assessment scientists address alternative hypotheses about mechanisms that give 135 

rise to poor fit (and associated low weighting) for data? 136 

To provide a foundation for addressing these new questions, we discuss both the processes by 137 

which removals, abundance indices, or composition data are sampled as well as how they are 138 

processed prior to inclusion in a stock assessment model. We then outline what this implies 139 

about data-weighting (which we note was conspicuously absent from prior discussions of data-140 

weighting).   141 

We therefore organize the paper as follows.  We first review how abundance indices and 142 

compositional data arise in nature, how they are processed to generate stock-assessment inputs, 143 

and what this implies about their statistical distribution.  We then expand previous efforts to 144 

partition errors into different interpretable processes, and review which might be similar across 145 

fleets.  Finally, we use the preceding discussions to propose eight recommendations for applying 146 

data-weighting in real-world assessments. 147 

2.  How are samples expanded to create abundance indices and composition data 148 
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To begin, we briefly review how design-based estimators are used to expand survey data to 149 

generate abundance indices and composition data.  We describe a case involving a survey with a 150 

stratified random sampling design used to generate a biomass index.  We also envision that the 151 

survey has many subsamples of length but a smaller number of subsampled ages, such that 152 

proportion-at-length or proportion-at-age can be calculated.  Subsampling designs vary between 153 

regions (e.g., using length-stratified or random subsampling for age-length specimens used to 154 

estimate an age-length-key), and these design decisions will then affect the design-based 155 

estimator and associated variance estimators (e.g., Hulson et al., 2023).  Given these nuanced 156 

differences, we intended to provide only a broad overview involving a simplified case and 157 

introduce only the notation that is central to our argument.   158 

 To construct a design-based abundance index under this design, note that each sample 𝑖𝑖 159 

yields a measurement of density calculated as weight (or numbers) per area swept 𝐷𝐷𝑖𝑖 = 𝑊𝑊𝑖𝑖/𝐴𝐴𝑖𝑖.  160 

Given that inclusion probabilities are assumed constant in a given sample stratum 𝑥𝑥, average 161 

density for each stratum 𝐷𝐷�𝑥𝑥 is first calculated as the average of density for samples in that 162 

stratum.  Stratum average densities are then expanded to the area of each stratum, and these are 163 

summed across strata within a broader region to get the index, 𝑏𝑏 = ∑ 𝐴𝐴𝑥𝑥𝐷𝐷�𝑥𝑥
𝑛𝑛𝑥𝑥
𝑥𝑥=1 .  Similarly, the 164 

variance can be calculated as the area-expanded sum of the variance among samples for each 165 

stratum, 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑏𝑏) = ∑ 𝐴𝐴𝑥𝑥2𝑉𝑉𝑉𝑉𝑉𝑉� (𝐷𝐷�𝑥𝑥)𝑛𝑛𝑥𝑥
𝑥𝑥=1 .   166 

 By contrast, constructing a design-based proportion-at-length involves more steps.  Each 167 

sample 𝑖𝑖 is measured for total mass 𝑊𝑊𝑖𝑖 (as described previously when expanding an abundance 168 

index) and the design typically dictates that some portion 𝑤𝑤𝑖𝑖 is subsampled, where each 169 

individual in this subsample is measured for length.  Tabulating the lengths in bins yields a 170 

vector of subsampled abundance-at-length which is then expanded by 𝜆𝜆𝑖𝑖 = 𝑊𝑊𝑖𝑖/𝑤𝑤𝑖𝑖 to predict 171 
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abundance-at-length for the entire tow.  This tow-level abundance-at-length is then again 172 

summed across tows in a given stratum, expanded by stratum area or auxiliary information about 173 

stock abundance in that stratum, and summed across strata to estimate total abundance-at-length.  174 

This total abundance-at-length is then sometimes converted to a proportion-at-length by dividing 175 

by the sum across lengths  To develop abundance- or proportion-at-age, a further step might be 176 

involved, where a set of paired ages and length measurements is collected and analyzed to 177 

estimate a forward age-length key (Ailloud and Hoenig, 2019).  Abundance-at-length can then be 178 

multiplied by this age-length key to predict abundance-at-age, and this in turn converted to 179 

proportion-at-age.   180 

From these two descriptions we see that: 181 

1. Each sample used to calculate proportions-at-length or –at-age involves a subsample of 182 

some size 𝑤𝑤𝑖𝑖 that is measured for length, and hence yields a subsampled “proportion-at-183 

length” (i.e., a vector 𝑝𝑝𝑖𝑖,𝑐𝑐 that has a sum of 1 across lengths 𝑐𝑐).  However, the expansion 184 

process involves multiplying this proportion by the random variable 𝑊𝑊𝑖𝑖 (the total 185 

captured in that sample).  This product 𝑊𝑊𝑖𝑖𝑝𝑝𝑖𝑖,𝑐𝑐 is obviously not a proportion; 186 

2. Abundance-at-length is calculated from a multi-level sampling process that involves 187 

many potential sources of sampling variance, including the subsampled lengths/ages 188 

within each sample and the sampled abundance within each stratum.  Therefore, the 189 

resulting abundance-at-length estimator is likely to have higher variance than an 190 

abundance index.  Similarly, the abundance-at-age involves an estimate of the forward 191 

age-length-key, which accumulates additional variance; 192 

3. Abundance indices can all result in measurements of zero, whenever zero animals are 193 

counted for a given year.  This occurs more frequently when sampling abundance-at-age 194 
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or abundance-at-length (particularly for age/size classes that have a low numerical 195 

density), and any model must be suited to deal with these; 196 

Additionally, the imprecision for the abundance index arises from a single source (among-197 

sample variance within each stratum), and is straightforward to calculate.  By contrast, the 198 

imprecision of proportions-at-age arises potentially from the number of individuals that are 199 

measured for age and length, the properties of the age-length-key, and many other sources.   200 

Several different estimators have been proposed to calculate the imprecision of age and 201 

length composition data: 202 

1. Bootstrap estimators:  Research has proposed to resample with replacement from the set of 203 

sampling occasions (survey tows, fishing trips) and/or the specimens that are individually 204 

measured for age and length, calculate the variance among resampled replicates, and 205 

calculate the variance directly from these bootstrap samples (Crone and Sampson, 1997; 206 

Stewart and Hamel, 2014);  207 

2. Model-based estimators:  Alternatively, papers have proposed to fit a model to available 208 

data, calculate the standard errors for the estimated proportion, and use that directly as 209 

estimate of sampling variance (Berg and Nielsen, 2016; Thorson, 2014; Thorson and 210 

Haltuch, 2018); 211 

3. Design-based estimators:  As a third alternative, researchers have generalized design-based 212 

estimators to calculate the covariance resulting from a multi-level sampling design (Miller 213 

and Skalski, 2006); 214 

In general, these estimators combine information about the multi-level sampling design, sample 215 

sizes, and the variation among samples to calculate the variance of the estimated proportions.   216 
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3. Partitioning error into different processes 217 

We next discuss how these data are fitted in integrated stock assessment models such as Stock 218 

Synthesis (Methot and Wetzel, 2013).  In the case of expanded age-composition data, for 219 

example, the expansion algorithm yields an expanded abundance-at-age, 𝑛𝑛𝑎𝑎,𝑦𝑦.  This can then be 220 

fitted to the assessment-model prediction of abundance-at-age, or alternatively 𝑛𝑛𝑎𝑎,𝑦𝑦 can be 221 

converted to expanded proportion-at-age and fitted to the assessment-model prediction of 222 

proportion-at-age 𝜋𝜋𝑎𝑎,𝑦𝑦.  Fitting this model using maximum likelihood requires specifying a 223 

probability distribution for the data conditional upon parameters, where the log-likelihood is 224 

minimized to identify parameter estimates.  Historically, a multinomial distribution was often 225 

used for age-composition data: 226 

𝐧𝐧𝑦𝑦∗ ~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛑𝛑𝑦𝑦,𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (1) 

where the fitted abundance-at-age 𝐧𝐧𝑦𝑦∗  is a vector of 𝑛𝑛𝑎𝑎,𝑦𝑦
∗ , calculated by taking the expanded 227 

abundance, rescaling to a proportion, and then multiplying it by an input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 228 

𝑛𝑛𝑎𝑎,𝑦𝑦
∗ = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑎𝑎,𝑦𝑦

∑ 𝑛𝑛𝑎𝑎′,𝑦𝑦
𝐴𝐴
𝑎𝑎′=1

.  This input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 then represents the number of idealized 229 

multinomial samples from a given fleet that would have the same approximate variances as the 230 

hierarchical sampling that occurred in nature.  In the absence of a bootstrap, model-based, or 231 

design-based estimator for 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, analysts have often used “rules of thumb” to define this value, 232 

or have reweighted this value as explained in a later section.   233 

However, stock assessment models will never fit perfectly to age and length composition 234 

data.  Historically, analysts would often calculate a Pearson residual as: 235 
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𝑟𝑟𝑎𝑎,𝑦𝑦 =

𝑛𝑛𝑎𝑎,𝑦𝑦
∑ 𝑛𝑛𝑎𝑎′,𝑦𝑦𝐴𝐴
𝑎𝑎′=1

− 𝜋𝜋𝑎𝑎,𝑦𝑦

�
𝜋𝜋𝑎𝑎,𝑦𝑦(1 − 𝜋𝜋𝑎𝑎,𝑦𝑦)

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

(2) 

where the numerator is the difference in proportion-at-age and the denominator is the standard 236 

deviation expected under a multinomial distribution with sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  More recently, 237 

these have been improved using one-step-ahead (OSA) residuals that account for the distribution 238 

of random effects as well as non-normal error distributions (Trijoulet et al., 2023).  Many studies 239 

have observed that residuals have positive or negative streaks for a sequence of ages in a given 240 

year (“age-correlations”), for a sequence of years for a given age (“time-correlations”), for a 241 

sequence of ages and years for a given cohort (“cohort correlations”), and have larger magnitude 242 

than a standard normal distribution (“overdispersion”).   243 

 Fitting a model where Pearson or OSA residuals have larger magnitude than a standard 244 

normal distribution has been called “overweighting” the composition data.  Many studies have 245 

used simulation or case-study experiments to show that overweighting is likely to result in biased 246 

estimates of population dynamics, and that decreasing the weight in these cases will often 247 

improve assessment-model performance (Fisch et al., 2022, 2021; Punt, In press; Stewart and 248 

Monnahan, 2017; Xu et al., 2020).  Similarly, patterns in residuals among ages or years is a 249 

widely used diagnostic for model mis-specification.   250 

 We attribute the lack-of-fit to stock assessment data to four different processes 251 

(summarized in Table 1).  To describe these we distinguish three different properties of an 252 

estimator: (A) imprecision measures the variance around the mean of an estimator; (B) bias 253 

measures the difference between the mean of an estimator and a true value; (C) inconsistency 254 

arises when bias and imprecision do not decrease as sample sizes increase.  For simplicity, we 255 
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will emphasize the difference between imprecision (A) and both bias and inconsistency (B/C).  256 

We also categorize mechanisms causing imprecision or bias/inconsistency based on whether they 257 

arise during the sampling (1) or modelling (2) process.   258 

To make this description more precise, let us assume that there is some true but unknown 259 

data-generating process 𝑍𝑍~𝐷𝐷𝐷𝐷𝐷𝐷(. ) that results in all state-variables 𝑍𝑍 associated with a given 260 

stock assessment, and we define a distribution 𝑝𝑝(𝑍𝑍 = 𝑧𝑧) for the value 𝑧𝑧 that in reality arose over 261 

the spatial and temporal domain of an assessment.  We also assume that there is some process 262 

resulting in data 𝑋𝑋~𝑓𝑓(𝑍𝑍,𝑛𝑛𝑋𝑋) conditional upon that data-generating process and sample size 𝑛𝑛𝑋𝑋, 263 

where we define the distribution of data 𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑧𝑧,𝑛𝑛𝑋𝑋) conditional upon the realized state-264 

variables.  Finally, we define observable quantities 𝑌𝑌(𝑍𝑍) with value 𝑦𝑦(𝑧𝑧) given the realization 𝑧𝑧 265 

of state-variables, where these might include biological reference points (biomass at maximum 266 

sustainable yield, 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚) and stock trends (biomass 𝐵𝐵𝑡𝑡).  We can estimate these observables 267 

conditional upon an assumed model 𝑀𝑀 and data 𝑋𝑋, where the model 𝑀𝑀 is sometimes explicit 268 

(i.e., a population-dynamics model used to estimate mortality rates) and other times implicit (i.e., 269 

assumptions about the sampling frame when computing a design-based estimator).  Given a 270 

realized sample 𝑥𝑥, we can apply an estimator 𝑌𝑌�(𝑥𝑥,𝑀𝑀) for an observable 𝑌𝑌(𝑍𝑍), where this 271 

estimator then has a distribution 𝑌𝑌�(𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑧𝑧,𝑛𝑛𝑋𝑋), 𝑧𝑧,𝑀𝑀).  We define: 272 

• the mean for an estimator as 𝜇𝜇𝑥𝑥 ≡ 𝔼𝔼𝑥𝑥�𝑌𝑌�(𝑥𝑥,𝑀𝑀)� = ∫𝑌𝑌�(𝑥𝑥,𝑀𝑀)𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑧𝑧,𝑛𝑛𝑋𝑋) d𝑥𝑥; 273 

• the expected imprecision as 𝑉𝑉 = 𝕍𝕍𝑥𝑥�𝑌𝑌�(𝑧𝑧,𝑀𝑀)� = ∫�𝑌𝑌�(𝑥𝑥,𝑀𝑀) −  𝜇𝜇𝑥𝑥�
2
𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑧𝑧,𝑛𝑛𝑋𝑋) d𝑥𝑥; 274 

• the expected bias as 𝐵𝐵 = 𝜇𝜇𝑥𝑥 − 𝑦𝑦(𝑧𝑧) 275 

• the expected squared-error as 𝐸𝐸2 = 𝐵𝐵2 + 𝑉𝑉 276 
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Subsequently, we will further decompose squared-error into components arising from sampling 277 

processes vs. assessment modelling.  For presentation, we’ll assume that these four processes 278 

occur independently: 279 

𝐸𝐸2 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2  (3) 

such that expected squared-error arises as the sum of these different processes (see Table 1 for an 280 

overview).  This decomposition is possible for any observable quantity 𝑌𝑌(𝑍𝑍), but in the 281 

following we will specifically emphasize fits to abundance-at-age data for a given fleet, and later 282 

discuss complications arising from fitting to data from multiple fleets.   283 

3.1 Finite sample sizes causing “sampling imprecision”   284 

We define “sampling imprecision” as imprecision arising from “taking a sample rather than a 285 

census” (Maunder and Piner, 2017).  Although called “measurement error” by Francis (2011), 286 

we use the term “sampling imprecision” to indicate that additional sampling (e.g., full coverage 287 

of fishery observers resulting in a census) can sometimes eliminate this error entirely.  We 288 

therefore know that sampling imprecision results in variance 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and this variance decreases 289 

with increased sample sizes 𝑛𝑛𝑋𝑋 or an efficient sampling design.   290 

3.2 Mis-specified sampling design causing “sampling bias and inconsistency” 291 

Similarly, sampling designs typically involve defining a sampling frame, which ideally has a 292 

perfect correspondence to the management unit (“stock”) about which we seek inference 293 

(Cochran, 1977).  Furthermore, many sampling designs use probability sampling, where each 294 

“sampling unit” (i.e., survey station) within this sampling frame is assigned a probability of 295 

inclusion.  When the sampling frame does not correspond to a target population, even a perfect 296 

census will still result in error (“sampling inconsistency”).  Similarly, when some sampling units 297 
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are sampled above their intended inclusion probability, then a sample will overrepresent some 298 

components of the population and the survey may be biased for low sample sizes or inconsistent 299 

even for extremely large sample sizes.  We call this “sampling bias” 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, acknowledging 300 

that it is conditional upon the specified sample size 𝑛𝑛𝑥𝑥 and therefore is a combination of bias and 301 

inconsistency.  The magnitude of sampling bias will increase due to poor assumptions about the 302 

sampling frame and logistical challenges in sampling.  For example, with partial observer 303 

coverage, if fishing behavior differs between boats with and without an observer, then expanding 304 

observed trips on boats with observers will be a biased measure of fleetwide removals for any 305 

randomized allocation of observers, but this source of bias would be eliminated under complete 306 

coverage.   307 

3.3 Parametric model mis-specification causing “model inconsistency” 308 

Next, we note that stock assessment models typically make strong assumptions about population 309 

demography.  For example, assessments typically ignore immigration/emigration from outside of 310 

a defined geographic area, and hence specify a survival function such that abundance for a given 311 

cohort can only decrease:  312 

log�𝑁𝑁𝑎𝑎+1,𝑦𝑦+1� = log�𝑁𝑁𝑎𝑎,𝑦𝑦�−𝑀𝑀𝑎𝑎,𝑦𝑦 − 𝐹𝐹𝑎𝑎,𝑦𝑦 (4) 

where this is identifiable because analysts typically specify some structure on natural mortality 313 

(e.g., constant mortality 𝑀𝑀𝑎𝑎,𝑦𝑦 = 𝑀𝑀), such that changes in cohort abundance 𝑁𝑁𝑎𝑎,𝑦𝑦 over time is 314 

informative about fishing mortality rates 𝐹𝐹𝑎𝑎,𝑦𝑦.  Even as new data are progressively added to such 315 

a model, the parametric assumption that abundance declines for a cohort can never be overcome 316 

and will result in both bias and inconsistency when immigration, for example, results in 317 

increasing abundance-at-age for some cohorts.  We see that this “model mis-specification” 318 
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results in some bias 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and that the expected magnitude of this bias increases when the 319 

parametric model is based on ecological assumptions that have a poor match to the true data-320 

generating process. 321 

3.4 Semi-parametric model specification and “model imprecision” 322 

Finally, hierarchical (a.k.a. state-space or mixed-effects) models specify a probability 323 

distribution for coefficients representing variation in some process over space, time, or among 324 

animals.  They then estimate parameters defining this distribution jointly with other model 325 

parameters (Thorson and Minto, 2015).  Estimated variability in these coefficients 𝛆𝛆 then 326 

approximates variation in growth, survival, mortality, or movement resulting from otherwise 327 

unmodeled processes (Ives, 2022).  We here claim that random effects can be used to account for 328 

model misspecification in a way that translates “model bias/inconsistency” into “model 329 

imprecision” (Thorson et al., 2014).   330 

Estimation proceeds by assuming that coefficients are “exchangeable,” for example 331 

assuming that they following a multivariate normal distribution, 𝛆𝛆~MVN(𝟎𝟎,𝜎𝜎𝑅𝑅𝑅𝑅2 𝐑𝐑), where 𝐑𝐑 is 332 

the correlation among random effects and 𝜎𝜎𝑅𝑅𝑅𝑅2  is the variance of random effects that can be 333 

estimated from data.  These coefficients 𝛆𝛆 are “integrated out” from the marginal likelihood, such 334 

that increased sampling leads to increased information about hyperparameters 𝜃𝜃 and/or predicted 335 

values for random effects.  There is ongoing research exploring different distributions for the 336 

optimal distribution for random effects to approximate different time-varying processes, often 337 

specifying random, autocorrelated, or other distributional forms for correlation 𝐑𝐑 (Xu et al., 338 

2019), although we do not have space to fully discuss these differences here.   339 
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For example, a state-space age-structured model (Gudmundsson, 1994; Nielsen and Berg, 340 

2014; Stock et al., 2021) might instead specify as the survival function: 341 

log�𝑁𝑁𝑎𝑎+1,𝑦𝑦+1� = log�𝑁𝑁𝑎𝑎,𝑦𝑦�−𝑀𝑀𝑎𝑎,𝑦𝑦 − 𝐹𝐹𝑎𝑎,𝑦𝑦 + 𝜀𝜀𝑎𝑎,𝑦𝑦 (5) 

where 𝜀𝜀𝑎𝑎,𝑦𝑦~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜀𝜀2) in this case represents the assumption that residual variation in the 342 

survival function is independent and homoscedastic.  In this case, if sampling data are unbiased 343 

(𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0) and sampling errors decrease asymptotically with increased effort (𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 0), 344 

then 𝑁𝑁𝑎𝑎+1,𝑦𝑦+1 and 𝑁𝑁𝑎𝑎,𝑦𝑦 could both approach their true values even given immigration or other 345 

unmodeled processes.  This can be seen as a corollary of the Bayesian Central Limit Theorem 346 

(a.k.a. Bernstein von-Mises theorem, (Doob, 1949)), where the specified distribution for random 347 

effects has decreasing importance as the data increase asymptotically.  We therefore see that 348 

random effects will typically result in additional variance; in this example, the variance of 𝜀𝜀𝑎𝑎,𝑦𝑦 349 

causes additional variance in log�𝑁𝑁𝑎𝑎,𝑦𝑦�, and we call the resulting imprecision 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  This 350 

imprecision 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 typically increases with increasing variance 𝜎𝜎𝑅𝑅𝑅𝑅2  of process errors.  Similarly, 351 

this imprecision 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 will typically decrease as more data become available, because the 352 

predicted random effects will typically have a lower standard error (Xu et al., 2019).   353 

Including random effects can decrease the errors 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 that would otherwise arise when 354 

the data-generating process is not nested within the specified demographic model (Thorson et al., 355 

2014).  In other cases, a model might include random effects but include them in the wrong part 356 

of the model such that it still does not include the true data-generating process as a nested 357 

submodel.  For example, an analyst might instead specify a random effect for fishery selectivity 358 

(Xu et al., 2019): 359 
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log�𝑁𝑁𝑎𝑎+1,𝑦𝑦+1� = log�𝑁𝑁𝑎𝑎,𝑦𝑦�−𝑀𝑀𝑎𝑎,𝑦𝑦 − 𝐹𝐹𝑎𝑎,𝑦𝑦𝑒𝑒𝜀𝜀𝑎𝑎,𝑦𝑦 (6) 

where, for example, 𝜀𝜀𝑎𝑎,𝑦𝑦 follows a two-dimensional smoother across years and ages.  In this 360 

case, the model is more flexible but still specifies 𝑁𝑁𝑎𝑎+1,𝑦𝑦+1 ≤ 𝑁𝑁𝑎𝑎,𝑦𝑦.  If true abundance then 361 

increases for a given cohort due to immigration, the Bayesian central limit theorem does not 362 

apply, and model mis-specification (in this case, ignoring immigration) will result in an 363 

inconsistent estimate (i.e., increasing 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) rather representing additional imprecision (i.e., 364 

increasing 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚).   365 

3.5 Measuring the variance of four errors 366 

Past research (Francis, 2011; Miller and Skalski, 2006; Thorson et al., 2020) has noted that we 367 

can identify an estimator for sampling variance, 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) in each year 𝑡𝑡, using the bootstrap, 368 

model, or design-based estimators outlined previously.  These are calculated directly from raw 369 

sampling data, and do not require any specific knowledge about the assessment model itself 370 

(although a difference between the population being sampled vs. modeled will result in model 371 

inconsistency as noted previously).   These estimates of sampling variance 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 372 

themselves have a standard error (Kotwicki and Ono, 2019), but for simplicity of presentation we 373 

do not further discuss the implications of the standard error of this or other variance terms.   374 

Similarly, past research (Francis, 2014, 2011; Pennington and Godø, 1995) has used the 375 

squared Pearson residuals from the fit to a stock-assessment model as an estimator of the total 376 

squared errors, 𝐸𝐸�2, and presumably this can be generalized via proper transformation of OSA 377 

residuals.  We briefly note that these residuals are calculated as the difference between 378 

observations and predictions, and predictions for a given fleet are leveraged by data from that 379 

and other fleets in multi-fleet assessment models.  In the following, we assume that these cross-380 
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fleet correlations in residuals are negligible, and we encourage further research regarding 381 

variance decompositions that account for multi-fleet leverage in calculating residuals.   382 

Estimators for sampling imprecision 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) and total squared-errors 𝐸𝐸�2 then result in 383 

an estimable decomposition of stock-assessment errors: 384 

𝐸𝐸�2 = 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2�����������������
residual error

 (7) 

where the variance arising from mis-specified sampling designs, parametric, and semi-parametric 385 

model errors are all captured in the residual “residual error” term.    386 

 387 

3.6 Implications of error partitioning 388 

 Before proceeding further, we note that this decomposition extends previously published 389 

studies in several important ways: 390 

1. Revised law of conflicting data:  Maunder and Piner (2017) define the “Law of conflicting 391 

data” as “since data are facts, conflicting data implies model misspecification, but must be 392 

interpreted in the context of random sampling error”.  However, our presentation emphasizes 393 

that fisheries data such as fishery catch, abundance indices, and age/length compositions are 394 

typically expanded from raw observations.  We agree that these raw observations are “fixed” 395 

with respect to an annual assessment modelling process1, and any failure to fit fixed data 396 

                                                           
1 In reality, even tow-level data are not strictly “fixed” and instead typically arise from a process of prior analysis.  
For example, the area-swept in a bottom trawl survey is often calculated from reconstructing a transect from a 
series of GPS records of a vessel during net deployment, with time-on-bottom reconstructed from assumptions 
about how to extrapolate newer net sensors to predict bottom contract from vessel speed and tow depth.  In 
these and other cases, “fixed” tow-level data are subject to updates from improved process research.  However, 
we agree that these updates to sample-level data usually occur via a slower scientific process than an operational 
stock assessment, and tow-level data can be considered “fixed” with respect to a given stock assessment.   
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implies model mis-specification.  However, alternative expansion estimators will result in 397 

different sampling imprecision 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and sampling bias/inconsistency 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  For 398 

example, it is feasible to expand bottom trawl survey data while either ignoring or using 399 

auxiliary data to correct for the emigration of fishes outside of the spatial domain of the 400 

primary survey (O’Leary et al., 2020).  Using auxiliary and spatially unbalanced data to 401 

estimate abundance across an expanded spatial footprint may simultaneously increase 402 

sampling imprecision 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and decrease sampling inconsistency 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  We therefore 403 

propose a Revised Law of conflicting data:  404 

 405 

“Data are facts but are often pre-processed (using a design- or model-based estimator) prior 406 

to being fitted in a stock assessment model.  Therefore, conflicting data implies model 407 

misspecification in either or both the assessment model, sampling design, or pre-processing 408 

analysis.” 409 

 410 

2. Model imprecision vs. inconsistency:  Francis (2011) decomposes total error into process and 411 

measurement errors, and Francis (2017) notes that state-space models further decompose 412 

“process errors” into time-varying parameters, errors in fixing parameters, or specifying the 413 

wrong mathematical form.  We formalize this latter decomposition by separating model 414 

inconsistency (i.e., mis-specification of fixed parameters or mathematical expressions that 415 

will result in error regardless of the quantity of data) from model imprecision (i.e., variation 416 

within the specified distribution of the random effect, but where increasing data will allow 417 

random effects to converge on the true value).  The Bayesian Central Limit Theorem implies 418 

that the distribution assigned to random effects has decreasing importance as the quantity of 419 
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data increases.  As a result, estimates of stock dynamics for a data-rich assessment with 420 

suitable random effects can therefore approach the true dynamics even given mis-421 

specification of the population dynamics assumptions (e.g. Thorson et al., 2014), and the 422 

distinction between model inconsistency and imprecision is particularly relevant for data-rich 423 

assessments.   424 

3. Calculating excess variance as diagnostic for model mis-specification:  Using the 425 

multinomial distribution (Eq. 1), analysts often calculate a “sample size” as proportional to 426 

the reciprocal of each variance term.  This arises because the multinomial distribution 427 

𝐧𝐧~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛑𝛑,𝑁𝑁) for a proportion 𝑝𝑝𝑎𝑎 = 𝑛𝑛𝑎𝑎/∑ 𝑛𝑛𝑎𝑎′
𝐴𝐴
𝑎𝑎′=1  has variance that is inversely 428 

related to sample size, Var(𝑝𝑝𝑎𝑎) = 𝜋𝜋𝑎𝑎(1−𝜋𝜋𝑎𝑎)
𝑁𝑁

.  We can therefore calculate the variance from 429 

expanding composition data Var(𝑝𝑝𝑎𝑎) and convert this to an equivalent sample size 𝑁𝑁𝑎𝑎 =430 

𝜋𝜋𝑎𝑎(1−𝜋𝜋𝑎𝑎)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑎𝑎)  and define input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as the harmonic mean across ages.  Similarly, 431 

we can calculate the sample variance from residuals as an estimator of total squared-errors, 432 

and convert this to an effective sample size 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  Plugging these into Eq. 3 and re-433 

arranging, we see that: 434 

𝑃𝑃𝑃𝑃𝑃𝑃 = 1 −
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝐸𝐸2
 

(8) 

e.g., where we define the “proportion excess variance” 𝑃𝑃𝑃𝑃𝑃𝑃 as the proportion of squared 435 

assessment-model residuals that results from survey bias as well as bias and imprecision in 436 

the assessment model itself.  𝑃𝑃𝑃𝑃𝑃𝑃 is then a measurable and interpretable diagnostic (ranging 437 

from 0 to 1) for the magnitude of error in those processes.  Although PEV becomes harder to 438 

interpret in multi-fleet models (given that 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is affected by fits to other fleets), we still 439 
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believe that simplified and high-level statistics can elucidate theory and complement more 440 

complicated diagnostics such as OSA residuals.   441 

For these three reasons, we believe that it is warranted to decompose error into imprecision and 442 

bias/inconsistency arising for both the sampling design/expansion and stock-assessment model. 443 

3.7 Case study demonstration 444 

We next provide a simple demonstration of the potential use of percent excess variance (PEV) to 445 

diagnose assessment model mis-specification or bias in the available data (see Appendix A for 446 

details).  To do so, we develop a state-space age-structured assessment model using the Woods 447 

Hole Assessment Model (Stock and Miller, 2021) for Gulf of Alaska walleye pollock that closely 448 

matches the 2021 stock assessment (Monnahan et al., 2021a).  This involves setting an input-449 

sample size 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for age-composition data for each of five fleets.  We use a bootstrap estimator 450 

to calculate 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for the NMFS bottom trawl survey (Hulson et al., 2023), fix 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as 451 

number of midwater trawls for the two acoustic surveys, but do not have software to estimate the 452 

value for the fishery or the Alaska Department of Fish and Game (ADF&G) bottom trawl survey.  453 

We therefore fix a value for the fishery larger than the survey (i.e., 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1000), and simulate 454 

data conditional upon this known true value.  We condition our simulation upon estimates of 455 

process errors from the fit to real-world data, specifically time-varying fishery selectivity and 456 

time-varying catchability for abundance indices, so that the model represents observed dynamics 457 

for this stock.     458 

 We then fit a single replicate from this simulation using two alternative models: 459 
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1. Mis-specified:  We first fit a model that assumes fishery selectivity and survey catchabilities 460 

are constant over time.  This then represents a known source of mis-specification, given that 461 

the simulation model includes these time-varying processes. 462 

2. Correctly specified:  We also fit the same model but with time-varying fishery selectivity and 463 

survey catchabilities matching the structure of the simulation model (but estimating the 464 

magnitude of process errors). 465 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 was estimated jointly with the model using the linear version of the Dirichlet-466 

multinomial likelihood (Thorson et al., 2017). The estimated PEV (Eq. 8) for the fishery was 467 

77.1% when fitted with a model that did not include time-varying fishery selectivity (Table S1), 468 

and this PEV was substantially larger than for any other fleet.  When refitting with a model that 469 

included time-varying fishery selectivity, PEV was reduced to 0.0%.  We compared estimates of 470 

the variance (0.256) and autocorrelation (0.989) for time-varying fishery selectivity between the 471 

simulation and correctly specified estimation model. The confidence interval in untransformed 472 

space for the estimated variance contained the true value (0.275), but not for the estimated 473 

autocorrelation correlation (0.898).  We therefore conclude that PEV was able to identify which 474 

fleet was subject to some mis-specification, and also that the process-error variance could be 475 

usefully estimated in part due to the implicit upper bound provided by the input sample size.   476 

 477 

4. Practical recommendations for applied stock assessments 478 

Having categorized errors into four potential sources, we next discuss implications of this 479 

categorization (Table 2) while also proposing specific recommendations for stock-assessment 480 

practices (Table 3).   481 
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4.1 Fit proportions-at-age separately from total abundance or catch 482 

As noted, state-space models such as SAM (Nielsen and Berg, 2014) are sometimes fitted to 483 

abundance-at-age 𝑛𝑛𝑎𝑎,𝑦𝑦, which can be thought of as a product of an abundance index and 484 

proportions-at-age 𝑛𝑛𝑦𝑦𝑝𝑝𝑎𝑎,𝑦𝑦.  However, the variance of total abundance is often lower variance the 485 

sum of variances for each abundance-at-age, i.e., Var�𝑛𝑛𝑦𝑦� < ∑ Var(𝑛𝑛𝑎𝑎,𝑦𝑦)𝐴𝐴
𝑎𝑎=1 .  Presumably such 486 

an outcome can be approximated via covariances among ages in a specified measurement 487 

covariance matrix (Berg and Nielsen, 2016).  However, state-space models are sometimes fitted 488 

using a lognormal distribution for abundance-at-age (Nielsen and Berg, 2014).  In this case, there 489 

is no linear combination of variances and covariances for log-abundance-at-age that will match 490 

the sampling variance of the total abundance index.   491 

 To illustrate this in more detail, imagine a fishery with nearly perfect observer coverage, 492 

but where observers can only measure length for a subsample of individuals.  In this case, the 493 

overall removals 𝑐𝑐𝑡𝑡 might be known (almost) exactly, and this corresponds to small variance in 494 

management performance (i.e., whether the fishery is catching above or below its catch quota).  495 

However, the removals-at-age 𝑐𝑐𝑎𝑎,𝑦𝑦 will still have a substantial variance due to finite sample sizes 496 

for subsampled lengths.  If fitting to log-removals-at-age, then a series of positive or negative 497 

residuals across ages could result in predicted removals-at-age that differ greatly from the (close-498 

to-) known total removals when summed across ages.  Even if a measurement covariance matrix 499 

with negative correlations results in small variance for Var�∑ log�𝑐𝑐𝑎𝑎,𝑦𝑦�𝐴𝐴
𝑎𝑎=1 �, this ensures that the 500 

estimate ∑ log�𝑐𝑐𝑎𝑎,𝑦𝑦�𝐴𝐴
𝑎𝑎=1  approaches the measurement log(𝑐𝑐𝑡𝑡) but it gives equal weight to 501 

residuals in log�𝑐𝑐𝑎𝑎,𝑦𝑦� for ages with small and large removals.  In other cases, both removals-at-502 

age 𝑐𝑐𝑎𝑎,𝑦𝑦 and total removals 𝑐𝑐𝑡𝑡 are both imprecisely measured.  In these cases, it might result in 503 
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better fit to model removals at age rather than separately modelling proportions and totals (e.g., 504 

Albertsen, 2018 see Section 3.3.2.1).  We note that both options are available in SAM, and 505 

empirical analyses with commercial fisheries have shown mixed support for these where North 506 

Sea cod and Northeast Arctic haddock were best fitted by abundance-at-age while Northern 507 

Shelf haddock and blue whiting were fitted better by modelling proportions-at-age (Albertsen et 508 

al., 2017).  To address this: 509 

Recommendation #1:  We recommend that assessment models include options to specify a vector 510 

for abundance indices or removals across years, and a separate matrix for proportions-at-age 511 

across years, as alternative to fitting directly to the product of two.  This ensures that a small 512 

variance in measurements of total removals or total abundance is appropriately propagated even 513 

when proportions are less precise.    514 

 515 

4.2: Calculate sampling imprecision and inconsistency as starting point to interpret fit 516 

We previously decomposed total error into components due to imprecision or inconsistency in 517 

either the field sampling or assessment model (Eq. 3).  We then clarified that the variance arising 518 

from model imprecision and both data and model inconsistency are not estimable without 519 

auxiliary data.  It is widely understood (but still not widely used in practice) that the imprecision 520 

of field-sampling data 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can be estimated using bootstrap, model, or design-based 521 

estimators (Berg and Nielsen, 2016; Miller and Skalski, 2006; Stewart and Hamel, 2014; 522 

Thorson and Haltuch, 2018).  The length and age subsampling for commercial fisheries are often 523 

not available outside of national laboratories.  In these cases, it might be necessary in 524 

multinational jurisdictions (i.e., ICES) to standardize analytical methods that can then be done 525 
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independently on confidential data, such that the estimated imprecision 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can be shared 526 

even when the raw data cannot.   527 

Equally important but less commonly understood is the fact that auxiliary data can in 528 

some cases be used to define an explicit lower bound on the unknown variance of sampling 529 

inconsistency, 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, where 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is then estimated externally from auxiliary 530 

information.  As discussed previously, sampling inconsistency arises when the sampling frame 531 

for a fishery or survey does not contain the entire fishery or stock that is intended.  In some 532 

cases, auxiliary data can be used to measure what portion of the stock is outside of the sampling 533 

frame, and hence estimate the sampling inconsistency resulting from that process.  For example: 534 

• Vertical survey availability:  A bottom trawl survey will often miss the portion of a stock 535 

that is above the effective fishing height, and this portion can be estimated using auxiliary 536 

acoustic and midwater sampling information (Monnahan et al., 2021b); 537 

• Horizontal survey availability:  Similarly, stocks can migrate into or emigrate beyond the 538 

spatial footprint of the surveys that have been defined previously, and the portion outside 539 

can be identified in some cases using data from adjacent surveys (O’Leary et al., 2022); 540 

In these and other cases, we can use auxiliary sampling data (e.g., from nearby surveys, tags, 541 

etc.) to measure some components of the bias 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 arising from survey availability, knowing 542 

that 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 must be greater than that bias.   543 

 This lower bound on survey bias 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 then provides an implicit upper bound on the 544 

variance that can be attributed to “assessment model imprecision”.  This is because we can 545 

directly measure total squared-errors 𝐸𝐸�2 from model residuals, sampling imprecision 546 
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𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from expansion methods, and in this hypothetical also have a lower bound on sampling 547 

bias, 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.  Plugging into Eq. 6 and re-arranging yields: 548 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2�����������
assessment model errors

≤ 𝐸𝐸�2 − 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  (9) 

This is helpful because the assessment-model imprecision 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is an increasing function of the 549 

variance of random effects, 𝜎𝜎𝑅𝑅𝑅𝑅2 .  Because the unexplained variance 𝐸𝐸�2 − 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  550 

provides an explicit upper bound on assessment model errors 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 , it also provides 551 

on implicit upper bound on random-effect variances 𝜎𝜎𝑅𝑅𝑅𝑅2 , where this exact bound depends on 552 

how 𝜎𝜎𝑅𝑅𝑅𝑅2  affects 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as determined by the structure of the assessment model and the specified 553 

random effects.  One way to interpret this inequality is that, as more sources of “sampling bias” 554 

are identified (i.e., 𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2  increases), there is less need to invoke time-varying processes (and 555 

estimate a large variance for random effects) to explain a lack-of-fit for that data source.   556 

In summary: 557 

Recommendation #2:  We recommend using design-, model-, or bootstrap estimators to identify 558 

the variance of all data inputs, as well as auxiliary information where available to identify the 559 

variance arising from errors in the sampling frame; 560 

Recommendation #3:  We recommend providing the variance of each data input (including the 561 

estimated imprecision of age and length compositions) to the stock assessment model ‘a priori’, 562 

and comparing this variance with the variance of residuals to quantify the proportion of 563 

unexplained variance. This PUV could then be used as diagnostic to identify when data should 564 

be further downweighted (or less important fleets), or additional time-varying processes 565 

considered (for more important fleets).  We also recommend using auxiliary data to measure a 566 
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lower bound on the variance arising from survey bias, so that the model will not estimate a 567 

variance for random effects that results in a tighter fit to survey products than is warranted given 568 

this lower bound on survey bias. This then ensures that the variance of data inputs serves as an 569 

implicit “upper bound” on the variance of estimated random effects. 570 

 571 

4.3:  Approximate sample size as simple currency 572 

Despite the several studies demonstrating how to estimate the sampling variance 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) from 573 

available data (including abundance indices over time and composition data over time and 574 

age/length/sex) we are not aware of any operational stock assessments (particularly commonly 575 

used general stock assessment packages) inputting a covariance matrix to represent sampling 576 

imprecision.  By contrast, a large number of operational stock assessments specify a scalar 577 

(whether a multinomial sample size or the lognormal standard deviation) representing sampling 578 

imprecision.  We therefore recommend replacing the sampling covariance among ages or lengths 579 

with input-sample size, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  This is then interpreted as an approximation that both (1) 580 

simplifies the number of inputs that must be into a stock assessment, and (2) simplifies intuition 581 

about the relative leverage of different years.  This will inevitably lose information about the 582 

sampling covariance among ages or lengths, but we hypothesize that this is necessary to simplify 583 

the process sufficiently to achieve uptake in real-world assessments. 584 

 Measuring input sample size is then useful because: 585 

1. it provides an implicit upper bound on the variance of random effects (similar to the role for 586 

𝐵𝐵�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙).  To see this, we again inspect Eq. 9, where a decrease in input-sample-size (and 587 

resulting increase in 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) causes a decrease in the upper bound on assessment model bias 588 
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and imprecision, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2  and an in the implicit upper bound of 𝜎𝜎𝑅𝑅𝑅𝑅2 .  These random-589 

effect variances are often difficult to estimate, so information about their bounds is likely 590 

helpful; 591 

2. It allows us to calculate excess variance 𝑃𝑃𝑃𝑃𝑃𝑃 (Eq. 8) as simple diagnostic for residual forms 592 

of survey and model mis-specification.  593 

Recommendation #4:  If analysts choose not use the estimated sampling variance 𝑉𝑉�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 within 594 

the stock assessment, we recommend as practical alternative that they replacing this with a 595 

single scalar quantity, “input sample size”, representing the idealized multinomial sampling size 596 

with approximately similar variance.  Adding additional random effects (i.e., model imprecision) 597 

will then result in smaller model residuals, and an “effective sample size” that approaches this 598 

input sample size (i.e., excess variance approaching zero).  Similarly, the “input sample size” 599 

provides an implicit upper bound on the variance of random effects.   600 

  601 

4.4:  Correct residuals via model expansion rather than data weighting 602 

We now finally turn to the question that is central to previous discussions of “data weighting”:  603 

Is there a probability distribution that we can specify for compositional data such that it 604 

eliminates problems arising from a lack of fit?  We here argue that, no, using a generalized 605 

distribution that “downweights” data is likely better than using a made-up value for data weights, 606 

but that it is also better still to add additional model flexibility in other parametric ways (i.e., fix 607 

model inconsistency) or semi-parametric ways (add random effects).   608 

 To see this, we first briefly review the literature on generalized distributions or 609 

algorithms that can down-weight data (see Table 4).  First, McAllister and Ianelli (1997: 610 
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Appendix 2) noted that the variance of an idealized multinomial distribution will have residual 611 

variance: 612 

�𝑝𝑝𝑎𝑎,𝑦𝑦 − 𝜋𝜋𝑎𝑎,𝑦𝑦�
2

=
𝜋𝜋𝑎𝑎,𝑦𝑦(1− 𝜋𝜋𝑎𝑎,𝑦𝑦)

𝑛𝑛𝑎𝑎,𝑦𝑦
∗  

(10) 

which then yields a formula for effective sample size 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑦𝑦−1𝑛𝑛𝑎𝑎−1 ∑ ∑ 𝑛𝑛𝑎𝑎,𝑦𝑦
∗𝐴𝐴

𝑎𝑎=1
𝑌𝑌
𝑦𝑦=1 .  613 

Subsequently, Candy (2008) proposed using the default “saturating” parameterization of the 614 

Dirichlet-multinomial to estimate an additional parameter 𝛽𝛽 representing the variance of a 615 

Dirichlet process that generates additional variance in compositional data.  Thorson et al. (2017) 616 

later extended this by introducing the “linear” parameterization, where parameter 𝜃𝜃 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽 617 

such that log(𝜃𝜃) ≈ logit(𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) or equivalently 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≈
𝜃𝜃

1+𝜃𝜃
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, such that 𝜃𝜃

1+𝜃𝜃
 results 618 

in a close-to-proportional decrease in data-weight for all compositions regardless of their 619 

assigned 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (e.g., in Fig 2 of Fisch et al., 2022). This compound-distribution approach was 620 

later extended using a “multivariate-Tweedie” distribution to more closely resemble the process 621 

of expanding compositional data in a multi-level sampling design (Thorson et al., 2022).   622 

As alternative approach, Francis (2011: Eq. TA1.8) extended Pennington and Volstad 623 

(1994) by instead modelling the variance in the average age or length for observations 𝑝̅𝑝𝑦𝑦 and 624 

expectations 𝜋𝜋�𝑦𝑦.  This “Francis method” has the stated advantage that calculating the variance of 625 

average age or length accounts for both the variance and covariance of residuals.  This method 626 

was subsequently extended to conditional age-at-length data (Punt, In press).  627 

Finally, research has also developed either the additive (Miller et al., 2016; Schnute and 628 

Haigh, 2007; Stock and Miller, 2021) or multiplicative (Cadigan, 2016) versions of a logistic-629 

normal distribution.  These two versions transform the composition data 𝑛𝑛𝑎𝑎,𝑦𝑦/∑ 𝑛𝑛𝑎𝑎′,𝑦𝑦
𝐴𝐴
𝑎𝑎′=1  using 630 
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two flavors of a multivariate inverse-logistic function, and do the same with the predicted 631 

proportions 𝜋𝜋𝑎𝑎,𝑦𝑦, and then compute the discrepancy between these two using a multivariate 632 

normal distribution.  Many papers have subsequently compared different subsets of these various 633 

methods (Cronin-Fine and Punt, 2021; Fisch et al., 2022, 2021; Hulson et al., 2012, 2011; Punt, 634 

In press; Xu et al., 2020), although results are difficult to compare among studies due to different 635 

parameterizations being used and different scenarios being tested.   636 

As discussed extensively elsewhere, these options can be derived by assuming that there 637 

is some additional “overdispersion” process that generates variation in the observed vector 638 

𝑛𝑛𝑎𝑎,𝑦𝑦/∑ 𝑛𝑛𝑎𝑎′,𝑦𝑦
𝐴𝐴
𝑎𝑎′=1 .  Using the Dirichlet-multinomial for simplified discussion, this process 639 

involves taking a draw from a Dirichlet distribution: 640 

𝛑𝛑𝑦𝑦∗ ~Dirichlet(𝛽𝛽𝛑𝛑𝑦𝑦) (11) 

where 𝛽𝛽 controls the variance of this process, and then using this simulated proportion 𝛑𝛑𝑦𝑦∗  to fit 641 

the data using a multinomial distribution: 642 

𝐧𝐧𝑦𝑦∗ ~Multinomial(𝛑𝛑𝑦𝑦∗ ,𝑛𝑛∗) (12) 

By contrast, in the Francis, McAllister-Ianelli, or logistic-normal models the process generating 643 

overdispersion is implicit in the derivation (Francis, 2014, 2011; McAllister and Ianelli, 1997).  644 

However, these distributions generally differ in several ways: 645 

1. Fitting to zeros:  The Dirichlet-multinomial, Francis, multivariate-Tweedie, and McAllister-646 

Ianelli methods can all be fitted to composition data that includes zeros, while the logistic-647 

normal cannot and presumably the data must be modified to avoid zeros (e.g. combining 648 

age/length bins or adding a constant) prior to model fitting, or expanded as a zero-inflated 649 

process; 650 
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2. One- or two-stage fits:  The Dirichlet-multinomial, multivariate-Tweedie and logistic-normal 651 

involve estimating overdispersion using parameters that can be fitted at the same time as 652 

other model parameters, while the Francis and McAllister-Ianelli methods cannot.  The latter 653 

therefore require fitting a model, then adjusting the sample sizes being used, and refitting.  654 

This iterative process is sometimes called “two-stage estimation” although in practice it 655 

might require many more than two fits and there is little consistency regarding how many 656 

times to refit.   657 

3. Estimating residual correlations:  Dirichlet-multinomial, multivariate-Tweedie and 658 

McAllister-Ianelli methods identify overdispersion but do not calculate or use information 659 

about correlations among ages or years.  By contrast, the Francis method accounts for 660 

correlations among ages when calculating the observed and expected average age, and 661 

implicitly downweights when correlations are large.  Similarly, the logistic-normal can be 662 

extended to estimate the magnitude of correlations among ages.  However, neither Francis 663 

not logistic-normal methods account for correlations among years.   664 

These theoretical and practical differences presumably cause analysts to select different methods 665 

for real-world use. 666 

 What has generally gone undiscussed in this extensive literature is that residuals in 667 

composition data also reflect mis-specification that affects the interpretation of other data 668 

(removals or abundance-indices) from that same fleet, as well as reference points calculated for 669 

that fleet.  For example, samples of the age-composition from fishery catches might have 670 

positive correlations for older ages and negative for younger ages in a given year.  If these 671 

correlations are larger than expected for a multinomial distribution, then data suggests that the 672 

fishery likely did, in fact, target older ages in that year.  This could arise due to the fishery 673 
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targeting a spatial component of the stock where older ages aggregate, or due to less strict 674 

restrictions on bycatch that allow targeting high-profit areas that were previously avoided.  In 675 

either case, it is critical that this information about fishery removals be used to properly interpret 676 

other components of the model.  In this example: 677 

1. Higher selectivity for old individuals also likely means that a lower catch (in numbers) can 678 

explain total removals (as measured in biomass).  Treating correlations as a residual process 679 

that only affects fishery comps then ignores the implications for fitting (or conditioning 680 

upon) fishery removals for that fleet; 681 

2. Higher selectivity for old individuals also likely has large implications for calculating yield 682 

per recruit and spawning biomass per recruit.  Spawning biomass per recruit is in turn 683 

typically used to calculate spawning potential ratio (SPR).  Attributing residual patterns in 684 

fishery comps to a residual “observation” process likely ignores the implications for SPR 685 

target and limit calculations.   686 

In this light: 687 

Recommendation #5:  We recommend that analysts use OSA instead of Pearson residuals, to 688 

account for the action of any random effects and also any non-normal error distributions.  We 689 

similarly recommend that these residuals be visualized, where patterns among ages and years 690 

can be used to diagnose model-specification.   691 

Recommendation #6:  We recommend that model weighting be considered only as a first-pass 692 

response to overdispersion, and that assessment scientists additionally seek to attribute residual 693 

patterns to additional model processes for important fleets (fisheries with a large portion of total 694 

removals, or trusted surveys).  This is necessary to ensure that overdispersion (and any 695 
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correlation among ages and years) is interpreted not just for fitting age/length compositions, but 696 

also when (1) fitting to abundance indices and removals or (2) calculating reference points and 697 

management quantities from that same fleet.   For less important fleets (e.g., fisheries with a 698 

small fraction of removals), it might be less important to propagate information from age and 699 

length-composition residuals when interpreting removals and references points, so for these less-700 

important fleets it is more defensible to use data-weighting without further investigation.   701 

 702 

4.5 Collect and synthesize auxiliary information that can mitigate sampling inconsistency 703 

As we discussed previously, assessment error can be decomposed into imprecision and 704 

inconsistency resulting from both sampling and assessment-model specification.  When residuals 705 

are overdispersed for the composition data of a given fleet, assessment scientists often 706 

downweight these data using one or more data-weighting algorithms.  However, the past decade 707 

has also seen increased interest in model-based methods to expand sampling data.  These 708 

estimators can improve statistical efficiency (decrease 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) or mitigate sampling bias 709 

(decrease 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), and we discuss these respectively here. 710 

 In some cases, model-based estimators can improve sampling efficiency and therefore 711 

reduce “sampling imprecision” (i.e., improve statistical efficiency).  For example, an efficient 712 

sampling design will allocate samples in proportion to the population variance.  However, some 713 

species with a patchy distribution will have a substantial fraction of total survey catch in one or a 714 

few tows (Thorson et al., 2011).  In these cases, a design-based algorithm will be driven 715 

predominantly by the small number of extreme catches, and this will obscure the useful signal 716 

that otherwise justifies conducting a survey.  The statistical efficiency for this fixed design can in 717 
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some cases be increased using a model-based estimator (Thorson et al., 2015), and in some cases 718 

this decreased imprecision can then be seen to propagate through the assessment model and 719 

result in a higher effective sample size (Thorson and Haltuch, 2018).   720 

 More usefully, though, model-based estimators can also be designed to use auxiliary 721 

information to estimate or even reduce the magnitude of “sampling inconsistency”.  In these 722 

cases, model-based estimators seek to minimize bias that arises when using survey data that are 723 

not representative of the modeled stock.  For example, changes in regional habitat might increase 724 

the proportion of the stock that is expected to occur outside of a given sampling design.  For 725 

yellowfin sole in the eastern Bering Sea, for example, spring warmth drives the timing of 726 

movement from offshore to onshore habitats where warm temperatures increase the overlap with 727 

the summertime survey (Wilderbuer et al., 1992), and this effect can then be corroborated when 728 

fitting a temperature-dependent catchability coefficient representing survey availability in the 729 

stock assessment (Nichol et al., 2019).  Rather than fitting an additional catchability-coefficient 730 

in the assessment model, however, it might be feasible to combine fishery and survey data to 731 

jointly estimate the timing of movement and the abundance that would have resulted at a 732 

standardized time in seasonal migration.  A similar approach has been done, e.g., using larval 733 

otoliths to back-calculate the timing of a winter survey relative to winter spawn timing for Gulf 734 

of Alaska walleye pollock (Rogers and Dougherty, 2019).   735 

In summary: 736 

Recommendation #7: We recommend research to identify auxiliary data (whether combining 737 

habitat information, multiple surveys, or process research) that can be used to decrease 738 

sampling imprecision and inconsistency, which otherwise result in downweighting of 739 

composition data.  This research will typically occur in parallel to an operational assessment, 740 
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and in some cases can be done by survey teams and reviewed during Methods Reviews that 741 

operate in parallel to operational stock assessment reviews.    742 

 743 

4.6 Provide a rationale if substantially downweighting individual data sets  744 

As discussed previously, data are typically downweighted due to a combination of survey and 745 

model imprecision and inconsistency.  However, assessment-model imprecision and 746 

inconsistency is likely to cause errors in fitting data for multiple fleets.  Downweighting a single 747 

fleet while leaving another with larger weight corresponds to a hypothesis about the sources of 748 

error (presumably in that case, the error for the downweighted fleet arises from sampling 749 

inconsistency).  In the context of fitting abundance indices, past studies have cautioned against 750 

taking the average of multiple indices as if it were the only potential outcome (Schnute and 751 

Hilborn, 1993; Walters and Maguire, 1996).  This same intuition applies when downweighting 752 

composition data, such that the resulting assessment might be driven by only those data that are 753 

weighted more highly.  Similarly, Francis (Francis, 2017, 2014, 2011) proposes a “rule of 754 

thumb” that, when abundance indices and composition data conflict, it is likely the abundance 755 

index that is trustworthy.  However, this rule-of-thumb will clearly break down, e.g., when the 756 

survey is not representative of the stock but age/size structure is relatively homogenous.  In this 757 

light: 758 

Recommendation #8: We recommend that data weighting be interpreted as a data-driven and 759 

explicit hypothesis about the sources of error, including model and survey imprecision and 760 

inconsistency, and ideally that the sensitivity to these choices be presented to highlight 761 

remaining uncertainties about errors.  In cases when no data are available to evaluate these 762 
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alternative hypotheses, an ensemble of models can be used to communicate resulting uncertainty, 763 

or justification provided for the decision of what data to downweight or not.    764 

 765 

5.  Where do we go from here? 766 

Finally, we conclude by recommending a few priorities for future development and research.  767 

These include (1) improved diagnostics and guidance for what assessment-model changes 768 

(including time-varying parameters) to explore when initial model fits suggest a substantial 769 

downweighting for data, and (2) and establishing an iterative process linking assessment-model 770 

fit to coordinated research regarding sampling inconsistency.  We conclude by briefly discussing 771 

each of these. 772 

5.1 Improved diagnostics and guidance for time-varying processes 773 

Composition data are often re-weighted by default because no analysis has been conducted to 774 

estimate an appropriate input-sample size.  Analysts should seek to fix these cases, using known 775 

methods to estimate input-sample-size (see Recommendations #2/4).  Even when this is done, 776 

however, there will still be cases when data are poorly fitted and initial model-based re-777 

weighting suggests substantial downweighting (i.e., 𝑃𝑃𝑃𝑃𝑃𝑃 > 0.5).  In these cases, an assessment 778 

scientist will be faced with many potential options for additional model changes to improve fit.  779 

These include adding time-varying selectivity, improving the specification of growth, using a 780 

spatially stratified model, or many other options.  However, there is little practical guidance 781 

available for the steps an analyst should follow in revising their model to improve the fit such 782 

that effective sample size approaches input sample size.  We therefore recommend research 783 

regarding:  784 
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1. identifying a threshold for excess variance 𝑃𝑃𝑃𝑃𝑃𝑃 that should trigger additional 785 

exploration;  786 

2. statistical diagnostics to identify the likely process (i.e., time-varying growth, selectivity, 787 

etc.) that can explain the lack-of-fit in a given model;  788 

3. the consequences of mis-specifying which process is time-varying, ideally identifying a 789 

procedure that minimizes the risk of mis-specification across a wide range of states-of-790 

nature (i.e., a minimax justification for specifying time-varying processes, see e.g., 791 

Szuwalski et al. (2018)); and  792 

4. methods to build an ensemble of models representing alternative hypotheses about the 793 

process causing poor fit.   794 

Studies along these lines could then contribute to a “cook-book” of potential responses when 795 

initial fits suggest a high excess variance.   796 

5.2 Iterative process linking assessment-model fit to sampling inconsistency 797 

In some cases, initial model fits will identify that data must be downweighted and subsequent 798 

model expansion will provide a clear avenue for revising the model and thereby decrease excess 799 

variance below an acceptable threshold.  For example, the eastern Bering Sea pollock stock 800 

assessment includes a non-parametric model for time-varying survey selectivity (Ianelli et al., 801 

2018).  This improves the fit to survey age-composition data while ensuring that results are also 802 

used when interpreting the survey abundance index.  However, subsequent research has sought 803 

to attribute this time-varying selectivity to the vertical distribution of pollock and their resulting 804 

availability to different bottom-trawl vs. midwater acoustic survey gears (Kotwicki et al., 2015; 805 

Monnahan et al., 2021b).  This example illustrates that data-weighting can be a starting point for 806 

further coordinated research (involving stock-assessment, survey, and other scientists).  In 807 
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particular, this research would seek to transition from an estimated time-varying parameter in a 808 

stock-assessment model (i.e., “estimation”) to an improved process for measuring the time-809 

varying process directly in nature, and thereby provide an updated data set that accounts for that 810 

process in a more rich set of data (i.e., “monitoring”).  We realize that this process is likely 811 

expensive and therefore only practical to implement for the most important stocks, but also see 812 

that it is an important goalpost for directing research and development for all stock assessments.   813 

 814 

6.  Summary and conclusions 815 

In this paper, we provide a more formal basis for discussing “data-weighting” by decomposing 816 

lack of fit into either imprecision or bias in either field-sampling or assessment modelling steps 817 

of a stock assessment (Table1).  We then discussed implications of this decomposition (Table 2) 818 

and provided several short-term recommendations (Table 3), emphasizing the importance of 819 

quantify sampling imprecision for composition data using an input-sample-size that can be 820 

routinely computed using design- and model-based methods.  We concluded by outlining long-821 

term research recommendations, including the need to establish a useful threshold for excess 822 

variance, and developing an interactive process for linking data-weighting back to improved data 823 

collection and processing.  We hope that future discussions of data-weighting will recognize that 824 

data-weighting is not simply a concern for stock-assessment scientists when tuning a model, but 825 

instead provides a way to broadly organize research spanning modelling, survey, and other 826 

fisheries scientists focused on explaining the complex processes affecting ocean populations.   827 
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Table 1:  Proposed decomposition of the mismatch between data and stock-assessment model 1010 
predictions (i.e., “errors”).  This involves a 2x2 factorial cross of two types of error (rows) and 1011 
two stages of the stock-assessment process (columns), and each cell lists examples that would 1012 
cause that type of error (see Sections 3.1 through 3.4 for details).    1013 

  Stage of stock-assessment process 
  1: Field sampling and pre-

processing data products 
2: Stock assessment 

modelling and interpretation 

Type of 
error 

A: Imprecision 
(decreases with 

more data within 
a given year)  

1A: Sampling imprecision 
(𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
• Finite survey sample 

sizes 
• Intra-haul correlations 

and inter-haul variation  
 

2A: Model imprecision 
(𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
• Process errors 

representing interannual 
variation in growth, 
mortality, or migration 
(i.e., semi-parametric 
model mis-specification) 
 

B/C:  Bias / 
Inconsistency 

(does not 
decrease with 

new data) 

1B/C: Sampling bias 
(𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
• Mis-specified survey 

design 
Distribution shifts 
(horizontal, vertical, among 
habitats) 

 

2B/C: Model bias (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
• Ignoring migration, 

environmentally driven 
survival, and fishery 
targeting (i.e., parametric 
model mis-specification) 
 

 1014 

  1015 
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Table 2:  Implications of the proposed decomposition of errors (see Table 1 for details), listing 1016 
the implication, manuscript section with further discussion, and a published example for each 1017 

Implication Manuscript 
section 

Published 
example 

Input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 measures “sampling imprecision”, so 
further downweighting 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 measures the total 
resulting from sampling bias, model bias, and model 
imprecision 

 

4.3 (Thorson 
and 
Haltuch, 
2018) 

Model-based expansion of sampling data can transform 
“sampling bias” into “sampling imprecision” 

 

3.6 (O’Leary et 
al., 2020) 

Auxiliary data can provide a lower bound on “sampling bias” 4.2 (Monnahan 
et al., 
2021b) 
 

Adding additional random effects (i.e., for time-varying 
processes) can transform “model bias” into “model 
imprecision” 

 

4.4 (Stock et al., 
2021) 

Model-based downweighting of data is useful either: 
1. for unimportant fleets, where unexplained model bias likely 

has little effect; or 
2. when fitting to data when the 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is not measured, and 

hence no starting point is available without model-based 
weighting; or 

3. for fleets where biased fit to age/length composition will not 
also translate to bias for fit to indices or removals. 

4.4 (Wang and 
Maunder, 
2017) 

 1018 

 1019 
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Table 3:  Recommendations resulting from this summary of data expansion and error 1021 

decomposition 1022 

Recommendation 

We recommend that assessment models include options to specify a vector for abundance 

indices or removals across years, and a separate matrix for proportions-at-age across 

years, rather than fitting to a combination of these two.  This ensures that a small 

variance in measurements of total removals or total abundance is appropriately 

propagated even when proportions are less precise 

We recommend using design-, model-, or bootstrap estimators to identify the variance of all 

data inputs, as well as auxiliary information where available to identify the variance 

arising from errors in the sampling frame; 

We recommend providing the variance of each data input (including measured imprecision 

and the magnitude of survey mis-specification measured using auxiliary data) to the 

stock assessment model, so that the model will not estimate a variance for random effects 

that results in a tighter fit to each datum than is warranted by its specified variance. This 

then ensures that the variance of data inputs serves as an “upper bound” on the variance 

of estimated random effects. 

If analysts choose not use the estimated sampling variance V ̂_survey within the stock 

assessment, we recommend as practical alternative that they replacing this with a single 

scalar quantity, “input sample size”, representing the idealized multinomial sampling size 

with approximately similar variance.  Adding additional random effects (i.e., model 

imprecision) will then result in smaller model residuals, and an “effective sample size” 

that approaches this input sample size (i.e., excess variance approaching zero).  
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Similarly, the “input sample size” provides an implicit upper bound on the variance of 

random effects.   

We recommend that analysts use OSA instead of Pearson residuals, to account for the action 

of any random effects and also any non-normal error distributions.  We similarly 

recommend that these residuals be visualized, where patterns among ages and years can 

be used to diagnose model-specification.   

We recommend that model weighting be considered only as a first-pass response to 

overdispersion, and that assessment scientists instead seek to attribute residual patterns to 

additional model processes for important fleets.  This is necessary to ensure that 

overdispersion and correlations among ages and years are interpreted not just for fitting 

age/length compositions, but also when (1) fitting to abundance indices and removals or 

(2) calculating reference points from that same fleet.   

We recommend research to identify auxiliary data (whether combining habitat information, 

multiple surveys, or process research) that can be used to decrease sampling imprecision 

and inconsistency, and thereby mitigate the errors that are otherwise combined in 

“assessment model imprecision” that drive the downweighting of composition data.  This 

research will typically occur in parallel to an operational assessment, and in some cases 

can be done by survey teams and reviewed during Methods Reviews with associated 

terms of reference in a given management region.    

We recommend that data weighting be interpreted as a data-driven hypothesis about the 

sources of error, including model and survey imprecision and inconsistency, and ideally 

that the sensitivity to these choices be presented to highlight remaining uncertainties 

about errors.    
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Table 4 – Summary of different distributions (including alternative parameterizations where they exist) used to fit to compositional 1025 

data (i.e., proportions at age, length, sex, and stage), including an early citation for each method, whether estimation occurs jointly 1026 

with other parameters (“Likelihood”) or requires a post-hoc tuning as a second stage of estimation (“2-stage”) and also noting that the 1027 

multinomial and Dirichlet-multinomial do not integrate to one across the vector of proportions and hence model selection cannot be 1028 

used to compare fit between proper and improper likelihoods, whether the distribution can be fitted to proportions that include zeros, 1029 

and whether the distribution uses information about an input sample size to evaluate subsequent data-weighting.  1030 

Method name Estimation 

(2-stage or likelihood) 

Permits zeros  

(Yes or No) 

Uses input sample size  

(Yes or no) 

Multinomial Likelihood (improper) Yes Yes 

Dirichlet Likelihood No No 

Dirichlet-multinomial 

A. Saturating (Candy, 2008) 

B. Linear (Thorson et al., 2017) 

Likelihood (improper) Yes Yes 

McAllister-Ianelli (1997) 2-stage Yes Yes 

Francis (2011) 2-stage Yes Yes 

Logistic normal: Likelihood No No 
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A. Additive (Schnute and Haigh, 2007) 

B. Multiplicative (Cadigan, 2016) 

Multivariate Tweedie (Thorson et al., 2022) Likelihood Yes Yes 

 1031 

 1032 


