EVALUATION OF A REMOTE WEATHER RADAR DISPLAY

Vol. II - Computer Applications for Storm Tracking and Warning

W. David Zittel

Final Report
December 1976

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research \& Development Service
 Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

Symbel	When You Know	Multiply by	To Find	Symbol
	LENGTH			
in	inches	-2.5	centimeters	cm
f	feet	30	centimeters	cm
yd	yards	0.9	meters	m
mi	miles	1.6	kilometers	km
	AREA			
in^{2}	square inches	6.5	square centimeters	cm^{2}
ft^{2}	square feet	0.09	square meters	m^{2}
yd^{2}	square yards	0.8	square meters	m^{2}
$m i^{2}$	square miles	2.6	square kilometers	km^{2}
	acres	0.4	hectares	ha
	MASS (weight)			
oz	ounces	28	grams	9
lb	pounds	0.45	kilograms	kg
	$\begin{aligned} & \text { short tons } \\ & (2000 \mathrm{lb}) \end{aligned}$	0.9	tonnes	t
	VOLUME			
tsp	teaspoons	5	milliliters	ml
Tbsp	tablespoons	15	milliliters	ml
$f 1 \mathrm{oz}$	fluid ounces	30	milliliters	ml
c	cups	0.24	liters	1
pt	pints	0.47	liters	1
qt	quarts	0.95	liters	1
	gallons		liters	
ft^{3}	cubic feet	0.03	cubic meters	m^{3}
yd^{3}	cubic yards	0.76	cubic meters	m^{3}
	TEMPERATURE (exact)			
${ }^{\circ} \mathrm{F}$	Fahrenheit temperature	5/9 (after subtracting 32)	Celsius temperature	${ }^{\circ} \mathrm{C}$

-1 in $=2.54$ (exactly). For other exact conversions and more detai led tables, see NBS Misc. Publ. 286 .
Units of Weights and Measures, Price $\$ 2.25$, SD Catalog No. C13.10:286.

FOREWORD

The Federal Aviation Administration and the National Severe Storms Laboratory are cooperating in search of improved methods for severe storm prediction and warning for aviation. Here NSSL Operations staff reports on tests involving transmission of contour-mapped WSR-57 weather radar from NSSL headquarters to a.display unit at the Oklahoma City Flight Service Station.

Our study follows other investigations of the comparative value of various radar systems for severe storm surveillance. Improved signal processing and communication techniques and equipment now permit rapid dissemination of information concerning storm location, intensity, and movement and offer a new dimension in weather display for general aviation.

```
ATMOSPHERIC SCIENCES LIBRARY
JUL 181977
N.O.A.A.
U.S. Dept. of Commerce
```


TABLE OF CONTENTS

Page
FOREWORD V
LIST OF FIGURES viii
LIST OF TABLES xiii
LIST OF SYMBOLS xiv

1. INTRODUCTION 1
2. BACKGROUND 1
3. RATIONALE FOR SELECTING AND TRACKING ECHO CENTROID 2 (OR WHY LEAVE A PERSON IN THE PICTURE)
4. MATHEMATICAL FORMULATION 4
4.1 Introduction 4
4.2 Echo Shape and Centroid Calculation 4
4.3 Echo Motion Calculation 7
4.4 Warning Area Calculation 8
5. REAL TIME SYSTEM AND PROGRAM OPERATION 14
5.1 Hypothetical Systems Configuration 14
5.2 Hypothetical Software Logic 14
5.3 Some Practical Guidelines for Using Echo 21 Prediction Software
5.3.1 Time Weight Constant (TWC) 21
5.3.2 Selection of Area and Intensity Criteria 25
5.3.3 Splits and Mergers 26
6. TEST CASES 26
7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 53
ACKNOWLEDGMENTS 56
REFERENCES 56
APPENDIX A: Annotated Command Structure, June 6, 1975 57
APPENDIX B: Annotated Command Structure, June 16, 1975 67
APPENDIX C: Annotated Command Structure, November 2, 1974 83
APPENDIX D: Computer Program Listing for ECHOPRED 95

Figure

Page

1. WSR-57 radar PPI, 100 n mi. range, 20 n mi. range 3 marks, 1454 CST, April 3, 1964.
2. WSR-57 radar PPI, 200 km range, 40 km range marks, 1132 CST, September 24, 1974. Light to moderate stratiform showers indicated over most of the radar scope.
3. Representative echo samples show the path and order of points to describe echo perimeter.
4. Graphic presentation of error in determining the echo centroid due to non-uniform perimeter density for a hypothetical circular echo with a 10 km radius.
5. Illustration of use of an approximating ellipse,
linear least squares predicted echo trajectory and
the RMSE values to calculate graphic warning area
for $\omega>10$ degrees.
6. Illustration of use of an approximating ellipse,
linear least squares predicted echo trajectory and
the RMSE values to calculate graphic warning area
for $\omega \leq 10$ degrees.
7. Schematic of systems flow chart.
8. Illustration showing various commands used in ECHOPRED.
9. Illustration of cone used to locate airports in an echo's path.
10. Illustration of response curve for weighting 22
function, W.
11. Illustration of the effect of varying the TWC for an echo whose track is curved in calculating direction, speed, σ_{d}, and σ_{t}.
12. Illustration of the angular change in centroid position as a function of range.
13. June 6, 1975, 12 Z surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.
14. June 6, 1975, 12Z surface analysis adapted from
DOC, NOAA, EDS daily weather maps, Weekly Series.
Figure
Page
15. Subsynoptic surface data provided by NWS, FAA 29 and NSSL stations, 2000 CST, June 6, 1975, with streamlines superimposed.
16. Divergence field derived from surface data, 2000 CST, June 6, 1975.
17. WSR-57 radar PPI, 400 km range, 100 km range 30 marks, 1600 CST, June 6, 1975.
18. Remote radar display PPI, 200 km range, 2040 CST 32 June 6, 1975.
19. Remote radar display with computer generated 32 warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2110 to 2200 CST.
20. Remote radar display with computer generated 32 warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2110 to 2210 CST.
21. Remote radar display PPI, 200 km range, 2105 CST, 33 June 6, 1975.
22. Remote radar display PPI, 200 km range, 2115 CST , 33 June 6, 1975.
23. Remote radar display with computer generated 33 warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2130 to 2230 CST.
24. Remote radar display PPI, 200 km range, 2120 CST, 33 June 6, 1975.
25. Remote radar display with computer generated 34 warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2135 to 2235 CST.
26. Remote radar display PPI, 200 km range, 2130 CST, 34 June 6, 1975.
27. Remote radar display with computer generated 34 warning areas, echo contours and Oklahoma State outline, 400 km range, June 6, 1975. Prediction time is 2145 to 2245 .

LIST OF FIGURES (cont.)

Figure
28. WSR-57 radar PPI, 200 km range, 40 km range marks, 2249 CST, June 6, 1975.
29. June $16,1975,12 Z$ surface analysis adapted from 35 DOC, NOAA, EDS daily weather maps, Weekly Series.
30. June $16,1975,12 Z 500 \mathrm{mb}$ analysis adapted from 35 DOC, NOAA, EDS daily weather maps, Weekly Series.
31. SMS-3 Sate11ite pictures, June 16, 1975.
32. WSR-57 radar PPI, 400 km range with 200 km range delay to first gate, 40 km range marks, June 16, 1975.
33. Subsynoptic surface data provided by NWS, FAA, and NSSL stations, 1800 CST, June 16, 1975, with streamlines superimposed.
34. Divergence field derived from surface data, 38 1800 CST, June 16, 1975.
35. Remote radar display PPI, 200 km range, 1830 CST June 16, 1975.
36. Remote radar display PPI, 200 km range, 1835 CST June 16, 1975.
37. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1835 to 1935 CST.
38. Remote radar display PPI, 200 km range, 1900 CST, June 16, 1975.
39. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1900 to 2000 CST.
40. Remote radar display PPI, 200 km range, 1915 CST, June 16, 1975.
41. Remote radar display with computer generated warning areas, echo contours and Victor airways, June 16, 1975. Prediction period is 1915 to 2015 CST.

LIST OF FIGURES (cont.)

Figure
42. Remote radar display PPI, 200 km range, 1920 CST, 42 June 16, 1975.
43. Remote radar display PPI, 200 km range, 1930 CST June 16, 1975.
44. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1930 to 2030 CST.
45. Remote radar display PPI, 200 km range, 1945 CST, June 16, 1975.
46. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1945 to 2045 CST.
47. Remote radar display PPI, 200 km range, 2000 CST, June 16, 1975.
48. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2000 to 2100 CST.
49. Remote radar display PPI, 200 km range, 2015 CST, June 16, 1975.
50. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2015 to 2115 CST.
51. Remote radar display PPI, 200 km range, 2030 CST45 June 16, 1975.
52. Remote radar display with computer generated45 warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2030 to 2130 CST.
53. November 1, 1974, 12 Z surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.
54. November 2, 1974, $12 Z$ surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series

LIST OF FIGURES (cont.)

Figure
Page
55. November 3, 1974, $12 Z$ surface analysis adapted46 from DOC, NOAA, EDS daily weather maps, Weekly Series.
56. November 1, 1974, 12 Z 500 mb analysis adapted47 from DOC, NOAA, EDS daily weather maps, Weekly Series.
57. November 2, 1974, 12 Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.
58. November 3, 1974, 12 Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.
59. Subsynoptic surface data provided by NWS, FAA and NSSL stations, 1200Z. November 2, 1974, with streamlines superimposed.
60. Remote radar display PPI, 200 km range, 1225Z, November 2, 1974.
61. Remote radar display PPI, 200 km range, 1230Z, November 2, 1974.
62. Remote radar display PPI, 200 km range, 1240Z, November 2, 1974.
63. Remote radar display with computer generated warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1240 to 1340Z.
64. Remote radar display $\mathrm{PPI}, 200 \mathrm{~km}$ range, 1251 Z , November 2, 1974.
65. Remote radar display with computer generated
warning areas, echo contours and Victor airways,
November 2,1974 . Prediction period is 1251 to
1351Z.
66. Remote radar display PPI, 200 km range, 1300 Z , 51 November 2, 1974.FigurePage
67. Remote radar display with computer generated 51 warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1300 to 1400Z.
68. Remote radar display PPI, 200 km range, 1310 Z , 52 November 2, 1974.
69. Remote radar display with computer generated 52 warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1310 to 1410Z.
LIST OF TABLES
Table Page

1. Comparison of results of using a TWC of both 23
30 and 5 minutes on data sampled at both 2-3 minutes and 4-6 minutes for tracking two echoes.
2. Echo centroid positions, direction and speed 31 predicted, and the RMSE values for June 6, 1975.
3. Echo centroid positions, direction and speed 40 predicted, and the RMSE values for June 16, 1975.
4. Echo centroid positions, direction and speed 49 predicted, and the RMSE values for November 2, 1974.

a	Fourier coefficient subscript denoting arrival time
a_{n}	Fourier coefficient of nth harmonic
A	coefficient of general equation of ellipse
A^{\prime}	coefficient of raotated ellipse
A_{x}	coefficient of linear least squares equation for $\mathrm{X}(\mathrm{t})$
A_{y}	coefficient of linear least squares equation for $Y(t)$
b	Fourier coefficient subscript denoting beginning point time
b_{n}	Fourier coefficient of nth harmonic
B	coefficient of general equation of ellipse
B_{X}	coefficient of linear least squares equation for $X(t)$
By	coefficient of linear least squares equation for $Y(t)$
c	Fourier coefficient
c_{n}	Fourier coefficient of nth harmonic
C	coefficient of general equation of ellipse
C^{\prime}	coefficient of rotated ellipse
d	Fourier coefficient subscript denoting distance
d_{n}	Fourier coefficient of nth harmonic
e	base of natural logarithms subscript denoting ending point, time
G	gatelength
i	index counter

k	time constant in weighting functio
K	constant of general second order equation for ellipse
ℓ	subscript denoting last point, time
L	perimeter of echo for arc length function
M	total number of discrete line segments to describe echo perimeter slope of straight line
n	denotes number of harmonic number of centroid entries for echo tracking
N	number of points, used in LLS equation
$p_{i} q_{i}$	coefficients of linear line for discrete arc lengths
P_{b}	beginning points along the echo path for warning area
P_{e}	ending point along echo path for warning area
P_{0}	last centroid position entered
R	range between two points
$\mathrm{R}_{1} \mathrm{R}_{2}$	distance to two consecutive gates
s	arc length parameter
${ }_{\text {s }}{ }^{\text {I }}$	discrete arc length
t	time
t_{b}	beginning time
t_{e}	ending time
t_{i}	time of ith centroid entry
${ }^{\text {}}$ ¢	time of last centroid entry
t_{n}	same as ${ }^{\text {l }}$
W	weighting parameter

LIST OF SYMBOLS (cont.)

x	subscript for coefficients of linear least squares equation
X	independent variable
X_{ℓ}	last position of $\mathrm{X}(\mathrm{t})$
X (s)	parametric function of arc length for X
X (t)	parametric function of linear least squares equation for X
(X, Y), ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$)	denotes points in Cartesian coordinates
XM	slope of echo track
y	subscript for coefficients of linear least squares equation
Y	dependent variable
Y_{ℓ}	last position of $\mathrm{Y}(\mathrm{t})$
$\mathrm{Y}(\mathrm{s})$	parametric function of arc length for Y
$Y(t)$	parametric function of linear least squares equation for Y
$\Delta \alpha$	angular change
$\Delta \mathrm{t}$	change in time
$\varepsilon_{\text {d }}$	distance error in echo tracking
ε_{t}	time error in echo tracking
θ	angular difference between consecutive radials
$\sigma_{\text {d }}$	RMS estimates of distance error
σ_{t}	RMS estimates of time error
ω	smallest angle to rotate approximating ellipse to eliminate cross product terms

EVALUATION OF A REMOTE WEATHER RADAR DISPLAY

VOLUME II
Computer Applications and Techniques for Storm Tracking and Warning

W. David Zitte1

1. INTRODUCTION

This report extends tests of the remote radar display described in Volume 1 and examines the feasibility of the display as a graphics terminal. A storm tracking program has been combined with an echo contouring scheme to produce graphic warning areas based on size and motion of storm echo areas.

A detailed description is provided of the mathematical techniques employed and a quasi-real time software program is outlined. In addition, three case studies utilizing the above logic are presented. Finally, a summary of results and suggestions for improvements and future work are discussed.

2. BACKGROUND

Information regarding storm motion and growth tendencies are now presented to the FSS pilot-briefer in two forms. First, a numerical coding in the hourly radar report transmitted by teletype (RAREP) indicates the past tendency of storm pattern growth or decay. Motion, in polar coordinates, of both the pattern and individual cells are included.

Secondly, a plain language summary provides a "layman's" geometric description of the storms with geographical references to outline the present and projected coverage. Severe Storm Warnings and special advisories to airmen (SIGMETS and AIRMETS) carry information on hazardous flight conditions. At a few locations, these messages are augmented by a facsimile machine replica of the Plan-Position Indicator (PPI) with appropriate annotations (Bigler, 1969).

The reliability of both types of advisories varies directly with the spatial and temporal variance of radar echo patterns. Information contained in the RAREP is usually a sterile summary of the radar scope display, condensing details observed and coded during a specific 15 minute period. Plain language summaries and advisories may include information on the position and movement of fronts and squall lines, and observations of recent severe weather events.

During periods when echo coverage and/or intensity change rapidly special observations supplement hourly reports. During periods of severe weather, the National Weather Service radar scopes are monitored constantly, but because the flow of information is restricted by communication
facilities and the heavy work load required to meet various local, state and national needs, messages to the FSS are periodic.

The Volume I tests have shown that if calibrated contoured data are available routinely at the FSS, pilot briefers can interpolate between National Weather Service advisories and maintain a "user's watch" of storm locations and intensities. However, neither time nor expertise is available at the FSS to relate echo patterns to synoptic scale disturbances (wind, pressure, and moisture fields) and severe weather reports. Even with such data, it is difficult for meteorologists to predict changes in gross features of precipitation areas.

Fortunately, large severe storms tend to be steady-state and lend themselves to tracking and extrapolation. The principal objective of this study is to apply semi-automated computerized logic to identify, track, and extrapolate those storms of sufficient intensity and size to produce hazardous weather conditions and to map out a warning area for the extrapolated storm positions.

3. RATIONALE FOR SELECTING AND TRACKING ECHO CENTROID (OR WHY LEAVE A PERSON IN THE PICTURE)

Several years experience in field operations at NSSL have stressed the value of retaining the meteorologist for real time decision making. It seems difficult, if not impossible, to anticipate all the complicated elements occasionally present in real weather situations, in a computer program.

Several objective techniques have been suggested by Kessler and and Russo (1963), Wilson (1966), and Blackmer and Duda (1972), which rely on spatially correlating PPI information to derive echo motion and speed. As shown in Figure 1, significant storms on the radar scope may have quite different motions. Also under certain conditions severe storms split with one portion often moving to the left of the average ambient wind direction and faster than the wind speed, while the other portion moves to the right and slower than the ambient wind (Newton and Fankhauser, 1964). Under these conditions a single speed and direction of motion for the whole scope would be misleading.

Even if individual echoes are first isolated (Wilk, 1966), there are several drawbacks to using this approach. In a matrix analysis, a minimum of two PPI's must be stored at the same time requiring a large computer core. Generally, the two fields should have uniform grid density which an R, θ system doesn't have. In an R, θ system, data must be scan-converted to rectilinear coordinates before correlating the data. Both scan conversion and correlation techniques are time consuming. Care also must be taken when scan converting to assure that spatial averaging has not changed the distribution of intensity integers.

By contrast, the echo centroid extrapolation technique requires only a small amount of core and is very fast. One can operate the program with radar data extracted manually from the PPI scope display. One may also, in a relatively short period of time, use limited automation to scan a PPI for centroid information, and display it regularly without full time monitoring. (Such a technique is presented in section 5.) Tests during the NSSL Spring Program (Wi1k and Gray, 1970) indicate an operator can easily filter extraneous or unwanted data. Some storms may be moving beyond the radar scope's range while others may be part of a broad band of non-severe stratiform rain whose overall movement is slower and more persistent (fig. 2).

An operator may recognize splitting or merging storms which need to be treated as new echoes. (Computer programs to date have not proved reliable in echo matching and we make no attempt to do this. here.)

One final reason for leaving an operator in the picture is to insure detection of system failures and to recognize spurious, nonmeteorological results when computerized objective analysis software systems are in operation. The following sections are devoted to the operation of a man-machine mix using examples of real data sets.

Figure 1. WSR-57 radar PPI, 100 n mi. range, 20 n mi. range marks, 1454 CST, April 3, 1964. Individual echoes are numbered one to five.

Figure 2. WSR-57 radar PPI, 200 km range, 40 km range marks, 1132 CST , September 24, 1974. Light to moderate stratiform showers indicated over most of the radar scope.

4. MATHEMATICAL FORMULATION

4.1 Introduction

Three sources of information are used to construct a graphic presentation of a warning area. In order of calculation, they are (a) echo centroid and shape, (b) echo motion, and (c) a measure of the variance of the echo motion. The method used to calculate echo centroid and shape basically requires fitting an arc length function to the echo's perimeter and was suggested by Blackmer and Duda (1972), later developed by Östlund (1974). Calculation of echo motion and variance using centroid positions was developed by Barclay and Wilk (1970) and run operationally during the 1970 Spring Data Collection Program.

4.2 Echo Shape and Centroid Calculation

Use of the arc-length function to describe echo shape requires that one first determine echo perimeter. In the computer logic developed for this report, data are entered into core and all bins with intensity less than a specified level are first set to zero. Then, beginning with zero degrees azimuth, the PPI is searched until an echo is found. Then the program isolates the echo, moving around the perimeter in a counterclockwise direction until it comes upon the starting point. This logic differs from Östlund's in at least two respects. First, the echo's perimeter is defined in an R, θ coordinate system; and second, the program minimizes echo area. The following two examples in B scan format illustrate these points.

In Figure 3 the arrows indicate the path followed in the boundary search. S is the starting gate, X's represent echo, dots--no echo. Echo 1 is joined to echo 2 by a single gate along a common radial. The program ignores that gate since it would have to be used twice in order to close the boundary and combine echo 1 and 2. Likewise, between echo 2 and echo 3 there is a common corner. But because the corner gates would have to be used twice, the echoes are separated.

No gate is used twice except the

The obvious result of the above, is that cores tend to be discrete with a more regular shape.

After a closed boundary is found, the area of echo is calculated by summing up all bins within and including the perimeter. The area of a bin is given by $\left(\theta \pi R_{1}{ }^{2}-\theta \pi R_{2}{ }^{2}\right) / 360^{\circ}$, which can be factored into $\theta \pi\left(R_{1}-R_{2}\right)\left(R_{1}+R_{2}\right) / 360^{\circ}$. Since the difference between R_{1} and R_{2} is the gatelength of the radar, G, and θ is the angular difference between radials, the area of an individual bin is

$$
\begin{equation*}
\frac{\theta \pi G\left(2 R_{1}-G\right)}{360^{\circ}} \tag{1}
\end{equation*}
$$

If an echo's area is less than a specified threshold, it is ignored and the program searches for a new echo. If an echo exceeds the specified area, Fourier analysis of its shape is performed. If the area is more than five times the specified area, the lowest intensity is purged and the remaining core treated as a new echo. This process is iterated until the echo is less than the specified area.

Once an echo meets the size criterion, the program enters subroutine OSTLND. Here the paired azimuth and range perimeter data are converted to Cartesian points. Fourier analysis of $\mathrm{X}(\mathrm{s})$ and $\mathrm{Y}(\mathrm{s})$ is performed where s is the arc length function. Mathematically these functions are:

$$
\begin{align*}
& X(s)=\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{2 n \pi s}{L}\right)+b_{n} \sin \left(\frac{2 n \pi s}{L}\right) \tag{2}\\
& Y(s)=\sum_{n=0}^{\infty} c_{n} \cos \left(\frac{2 n \pi s}{L}\right)+d_{n} \sin \left(\frac{2 n \pi s}{L}\right) \tag{3}
\end{align*}
$$

The coefficients a_{n}, b_{n}, c_{n}, and d_{n} may be expressed as

$$
\begin{align*}
& a_{n}=\frac{2}{L} \int_{0}^{L} X(s) \cos \left(\frac{2 n \pi s}{L}\right) d s \tag{4}\\
& b_{n}=\frac{2}{L} \int_{0}^{L} X(s) \sin \left(\frac{2 n \pi s}{L}\right) d s \tag{5}\\
& c_{n}=\frac{2}{L} \int_{0}^{L} Y(s) \cos \left(\frac{2 n \pi s}{L}\right) d s \tag{6}
\end{align*}
$$

$$
\begin{equation*}
d_{n}=\frac{2}{L} \int_{0}^{L} Y(s) \sin \left(\frac{2 n \pi s}{L}\right) d s \tag{7}
\end{equation*}
$$

where n, an integer, is the nth harmonic.
Each coefficient may be rewritten:

$$
\begin{equation*}
a_{n}=\frac{2}{L} \sum_{i=1}^{M} \int_{s_{i}}^{s_{i+1}} X(s) \cos \left(\frac{2 n \pi s}{L}\right) d s \tag{8}
\end{equation*}
$$

where M is the number of discrete points in the echo's boundary. Also, since $X(s)$ may be considered as consisting of a series of discrete line segments, one may set $X\left(s_{i}\right)=p_{i}+q_{i} s_{i}$. Setting this expression into Eq. (8) and integrating yields:
$a_{n}=\frac{2}{L} \sum_{i=1}^{M}\left|\frac{p_{i} L}{2 n \pi} \sin \left(\frac{2 n \pi s_{i}}{L}\right)+\frac{q_{i} L^{2}}{(2 n \pi)^{2}} \cos \left(\frac{2 n \pi s_{i}}{L}\right)+\frac{s_{i} L}{2 n \pi} \sin \left(\frac{2 n \pi s_{i}}{L}\right)\right|_{s_{i}}^{s_{i+1}}$

Eq. (9) and the corresponding equation for each of the other coefficients are calculated in the computer. The Oth harmonic yields the mean of each series and thus the centroid of the echo's shape. Eight harmonics in addition to the mean are calculated.

Because the values are derived initially from a polar scan, the density of points about the perimeter is not constant, biasing the centroid location towards the radar. In a hypothetical case, using a circle of 10 km radius, the resulting centroid error varies as a function of range (fig. 4) and is a maximum at 10 km . However, for an echo with stable motion there is little error because all centroids have the same bias.

Figure 4. Graphic presentation of error in determining the echo centroid due to nonuniform perimeter density for a hypothetical circular echo with a 10 km radius.

4.3 Echo Motion Calculation

The calculation of echo motion uses linear least squares (LSS) equations fitted through an echo's past centroid positions expressed parametrically as a function of time as

$$
\begin{align*}
& X(t)=A_{x} t+B_{x} \tag{10}\\
& Y(t)=A_{y} t+B_{y} \tag{11}
\end{align*}
$$

where A_{x} and A_{y} are found by solving

$$
\begin{align*}
& A_{x}=\frac{N \Sigma X t-\Sigma X \Sigma t}{N \Sigma t^{2}-(\Sigma t)^{2}} \tag{12}\\
& A_{y}=\frac{N \Sigma Y t-\Sigma Y \Sigma t}{N \Sigma t^{2}-(\Sigma t)^{2}} \tag{13}
\end{align*}
$$

The ordinate axis intercepts, usually found by solving

$$
\begin{equation*}
B_{x}=\bar{x}-A_{x} \bar{t} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{y}=\bar{Y}-A_{y} \bar{t}, \tag{15}
\end{equation*}
$$

are here given as

$$
\begin{equation*}
B_{x}=x_{\ell}-A_{x} t_{\ell} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{y}=Y_{\ell}-A_{y} t \tag{17}
\end{equation*}
$$

where t_{ℓ}, X_{ℓ} and Y_{ℓ} are the echo's last position in time and space. This condition forces the LSS equations through the last point.

From Eqs. (10) and (11) echo speed is simply

$$
\begin{equation*}
\operatorname{SPD}=\left(A_{x}^{2}+A_{y}^{2}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

and the direction of motion is

$$
\begin{equation*}
\operatorname{DIR}=\operatorname{TAN}^{-1}\left(A_{x} / A_{y}\right)+180 \tag{19}
\end{equation*}
$$

A measure of an echo's predictability in time and distance is determined by comparing the time of the latest centroid position to the predicted time of closest passage to that centroid position. The difference, Δt, is defined as the error in time, ε_{t}. The distance between the predicted point of closest passage and the actual centroid location is defined as

$$
\begin{equation*}
\varepsilon_{d}=\left[\left(A_{x} t+B_{x}-X\right)^{2}+\left(A_{y} t+B_{y}-Y\right)^{2}\right]^{1 / 2} \tag{20}
\end{equation*}
$$

where t is the time of closest passage and X and Y are the Cartesian coordinates of the latest centroid position. We can solve for the unknown time, t, by first squaring terms in Eq. (20) and then differentiating them with respect to t yielding:

$$
\begin{equation*}
\frac{d\left(\varepsilon_{d}\right)^{2}}{d t}=2 A_{x}\left(A_{x} t+B_{x}-x\right)+2 A_{y}\left(A_{y} t+B_{y}-Y\right) \tag{21}
\end{equation*}
$$

Setting the expression on the right equal to zero and solving for t yields

$$
\begin{equation*}
t=\frac{A_{x}\left(x-B_{x}\right)+A_{y}\left(Y-B_{y}\right)}{A_{x}^{2}+A_{y}^{2}} \tag{22}
\end{equation*}
$$

Therefore ε_{t} is $t-t_{\ell}$ where t_{l} is the time of the latest centroid. Given t, ε_{d} can be calculated directly from Eq. (20).

Finally, ε_{t} and ε_{d} are normalized to one hour and root mean square errors (RMSE) computed from

$$
\begin{equation*}
\operatorname{RMSE}_{d} \equiv \sigma_{d}=\left[\frac{\sum_{i=1}^{n}\left(\frac{\varepsilon_{d}}{t_{n}-t_{n-1}}\right)^{2}}{n}\right]^{1 / 2} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{RMSE}_{t} \equiv \sigma_{t}=\left[\frac{\sum_{i=1}^{n}\left(\frac{\varepsilon_{t}}{t_{n}-t_{n-1}}\right)^{2}}{n}\right]^{1 / 2} \tag{24}
\end{equation*}
$$

for $\mathrm{n} \geq 3$, where n is the number of points in a discrete track.

4.4 Warning Area Calculations

We can now combine the results of sections 4.2 and 4.3 to determine a warning area. Given a beginning time, t_{b}, and ending time, t_{e}, we first solve Eqs. (10) and (11) for the starting and ending points P_{b} and P_{e}, of the warning area specified in the time domain, which lie on the
echo path (fig. 5). A measure of a storm's predictability in time is included in determining P_{b} and P_{e} as follows:

For P_{b}

$$
\begin{align*}
& X=A_{x}\left(t_{b}-\sigma_{t}\right)+B_{x} \tag{25}\\
& Y=A_{y}\left(t_{b}-\sigma_{t}\right)+B_{y} \tag{26}
\end{align*}
$$

and for P_{e}

$$
\begin{align*}
& x=A_{x}\left(t_{e}+\sigma_{t}\right)+B_{x} \tag{27}\\
& Y=A_{y}\left(t_{e}+\sigma_{t}\right)+B_{y} . \tag{28}
\end{align*}
$$

Next, two line segments are found which are paralle1 to and the same length as the major axis of the echo and which pass through P_{b} and P_{e}, respectively. The length and orientation of the line segments are determined by finding an ellipse which approximates the echo at hand.

A parametric form of an ellipse is given by the zeroth and first harmonics of the echo. For convenience the ellipse is translated to the origin eliminating the zeroth harmonic from further calculations. From Eqs. (2) and (3) Cartesian coordinates expressed as a function of the arc length, s, for any point on the ellipse are given by

Figure 5. Illustration of use of an approximating ellipse, linear least squares predicted echo trajectory and the RMSE values to calculate graphic warning area for $\omega>10$ degrees.

$$
\begin{align*}
& X(s)=a_{1} \cos \left(\frac{2 \pi s}{L}\right)+b_{1} \sin \left(\frac{2 \pi s}{L}\right) \tag{29}\\
& Y(s)=c_{1} \cos \left(\frac{2 \pi s}{L}\right)+d_{1} \sin \left(\frac{2 \pi s}{L}\right) \tag{30}
\end{align*}
$$

Also, an ellipse has the second degree form

$$
\begin{equation*}
A X^{2}+B X Y+C Y^{2}=K \tag{31}
\end{equation*}
$$

where A, B, C and K are constants. By combining Eqs. (29) and (30) with Eq. (31) we can find three equations with which to solve for A, B and C from which the orientation of the ellipse is found. A value for K is specified below. Setting Eqs. (29) and (30) into (31) yields:

$$
\begin{align*}
K= & A\left(a_{1} \cos \left(\frac{2 \pi s}{L}\right)+b_{1} \sin \left(\frac{2 \pi s}{L}\right)\right)^{2}+C\left(c_{1} \cos \left(\frac{2 \pi s}{L}\right)+d_{1} \sin \left(\frac{2 \pi s}{L}\right)\right)^{2} \\
& +B\left(a_{1} \cos \left(\frac{2 \pi s}{L}\right)+b_{1} \sin \left(\frac{2 \pi s}{L}\right)\right)\left(c_{1} \cos \left(\frac{2 \pi s}{L}\right)+d_{1} \sin \left(\frac{2 \pi s}{L}\right)\right) . \tag{32}
\end{align*}
$$

Expanding and combining like terms gives us:

$$
\begin{align*}
K= & \left(A a^{2}+B a c+C c^{2}\right) \cos ^{2}\left(\frac{2 \pi s}{L}\right)+\left(A b^{2}+B b d+C d^{2}\right) \sin ^{2}\left(\frac{2 \pi s}{L}\right) \\
& +(2 A a b+B(a d+b c)+2 C c d) \sin \left(\frac{2 \pi s}{L}\right) \cos \left(\frac{2 \pi s}{L}\right) \tag{33}
\end{align*}
$$

When $2 \pi \mathrm{~s} / \mathrm{L}=0, \sin \left(0^{\circ}\right)=0$ and $\cos \left(0^{\circ}\right)=1$; when $2 \pi \mathrm{~s} / \mathrm{L}=\pi / 2$, $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$.

Under these two conditions Eq. (33) reduces to the following two identities

$$
\begin{align*}
& K=A a^{2}+B a c+C c^{2} \tag{34}\\
& K=A b^{2}+B b d+C d^{2} . \tag{35}
\end{align*}
$$

Since they contain only constants they are valid for $a 11 \mathrm{~s}$ and K can be set into Eq. (33) as:

$$
\begin{align*}
K= & K \cos ^{2}\left(\frac{2 \pi s}{L}\right)+K \sin ^{2}\left(\frac{2 \pi s}{L}\right) \\
& +(2 A a b+B(a d+b c)+2 c d) \sin \left(\frac{2 \pi s}{L}\right) \cos \left(\frac{2 \pi s}{L}\right) . \tag{36}
\end{align*}
$$

From trigonometry $\sin ^{2} \omega+\cos ^{2} \omega=1$ and similarly $K \sin ^{2} \omega+K \cos ^{2} \omega=K$. Hence, for Eq. (36) to be valid when $\sin (2 \pi s / L)$ and $\cos (2 \pi s / L)$ both $\neq 0$

$$
\begin{equation*}
2 \mathrm{Aab}+\mathrm{B}(\mathrm{ad}+\mathrm{bc}+2 \mathrm{Ccd})=0 \tag{37}
\end{equation*}
$$

must be true. Since a, b, c, and d are simply the coefficients of the first harmonic, only $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and K are unknown.

From Eq. (29) a maximized value of $X(s)$ is $\left(a^{2}+b^{2}\right)^{1 / 2}$ and from Eq. (30) a maximized value of $Y(s)$ is $\left(c^{2}+d^{2}\right)^{1 / 2}$. Therefore a maximum value for $\left(X(s)^{2}+Y(s)^{2}\right)^{1 / 2}$ is $\left.a^{2}+b^{2}+c^{2}+d^{2}\right)^{1 / 2}$ which is set equal to K. This gives us a fairly accurate measure of the ellipse's semimajor axis. K, as computed above, will always be slightly greater than the true length of the semimajor axis. However, this is quite satisfactory since the length of the echo's axis is the sum of several harmonics and not just of the first harmonic alone.

Using determinants, A, B, and C may be found by solving Eqs. (34), (35) and (37) simultaneously. Specifically

$$
A=\frac{\left|\begin{array}{ccc}
K & a c & c^{2} \tag{38}\\
K & b d & d^{2} \\
0 & \frac{1}{2}(a d+b c) & c d
\end{array}\right|}{\left|\begin{array}{lcc}
a^{2} & a c & c^{2} \\
b^{2} & b d & d^{2} \\
a b & \frac{1}{2}(a d+b c) & c d
\end{array}\right|} .
$$

Expanding the determinants and combining like terms yields:

$$
\begin{equation*}
A=\frac{K\left(b c d^{2}+\frac{1}{2}\left(a^{2}-d^{2}\right)(a d+b c)+a d c^{2}\right)}{2\left(a^{2} b c d^{2}-a b^{2} c^{2} d\right)+\frac{1}{2}\left(b^{2} c^{2}-a^{2} d^{2}\right)(b c+a d)} \tag{39}
\end{equation*}
$$

B and C are computed likewise.

Once the ellipse's coefficients have been found, its orientation can be determined using the relationship (Morris and Brown, 1937)

$$
\begin{equation*}
\tan (2 \omega)=\frac{B}{A-C} \tag{40}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega=\frac{1}{2} \tan ^{-1}\left(\frac{\mathrm{~B}}{\mathrm{~A}-\mathrm{C}}\right) . \tag{41}
\end{equation*}
$$

There is an ambiguity as to which axis of the ellipse from which ω is measured. This ambiguity may be resolved by considering the sign and relative size of A, B and C. However, if the ellipse is first rotated through angle ω eliminating B, its equation becomes

$$
\begin{equation*}
A^{\prime} X^{2}+C^{\prime} Y^{2}=K \tag{42}
\end{equation*}
$$

Then, if A^{\prime} is less than C^{\prime}, ω is measured with respect to the major axis; if C^{\prime} is greater than A^{\prime}, ω is measured with respect to the minor axis.

Now if the slope of a line, the length between two points on that line, and the coordinate of one of the points are all known, we may solve for the coordinates of the unknown point by combining the equation of a straight line with the equation for the distance between two points. Further, assume, that the given line intersects the echo path at ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$) where X^{\prime} and Y^{\prime} are known and the unknown coordinates are X and Y. Then

$$
\begin{equation*}
Y-Y^{\prime}=M\left(X-X^{\prime}\right) \tag{43}
\end{equation*}
$$

where $M=\tan \omega$ is the slope of the line and

$$
\begin{equation*}
R^{2}=\left(Y-Y^{\prime}\right)^{2}+\left(X-X^{\prime}\right)^{2} \tag{44}
\end{equation*}
$$

where R is the distance between (X, Y) and ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$). We square Eq. (43) and set it into Eq. (44) yielding

$$
\begin{equation*}
R^{2}=M^{2}\left(X-X^{\prime}\right)^{2}+\left(X-X^{\prime}\right)^{2} \tag{45}
\end{equation*}
$$

Factoring and transferring terms yields

$$
\begin{equation*}
\frac{\mathrm{R}^{2}}{\mathrm{M}^{2}+1}=\left(\mathrm{X}-\mathrm{X}^{\prime}\right)^{2} \tag{46}
\end{equation*}
$$

Finally, taking the square root of each side and solving for X gives us

$$
\begin{equation*}
X=X^{\prime} \pm\left(R^{2} /\left(M^{2}+1\right)\right)^{1 / 2} \tag{47}
\end{equation*}
$$

and Y for each X is given by

$$
\begin{equation*}
Y=Y^{\prime}+M\left(X-X^{\prime}\right) \tag{48}
\end{equation*}
$$

Thus, we have found two points--one above and one below the echo path which define the initial warning boundary. There are also two points which define the final warning boundary. These four points define the warning area. R in the above equations is equivalent to K in the general equation of the ellipse. However, in solving for the above points, R is modified to include $\sigma_{d} \cdot \sigma_{d}$ is scaled linearly such that the total length for R is given by

$$
\begin{align*}
R & =k+\sigma_{d}\left|t_{b}-t_{\ell}\right| \quad \text { at } P_{b} \tag{49}\\
\text { and } R & =k+\sigma_{d}\left|t_{e}-t_{\ell}\right| \quad \text { at } P_{e} . \tag{50}
\end{align*}
$$

${ }^{t_{\ell}}$ is the time of the last echo observation.
From Figure 6 it will be recognized that the warning area is a modified parallelogram. However, as the echo's major axis becomes more closely aligned with the echo motion, the parallelogram closes. Therefore, whenever the echo's motion and the echo's major axis are within 10 degrees of each other, the minor axis of the best fit ellipse is used for K and the slope of the lines passing through P_{b} and P_{e}, respectively, are given as $-1 / X M$ where $X M$ is the slope of the echo motion line passing through both P_{b} and P_{e} (fig. 6).

CASE FOR $\omega<10^{\circ}$

Figure 6. Illustration of use of an approximating ellipse, linear least squares predicted echo trajectory and the RMSE values to calculate graphic warning area for $\omega \leq 10$ degrees.

5. REAL TIME SYSTEM AND PROGRAM OPERATION

Since the remote radar display system has the built-in capability to be interfaced to a computer, we adopted the programming philosophy of duplicating, as nearly as possible, a real-time operation. In this section we shall first describe a model system and its components; second, describe the decision making and choices within the software available to an operator; and third, offer some guidelines for using the program logic.

5.1 Hypothetical Systems Configuration

In addition to the electronic components already described in Volume I, the system requires a central processor with a 50 K decimal word memory core. In order to operate in a pseudo-real-time manner, memory cycle time should be about one $\mu \mathrm{sec}$. (The Systems Engineering Laboratory's model 8600, on which the software was developed, has a memory cycle time of 600 nanosec.)

Secondly, some sort of mass storage unit is needed. When not being used, the prediction and display logic resides there. Otherwise, the Fortran program would have to be entered each time the system is used. Also stored on disk are three data files: a) coordinates for graphically displaying the State of Oklahoma, b) coordinates for graphically displaying the Victor Airways, and c) a list of Oklahoma airports. (The use of these files is explained below.) Last, an I/O device such as a teletype or alphameric CRT with keyboard entry is needed. The operator must manually insert commands and echo information into the software and, in turn, receives back numerical values of echo speed and direction of motion and a measure of the predictability of echo motion. Information . flow is shown in the systems flow chart (fig. 7).

5.2 Hypothetical Software Logic

First, let us assume that the program already resides on disk and has been given the name ECHOPRED. The operator then merely enters ECHOPRED to bring the program to an operational status. The operator's first decision is whether or not to initialize the program. (Figure 8 illustrates the command structure which is presented in this section.) This depends upon whether or not the operator is working a new storm day. For a new day or a long break in operation, the operator's response will be 'YES', otherwise we presume he is still working the same storms and the response is 'NO', to the question, 'INITIALIZE'. When the answer is 'NO', echo information is retrieved from disk. The program should be left operational during storm conditions; only if a power failure disrupts operation should the operator not initialize the program.

Next, the program will ask for 'COMMAND'. Assuming this is the start of operation or recovery after a failure, a systems check should be made. After the operator responds with 'RQC', Radar Quality Control,

Figure 7. Schematic of systems flow chart.
the computer will type first 'PPI CHECK' with appropriate response being 'YES' or 'NO', and then 'TEST PATTERN'. Again the operator responds 'YES' or 'NO'.

In 'PPI CHECK' the program checks the housekeeping information (date, time, azimuth) in detail and also counts the number of bins of each intensity in the PPI and presents this information to the operator. A systematic decrease in the frequency of higher intensities should occur when only ground clutter returns are present. A low count at especially the first, second or fourth intensity levels may indicate hardware failure. A few random housekeeping errors will occur due to telephone line noise and are not serious.

The 'TEST PATTERN' is a computer generated field of seven concentric rings 20 degrees in width corresponding to each intensity switch surrounded by seven radial stripes of 10 degrees width starting with 0 degrees AZM, and repeated through 360 degrees. The purpose is to check the fidelity of the receiver memory. For least confusion, we recommend setting the intensity switches to the following gray shade pattern: 1231232.

When the computer has finished with one or both of the above tests, it will again type 'COMMAND'. At this point the operator may wish to enter a value for the Time Weight Constant, TWC. After TWC is entered, the computer will type ${ }^{-1} \mathrm{HHMM}^{\prime}$ for $\overline{\text { which }}$ the operator enters a number such

Figure 8. (Here and on adjoining page) Illustration showing various commands used in ECHOPRED.

INITIALIZE
YES
COMMAND
R2C
PPI CHECK
YES
TEST PATTERN
YES
IAZ TILT STC JUL TIME DLY GL TC $0 \quad 0 \quad 0 \quad 164110025 \quad 0 \quad 1 \quad 1$

LAST AZIMUTH $=359$ LAST RADIAL $=360$
INTENSITY BIT COUNT

1	2	3	4	5	6	7
844	1085	803	1128	686	494	0

SET INTENSITY SWITCHES TO 12231232
COMMAND
TWC
HHMM
30
COMMAND
GCD
20
COMMAND
ACC
AREA/INTENSITY
1003
DAY/ TIME/ TILT
$1641110 \quad 0$
2 STR ECHOES FOUND WITH AREA GREATER THAN 100 SQ KM
AREA/AZIMUTH/RANGE
170334142
$146 \quad 350 \quad 137$
DAY/ TIME/ TILT
$1641120 \quad 0$
STOP
2 STR ECHOES FOUND WITH AREA GREATER THAN 100 SQ KM
AREA/AZIMUTH/RANGE
205337137
144354133
COMMAND
ENT

```
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDDS/ STDTM
11110 334. 142.
2 1110 350. 137.
1 1120 337. 137.
2 1130 337. 137.
279.9 53.1 0.00 0.000
285.0 61.4 0.00 0.000
0
COMMAND
DIS
BTIME/ETIME/RANGE/OVERPLAY/ECHO NUMBERS
1120 1220 100 VIC 1 2
WHE
ECHO NO/ AZM/ RNG
    1 19. 104.
12.4 KM(+/- 0.0) AT 1302 (1211 - 1354)
COMMAND
AIR
BTIME/ ETIME/ STD DEV/ ECHO NO.S
    11201220 3. 1 2
ECHO 1
TIME AIRPORT DIST FTIM LTIM
NO ENCOUNTERS PREDICTED
ECHO 2
TIME AIRPORT DIST FTIM LTIM
1151 PERRY 3.2 S 1147 1154
    1 ENCOUNTERS LISTED
COMMAND
POS
ECHO NO/ HHMM
    2 1200
AZM.RNG = 11.9 124.4 RAD 1SD= 0.0 RAD 3SD= 0.0
COMMAND
DEL
WHICH ECHOES
    1 2
* NO ACTIVE ECHOES
COMMAND
IGN
    ECHOES 1 AND 2 WERE DELETED BECAUSE THEY WERE NOT STRONG ENOUGH TO
    CONSTITUTE A HAZARD TO AVIATION.
KEY
COMMAND
BYE
```

as 2400. If no entry is made for TWC the program uses a 30 minute default value. The TWC exponentially weights the influence that past centroids have when predicting echo motion, giving greatest weight to the most recent point (see section 5.3.1).

Another parameter the operator may wish to change is the Ground Clutter Distance, GCD. The default value is normally set at 20 km for the NSSL radar, to omit all of the ground targets from the analysis. When the ground clutter is extended by abnormal propagation, spurious echoes may be processed. By setting the size and intensity criteria high enough, these echoes will be ignored. However, time will be lost determining this fact. As echoes move into the ground clutter, spurious echoes will complicate the shape, but not seriously affect total echo area and centroid position. Here a simple and expedient method is to tilt the radar antenna at two degrees which will effectively remove the ground targets from the scope while leaving the echo pattern mostly unchanged. When anomalous echoes are extensive, some program speed-up can be realized by setting the GCD value artificially large, say 100 km . 'However, the risk here is that the operator will fail to reset the value as echoes approach that range.

The next command by the operator instructs the computer to accept the remote radar data and locate echoes. Before doing this the computer will reply 'AREA/INTENSITY'. The operator must then respond with two values, for example, $100 \mathrm{~km}^{2}$ and the 4 th code switch. This means that only echoes whose areas are greater than $100 \mathrm{~km}^{2}$ and whose intensities are greater than or equal to the dBZ value corresponding to the fourth intensity switch are contoured. For the data used in this report the dBZ value is about 40--a rainfall rate of $12 \mathrm{~mm} \mathrm{hr}^{-1}$ ($0.5 \mathrm{in} \mathrm{hr}^{-1}$). The program also checks for echoes whose area is five times that given. Whenever this occurs the lowest intensity in the echo is purged and the next intensity level checked to see if it meets $100 \mathrm{~km}^{2}$ criterion. If it does, the information for the higher intensity core is saved as well as the lower intensity.

At the completion of the PPI, the computer writes out each echo's area and centroid location (azimuth and range); the echoes being sorted by intensity. The program will continue to accept new PPI information unless interrupted by a 'STOP' command typed in by the operator. The program does no matching of echoes between two PPI's and no information from a previous PPI is saved in the computer except that manually entered by the operator. Since two centroid positions are required to make a prediction, the operator should wait two scans before entering time, azimuth and range data.

When the program has received a 'STOP' command, it will ask for a new command. The operator will then want to enter the echo information. This is done by first typing 'ENT'. The computer will then ask for an echo number, time of observation and echo azimuth and range; it will type the following:

'N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDDS/ STDTM'

The echo may have any number assigned between one and 99. The time is entered as a four digit number. The first two digits are for the hour (a 24 -hour day is used); the second two digits are for the nearest whole minute. Azimuth is entered to the nearest whole degree; range to the nearest kilometer. After the first two entries and each subsequent entry for the same storm, immediately following, the program will respond with a speed, direction of motion and the standard deviation in distance and time of the echo's motion (cf section 4). The program checks the manually entered data for simple entry errors. Also, if the last time entered is the same as the time of the last PPI scanned by the program, the program will match the manually entered centroid position to the computer derived centroid position. The echo selected is the one whose centroid distance is a minimum from that manually entered. If no match is found, the observation is deleted and an error message generated. If the computed echo speed is greater than $120 \mathrm{~km} / \mathrm{hr}$ and error message is also typed out but the observation is not purged. (Echoes moving at that speed are rare.) When there are no more observations to enter, the operator enters a zero for the echo number; the program will respond by asking for a new command. One last operation which can be performed is to delete an observation by entering a minus sign in front of the echo number followed by time and centroid positions. Up to ten different echoes can be stored at one time.

There are four different commands the operator may wish to give the program now. They are 'DIS', 'WHE', 'AIR', and 'POS'.

When 'DIS' is entered, the operator has asked for a graphic display of projected storm motion on the remote terminal. The progran will ask for a prediction time interval, a specified range, a graphic overlay, and the operator assigned numbers of echoes that the operator wishes to see. The computer will type:
'BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS'
BTIME and ETIME are the beginning and ending times for the prediction period entered in the same four digit format as for entering echo time data. A useful beginning time might be the time of the last PPI and the ending time might be one hour later. RANGE lets the operator choose between a 200 or a 400 km range. If radar data were previously being transmitted at one range, the operator would probably also want the graphic display to be scaled the same. There are two choices for 'OVERLAY'. They are the Oklahoma State outline entered as 'STA' and the low level Victor Airways entered as 'VIC'. Esthetically, the former is more suited to 400 km range, while the latter to a 200 km range. If that entry is left blank, no overlay is produced on the remote radar scope. The ECHO NUMBERS are those assigned by the operator.

Another option is to ask WHEn the centroid of a storm will be nearest a given point. After the operator has entered 'WHE' the program will type:

'ECHO NO/AZM/RNG'

The operator then enters the appropriate information, where AZM and RNG give the position of the point in question, not the centroid of the echo. The computer will return the distance from the point normal to the extrapolated echo path and the standard deviation of that distance. Time of arrival and two other times, one before and one after the predicted time, are also computed. These times are $t \pm \sigma_{t}$.

Another option available to the operator is to ask for the AIRports which lie in the echo path. The echo path is considered to be a cone whose apex is the centroid position at the time of the last observation. The cone expands downstream as a function of time (fig. 9)* After 'AIR' has been entered as a command, the computer responds by typing
'BTIME/ETIME/STD DEV/ECHO NO.S'
BTIME and ETIME are enterable for, DIS. STD DEV is entered as a whole number (e.g., 1, 2, or 3). The expansion rate of the cone is determined by σ_{d} (STD DEV). ECHO NO.S are the user assigned storm numbers.

The computer will return with the predicted encounters listed by storm in the order of arrival time, t_{a}. Also given is the distance to the echo path at the arrival time and $t_{a}+\sigma_{t}$ and $t_{a}-\sigma_{t}$.

One last question the operator may address is, "What will the echo's POSition be at a later time?" After 'POS' has been entered, the computer will type:

> 'ЕСНО NO/ ННММ'

The operator enters the required data in the same manner as under the command 'ENT'. After the above information is entered, the computer

Figure 9. Illustration of cone used to locate airports in an echo's path. Integer 3 was entered for 'STDDEV.'

[^0]will return the azimuth and range of the centroid for the time given and two values which are σ_{d} and $3 \sigma_{d}$.

Because computer storage restrictions permit only ten echoes to be tracked simultaneously, the operator will need to DELete echoes from time to time. The operator should consider first those echoes which are no longer being actively tracked.

After entry of 'DEL', the computer asks:
'WHICH ECHOES'
To this the operator responds by entering the assigned echo numbers. Before asking for a new command, the computer lists the active echoes.

On occasion the operator may wish to enter information of a textual nature. This might include severe weather events associated with a particular storm, or storm tendencies for a new operator coming on duty. The command 'IGN' for IGNnore is entered. After this, a text of any number of lines may be entered. To restore the program to an operational mode, the operator types 'KEY' at the beginning of a new line.

To terminate the program, the operator types 'BYE' for a command.
5.3 Some Practical Guidelines for Using Echo Prediction Software

5.3.1 Time Weight Constant (TWC)

At the time the echo prediction logic was developed, it was recognized that severe storms, especially tornado producers, "turn right" as they become severe (Newton and Fankhauser, 1964). In order to take the path curvature into account in predicting future echo positions, an exponentially assigned weighting function was incorporated into the computer software. Mathematically, the function is $W=e^{-k \Delta t / T W C ~ w h e r e ~} k$ is $1 n 2$, TWC, the value entered by an operator and Δt the time interval between two observations. The rate of decay is a function of time (fig. 10) such that when the time elapsed from the last point entered is equal to TWC, the value of the previous point is decreased by half. Although the prediction logic was operationally tested in 1969 and 1970, TWC was always made large enough (24 hours) such that $W \approx 1$. In other words, all centroid positions carried the same weight when fitting LLS equations.

As a first step in testing the utility of changing the weighting function, points were arbitrarily entered at 10 degree intervals at a range of 10 km through a 90 degree sector. The sampling interval was entered as five minutes. The results for $k=24 \mathrm{hrs}, 30,15$ and $5 \mathrm{~min}-$ utes are shown in Figure 11a-d. An examination of the figures shows that the greatest improvement in following the data trend is between the 15 and 5 minute weighting function. Of the four parameters, direction, speed, standard deviation of distance and standard deviation of time, the latter

Figure 10. Illustration of response curve for weighting function, W .
showed the greatest overall improve-ment--nearly a factor of three from .121 hours to .047 hours. Least affected was the speed.

In another test, real data from two storms were used to determine the effects of varying the weighting function. One storm was tracked between 1225 Z and 1310Z; the other between 1247 Z and $1310 Z$. Two time weight constants (TWC) --30 and 5 min-utes-- were used. Also, because the data density was greater than other cases--2 to 3 minute intervals--two passes at each TWC were made, one at a 2 to 3 minute spacing and the other at a 4 to 6 minute spacing. The results are shown in Table 1. Contrary to the results in the first test, there is little if any improvement in σ_{d} and σ_{t} between a 30 and a 5 minute TWC for $2-3$ minute spacing. Using 5 minute data spacing and comparing the σ_{d} and σ_{t} between a 30 and 5 minute TWC shows some overall
improvement. By far the greatest improvement is to use 5 minute data instead of 2-3 minute data. Several sources of error suggest why this is so. One is the natural variability of the echo; that is the random gain or loss of echo due to small scale echo changes. Second, radar system fluctuations of $1-2 \mathrm{~dB}$ would cause small scale changes. Third, and perhaps the most important, is the system resolution. Typically, an echo might move $1-2 \mathrm{~km}$ in a 2 minute period. At a range of 100 km this might be a change of centroid location of 1 degree azimuth or 1 km range or both. Such a motion results in a very noisy path. Barclay and Wilk (1970) also noted erratic echo movement from centroid positions when using data of similar density. In the remoting system, one must also consider the time element. If one were to use radar data directly and had the time of each radial, the centroid time would be precisely known. However, the time of the data displayed on the remote scope is truncated to the nearest minute so that the time the echo was sampled could conceivably be one minute off. When the truncation error is a large fraction of the ΔT, the projected error from this cause tends to be large.

Let us consider now the speeds and directions actually computed under the different conditions. In general, the TWC had more effect than data density. Echo 1, with TWC equal to 5 minutes, accelerated sharply after 1245 nearly doubling its speed by 1306. With a TWC of 30 minutes, the acceleration is smoothed considerably. The direction also shows considerably more variance with a 5 minute TWC than with a 30 minute TWC. Echo 2 shows basically the same features as Echo 1.

Figure 11. Illustration of the effect of varying the TWC for an echo whose track is curved in calculating (a) direction,
(b) speed, (c) σ_{d}, and (d) σ_{t}.

Table 1. Comparison of results of using a TWC of both 30 and 5 minutes on data sampled at both $2-3$ minutes and 4-6 minutes for tracking two echoes.

TIME	ECHO 1							
	DIR	SPD	STDDS	STD TM	DIR	SPD	STDDS	STD TM
1230	254.6	23.8	27.41	. 803	247.3	24.3	27.41	. 803
1236	273.8	37.6	39.05	. 662	272.1	39.2	40.64	. 614
1240	258.7	34.6	37.54	. 624	252.2	34.6	38.67	. 583
1245	253.0	36.1	33.66	. 609	248.4	37.9	34.59	. 579
1251	238.5	39.7	40.65	. 570	227.9	44.7	39.87	. 546
1255	228.7	43.2	41.17	. 620	216.0	52.0	38.63	. 594
1300	224.8	50.5	42.34	. 670	219.2	62.3	41.19	. 612
1306	218.8	55.4	47.77	. 661	210.3	67.6	45.60	. 602
1310	219.3	55.1	49.99	. 695	217.0	58.4	47.67	. 655
	5 MIN DATA							
1230	251.0	24.0	0.00	. 000	251.0	24.0	0.00	. 000
1236	273.9	36.4	14.10	. 394	276.2	38.8	14.10	. 394
1240	263.4	34.1	18.90	. 410	259.4	34.0	19.20	. 429
1245	257.1	36.7	17.63	. 403	252.2	38.8	17.52	. 422
1251	238.4	39.3	28.34	. 368	223.6	45.7	27.20	. 386
1255	228.2	43.6	31.01	. 405	214.7	53.6	27.09	. 415
1300	227.0	48.7	29.75	. 448	222.3	60.1	28.25	. 397
1306	220.9	53.0	32.47	. 436	211.2	65.6	30.34	. 377
1310	220.7	53.6	32.62	. 437	216.6	58.7	31.25	. 412
	ECHO 2							
	2 MIN DATA							
1230	-	- .	-	-	-	-	-	-
1236	-	-	-	-	-	-	-	-
1240	-	-	-	-	-	-	-	-
1247	346.1	74.1	0.00	0.000	346.1	74.2	0.00	0.000
1251	270.7	38.9	62.34	1.099	268.6	36.3	62.06	0.944
1255	247.0	41.7	57.18	1.020	241.1	42.1	56.50	1.049
1300	233.5	66.4	56.79	1.362	230.9	73.9	53.82	1.372
1306	228.3	74.7	52.68	1.236	226.3	79.8	48.81	1.201
1310	229.6	70.0	48.35	1.146	230.4	66.3	45.93	1.155
	5 MIN DATA							
1230	-	-	-	-	-	-	-	-
1236	-	-	-	-	-	-	-	-
1240	-	-	-	-	-	-	-	-
1247	-	-	-	-	-	-	-	-
1251	286.1	33.2	0.00	0.000	286.1	33.2	0.00	0.000
1255	251.8	38.2	32.21	0.075	245.0	41.3	32.21	0.075
1300	235.8	65.0	36.27	0.912	231.8	78.6	32.46	0.863
1306	231.6	72.0	32.85	0.817	228.9	79.1	29.19	0.774
1310	232.6	66.9	30.79	0.803	232.5	64.5	27.63	0.772

Although two storms are admittedly a small sample, our experience in a large number of cases makes us believe that these results apply to other storms as well. Essentially, what is indicated is that for a five minute forecast of echo motion, one should use a five minute TWC, with five minute data resolution. However, for a 30 to 60 minute forecast, a larger TWC, such as 30 minutes, should be used. Over this length of time, trends in the overall echo motion are more important than short term fluctuations which should be smoothed out. Also, since warning areas are mapped out based on echo speed and motion, large variance from one time to the next would only confuse the user and cause the warning areas to shift considerably from one prediction PPI to another.

5.3.2 Selection of Area and Intensity Criteria

In choosing the threshold area and intensity the user is hampered by being limited to ten echoes. However, the ability to assimilate and follow even ten is questionable. On a scope containing many echoes, therefore, the user's attention should be directed to the largest and/or strongest echoes.

Barclay and Wilk (1970) determined that for echo extrapolation using centroid data, threshold values of 10^{3} to $10^{4} \mathrm{~mm}^{6} \mathrm{~m}^{-3}$ for isolated storms and 10^{2} to $10^{3} \mathrm{~mm}_{\mathrm{m}}{ }^{-3}$ for squall lines worked best. Based on his own experience, the author believes these are good criteria. With higher intensities, tracking is difficult because the lifetimes of the intense cores are short and in squall lines the probability of mergers and splits also increases. If one uses too low an intensity, information concerning those areas most hazardous to aircraft is lost. A general rule-of-thumb is to use the lowest intensity for which a discrete echo can still be defined.

In a master's thesis in 1969, R. A. Houze, Jr. defined three areal. sizes associated with New England precipitation: "synoptic scale areas" on the order of $104-10^{5} \mathrm{mi}^{2}$ and a duration of about 10 hours to pass a point; "mesoscale areas" on the order of $10^{2}-10^{3} \mathrm{mi}^{2}$ and a duration of about one hour; and "cells" with a $1-10 \mathrm{mi}^{2}$ area and lasting about one minute. The scale size which is associated with severe weather and with which we have concerned ourselves in this report, is the mesoscale. The synoptic scale pattern is dependent on larger atmospheric disturbances and its movement is better forecast by existing NWS software. Also, the average radar intensity does not constitute a hazard to aviation from strong shear or turbulence. Small, intense cells, on the other hand, are of too short a duration to be tracked and where they do occur--imbedded in mesoscale systems--the entire area should be avoided.

The average area of eight extremely severe isolated storms which have occurred in Oklahoma over the past six years was $208 \mathrm{n} \mathrm{mi}{ }^{2}$ ($713 \mathrm{~km}^{2}$) with a range of 122 to $427 \mathrm{n} \mathrm{mi}^{2}$. Squall lines generally are about three times the size of isolated echoes, although cells within squall lines are usually slightly smaller than severe, isolated storms. Since the areas given above are for total storms, the actual area threshold used is reduced by a factor of 2 or 3 depending on the intensity threshold. In summary, the area threshold ranges between 100 and $1000 \mathrm{~km}^{2}$, while the intensity varies
from $10^{2} \mathrm{~mm}^{6} \mathrm{~m}^{-3}$ to $10^{4} \mathrm{~mm}^{6} \mathrm{~m}^{-3}$. Experience guides determination of the best combination for any given storm system.

Once the criteria are established, the user is well advised to resist frequent change. The purpose in establishing criteria is to give the user a history for summarizing events on the display. Frequent changes will cause loss of continuity of pattern.

If it becomes difficult to match echoes due to frequent splitting or merging, however, then a lower intensity and a larger area should be selected. Conversely, if persistent significant core elements are being omitted, then higher intensity and smaller area threshold are indicated.

5.3.3 Splits and Mergers

One of the biggest problems in using echo centroids to track and extrapolate future positions is how to handle splitting or merging storms. For example, if a storm splits into two distinct cores, should you regard one of the cores as a continuation of the old echo and tag the other core as a new echo or should both be treated as new echoes? A similar problem exists with mergers.

The best procedure the author has found is to follow trends in area and centroid position for each core in question. Typically, in a five minute period, an echo will move from 3 to 6 km . If motion is along a radial, then the centroid position is simply a function of range. If, however, the azimuth changes, then the incremental change is range dependent. Figure 12 shows the change in azimuth as a function of range for motion tangent to a circle at that range. The important consideration remains to look for discontinuities in either range or azimuth. A change in range 10 km and/or 10 degrees greater than expected coupled with a 20 percent or greater change in area, should be considered a new echo.

6. TEST CASES

Three days were selected for program testing. On two days, June 6 and June 16, 1975, squall lines producing damaging surface

Figure 12. Illustration of the angular change in centroid position as a function of range. X is the displacement distance of the centroid.
winds moved across the State; the third case on November 2, 1974, produced localized flooding in the northwest Oklahoma City with cumulative rainfall amounts in excess of five inches.

The three cases above were chosen because of their danger to the aviation community. In the case of fast moving squalls, the inherent danger is from the turbulence and high winds in and around them. In the case of flooding, aside from the intensity of storms, the sheer persistence of heavy rain in one location implies time delays for air traffic leaving andor arriving, or for circumnavigating those features. Certainly, it is of the utmost importance for a pilot, en route, to know of adverse conditions which will not clear his destination by his ETA.

The case studies were made to develop the logic to generate graphic forecasts and to determine the feasibility of using the polar coordinate display as a graphics terminal. The analyses excluded quantitative verification of the predicted echo motion. The cases were analyzed using variations of the echo tracking logic, involving different cutoff limits for magnitudes of σ_{d} and σ_{t} in expanding the warning areas.

In simulating real time operations, radar data archived on magnetic tape were reformatted to "look" like data received by the remote radar display program. A second tape was generated by the echo prediction logic which contained the graphics information, also in the format for the remoting system. The graphics tape was then played through a tape drive* and transmitted to the receiver where the graphics were photographed.

There are three components to the graphics: individual warning areas for one or more storms; a contour at a specified intensity threshold for each echo; and a background reference field, showing the Victor Airways or the state outline. Each component is coded at one of three'intensity' values to produce differential gray shading. Warning areas were coded in the seventh intensity level (not normally used in the real time echo display) and displayed at the brightest gray-shade level; echo contours were coded in the second intensity level and displayed at the medium gray-shade level; and the Victor Airways were coded in the first intensity level and displayed at the lightest gray shade level.

After reviewing the radar data on the remote scope, threshold criteria were selected and an initial run was made using the echo prediction logic. The area and centroid data from this run were matched and a second run was made using these results to generate the warning areas. The following cases illustrate the logic and generation of the graphics.

Case 1, June 6, 1975
A stationary front was indicated on the $12 Z$ surface map (fig. 13) as extending from the Oklahoma Texas panhandles northeastward across the

[^1] the transmitter was provided.
southern third of Kansas; a cold front was entering Nebraska to the north. The upper level flow at 500 mb (fig. 14) was from the west-northwest. Storms broke out along the stationary front in Kansas in the early afternoon and generally moved southeast in the same direction as the flow aloft. Abundent moisture was available in central Oklahoma ($18-20 \mathrm{~g} \mathrm{~kg}^{-1}$) and the air was potentially unstable. Surface winds were from the southsoutheast at 15-20 knots. By 2000 CST, a we11-developed dry line oriented north-south existed in the Texas and Oklahoma panhandles as shown by the surface analysis with streamlines in Figure 15. Cold air produced by the storms in western Kansas had produced a pseudo cold front as well. Therefore, an area of strong convergence formed in northwest Oklahoma (fig. 16). As the Kansas storms were following the same track, growth was favored on the southern flank of these storms and a line formed propagating southward.

As shown in Figure 17, the closest echoes at 1600 were about 200 km away along the Kansas-0klahoma border. Because the motion at that time was east-southeast, the echoes were not expected to move within Doppler radar range. Hence, operations ceased and, between 1625 and 1830 CST, no radar data were collected. The radar, monitored at 1830 CST, indicated a large echo was still beyond Doppler'radar range. Within two hours, significant changes occurred. A line of storms developed in the northwest quadrant and proceeded to move southward into central Oklahoma.

For experimental development of the echo prediction and display logic, analysis was begun at 2040 CST when the echoes were within 120 km . A condensation of echo positions and motions is presented in Table 2. The complete program command structure with annotation is included as Appendix 1. For this storm period, the size and intensity criteria selected were $250 \mathrm{~km}^{2}$ and code switch 4 (corresponding to 40 dBZ), respectively. Data at 0 degree elevation were available at five minute intervals. The time. weight constant was set at 2400 (24 hr) and the ground clutter distance at 20 km .

Figure 13. June 6, 1975, 12Z, surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 14. June 6, 1975, 12Z, 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 15. Subsynoptic surface data provided by NWS, FAA and NSSL stations, 2000 CST, June 6, 1975, with streamlines superimposed.

Figure 16. Divergence field derived from surface data, 2000 CST, June 6, 1975. All values are x 10^{-6}.

Figure 17. WSR-57 radar PPI, 400 km range, 100 km range marks, 1600 CST, June 6, 1975.

Gray shades for each intensity level were set at 1220333 and resulted in echoes being contoured at cancellation level on the remote scope.

At 2040 CST, as shown in Figure 18, two large cells were located by the computer search at azimuth 29°, range 136 km and at azimuth 335°, range 157 km . After the second PPI at 2045 CST, the same two cells were matched manually to the previous cells. They were labeled echo 1 and echo 2 and their respective times and positions were entered for tracking. Significantly different motions were obtained: echo 1 moved from west-northwest (293°) at $93 \mathrm{~km} \mathrm{hr}{ }^{-1}$ while echo 2 moved from north-northwest (335°) at $52 \mathrm{~km} \mathrm{hr}{ }^{-1}$. Warning graphics were then displayed for these echoes (fig. 19). The starting position for each warning area is 15 minutes after the last observation, the ending position is one hour and 15 minutes later. A11 subsequent warning areas were also for one hour duration starting $15 \mathrm{~min}-$ utes downstream. A circle was drawn on the graphics display after the PPI at 2055 (fig. 20) to represent the echo shape. The program does not save echo shape information for more than one PPI. Whenever a graphic display of a warning area is requested for an echo for which no entry was made for the last PPI, a circle with a 10 km radius automatically replaces the initial shape function.

A third echo located at azimuth at 60° range 195 km , at 2050 showed no movement by 2055 CST. The resulting warning area was a line drawn along the major axis of the echo (fig. 20). With the addition of a third point at 2100 CST , an exorbitantly large σ_{t} was calculated. When the prediction field was first displayed, the large value of σ_{t} distorted the warning area. Therefore, a "cutoff" limit was introduced such that whenever σ_{t} exceeded the prediction interval, $t_{e}-t_{b}, \sigma_{t}$ was set to $\left(t_{e}-t_{b}\right) / 2$. Later, a "cutoff" limit was also established for σ_{d} restricting it to the length of an echo's axis used in defining the warning area. The choice of these limits was purely arbitrary and may need further adjustment based on a large sample of data. Obviously, many tracks, based on the first few observations, will show considerable scatter. As additional locations are added over a larger period of time, a better estimate of the mean velocity will

Table 2. Echo centroid positions, direction and speed predicted, and the RMSE values for June 6, 1975.

$\begin{gathered} \text { ECHO } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { TIME } \\ & \text { (CST) } \end{aligned}$	AZIMUTH (DEGREES)	RANGE (KM)	DIRECTION (DEGREES)	$\begin{gathered} \text { SPEED } \\ \left(\mathrm{KM} \mathrm{HR}^{-1}\right) \end{gathered}$	$\begin{gathered} \sigma_{d} \\ (\mathrm{KM}) \end{gathered}$	σ_{t} (HOUR)
1	2040	29.	136.	-	-	-	-
2	2040	335.	157.	-	-	-	-
1	2045	32.	137.	292.5	92.9	-	-
2	2045	335.	153.	335.0	51.5	-	-
1	2050	34.	140.	283.1	78.7	14.36	0.182
2	2050	336.	148.	319.0	58.2	17.90	0.098
3	2050	61.	188.	-	-	.	
1	2055	36.	144.	276.9	75.9	16.73	0.162
3	2055	61.	188.	360.0	0.0	-	-
1	2100	38.	146.	277.1	73.1	15.58	0.159
2	2100	335.	136.	334.2	64.3	23.26	0.102
3	2100	61.	189.	241.0	6.1	6.06	*
4	2100	298.	194.	-	-	-	-
6	2100	310.	155.	-	-	-	-
2	2105	336.	132.	331.8	62.8	24.05	0.142
3	2105	60.	187.	138.9	12.2	20.27	*
4	2105	297.	192.	356.8	49.0	-	-
6	2105	308.	152.	9.8	76.7	-	-
2	2110	333.	124.	339.1	66.1	40.99	0.230
3	2110	59.	187.	139.7	20.2	18.42	*
4	2110	296.	188.	345.0	55.0	12.69	0.110
1	2115	44.	162.	272.1	79.2	15.85	0.171
2	2115	333.	118.	341.2	68.1	38.06	0.215
3	2115	61.	188.	137.7	8.1	16.84	*
4	2115	295.	184.	340.6	57.4	12.34	0.109
1	2120	48.	160.	277.9	80.7	44.36	0.159
2	2120	334.	115.	340.5	66.6	37.05	0.274
3	2120	60.	189.	153.9	7.1	17.39	*
4	2120	295.	178.	329.4	57.6	25.53	0.112
5	2120	305.	131.	-	-	-	-
1	2125	50.	165.	279.9	82.1	41.50	0.155
2	2125	332.	105.	341.5	69.1	36.33	0.389
3	2125	60.	191.	178.8	7.0	18.34	-
4	2125	296.	166.	312.9	66.7	50.69	0.313
5	2125	305.	126.	305.0	61.0	-	-
7	2125	13.	189.	-	-	-	-
1	2130	50.	173.	278.3	81.8	46.15	0.167
2	2130	332.	101.	341.7	69.5	34.56	0.383
4	2130	295.	163.	310.0	68.5	47.67	0.316
5	2130	304.	122.	318.3	55.8	14.75	0.121
7	2130	12.	187.	71.1	46.1	-	-

*In the run used for generating the graphics the values for σ_{t} exceeded 99999.999. By deleting the observation for ce11 3 at 2055 CST, σ_{t} was reduced to about three hours.
be made. At 2105 CST three cells were associated with the squall line (fig. 21). Generally, the core in the middle cell in the line was too small to be tracked.

No major changes occurred in the pattern but several more PPI's and graphics (figs. 22-27) on this data are presented as examples. The last PPI at 2130 CST and graphic warning areas which were displayed at a 400 km range with the State outline. The last radar PPI at 2249 CST (fig. 28) (about the ending time of the last warning area) shows that the line had moved as expected.

Figure 18. (left, above) Remote radar display PPI, 200 km range, 2040 CST, June 6, 1975.

Figure 19. (above) Remote radar display with computer generated warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2100 to 2200 CST.

Figure 20. (1eft) Remote radar display with computer generated warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2110 to 2210 CST.

Figure 21. Remote radar display PPI, 200 km range, 2105 CST, June 6, 1975.

Figure 23. Remote radar display with computer generated warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 2130 to 2230 CST.

Figure 22. Remote radar display PPI, 200 km range, 2115 CST, June 6, 1975.

Figure 24. Remote radar display
PPI, 200 km range, 2120 CST.
June 6, 1975.

Figure 25. Remote radar display computer generated warning areas, echo contours and Victor airways, June 6, 1975. Prediction period is 21.35 to 2235 CST.

Figure 26. Remote radar display PPI, 200 km range, 2130 CST, June 6, 1975.

Figure 27. Remote radar display with computer generated warning areas, echo contours and Okla-homa State outline, 400 km range June 6, 1975. Prediction time is 2145 to 2245 .

Figure 28. WSR-57 radar PPI, 200 km range, 40 km range marks, 2249 CST, June 6, 1975.

Case 2, June 16, 1975
On this day, moisture from the Gulf of Mexico and drier continental air were separated by a stationary surface front extending from the 0klahoma panhandle across southern Oklahoma and northern Arkansas (fig. 29). During the next 24 hours this boundary moved northeastward as a warm front ahead of a cold front approaching from the northwest.

The flow at 500 mb was essentially zonal at 20-30 kt (fig. 20). Mixing ratio values during the afternoon of the 16 th were $16-18 \mathrm{~g} \mathrm{~kg}^{-1}$, and the air mass was potentially unstable. When convective temperature was reached after 1500 CST, numerous showers and thunderstorms developed over Kansas, Oklahoma, north Texas and New Mexico. The sequence of satellite photographs and WSR-57 PPI displays (figs. 32a, b, c, and 33a, b, c) trace the growth and movement of these storms during the afternoon.

Until 1830 CST, activity was beyond 200 km , and the radar integrator was range delayed (fig. 32) to provide 1 km resolution data between 200 and 400 km (Sirmans and Doviak, 1973). After 1830 CST, data collection was normal with data recorded at five minute intervals.

The area of thunderstorms visible over northern Texas on the GOES satellite photos appeared as a line of moderate to intense echoes on the WSR-57 display. These storms intensified and moved rapidly across central Oklahoma as an organized squall line, preceded by a strong damaging gust front. The NSSFC issued a tornado watch at 1815 CST valid from 2000 CST to 0200 CST to cover western Oklahoma, but it lagged spatially behind the storms because of their unexpected acceleration. The steering level wind velocity was 210 degrees at 25 kts ($46 \mathrm{~km} \mathrm{hr}^{-1}$). However, line motion was much faster from 270 degrees at 45 kts ($80 \mathrm{~km} \mathrm{hr}{ }^{-1}$). Figures 34 and 35, 30 minutes before tracking began, shows the storm influenced surface streamline and convergence patterns, respectively.

Figure 29. June 16, 1975, 12 Z surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 30. June 16, 1975, 12 Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

(a)

(c)

(b)

Figure 31. SMS-3 satellite pictures, June 16, 1975:
(a) $1545 \mathrm{CST}(2145 \mathrm{Z})$
(b) $1615 \mathrm{CST}(2215 \mathrm{Z})$
(c) $1745 \mathrm{CST}(2345 \mathrm{Z})$

(a)

(b)

Figure 32. WSR-57 radar PPI, 400 km range with 200 km range delay to first gate, 40 km range marks, June 16, 1975:
(a) 1545 CST
(b) 1615 CST
(c) 1745 CST

(c)

Figure 33. Subsynoptic surface data provided by NWS, FAA, and NSSL stations, 1800 CST, June 16, 1975, with streamlines superimposed.

Figure 34. Divergence field derived from surface data, 1800 CST, June 16, 1975.

Testing of the echo prediction logic began with the 1830 CST observation. Using intensity and area thresholds of 40 dBZ and $250 \mathrm{~km}^{2}$, respectively, the storm centroids were determined at 5 minute intervals. The four-level intensity code for the remote display was set to light, medium, cancel and bright (1220333). The time weight constant (TWC) was 2400, and the minimum range (GCD) was 20 km . All warning areas were for one hour interval starting with the time of the last observation.

After two PPI's (figs. 35 and 36) centroid positions for cell 1 were entered and an estimate of the echo's motion (from 337 degrees at $44 \mathrm{~km} \mathrm{hr}^{-1}$) was obtained (Table 3). Figure 37 shows the subsequent warning area based on two centroid positions.

Figure 35. Remote radar display PPI, 200 km range, 1830 CST, June 16, 1975.

Figure 37. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1835 to 1935 CST.

Figure 36. Remote radar display PPI, 200 km range, 1835 CST, June 16, 1975.

It is important to note here that as an echo enters the scope, its centroid position will be influenced by the area change. As a result, using centroid positions to calculate echo motion will underestimate true echo speed. Likewise, direction of motion will be affected. If the increase in each area occurs only at one end of a line, the calculated direction of motion will be pulled towards that end. Until such time as an echo or squall line has fully entered the scope, it is probably better to track a point along its leading edge. (That was not done for this case.)

From Table 3, an increase in line speed is evident through the first half hour of tracking. Because of the boundary problem just described, large values of σ_{t} and σ_{d} resulted. An example of a PPI and its associated warning area at 1900 CST are shown in Figures 38 and 39.

Table 3. Echo centroid positions, direction and speed predicted, and the RMSE values for June 16, 1975.

ECHO NO.	TIME $($ CST $)$	AZIMUTH (DEGREES)	RANGE $($ KM $)$	DIRECTION (DEGREES)	SPEED $\left(\right.$ KM HR $\left.^{-1}\right)$	σ_{d} $($ KM $)$	σ_{t} (HOUR)
1	1830	280.	188.	-	-	-	-
1	1835	279.	186.	338.0	45.9	-	-
1	1840	278.	183.	331.3	49.3	6.59	0.070
1	1845	279.	179.	302.5	39.2	31.11	0.516
1	1850	276.	174.	314.0	52.1	43.65	0.843
1	1855	273.	171.	324.0	63.3	46.94	0.845
1	1900	271.	165.	325.4	71.5	43.74	0.812
2	1905	262.	170.	-	-	-	-
3	1905	287.	151.	-	-	-	-
2	1910	261.	167.	305.9	55.2	-	-
3	1910	285.	142.	315.6	135.9	-	-
2	1915	261.	159.	276.1	69.7	39.15	0.134
3	1915	287.	133.	287.0	110.4	59.72	0.299
1	1920	264.	146.	321.3	77.7	41.41	0.761
1	1925	263.	140.	318.7	78.4	41.81	0.720
1	1930	263.	132.	315.3	77.8	46.93	0.690
1	1935	260.	126.	313.3	78.7	44.85	0.668
1	1940	258.	120.	311.7	79.3	43.72	0.640
1	1945	259.	111.	309.0	79.1	50.48	0.626
4	1950	263.	110.	-	-	-	-
4	1955	264.	108.	219.9	36.2	-	-
4	2000	267.	97.	235.9	91.2	28.38	1.627
5	2005	263.	82.	-	-	-	-
5	2010	263.	74.	263.0	105.0	-	-
5	2015	263.	64.	263.0	110.4	0.01	0.082
6	2020	285.	51.	-	-	-	-
6	2025	284.	46.	294.1	66.6	-	-
6	2030	287.	41.	276.9	62.1	20.79	0.099

Figure 38. Remote radar display PPI, 200 km range, 1900 CST, June 16, 1975.

Figure 39. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1900 to 2000 CST.

At 1905 CST, the program logic isolated two discrete cells within the line at intensity 40 dBZ where there had been only one five minutes before. The split-off of the smaller of the two cells caused the centroid of the larger cell to be shifted nine degrees in azimuth and moved back 5 km . After the split, the two cells were identified as cell 2 and ce11 3 and tracked for the next ten minutes. The PPI at 1915 CST (fig. 40) and the graphics for that time (fig. 41) indicate quite different speeds for each cell (see also Table 3).

At 1920 CST , cells 2 and 3 merged. Since the resulting centroid position was consistent with the extrapolated position for cell 1, the merge was reassigned as ce11 1 (fig. 42). It was traced until 1945 CST. Two radar PPIs and their respective warning areas (figs. 43-46, at 1930 and 1945 CST) show the line's movement during this period.

After 1945 CST, in the initial pass through the data, the large core which had been cell 1, fragmented and attempts to match the new cells proved futile. Therefore, a second pass was made with new threshold criteria of $1000 \mathrm{~km}^{2}$ and intensity level 3. The gray shading was recoded at 1203333 to reflect the decrease in the intensity threshold.

Cell 4, tracked from 1950 to 2000 CST, indicated motion in a northeasterly direction due, primarily, to growth on the north end of the line. Motion had been southeasterly previously. Shown in Figures 47 and 48 is a radar PPI and graphic warning for 2000 CST.

Figure 40. Remote radar display PPI, 200 km range, 1915 CST, June 16, 1975.

Figure 41. Remote radar display with computer generated warning areas, echo contours and Victor airways, June 16, 1975. Prediction period is 1915 to 2015 CST.

Figure 42. Remote radar display PPI, 200 km range, 1920 CST, June 16, 1975.

Figure 43. Remote radar display PPI, 200 km range, 1930 CST, June 16, 1975.

Figure 44. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1930 to 2030 CST.

Figure 46. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 1945 to 2045 CST.

Figure 45. Remote radar display PPI, 200 km range, 1945 CST, June 16, 1975.

Figure 47. Remote radar display PPI, 200 km range, 2000 CST, June 16, 1975.

Figure 48. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2000 to 2100 CST.

At 2005 CST, due to a substantial change in area and range, the largest echo was relabeled as cell 5. Like cell 4, cell 5 was also tracked for only 15 minutes. As shown in Figures 49 and 50, and Table 3, the warning area and echo motion after 10 minutes reflect the line's overall speed and direction of motion better than any earlier time.

A substantial change in area and centroid position again occurred about 2020 CST with the additional growth on the north end of the line. Cell 5 was dropped. The larger echo, renumbered as cell 6, moved slower, although the direction was the same. The PPI and warning area (fig. 51 and 52) are shown for 2030 CST when tracking ceased.

Probably a longer sampling interval should have been used for this case (e.g., 15 minutes). However, several factors have to be considered. The optimum sampling interval determined by Wilk and Gray (1970) was 45 minutes. Obviously, one can't wait that long before making a prediction. Also, the lifetime of the storm may be less than an hour. Conversely, if one samples too frequently, lack of spatial and temporal resolution will produce fictitiously large errors.

Another dilemma arises when matching echo manually. The more frequently one samples, the easier it is to follow echo motion and to account for splits and merges. (On some occasions it was difficult to match five minute data.) However, an unwarranted amount of time may be spent tracking small cells of short duration which neither produce severe weather nor have sufficient predictability to provide meaningful extrapolations.

Case 3, November 2, 1974
The storms developed early in the morning of November 2. On the previous day a stationary front extended across southern Texas and northern Louisiana (fig. 53). During the day, it evolved into a warm front which moved into southern Oklahoma (fig. 54). The position of the front changed little during the afternoon and evening of November 2 (fig. 55) as an upper level low developed over California, and maintained a stationary pattern of southwesterly flow aloft over Oklahoma.

At 500 mb (fig. 56) a broad trough covered most of the United States with two low pressure centers, one centered over northeast Wyoming, the other over northern California and Nevada. Between November 1 and 3 the northern

Figure 49. Remote radar display PPI, 200 km range, 2015 CST, June 16, 1975.

Figure 51. Remote radar display PPI, 200 km range, 2030 CST, June 16, 1975.

Figure 50. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2015 to 2115 CST.

Figure 52. Remote radar display with computer generated warning area, echo contour and Victor airways, June 16, 1975. Prediction period is 2030 to 2130 CST.

Figure 53. November 1, 1974, 122 surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 55. November 3, 1974, 12 Z surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 54. November 2, 1974, 12 Z surface analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.
low migrated northeastward into Canada; the other moved southward as a separate closed low. This resulted in a shift of the primary trough to a northeastsoutheast orientation and caused the jet stream to retrograde westward (figs. 57 and 58). Since there was insufficient frontal lift and no surface heating, the triggering mechanism for the early morning storms on November 2 was probably a short wave, produced in the lee of the Rocky Mountains. Over central Oklahoma, mixing ratio values were $12-14 \mathrm{~g} \mathrm{~kg}^{-1}$, and low clouds and high relative humidity were widespread (fig. 59). At 0600 CST, Ok1ahoma City reported a ceiling of 200 ft , Hobart and Clinton-Sherman, 150 km to the west, 200-300 ft ceilings, and Ardmore, 600 ft. At stations north of Oklahoma City, rain and fog were reported.

Surface winds were generally 1 ight $5-10 \mathrm{kt}$ (fig. 59) which was unrepresentative of the mean flow. Surface mixing was not occurring, as indicated by the winds recorded at 444 m on the WKY tower (Goff and Zittel, 1974), which were $20-30 \mathrm{kts}$ form the south-southeast. This flow more accurately reflects the true inflow into the storms.

Testing of the echo prediction logic began with the 1225 observation and continued until 1210Z. In this case, digital radar data were available every two to three minutes. However, graphic displays were produced as

Figure 56. November 1, 1974, 12 Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Week1y Series.
before at approximately five minute intervals. The thresholds for intensity and area were 40 dBZ (intensity switch 4) and $150 \mathrm{~km}^{2}$, respectively. The coding of gray shades for photography was 1220333. The time weight constant was 2400 and the minimum range (to omit ground clutter) was 20 km .

Because the radar pattern changed little during the 45 minutes of tracking, only selected radar PPIs and graphic PPIs are shown for this case (figs. 60 through 69).

Warning areas were drawn for a one-hour prediction interval starting from the time of the last observation.

Figure 57. November 2, 1974, 12 Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

Figure 58. November 3, 1974, 12Z 500 mb analysis adapted from DOC, NOAA, EDS daily weather maps, Weekly Series.

In the first PPI at 1225 Z , two cells were isolated and labeled cell 1 and cell 2, respectively. Cell 1, at 250 degrees azimuth and 76 km range, was tracked for the entire 45 minute period. As shown in Table 4, excluding the first prediction, cell motion was southeasterly gradually shifting to the northeast and accelerating. By 1310Z, cell motion was from 220 degrees azimuth at $53 \mathrm{~km} \mathrm{hr}^{-1}$.

Cell 2 split after the first PPI becoming two cells, These merged later at 1234 Z and tracking of cell 2 was resumed (table 4). This cell, imbedded in the line northwest of Oklahoma City, moved from 240 degrees azimuth about

Figure 59. Subsynoptic surface data provided by NWS, FAA and NSSL stations, 1200Z. November 2, 1974, with streamlines superimposed.
$60 \mathrm{~km} \mathrm{hr}^{-1}$. At 1245 Z when a sudden increase in the line's area occurred, cell 2 was dropped.

After cell 2 split at 1228 Z, one of the new cells was labelled cell 3 and tracked until 1234Z. The other cell was never tracked because little motion was shown.

Cell 5 was isolated at the north end of the line at 1230 Z and tracked for 15 minutes. During that time it moved from a more southerly direction (214 degrees) than the other cells.

At 1245 , a much larger cell was isolated due to the increase in intensity and size. This cell, cell 6 , was tracked until testing ceased at 1310 Z .

As has been pointed out in previous sections, the large values for σ_{t} and σ_{d} (table 4) are in part the result of too frequent sampling. In some cases, the graphics examples do not show the high values of σ_{t} and σ_{d} because they exceeded the predetermined limits, as mentioned in case 1.

Table 4. Echo centroid positions, direction and speed predicted, and the RMSE values for November 2, 1974.

$\begin{aligned} & \text { ECHO } \\ & \text { NO. } \end{aligned}$	TIME (Z)	AZIMUTH (DEGREES)	RANGE (KM)	DIRECTION (DEGREES)	$\begin{gathered} \text { SPEED } \\ \left(\mathrm{KM} \mathrm{HR}^{-1}\right) \end{gathered}$	σ_{d} $(K M)$	σ_{t} (HOUR)
1.	1225	251.	76.	-	-	-	-
2	1225	311.	95.	-	-	-	-
1	1228	250.	75.	303.3	33.1	-	-
3	1228	304.	95.	-	-	-	-
1	1230	251.	74.	256.0	23.8	27.41	0.803
3	1230	306.	95.	215.0	98.8	-	-
5	1230	349.	126.	-	-	-	-
1	1232	249.	73.	283.1	30.8	43.72	0.755
5	1232	350.	127.	235.1	72.5	-	-
1	1234	249.	71.	278.3	36.6	41.90	0.729
2	1234	315.	92.	247.7	47.9	-	-
5	1234	349.	127.	168.9	15.0	15.84	1.060
1	1236	249	70.	274.1	37.3	38.72	0.675
2	1236	317.	92.	242.8	53.3	20.54	0.502
1	1238	250.	69.	265.2	35.6	39.77	0.675
2	1238	319.	91.	242.1	59.6	17.93	0.619
5	1238	351.	130.	214.7	40.9	36.72	1.329
1	1240	250.	68.	259.9	34.6	37.31	0.635
2	1240	320.	90.	243.2	61.7	18.14	0.556
1	1242	250.	67.	256.7	34.0	35.21	0.601
2	1242	322.	90.	242.5	64.9	18.45	0.546
1	1245	250	64.	254.1	35.8	33.48	0.618
6	1245	311.	83.	-	-	-	-
1	1247	251.	63.	250.5	36.4	33.63	0.593
5	1247	310.	81.	346.1	74.1	-	-
1	1249	252.	61.	246.8	37.8	33.45	0.599
6	1249	313.	80.	268.5	62.2	69.93	0.944
7	1249	353.	132.	-	-	-	-
1	1251	255.	60.	240.6	39.0	40.84	0.576
6	1251	312.	80.	271.2	39.4	62.41	1.099
1	1253	256.	59.	236.1	39.9	39.81	0.555
6	1253	314.	79.	260.7	43.3	58.90	1.076
1	1255	259.	57.	231.4	41.9	41.75	0.624
6	1255	315.	80.	248.2	41.6	57.34	1.015
1	1257	260.	54.	228.9	44.4	40.65	0.677
6	1259	319.	80.	237.8	54.6	57.82	1.402
1	1259	262.	52.	227.1	46.9	39.60	0.685
6	1259	320.	79.	236.7	59.5	54.73	1.313
1	1300	261.	51.	226.7	48.3	42.70	0.680
6	1300	322.	80.	234.2	65.0	57.53	1.359
1	1302	267.	51.	224.3	50.2	50.80	0.701
6	1302	324.	81.	231.5	69.2	55.49	1.292
1	1304	269.	50.	222.3	51.8	49.67	0.685
6	1304	326.	82.	229.2	72.6	53.43	1.235
1	1306	270.	49.	221.0	52.8	48.48	0.670
6	1306	327.	81.	229.0	73.3	52.15	1.190
1	1308	267	47.	221.1	52.9	51.53	0.710
6	1308	328.	81.	229.0	72.6	50.14	1.149
1	1310	270.	46.	220.9	53.2	50.72	0.699
6	1310	328.	80.	229.8	69.8	48.96	1.143

Figure 60. Remote radar display PPI, 200 km range, 1225Z, November 2, 1974.

Figure 62. Remote radar display PPI, 200 km range, 1240 Z , November 2, 1974.

Figure 61. Remote radar display PPI, 200 km range, 1230Z, November 2, 1974.

Figure 63. Remote radar display with computer generated warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1240 to 1340 Z .

Figure 64. Remote radar display
PPI, 200 km range, 1251Z,
November 2, 1974.

Figure 66. Remote radar display PPI, 200 km range, 1300Z, November 2, 1974.

Figure 65. Remote radar display with computer generated warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1251 to $1351 Z$.

Figure 67. Remote radar display with computer generated warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1300 to 1400 Z .

Figure 68. Remote radar display PPI, 200 km range, 1310Z, November 2, 1974.

Figure 69. Remote radar display with computer generated warning areas, echo contours and Victor airways, November 2, 1974. Prediction period is 1310 to 1410Z.

The conclusions and recommendations included here are divided into three areas: A) Phase II objectives, B) software refinements, and C) future tests and suggestions for implementation.

A. Phase II Objectives

After consideration of research on storm motion and predictability in . progress at NSSL, Lincoln Laboratories, Massachusetts Institute of Technology, and the National Weather Service Techniques Development Laboratory, we conclude that statistical techniques for automation of tracking and warning procedures are incomplete and probably will require substantial improvements in hardware (e.g., more sophisticated radars and signal processing equipment) and significant changes in the operational configurations of manpower. We believe that until such time as our ability to measure and understand severe storm dynamics, a simplified man-machine mix using echo centroids for tracking and extrapolating echo motion represents the best technique for issuing advisories at the Flight Service Station.

We also believe that the remote terminal described in Phase I is an adequate method for remotely displaying radar imagery; and the Phase II study has demonstrated the feasibility of using the R, θ, coordinate system as a graphics terminal. To this end we have developed logic which:

1. Shows current echo positions and coverage by displaying contoured echoes at user defined area and intensity threshold and shows that echoes from severe storms can be isolated routinely using an intensity threshold of $30-40 \mathrm{dBZ}$ and an area threshold of $150-1000 \mathrm{~km}^{2}$. This threshold is sensible because ninety-nine percent of the storms with hail have a maximum intensity above 30 dBZ and moderate turbulence can be expected in storms of that intensity.
2. Displays a graphic warning area which is derived from echo size and motion and expanded downstream for a user specified prediction interval to show a measure of the storm's predictability.
3. Provides the user a choice of two computer-generated background reference maps -- the State of Oklahoma outline, suitable for a 400 km range display, and the low level Victor airways, suitable for a 200 km range display. Other maps can be added with only a slight impact on the existing logic.
4. Achieves high visibility and easy interpretation by using different grey shades for the graphics elements. The best results were achieved when the warning areas were coded "bright", the echo contours coded "medium", and the reference maps coded "dim".

What we have not done is to:

1. Generate alphameric messages on the remote radar display system. Although possible, this was rejected for three reasons:
a) degradation of the display's resolution as a function of range would require excessively large characters to maintain readability; b) the logic would be complex, time consuming and require additional core, and c) low cost, high speed alphameric displays are available for use as a satellite display.
2. Transmit simulated real time test cases of the graphics products to the Wiley Post FSS. However, their personnel were kept informed of our work and on occasion did have an opportunity to see a simulated test case at NSSL. Reactions were quite favorable to the graphics described above.
3. Incorporate growth and decay trends within the graphics. They were found to be, on a storm-by-storm basis, too short-lived to extrapolate. General statistics, such as echo coverage, average intensity, etc., were not acceptab1e to FSS briefers as guidance information.
B. Software Refinements

The computer techniques used for this report have proved reliable and stable and no major modifications are suggested. Small changes will be necessary to facilitate real time operation and improve aesthetic appearances. Although developed for an R, θ coordinate system, the logic can be adapted with a considerable modification effort to an X, Y type display. Additional modifications of existing logic might include:

1. Creating a permanent file for the echo shape function so that a contoured echo, regardless of the time of the last entry, will retain its shape.
2. Converting the logic to determine the airports in the paths of echoes from a cone to the rectangular area used for generating warning areas. (It may be desirable to perform the airport search within the program area which generates graphics.)
3. Routing radar PPI information into the computer for blending with background reference fields before displaying on the remote terminal. This would require a hardware change and should be switch controllable to avoid computer dependency.
4. Including the echo's depth when drawing a warning box. The contour of large, slow moving echoes may actually circumscribe a box under the existing logic.
5. Introducing the weighting function into the calculations of σ_{t} and σ_{d}. Currently, only the centroid positions are weighted to have decreasing influence with time. However, the errors ε_{t} and ε_{d} should also have decreasing influence with time. We know that with few points to estimate echo motion, the errors will be large. However, as more points are added we should not be penalized by the large earlier errors. Conversely, if having tracked a storm for
awhile, its predictability decreases, we should be made aware of this fact.
6. Dividing the scope into sectors. Some program speed-up could probably be realized if certain quadrants did not have to be scanned for echo.

C. Future Tests and Suggestions for Implementation

Based on experience with the three case studies, the author believes some skill is needed to use the echo centroid tracking logic presented in this report. Basic to a successful operation is the selection of area and intensity thresholds and sampling intervals for the different types of storm situations (e.g., isolated severe storms, squall lines, and slow moving flood producers). We believe that some training of FSS personnel will be needed.

A second consideration is the configuration between man and machine. One possibility is to have one person responsible for identifying the hazardous storms and operating the echo tracking logic. Then, all user (pilot briefer) requests are channeled to the "hazards" briefer who is cognizant of the complete echo pattern. A second possibility is to allow each pilot briefer access to a computer terminal which lists input and output of echo locations and velocities (e.g., echoes which have been assigned user numbers for tracking could be so labeled).

One very important question which needs to be answered is how much time is needed for decision making. Not only initially when establishing thresholds, but during operation when matching echoes manually. This, of course, will vary with radar patterns of differing complexity. (The author had the advantage of being able to study the numerical results at leisure, but was handicapped by not having a simultaneous radar display for comparison.)

For the above reasons, a limited operational test is needed. This test should be divided into two sections of one month's duration each during a storm season. The first half of the test would be to prepare software logic for operational use and to test (a) the feasibility of operationally using the existing logic, and (b) determining the optimum man-machine configuration. It should include sufficient hardware (e.g., remote alphameric terminal connected to a time share larger computer) to allow efficient operation of the ECHOPRED logic without major modifications.

If the outcome of the first test is favorable, the system should then be installed at a Flight Service Station, such as Wiley Post, for operational test and evaluation by FSS staff.

ACKNOWLEDGMENTS

The author wishes to especially thank Mr. Kenneth E. Wilk for his suggestions and helpful discussions during all portions of this work and for his careful review of this report; also Mr. James Muncy, FAA Technical Officer, who supported this work.

The author appreciates the dedicated work of NSSL's supporting staff in the preparation of this report.

REFERENCES

Barclay, P. A., and K. E. Wilk, 1970: Severe thunderstorm radar echo motion and related weather events hazardous to aviation operations. ESSA Tech. Memo. ERLTM-NSSL 46, 63 pp.

Bigler, S. G., 1969: Dial A Radar. Bulletin, AMS, 50, 6, 428-430.
Blackmer, R. H., Jr., and R. O. Duda, 1972: Application of pattern recognition techniques to digitized radar data. Proceedings, 15 th Radar Met. Conf., AMC, Boston, Mass.; 138-143.

Goff, R. C., and W. D. Zittel, 1974: The NSSL/WKY-TV tower data collection program: April-July 1972. NOAA Tech. Memo. ERL NSSL-68, 45 pp.

Kessler, E., and J. T. Russo, 1963: Statistical properties of weather radar echoes, Proceedings, Wea. Radar Conf., AMS, Boston, Mass., 25-33.

Morris, M., and O. E. Brown, 1937: Analytic Geometry. McGraw-Hill Book Co., New York, 144 pp.

Östlund, S. S., 1974: Computer software for rainfall analyses and echo tracking of digitized radar data, NOAA Tech. Memo. ERL-WMPO-15, 82 pp.

Sirmans, D., and R. J. Doviak, 1973: Meteorological radar signal intensity estimation. NOAA Tech. Memo. ERL NSSL-64, 80 pp.

Wilk, K. E., 1966: Motion and intensity characteristics of the severe thunderstorms of April 3, 1964. ESSA IERTM-NSSL 29, 9-21.

Wilk, E. E., and K. C. Gray, 1970: Processing and analysis techniques used with the NSSL weather radar system. Proceedings, 14th Wea. Radar Conf., AMS, Boston, Mass., 369--374.

Wilson, J. W., 1966: Movement and predictability of radar echoes, ESSA Tech. Memo. ERLTM-NSSL 28, 30 pp .

APPENDIX A
Annotated Command Structure, June 6, 1975

```
CJMMANJ
TWC
HHMM
24ø\varnothing
CJMMAND
GCD
20
CJMMAND
ACC
AREA/IVTEVSITY
    250 4
DAY/ TIME/ TILT
157 2040 0
```

2 VST ECHOES FOUND WITH AREA GREATER THAN 250 SQ KM
AREA/AZIMUTH/RANGE
$98829 \quad 136$ cell 1 - new will try tracking only very strong 1907335157 cell 2 - new $\{$ (UST) cells this run

2 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SQ KM
AREA/AZIMUTH/RANGE
$501 \quad 327 \quad 161$ ignore severe cells imbedded in the $359 \quad 340 \quad 155$ VST cells above

DAY/ TIME/ TILT
1572045 e
STOP

2 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
$\begin{array}{lrl}1127 & 32 & 137 \text { cell } 1 \text { - some growth evident } \\ 1974 & 335 & 153 \text { cell } 2\end{array}$

2 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
$\begin{array}{ccc}\text { AREA/ALIMUTH/RANGE } \\ 407 & 328 & 154 \\ 496 & 338 & 149\end{array}$
496338149

CJMMAND

EVT
V/ HHYY/ AZM/ RNG/ DIRECTION/ SPEED/ STDDS/ STOTM 12040 29. 136. 12045 32. 137.
$292.5 \quad 92.9 \quad 0.00$ Ø.000
22040335.157. 22045 335. 153.

COMMAND DIS

BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

$21002200200 \quad 10 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ COMMAND
ACC
AREA/INTENSITY
250 4

DAY/ TIME/ TILT
157 2050 © STOP

4 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE

1180
353
304
1884
34140 cell
61188 cell 3 - new
311163 336147 cell 2

1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM AREA/AZIMUTH/RANGE
$943 \quad 335 \quad 144$

COMMAND
ENT

BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

COMMAND
ACC
AREA/INTENSITY
2504
DAY/ TIME/ TILT
1572055 ©
STOP

3 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE

1225	36	145 cell 1		
388	61	188 cell 3		
2509	324	147	\{年	no assignment as several small cells in line
:---				
merged, may be result of radar power fluctuation				

1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
$895 \quad 336140$
COMMAND
ENT
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDCS/ STDTM 12055 36. 144.
$276.9 \quad 16.930 .162$
3225061.188.

32055 61.188. 360.0 0.0 0.00 0.000
$\varnothing \quad \varnothing \quad$ D. \quad 。
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

COMMAND
ACC

AREA/INTENSITY

2504
DAY/ TIME/ TILT
157 2100 \&
STOP

5 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE

1077	38	146 cell	1
348	61	189 cell	3
357	298	194 cell	4
561	310	155 cell	6
1656	335	136 cell	2

1656335136 cell 2

1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SQ KM
$\begin{array}{ccc}\text { AREA/AZIMUTH/RANGE } \\ 954 & 335 & 133\end{array}$
COMMAND
ENT
N/ HHMM/ AZN/ RNG/ DIRECTION/ SPEED/ STCCS/ STDTM 12100 38. 146. $277.1 \quad 15.10 .159$
22100335.136. $334.2 \quad 64.3 \quad 23.26 \quad \ell .102$
-3 2855 61. 188.
3210061.189.
241.0 .10 .000 .000

COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

2115	2215	$2 l 0$	VIC	1	2	3	0	0	0	0	\boldsymbol{E}	\emptyset

```
COMMAND
ACC
AREA/INTENSITY
    25l
DAY/ TIME/ TILT
157 2105
    0
STOP
6 ~ V S T ~ E C H O E S ~ F O U N D ~ W I T H ~ A R E A ~ G R E A T E R ~ T H A N ~ 2 5 0 ~ S G ~ K M ~
AREA/AZIMUTH/RANGE
    762 39 45 156
    432 60 187cell 3
    600 297 192cell 4-rapid growth but centroid position consistent
    586 308 152cell 6
1946 336 132cell 2-growth evident, but centroid position is
                                    consistent
    1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
1087 333 127
COMMAND
ENT
    N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDCS/ STDTM
    2 2105 336. 132.
        331.8 62.8 24.05 0.142
    32105 6%, 187.
        4 2100 298. 194.
        6 2100 31\ell. 155.
        42105 297. 192.
            356.8 49.0 0.00 0.000
        62105 308. 152.
        9.8 76.7 0.00 0.000
        \emptyset & & &.
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS
```



```
COMMAND
ACC
AREA/INTENSITY
    250 4
DAY/ TIME/ TILT
157 2110 0
STOP
    4 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
    879 40 162 no assignment, still not convinced echo 1 won't reappear
    531 59 187 cell 3
    772 296 188 cell 4
1854 332 124 cell 2
1 SEV ECHOES FOUND WITH AREA GREATER THAN \(25 \varnothing\) SG KM
```

```
AREA/AZ IMUTH/RANGE
```

AREA/AZ IMUTH/RANGE
726 337 123
COMMAND
ENT
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDCS/ STDTM
3211ø 59. 187.
138.9 19.7 20.00 2.746
42110 296. 188.
2 2110 333. 124.
\emptyset Ø \ell. \ell.
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

```

```

COMMAND
ACC
AREA/INTENSITY
2504
DAY/ TIME/ TILT
157 2115 Ø
STOP

```

4 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE 1060 497
815
1868

1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
\(797 \quad 337117\)
COMMAND
ENT
N/ HHMM/ AZN/ RNG/ DIRECTION/ SPEED/ STDCS/ STDTM
\(1211544,162\).
272.1 79.2 15.85 0.171

32115 61. 188.
42115295.184.

22115 333. 118 .
135.5 7.1 17.95 3.33
(215
\(340.6 \quad 57.4 \quad 12.34 \quad 0.109\)
\(341.268 .1 \quad 38.060 .215\)
\(\emptyset \quad \varnothing \quad\) \&. 0.
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

COMMAND
ACC
AREA/INTENSITY
2504
DAY/ TIME/ TILT
157 2120 0
STOP

5 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA／AZIMUTH／RANGE
\begin{tabular}{rrrl}
1236 & 48 & 160 cell 1 \\
452 & 68 & 189 cell 3 \\
674 & 295 & 178 cell 4 \\
323 & 305 & 131 cell 5 －possibly old cell 6 ，but just as easy to reassign \\
1699 & 334 & 115 cell 2 －some area decrease，but centroid position \\
& \multicolumn{4}{c}{ consistent }
\end{tabular}

1 SEV ECHCES FOUND WITH AREA GREATER THAN 250 SG KM
AREA／AZIMUTH／RANGE
\begin{tabular}{lll}
\(6 \ell 8\) & 334 & 107
\end{tabular}

COMMAND
ENT
N／HHMM／AZM／RNG／DIRECTION／SPEED／STDCS／STDTM 12120 48．168． \(277.9 \quad 80.7 \quad 44.36 \quad 0.159\)
3212068,189 。 \(155.2 \quad 6.2 \quad 18.65 \quad 3.435\)
42120 295．178。
22120334.115. \(329.4 \quad 57.6 \quad 25.53 \quad 0.112\) \(340.5 \quad 66.6 \quad 37.05 \quad 0.274\) \(\varnothing \quad \varnothing \quad\) に．\(\quad\) 。

COMMAND
DIS
BTIME／ETIME／RANGE／OVERLAY／ECHO NUMBERS

COMMAND
ACC
AREA／INTENSITY 250

4
DAY／TIME／TILT
1572125 ©
STOP

\section*{6 VST ECHOES FOUND WITH AREA GREATER THAN 250 S6 KM}


1 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM
AREA/AZIMUTH/RANGE
\(637 \quad 336 \quad 104\)

COMMAND
ENT
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STDCS/ STOTM
52120305.131.

12125 58. 165.
32125 60. 191.
42125 296. 166.
52125305.126.

22125 332. 185.
\(\varnothing \quad \varnothing \quad\) Ø. \(\quad\).
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS


COMMAND
ACC
AREA/INTENSITY
250 4
DAY/ TIME/ TILT
1572130 e
STOP

5 VST ECHOES FOUND WITH AREA GREATER THAN 250 SG KM AREA/AZIMUTH/RANGE
\(515 \quad 12 \quad 187\) cell 7 - rapid growth from previous PPI
\(1376 \quad 50 \quad 173\) cell 1 - growth trend reversing
\(935 \quad 295 \quad 163\) cell 4
644304122 cell 5
1732332101 cell 2 (cell 3 dropped by program)

2 SEV ECHOES FOUND WITH AREA GREATER THAN 250 SG KM AREA/AZIMUTH/RANGE
2605756
\(624 \quad 333 \quad 93\)

\section*{COMMAND}

ENT
N/ HHMM/ AZN/ RNG/ DIRECTICN/ SPEED/ STDCS/ STDTM
72125 13. 189.
7 2130 12, 187.
12130 5月. 173.
71.146 .10 .000 .000
41302953
\begin{tabular}{llll}
278.3 & 81.8 & 46.15 & 0.167 \\
310.0 & 68.5 & 47.67 & 0.316
\end{tabular}
52130304.122.
\(22130332,1 \ell 1\).
\(318.3 \quad 55.8 \quad 14.75 \quad 0.121\)
\(341.7 \quad 69.5 \quad 34.56 \quad 0.383\)
\(\emptyset \quad \emptyset \quad\) ®. \(\quad\) 。

\section*{COMMAND \\ DIS}
BTIME/ETIME/RANGE/OVERLAY/ECHO
\begin{tabular}{llllllllllll} 
\\
2145 & 2245 & \(4 \ell 0\) & STA & 7 & 1 & 4 & 5 & 2 & 0 & 0 & NUBERS \\
\\
COMMAND & & & & & & & & & & & \\
EYE
\end{tabular}
commano
TwC
HHMM
24e
command
GCD
24
CUMMEN
ACC
AREA/INTENSITY
25民 4
DAY/ TIME/ TILT
1671930

1 VST ECHOES FOUND WITH AREA GREATER THAN 250 SS KM
drea/azliuth/range
\(1795 \quad 288 \quad 188\) cell 1 - new swill track UST cells this run
1 SEV LCHUES FOUND WITH AREA GREATER THAN 2 bO 'JG KM
AREA/ALINUTH/RANGE
1338281189 ignore SEV cells imbedded in the UST cells above.
DAY/ TIME/ TILT
\(167 \quad 1835\) Q
stop

1 VST ECHOES FOUNO WITH AREA GREATER THAN \(25 \%\) SG KM
area/azimuth/range
2221279186 cell 1

1 SEV ECHOES FQUND WITH ARLA GREATER THAN 250 SQ KM
AREA/ARIMUTH/RANGE \(1744 \quad 275 \quad 186\)
```

EJMMANO
E.JT
V/ HHMM/ \&ZM/ RIVG/ DIRECTIUN/ SPEEO/ STCDS/ STDIM
1 183多 28k. 188.
1 1835 27%. 186.
333.0 45.9 0.0% O. \00
| \& \& %
COMMANO
OIS
BTIME/ETIME/RANGHIUVERLAY/ECHU NUMBERS
COMMLND
ACC
AREA/IVTENSITY
25% 4
OAY/ TIME/ TILT
167 1840 \ell
STOP
I VST LCHOES FOUVO WITH IREA BPLAIER THAN 25: SQ KM
AREA/ALIMUTH/RANGE
2648 27% 183 cell 1 - growth due to squall line entering PPI
2 SEV ECHOES FOUNO WITH AREA GRLATER THAN 25\ SG KM
AREA/ALIMUTH/KANGE
1429 265 188
4\&\& 293 185
CUMMAN!
EJT
V/ HHMIA/ AZM/ RNG/ DIRECIIUN/ SPEED/ STELS/ STCIM
1 184* 27%.183.
331.3 49.3
6.59
0.070
0 \ 2. \.
GOMMAND
0) S
BTIME/LTIME/RANGE/OVERLAY/ECHD NUMEERS

```


\section*{CuMMAVO}

ACC
```

area/intensity
25 C 4
WAY/ TIME/ TILI
$167 \quad 1345$ \&
STUP

```
    1 VST ECHOES FOUNO WITH AREA GREATER THQN 250 Sr KM
TREA/AIIMUTH/只ANGE
3867275179 cell 1 - line still growing
1 SEV ECHOES FOUND WITH JREA GREATEK THAN 258 SG KM
AREA/ALIMUTHIRANEE
1661 278 181
cumpand
Evt
    N/ HHMM/ AZM/ RNG/ DIRECTIUN/ SPEED/ STEDS/ STDIM
    11845279.179.
                                    3E?.) 39.231 .110 .516
    Q Q Q. Q
COMMAND
OIS
BTIAE/ETIME/RANGEIOVGRLAY/ECHO NUMPERS

CGMMAND
ACC
AREA/I NTENSITY
    2504
DAY/ TIME/ TILT
167195 と
STOP

2 VST ECHOES FQUNO WITH HREA GREATER THAN \(25 \%\) SQ KM AREA/AZIUUTH/RANGE
\begin{tabular}{lll}
2863 & \(27 t\) & 174 cell 1 \\
265 & \(3 \ell 1\) & 186 no assignment wait to see if small cell is retained)
\end{tabular}

1 SEV ECHOLS FOUNU h ITH SREG CALATER THAN 25 SA SK KM
```

AREA/AZI\UTH/RANGE

```
\(1636 \quad 268 \quad 179\)
CLMMANO
EVT
    N/ HHAN/ ALY/ RVG/ DIQE二IIUN/ SPEEU/ STEOS/ STOTM
    \(1185 \times 276,174\).
                                    \(314.0 \quad 42.65 \quad 0.843\)
Combs 0
- 15
BTINE/ETIME/FIAVGE/OVERLAY/EGHU VUMOLRS

CUMi11 0
ACC
AREA/I TTEVSITY
    25Q 4
DAY/ TIML/ TILT
167 1955 ?
STOP
    1 VST ECHITS FOLVD WITH ,REA GREATEF THAN 25 S SG KM
AREA/A/IHUTF/RAVGE
\(2 t 75273171\) cell 1 - area decreasing, small cell dropped
    1 SEV ECHOFS FOUVD WITH GREA GKEATER THAN 250 SG KM
AREA/AZI UUTH/RANGE
1362 26t 172
COMMANO
EvT
    V/ HHYIM ALH/ RNG/ DIRECIIUN/ SPEED/ STCDS/ STCIM
    11855273.171.
                                324. 63.3 46.94 9.84う
0 I Q Q D.
```

CUMMANO
DIS
BTIME/ETINF/RANGE/OVERLAY/ECHO NUMGFRS

```

```

COMMANS
ACE
AREA/IUTENSITY
25\& 4
DAY/ TIME/ TILT
157 19\ellめ O
STOP
I VST ECHOES FOUND WITH CREA GRLATER THAN 25O SF KM
AREA/A/IMLTH/RANGE
2505 271 165cell 1-area still decreasing, centroid position
consistent
I SEV ECHLES FOUND WITH LREG GREATER THAN 25D SG KM
AREA/ALIHUTH/RANGE
1274 26t 167
CCMMANO
EVT
N/ HHMM/ AZM/ RNG/ DIRECTIUN/ SPEED/ STEUS/ STOTH
1 190゙) 271.165.
325.4 71.5 43.74 0.812
\ell <. \ell.
COMMAND
DIS
BTIME/ETIHE/RANGE/OVERLAY/ECHO NUMDERS

```

```

CUMMANO
ACC
AREA/INTEMSITY
25Q 4
DAY/ TIME/ TILT
167 1)05 |

```


COMMAND
ACC

IREA/INTENSITY
\[
25 \ell \quad 4
\]

OAY/ TIME/ TILT
1671915 Q
STOP

2 VST ECHDES FQUND WITH AREA GREATER THAN 250 SO KM AREA/AZIMLTF/RANGE
\begin{tabular}{llll}
2431 & 201 & 159 cell 2 \\
364 & 287 & 133 cell 3 -area lost in previous PPI regained
\end{tabular}

1 SEV ECHLFS FOUND WITH AREA GKEATER THAN 25 © SG KM
```

AREA/AZI YUTF/RANGE

```
\(1482 \quad 261156\)
COMMANO
Eivt
    V/ HHAM/ AZM/ RNG/ OIRECTIUN/ SPEEU/ STCDS/ STOIM
    21915 261. 159.
    31915287.133.
                                    \(276.1 \quad 69.7 \quad 34.15 \quad \% .134\)
    287. 11ヵ.4 59.72 か.297
    0 Q Q D.
COMMAVD
UIS
BTIME/GTIME/RANCE/DVERLAY/ECHO NUR:3FKS

COMMAVD
ACC
AREA/INTENSITY
    251 4
DAY/ TIME/ TILT
1671926
STUP

1 VST ECHOES FOUND WITH AREA GKEATER THAN 250 SG KM AREA/ALIMUTH/RANGE \(2792 \quad 264 \quad 146\) cell 1 - (cells 2 and 3 merged, extrapolated position 2 SEV ECHUES FOUVD WITH AREA GREATER THAN 250 SQ KM
\begin{tabular}{ccc} 
AREA/AIIMUTF/RANGE \\
574 & 254 & 169 \\
591 & 265 & 136
\end{tabular}
command
EvT
V/ HHIMI ALM/ RNG/ DIRECTION/ SPEED/ STEDS/ STEIM
\[
11920264,146,
\]
```

x \ \ell. D.

```
\[
321.3 \quad 77.7 \quad 41.41 \quad \text { প. } 761
\]

Comm 1 yI)
DIS
BTIMEIETIMERANGEICVERLAYIECHO NUMBERS

COMMAVD
ACC
AREA/INTENSITY
25R 4
DAY/ TIME/ TILT
1671925 \&
STOP

1 VST ECHIES FOLND hITH AREA GREATER THAN 25 SG KM AREA/AZIMLTH/RANGF
2757 263 148cell 1

2 SEV echoes fouivd with area greater rhan 25: SQ kN
\begin{tabular}{ccc} 
AREA/ALIMUTH/RANGE \\
518 & 253 & 166 \\
435 & 272 & 126
\end{tabular}
```

COMMAND
ENT
N/ HHMM/ GLM/ RNG/ DIRECTION/ SPEED/ STCDS/ STOTM
1 1925 263. 140.
313.7 78.4 41.81 0.72k
0) 0 0. 0.
CUMMANO
DIS
BTIME/ETIME/RANGE/OVERLAY/ELYO NUMBERS

```

```

COMMANO
ACC
AREA/INTENSITY
25l 4
DAY/ TIME/ TILT
167 1930 D
STOP
I VST ECHUES FOUND WITH ,REA GREATEP THAN 25X SG KM
AREA/AZI/UTH/RANGE
256\ell 2t3 132cell 1-area starting to decrease
2 SEV ECHOES FOUND WITH AREA GREATER THAN 25\% SE KM
AREA/ALIMUTH/RANSE
555 252 155
442 269 119
COMMANO
ENT
N/ HH/M/ ALM/ RNG/ DIRECIIUN/ SPEED/ STCDS/ STCTM
L 1930 263. 132.
315.3 77.8 46.93 3.699
| %. Ø.
COMMANO
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

```

```

COMMAND
ACC
AREA/INTENSITY
25l
.4
DAY/ TIME/ TILT
167 1935 \&
STOP
I VST ECHUES FOUND WITH AREA GREATER THAN 25% SG KM
AREA/AZIMUTH/RANGE
2254 268 126cell 1 - area decreasing rapidly
2 SEV ECHOES FOUND WITHi AREA GREATER THAN 25% SG KM
AREA/AZIMUTH/RANGE
522 251 150
525 26E 111
COMMAND
Evt
N/ HHMM/ AZM/ RIVG/ OIRECTIUN/ SPEEC/ STCES/ STOTi?
1 1935 26多 126.
313.3 78.7 44.85 0.66%
| Q Ø.
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMEERS

```

```

COMMAND
ACC
AREA/IvTENSITY
250
4
DAY/ TIME/ TILT
167 1948 0.
STOP
l VST ECHUES FOUND WITH AREA GREATER. THAN 25% SG KM
AREA/AZIMLTH/RANGE
2390 258 120cell 1

```
```

AREA/AZIMUIF/RANGE
476 251 146
614 267 1\&3
COMMAND
ENT
N/ HH|M/ AZN/ RNG/ DIRLCIIUN/ SPEED/ STEOS/ STCTA.
1 1940258. 120.
311.7 79.3 43.72 0.64%
0 J l. Q.
COMMANO
DIS
BTIME/ETIME/R ANGE/OVERLAY/ECHO NUMBERS

```

```

COMMAN:
ACC
AREA/INTENSITY
2.5\ell 4
DAY/ TIME/ TILT
167 1745 Q
STOP

```
I VST ECHOES FOUVD WITH AREA GREATER THAN 250 SG KM
AREA/ALIMUTF/RANGE
2246 259 111 cell 1
    2 SEV ECHOES FOUND WITH AREL GREATEK THAN 25 SA SC KM
    AREA/ATIMUTH/RANGE
        \(417 \quad 245 \quad 138\)
        \(367 \quad 267 \quad 95\)
        COMMANO
        ENT
        N/ HHMM/ ALM/ RNG/ DIRECTIUN/ SPEED/ STCDS/ STCTA
        11945259.111.
                                    309.6 79.1 50.48 0.626

```

COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS
1445 2045 2\#\ell VIC 1 @ \& \& \& \& 0 \& \& \&
Cuminaino
ACC
AREA/INTENSITY
1\&Re 3
OAY/ TIME/ IILT
167194% \&lcell 1 broke into several cores after this time;
a larger area at a lower intensity was used after this
time)
2 STR ECHOES FOUND WITH AREA GREATER THANIDDO SG KM
AREA/ALIMLTH/RANGE
7518
I VST ECHCES FOUND WITH IREA GREATER THANIODR SG KM
AREA/AZLIUTH/RANGE
3962 345 246
OAY/ TIME/ TILT
167 195%
1 STR ECHCES FOUND WITH AREA GREATER THAN1DQD SG KM
AREA/ALIMUTH/RANGE
4745 26? llecell 4 - new
DAY/ TIME/ TILT
167 1955 \&
STOP
l STR ECHOES FOUND wITH AREA GREATER THANNIOOO SG KM
AREA/ALIMUTF/RANGE
4 7 4 3 2 6 4 1 0 8 cell 4 - indicated motion unusually slow

```
```

COMMANO
EvT
V/ HHMM/ \& LM/ RNG/ DIRECTIUN/ SPEED/ STCDS/ STDTM
4 195% 263. 110.
4 1955,264. 108.
219.9 36.2 0.00 0.00.
Q 人 V O.
COMMANO
DIS
BTIME/FTIME/RANGE/OVERLAY/ECHU NUMBERS

```

```

COMMAND
ACC
AREA/IVTENSITY
1000 3
DAY/ TIME/ TILT
167 2002 \&
STOP
I STR ECHOES FOUND WITH GREA GREATEP THANIDWQ SG KM
AREA/AZIMUTH/RANGE
4 8 4 9 ~ 2 6 7 ~ 9 7 c e l l ~ 4 ~ - ~ (c e n t r o i d ~ p o s i t i o n ~ c h a n g e ~ v e r y ~ l a r g e ,
echo seems unstable)
COMMANO
EJT
V/ HHMA/ AZM/ RNG/ UINECYION/ SPEED/ STCOS/ STETM
4 2000 267. 97.
235.9 11.2 28.38 1.627
Q b l.
COMMAND
DIS
BTIME/ETIME/RANGE/UVERLAY/ECHO NUMBERS

```

```

COMMAND
ACC
AREA/IVTENSITY
1Q0\ell 3
DAY/ TIME/ VILT
167 2\&\&5 C

```
```

 2 STR EGHOES FDUND WITH AREA GREATER THANIOOX SQ KM
 AREA/ALIMUTH/RAINGE
4345 263 82cell 5 - new {significant area and centroid position/
1368 294 155 no assignment - large patch of stratiform rain
DAY/ TIME/ TILT
167 2%10 \&
STCP
2 STR ECHILS FOUNO WITH AREA GREATER THANIOXO SQ KM
AREA/ALIMUTH/RANGE
4 3 1 9 ~ 2 6 3 ~ 7 4 ~ c e l l ~ 5 ~ - ~ a r e a ~ a n d ~ c e n t r o i d ~ p o s i t i o n ~ c o n s i s t e n t
1322 295 155 no assignment -little motion from previous PPI
commavo
Evt
N/ HHMIM/ \triangleZM/ RNG/ DIRECTIGN/ SPEFD/ STCOS/ STCTM
5 2005 263. 82..
5 261% 263. 74.
263.0 105.0 0.00 0.00%
\ell औ २. Ø.
COMMAND
DIS
BTIME/ETIMEIRANGE/OVERLAY/ECHC NUMBERS

```

```

comimavo
ACC
AREA/I NTENSITY
l0\elll 3
UAY/ TIME/ TILT
167 2015 \ell
STOP
2 STR ECHDES FOUND WITH AREA GREATER THANIDDO SO KM
AREA/ALIMUTH/RANGE
418t 2t3 64 cell 5 - rapid motion indicated
1434 29t 153 no assignment - see above

```
```

COMMAND
EvT
N/ HHIMM/ AZM/ RNG/ OIRECTIUN/ SPEED/ STCDS/ STCTM
5 2015 263. 64.
0 l. \&. 263.0 110.4 0.81 0.082
COMMANO
DIS
BTIME/ETIME/RANGE/OVERLIY/ELHO NUMEFRS
2015 2115 200 VIC 5 % 0 0 0 % \& \& \& \& \& \& \& \&
COMMANO
ACC
AREA/INTENSITY
1と\&も 3
DAY/ TIME/ TILT
167 202%
2 STR ECHOES FOUND WITH AREA GREATER THANIW\&O SG KM
AREA/AZIMUTH/RANGE
5162 1543 2\&5
I VST ECHOES FOUND WITH AREA GREATER THANIDWQ SG KM
AREA/AZIMUTH/RANGE
125\ell 24\& 82
OAY/ TIME/ TILT
167 2025 \&
STOP
2 STR ECHOES FOUND WITH AREA GREATER THAN1OQD SQ KM
AREA/ALIMUTh/RANGE
5203 284 46 cell 6 - area and centroid position consistent
1442 257 148 no assignment
I VST ECHOES FOUND WITH AREA GREATER THANIDOD SG KM
AREA/AZIMUTH/RANGE
1247 238 77

```
```

COMMAND
ENT
N/ HHMM/ \triangleZM/ RNG/ OIRECTIGN/ SPEED/ STCLS/ STCTA
6 2020 285. 51.
6 2025 284. 46.
0 \ Q. Ø.
COMMAND
DIS
BTIME/ETIME/R ANGE/OVERLAY/ECHO NUMBEKS

```

```

COMMAND
ACC
AREA/INTENSITY
100e 3
DAY/ TIME./ TILT
167 203\& Q
STOP
2 STR ECHOES FOUNO WITH AREA GREATER THANIDOX SG KM
AREA/ALINUTH/RANGE
487\ell 2\varepsilon7 41cell 6 - some decrease in area, centroid position
1 7 7 8 ~ 3 \ell \ell ~ 1 4 5 n o ~ a s s i g n m e n t ~ c o n s i s t e n t
COMMAND
ENT
N/ HHMM/ \&ZM/ RNG/ DIRECTIUN/ SPEED/ STCDS/ STCTM
62030287. 41.
276.9 62.1 20.7ソ 0.09?
0 Q Q. \#.
COMNAND
DIS
BTIME/ETIME/R ANGE/OVERLAY/ECHC NUMBERS

```

```

COMMAND
BYE

```
```

 APPENDIX C
 Annotated Command Structure, November 2, }197
 SOMMAVJ
TWC
HHMM
2400
COMmAvJ
GCD
20
COMMAVD
ACC
AREA/IVTEVSITY
15\emptyset
DAY/ TIME/ TILT
306 1225 Ø
2 ~ V S T ~ E C H O E S ~ F O U N D ~ W I T H ~ A R E A ~ G R E A T E R ~ T H A N ~ 1 5 0 ~ S Q ~ K M
AREA/AZIMUTH/RANGE
154 251 76 cell 1 - new
540 311 95 cell 2 - new
DAY/ TIME/ TILT
306 1228 Ø
3 VST ECHOES FOUND WITH AREA GREATER THAN 150 SQ KM
AREA/AZIMUTH/RANGE
219 25l 75 cell 1
189 324 321 94 95 cell 3 - new { no assignment }
DAY/ TIME/ TILT
306 1230 0
STOP
4 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN
AREA/AZIMUTH/RANGE
225 251 74 cell 1
179 30t 95cell 3
337 321 94no assignment (no motion from previous time)
222 349 126 cell 5 - new

```
```

COMMANO
ENT
V/ HHMM/ \&ZM/ RNG/ DIRECTION/ SPEEC/ STCCS/ STCIN
1 1225 251. 76.
1 1228 25\ell. 75.
303.3 33.1 0.20 0.000
1 1230 251. 74
256.0 23.8 27.41 0.803
3 1228 324. 95.
3 1230 3\ellt. 95.
215.0 98.8 わ.人ひ \&,0凡い
\ell < l lo
COMMANO
OIS
BTIME/ETIN=/RANGE/OVERLAY/ECHO NUMRERS

```

```

COMMAND
ACC
AREA/INTENSITY
15\ell 4
DAY! TIME/ TILT
3\&6 1232
4 VST ECHEES FOLND WITH AREA GKEATER THAN 150 5G KN
AREA/ALIMLTF/RANGE

21ℓ	24 G	73 cell 1
194	$3 \ell t$	94 cell 3
364	321	93 no assignment
193	35ℓ	127 cell 5

DAY/ TIML/ IILT
3\ellt 1234 \ell
3 VST ECHOES FQUND WITH AREA GREATER THAN 15@ SG KM
area/alimlit/range"
192 245 71cell 1
55\ell 315 y2cell 2 lmerge of cell 3 with unassigned cell,
21t 345 127cell 5 centroid position consistent with old cell 2)
DAY/ TIME/ TILT
306 1236 \&
STGP

```

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KM
\begin{tabular}{cccc} 
AREA/ALIMLTH/RANGE \\
158 & 245 & \(7 \ell c e l l\) & 1 \\
558 & 317 & g2cell & 2
\end{tabular}

\section*{COMMAND}

ENT
N/ HHMM/ AZM/ RNG/ DIRECTIUN/ SPEED/ STCCS/ STCTM
11232 24S. 73.
\(283.130 .8 \quad 43.72 \quad 0.75 \%\)
11234249.71.
\(278.3 \quad 36.6 \quad 41.90 \quad 0.729\)
11236249.78. 274.137 .3 38.72 0.67ら
51230349.126. \(5123235 \ell .127\). \(235.1 \quad 72.5 \quad 0.40 \quad 0.000\)
\(51234349^{\circ}\) 127. 168.9 15.0 15.84 1.060

21225 311. 95. 21234 315. 92. \(247.747 .9 \quad 0.80 \quad 0.000\)
21236 317. 92.
\(242.8 \quad 53.3 \quad 20.54 \quad 0.502\)
\(\ell\) \& \&. も.

COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO RUMBERS

COMMAND
ACC
AREA/INTENSITY
15\& 4
DAY/ TIME/ TILT
3261238 e

3 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN
AREA/AZIMLTF/RANGE
\begin{tabular}{rrrr}
\(19 t\) & \(25 i\) & 69 cell & 1 \\
551 & 315 & 91 cell & 2 \\
152 & 351 & 13 cell & 5
\end{tabular}
```

DAY/ TIME/ IILT
30E 1240 Q
STOP

```
2 VST ECHOES FOUND WITH AREA GKEATER THAN 150 SG KN
AREA/AZIMUTH/RANGE
216 25l 68
    \(54 t 32 \ell 98\)
COMMAND
EvT
    N/ HHMM/ \(\triangle Z M /\) RNG/ DIRECTION/ SPEEC/ STCCS/ STCTM
    11238 25\%. 69.
    1 1240258. 68.
    2123831 . 91.
    2124032 回 9 。
    51238351.130.
    \(\varnothing\) Ø に. 0.
COMMAND
DIS
BTIME/ETIME/RANGE/CVERLAY/ECHC NUMBERS

COMMAND
\(\triangle C C\)
AREA/IVTENSITY
    15\& 4
DAY/ TIME/ TILT
3261242 \&
    3 VST ECHUES FOLND hith AREA GREATER THAN 150 SG KM
AREA/AZIMLTF/RANGE
    \(19425 \mathrm{k} \quad 67\) cell 1
    \(159 \quad 284 \quad 86\) no assignment
    581322 gecell 2
```

DAY/ TIME/ TILT
3\ell6 1245 \&
STOP

```

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/ALIMLTH/RANGE
\begin{tabular}{lll}
\(17 \ell\) & 251 & 64 cell 1 \\
944 & 311 & 83 cell 6 -new
\end{tabular}\(\left\{\begin{array}{l}\text { several cells merged, may be result of } \\
\text { increase in intensity or radar power } \\
\text { fluctuation }\end{array}\right.\)
    1 SEV ECHOES FOUND WITH AREA GREATER THAN \(15 \%\) SG KN
AREA/AZIMLIF/RANGE
    157 327 9\&
COMMAND
ENT
    N/ HHMM/ ALM/ RNG/ DIRECTIUN/ SPEED/ STCES/ STCIM
    11242 25R. 67.
    11245 250. 64.
\(256.7 \quad 34.0 \quad 35.21 \quad 0.601\)
                                    \(254.1 \quad 35.8 \quad 33.48 \quad 0.618\)
    21242 322. 90.
                                \(242.5 \quad 64.9 \quad 18.45 \quad 8.540\)
    61245311.83.
    \& ヵ \& \&
COMMAND
DIS
HTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

CUMMAND
ACC
AREA/INTENSITY
    15K 4
DAY/ TIME/ TILT
3061247 e

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SQ KM AREA/AZIMUTH/RANGE
\(\left.\begin{array}{llll}157 & 251 & 63 \text { cell } & 1 \\ 863 & 311 & 81 \text { cell } & 6\end{array}\right\}\) area loss in both cells, but centroid positions consistent
DAY/ TIME/ TILT 3061249 C

3 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/AZIMUTH/RANGE
\(153 \quad 25261\) cell 1
\(85 \ell \quad 313 \quad 80\) cell 6
197353130 cell 7 - new

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/AZIMUTH/RANGE
225 325 84
DAY/ TIME/ TILT
306 1251 e
STOP

3 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN
AREA/AZIMUTH/RANGE
\(\left.\begin{array}{llll}194 & 255 & 60 \text { cell } & 1 \\ 946 & 312 & 80 \text { cell } 6\end{array}\right\}\) growth evident in both cells
151353132 cell 7

1 SEV ECHCES FOUND WITH AREA GREATER THAN 150 SG KM AREA/AZIMUTH/RANGE
257 32t 85
```

ENT
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STCDS/ STCTM
1 1247 251. 63.
11249 252. 61.
11251 255. 60.
6 1247 31%. 81.
6 1249 313. 80.
61251 312. 80.
71249 353. 132.
71251 353. 132.
250.5 36.4 33.63 0.593
246.8 37.8 33.45 0.599
240.6 39.0 40.84 0.576
346.1 74.1 0.00 0.000
268.5 62.2 69.93 0.944
271.2 39.4 62.41 1.099
180.0 Ø.0 0.00 0.000
\ell Ø \ell. Ø.
COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS

```

```

COMMAND
ACC
AREA/INTENSITY
150 4
DAY/ TIME/ TILT
1253 C
2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SQ KM
AREA/AZIMUTH/RANGE

199	256	59 cell 1
971	314	79 cell 6 growth continuing

 2 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KM
 AREA/AZIMUTH/RANGE
177 3e\& 77
267 327 85
DAY/ TIME/ TILT
326 1255 e
STOP

```

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SQ KM
AREA／AZIMUTH／RANGE \(\left.\begin{array}{rrr}241 & 259 & 57 \text { cell } 1 \\ 1023 & 315 & 80 \text { cell } 6\end{array}\right\}\) both cells growing，cell 1 accelerating

1 SEV ECHOES FQUND WITH AREA GREATER THAN 150 SG KM AREA／AZIMUTH／RANGE \(471316 \quad 78\)

COMMAND
ENT
N／HHMM／AZM／RNG／DIRECTION／SPEED／STCDS／STCTM 11253 256．59．

11255 259．57．
61253 314．79．
61255 315．80．
\begin{tabular}{llll}
236.1 & 39.9 & 39.81 & 0.555 \\
231.4 & 41.9 & 41.75 & 0.624 \\
260.7 & 43.3 & 58.90 & 1.076 \\
248.2 & 41.6 & 57.34 & 1.015
\end{tabular}
\(\ell \quad\) Ø ロ．ロ．
COMMAND
DIS
BTIME／ETIME／RANGE／OVERLAY／ECHO NUMBERS


COMMAND
ACC
AREA／INTENSITY
15月 4
DAY／TIME／IILT
\(306 \quad 1257 \quad 0\)

2 VST ECHOES FOUND WITH AREA GREATER THAN \(15 \emptyset\) SQ KM
AREA／AZIMUTH／RANGE
295 268 54 cell 1
1119315 8ecell 6

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA／ALIMUTH／RANGE
```

 293 326 80
    ```

DAY/ TIME/ TILT \(306 \quad 1259\) -

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/AZIMUTH/RANGE
26826252 cell 1
10er 32 R 79 cell 6

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KM AREA/ALIMUTH/RANGE
\(231327 \quad 78\)

DAY/ TIME/ TILT 306 1380 \& STOP

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/ALIMUTH/RANGE
\begin{tabular}{ccc}
278 & 262 & 51 cell 1 \\
\(12 \ell 3\) & 322 & 80 cell 6
\end{tabular}

1 SEV ECHOES FQUND WITH AREA GREATER THAN \(15 \emptyset\) SG KM
AREA/AZIMUTH/RANGE
239327
COMMAND
ENT
N/ HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STCDS/ STCIM 11257 262. 54.

11259 262. 52.
11300261.51.
61257319.80.
\(6125932 \ell\). 79.
61300 322. 80.
\begin{tabular}{llll}
228.9 & 44.4 & 40.65 & 0.677 \\
227.1 & 46.9 & 39.60 & 0.685 \\
226.7 & 48.3 & 42.70 & 0.680 \\
237.8 & 54.6 & 57.82 & 1.402 \\
236.7 & 59.5 & 54.73 & 1.313 \\
234.2 & 65.0 & 57.53 & 1.359
\end{tabular}
\(\varnothing \quad \varnothing \quad\) ८. \(\quad\).

COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHO NUMBERS


COMMAND
ACC
```

AREA/INTENSITY
15@ 4
DAY/ TIME/ TILT
306 13\ell2 \

```

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KM AREA/AZIMUTH/RANGE
\begin{tabular}{llll}
278 & 267 & 51 cell & 1 \\
993 & 324 & 81 cell & 6
\end{tabular}

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KN AREA/AZIMUTH/RANGE
\(207 \quad 32977\)

DAY/ TIME/ TILT \(306 \quad 13 \ell 4\) Q

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SQ KM

AREA/AZIMUTF/RANGE
\begin{tabular}{lll}
266 & 269 & 50 cell 1 \\
326 & 82 cell 6
\end{tabular}

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KM AREA/AZIMLTH/RANGE
202
331
202
33178

DAY/ TIME/ TILT
\(306 \quad 1306\) \&
STOP

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KM
\begin{tabular}{cccc}
\multicolumn{4}{c}{ AREA/AZIMUTH/RANGE } \\
278 & 278 & 49 & cell 1 \\
1072 & 327 & 81 & cell 6
\end{tabular}

1 SEV ECHOES FOUND WITH AREA GREATER THAN 150 SG KM AREA/AZIMUTH/RANGE
\(205 \quad 332 \quad 79\)

COMMAND
ENT HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STCDS/ STCTM
11302 267. 51.
11304 269. 50.
1 1306 27R. 49.
61302324.81.
\(\epsilon 1304\) 326. 82.
61306 327. 81.
\(224.350 .250 .80 \quad 0.701\)
222.3 51.8 49.67. 0.685
221.0 52.8 48.48 0.670
\(231.5 \quad 69.2 \quad 55.49 \quad 1.292\)
\(229.2 \quad 72.6 \quad 53.43 \quad 1.235\)
\(229.073 .3 \quad 52.15 \quad 1.190\)
- Ø \& Ø.

\section*{COMMAND}

DIS


\section*{COMMAND}

ACC
AREA/INTENSITY
150 4
DAY/ TIME/ TILT 3061308 e

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SG KM
AREA/ALIMUTH/RANGE
29267 cell 1
\(1052 \quad 328 \quad 81\) cell 6
```

DAY/ TIME/ TILT
3l6 1310
STOP

```

2 VST ECHOES FOUND WITH AREA GREATER THAN 150 SC KM AREA/AZIMUTH/RANGE
285 278 46 cell 1
\(1084328 \quad 88\) cell 6

COMMAND
ENT HHMM/ AZM/ RNG/ DIRECTION/ SPEED/ STCDS/ STCTM
\begin{tabular}{lllllll}
1 & 1308 & 267. & 47. & 221.1 & 52.9 & 51.53 \\
1 & 1310 & 270. & 46. & 0.710 \\
6 & 1308 & 328. & 81. & 220.9 & 53.2 & 50.72 \\
6 & 1310 & 328. & 80. & 229.0 & 72.6 & 50.14 \\
\hline
\end{tabular} \(\ell \quad \varnothing \quad\) と. \(\quad\) •

COMMAND
DIS
BTIME/ETIME/RANGE/OVERLAY/ECHC NUMBERS 1318141020 VIC 1060

COMMAND
BYE

\section*{APPENDIX D}

\section*{Computer Program Listing for ECHOPRED}

```

 *, ISVGT(4(3),GTMIN(4),GTMAX(40), SLENG(1&),NHAM(1?),IECAZ(1D,9`N)
 *IECRNC(12,9@`), IECNO,IGTLENG,MAP(1QQ),MEN,COF(10,4,12),GATE(220),
 *IGO, ECXTN,IHSK(IG)
 DINENSICN IPCINT (2,E),LNSAV(4Q)
 DINENSION NCE(10), 决(10), BX(12),AY(1G),BY(10),IENC(18)
 DINEASION STE2(1J),S LE2(1义)
 DINENSION SWT(1%),SWT2(1%),SWX(1,),SWY(1?),SWTX(1,),ShTY(1?)
 DINENSICN SW(12),FTIME(12) KY(100),ALINE(24),IEC(11),SERTM(53)
    ```

```

 DINEASION JEC(12), AREA(1%),STURM(E)
 DINENSION IECINT(1:)
 DINENSION IKNT(8)
 REAL*B SW,SWT,SWT?,SWX,SWTX,SWY,SWTY, XT, YT
 INTEGER G†MIN;GTMAX,Tथ,;T1,T2, BDXTM
 INTEGER*2 I ECAZ
 CHAR IECRNG
 CHAK CATE,IHSK
 DATA CP/'W ', 'SW','S ', 'SE', 'F ','NE','N ', 'NW', 'W %/
    ```

```

 DATA GKEY,QACC,GGCC,GBQC/3HKEY, ЗHACC, ЗHGCD, ЗHBQC/
 DATA STORN/24HI LGT MCC STR VST SEV EXT/
 FADIR (X,Y)=RTD*ATA\2(Y,X)+139.
 HOUR(K)=FLOAT(K/|Q)+FLOAT(MOR(K, leq))/6&.
 JHHNN(T)=T*60%+ +4N* IFIX(T)
 l1%7 FORNAT(2I5,2F5,:)
 6796
 FORNAT(1X,1115
 MXNCE=1D
 MEN=10
 MXEP1=NXNCE+1
 RTO=57.2957795
 ALN2=*.6931
 DT R=0.ब174532925
 D4EP=4.2/3.1415927
 C REAO STATICN NAMES ONTC DISK
REWINC }
1731 READ(5,1732)TN1,TN2,TN3,XA,YA
1732 FURMAT(3A4, 2X,2FO.E)
IF(TN1.EG.4HTAF)GC TO 17ड3
CONVERT AN TCEKN FOR AIRFORTS AND STORE ON DISK
XA= X\Delta*1.852
YA=YA\#1,852,
GO TC 1721
1733 END FILE
C.OENTER CVERLAYS CNTC [ISK
REWIAC 3
1786 READ (5,17% %iXB(1),YB(1),XE(1).YE(1)
1787 FORMAT(7F10.4)
IF(XE(1).EQ.999.)GC TO 1785
L=1
CALL SETLIN(L)
WRITE(3,1787)XB(1),YE(1), XE(1),YE(1),PHIB(1),PHIE (1), SL(1)
IF(L.EG.2)WRITE(3,`787)XB(2),YB(2),XE(2),YE(2),PHIB(2),PHIE(2),SL(
*2
GOTC 1786
1788 END FILE
C DEFAULT TINE WEICHT CONSIANT IS 2Q MINUTES.
TWC=-ALN2*O.5
C....DEFAULT GROUNC CLUTTER DISTANG.E FOR ECHO CONTOURING IS 2O KM
IGC=2TIME IS AVAILABLE FROM BFNDIX DISPLAY RDXTM = a.
BDXTN=0.
C REACCCNMAND
DO REAL IE I= I=1,19

```
```

 102%
 D
    ```

```

 NOB(I)=8
 219, WRITE (6,21N1
 2181 FORNAT('%CONNANC')
 C***360 CEPENDENT
READ(59,2195)CMC
C********
WRITE (6,2186)CMC
2100 FORNAT(1X,24A3)
2105 FORNAT(24A2)
IN
WRITE(6;211, CMC GC TO 5%
GO TC 21昭
C
TINE WEIGHT CENSTANT
ENTER ECHC CESERVATION
IIZI FORMAT(: N/'HHMN/ AZM/ RNG/ DIRECTION/ SPEED/ STDCS/ STDTM*)
DO 11:S I = 1,NXNCE
1102 JEC(I)=
C1105 RE\triangle[ECHO CBSERV IT ION
1195 JE=,
C***36E CEPENDENT
REAC(50, 1197)JE,JTN, EAZM, ERNG
C********
WRITE(6, 1 | \&) JE, JTN, EAZM, ERNG
J=1AES(JE)
C IF(J PEGGRN INGOUT VALIIEITY CHECK.
IF(J.GT. MEN)GC TL 116%
IF(NCC(JTM,13{) AGE. 60)GO TO 1165
C IF(EAZNOGT.36D)GC TO 1179, X AVO Y COORCINATES.
ETIN=FCUR(JTM
AZN=EAZM*CTR
XT=DCCS (AZM)*ERNG
YT=DSIN(\Delta\M)\#ERNG
C CHECK FCR NEW ECHO.
L=NAP(J)
IF(L.GT - D) GC TO 113n
IF(JEE:LT. \&)GC TO 1135
NEW ECHC. ALLCCATE.
IF(IENC(L): EQ. a) CO TO 1125
1115 CONTINUE
C ALL WCRKING ECHCS USED.
WITE (6,112%) IENC
C***360 DEPENDENT
112% FORMAT(OUNABLE TCC ACCOMODATE NEW ECHOO',

```

```

GCTC 219B
C1125 NOB(LI)=1
IENC(L)=J
MAP (J)=L
SDE2 (L)=\&.
STE2(L)=\&.
SW(L)=1.a
SWT(L)=ETIM

```
```

 SWT2(L)=ETIN**2
 \(S W X(L)=X T\)
 SWTX(L) \(=X T\) *ETIM
 \(\operatorname{SWY}(L)=Y T\)
 SWTY(L)=ETIM*YT
 FTINE(L) =ETIN
 OELETE FREVIOUS OESFRVATION
1133 WRITE (6, 1134)
GDTC 21 ${ }^{\circ} \mathrm{C}$
1135
(1)
$\operatorname{SW}(L)=\operatorname{SW}(L)-W$
SWT (L) $=$ SWT (L) -W \# ET IM
SWT2 (L) = SWT $2(\mathrm{~L})-W * E T I M * * 2$
SWX $(L)=S W X(L)-W * X$
$\operatorname{SWY}(L)=S W Y(L)-W \not W^{\prime} Y T$
SWTX (L) = SWTX L L) -W *ET IM*XT
SWTY (L) = SW
1137
IENC $(L)=\emptyset$

```MAP (J)=
```

C $A D C$ NEW CBSERVATICN
1148 OT=AES(ETIM-FTIME(L)
IF (CT.EG. X.) CC TO 1175
CCMPUTE ERRCRS
PTINE $=(A X I L) *(X T-B X \mid$
$P X=A X(L) * P T I N E+E X(L$
ERDST $=$ SORT $(P \bar{x}-X T) \neq$ ERDST=SQRT ($(P X-X T)$ **
ERTIN=ABSIETIM
RERTN=ERTMNT
STE2 (1) = STE2(1) + R (RTM* SDE2 $(L)=S T E 2(L)+R(R T M \star *$

```
    NOB \((L)=N C 8(L)+1\)
    SW(L) \(=W * S W(L)+\)
    SWT \((L)=W \neq S W T(L)+\bullet E T I M\)
    SWT2 (L) \(=W\) *SWT2(L) + ETIM * ETIM
    \(S W X(L)=W * S W X(L)+X T\)
    \(S W Y(L)=W * S W Y(L)+Y T\)
    SWTX \((L)=W * S W T X(L)+E T I M * X T\)
    SWTY \((L)=W * S W T Y(L)+E T I M * Y T\)
    FTINE(L) = \(A M \Delta X 1(F T I N E(L)\), ETIM)
    CCMPUTE NEW APPROXIMATING POIY ANC SPEEDIEIR.
    \(D E N=S W(L) * S W T 2(L)-S W T(L) \neq * 2\)
    \(V V=(S W(L) * S W T X(L)-S W T(L) * S W X(1)) / D E N\)
    \(U U=(S W(L) * S W T Y(L)-S W T(L) * S W Y(L)) / D E N\)
    \(A X(L)=V V\)
    \(A Y(L)=U U\)
    \(B X(L)=X T-V V\) \#ETIM
    BY(L) =YT-UU*ETIM
    \(A D I R=F A D I R(V V\),UU)
    1149 SPD=SGRT (UU** \(2+V V * * 2\) )
    ANCE=NCE(L)
    STLCS = SQRT (SCE2 (L)/ANOE)
    STDTN=SQRT (STE2(L)/ANOE)
    EDPH=ANAX1(STCCS,1?.)
    BT24 = FCUR(BCXTM)
    IF(ETIN.GT.ET 24) ET \(24=\) BT \(24+24\).
    IF(ETIN.NE.ET24)GO TO 1182
    DO \(1180 \quad 11=1\), MXNCE
    \(A=C C F(1,1, J 1)\)
    \(B=C C F(1,3,11)\)
    \(A S \cup B=S G R T((A-Y T) * * \hat{2}+(B-X T) * * 2)\)
    IF (J1.EG. 1) GC TC 117 S
    IF (ASUE- AMIN) \(1179,118 \AA, 119\)
    AMIN=ASUE
    JEC \((L)=J 1\)
    118 CONTINUE
```

```
    IF(ANIN.LE.ECPH)CO TC 1182
    1181 FURNAT('$CHECK CENTRCID OF THIS ECHO. THIS OBSERVAIICN DELETED')
    GO TC 1135
    1182 WRITE (G,115Z)ACIIR,SPC,STCDS,STOTM
    FORNAT(19X,F12.1,F7.1,F9.2,F9.Z)
    IF(SPC.GT.120.) GC TO 1185
    GOTTCI115
C 1160 WRITEI6,116I)
    1161 FORNAT(% ECHC NC. TOU LARGE')
    GO TC 219a
    1165 WRITE(6,1166)
    1166 FORNAT(' SONETHING SCREWY ABOUT THAT TIME')
    GUTC 21*a
    1175 WRITEIE,1171)
    1171 FORNAT(' AZINUTH DCES NOT COMPUTE')
    GO TC 21ZO
    1175 WRITE(6,1176)
    1176 FORNAT( PREVICUS ECHO AT SAME TIME. THIS UBS IGNGRED')
    GO TC 11者5
    1185 WRITE (6,1186)
    1186 FURNAT(' ECHC SPEEG GREATER THAN 12S KM/HR, CHECK THIS CB.')
    GO TC 11.5
C.OSET GRCUND CLUTTER DISTANCE FOR COVTUURING
    12g0 REAC (5, 1295)IGC
    MRNATI 
    WRITE(6,122.5)IGC
    130% WRITE(6,1395)
C***36% CEFENCENT
            REAC(50,1197)ITWC
            WRITE (6,1706) IT WC
    TWC=-ALN2/HCUR(ITWC)
C
    1400 CALL TPREW(1%)
    CALL TFWTNN(111)
C
    150% 汻 DEPENDENT
    1500 REAC(5タ,2195)ALINE
    IF(ALINE(1).EQ. QKEY)GO TO 213&
\varepsilon
    1608 DO 16%5 I=1,MXEP;
    1605 IEC(I)=刃
    WRITE (6,1606)
    1606 FORNAT(' WHICF ECHCS')
C***36% DEFENCENT
    REAC(50,170S)IEC
C***36% DEFENDENT
    WRITE(6,57E6)IEC
    DO 1610 I=1,NXEP1
    K=IEC(I)
    IF(K.LE.*.OR.K.GT.NEN)GO TO 101E
    L=NAP(K)
    IF(L LE Z)GOTC 16 1:N
    IENC (L)=!
    MAP(k)=g
    161g
        CONTINUE
    1615
        K=3
    DO(1620 I=I,NXNCE CO TO 1620
    K=K+1
    IEC(K)=IENO(I)
    1ó20 CONTINUE
    IF(K OEG OIGC TC 16 #0
    WRITE(6,1625)(IEC(1),I=1,K)
    1625 FORNAT(!** ACTIVE ECFOS,M,OI4)
    1630 WRITE(6,1635)
    1630}\mathrm{ WRITE(%;%%35) ACTIVE ECHOS')
```

```
    GOTC 21A?
C
                    PRECICT ECFC PATF CVER AIRPGIRTS
    1703 WRITE(6,1703)
    1703 FORNATI' ETINE/ ETIME/ STC DEV/ ECHO NO.S'I
        DC 17:5 I=1,NXNCE
    1795 IEC(I')=&
C***36% CEFENDENT
    REAC(5E, 17ल7) JT E,JIE,SDD, IEC
    C****#**
    C** FORMAT 1706 HAS MULTIPLE REFS.
    1707 FORNAT(2I5,F5.x.11I5)
    6707 FORN\DeltaT(1X,2I5,F5,O,1 II5)
            WRITE (6,67®7) JTE,JTE,SDC,IEC
            BT24=1-CUR(JTP)
            ET24 = FCUR(JTE)
            DO 1796 JE=1,MXNCE
            J=IEC(JE)
            L=LEGEN(J)
            IF(L LE,E)GC TC Ẽ1:@
            WRITE(6,17&R)J
    1708 FORNAT('SECHC'I4)
                CCNPUTE BCUNCARY OF GOX.
            NOEL=ACB(L)
            ANCE=ACBL
            RTN=FTIME(L)
            IF(BT24.CE.RTM)EC TO 4x:?
            BTIN=ET24+24.
            ETIN=ET24+24*
            GOTC 4%10
    4DD% BTIN=RT24
            ETIN=ET24
            IF(ETIN.LT.ETIM)ETIM=ETIM+24.
    401g EDPH=ANAX1(SCD*SGRT(SCE2(L)/AIVUE),19.)
            ETPH= ONAX1(SGRT(STE2(L)/ANUE).3.1)
            AXL=AX(L)
            BXL=EX(L
            AYL=AY(L)
            BYL=EY(L)
            RSSG=1.*/ (AXL*AXL+NYL*AYL)
            EC=SGRT(RSSG)立E[PH
            WB=ARS((RTIN-RTM)*EXL*EC)
            WE=AES((ETIN-RTN)*\DeltaXL*EC)
            PB=AXL*BTIM*EXL
            PE=AXL*ETIN+EXL
            PXGO =ANIN1(PE-WE,PE-WE)
            PXI=AN\DeltaX ( PE +WB,PE WW E)
            WB=AES((ETIN-RTN)* EYL*EC)
            WE=AES((ETIN-RTN)*LYL*EC)
            PB=AYL*BTIM +EYL
            PE=AYL*ETIM+EYL
            PYQ=\triangleNIN1(PE-WE,PE-WE)
            PYI=ANAX\(PE+WB,PE}+WE
            NT=g
NCK=\tilde{L}
C REAC TAELE CF TOWNS ANC REPURT THOSE TOWNS IN PATH CF ECHO
    171G WRITE(6,1713)
    1713 FORNATI: TINE AIRFORT DIST FTIMLTIMO)
    REWINC, 27 REAC (2, 1732, END= 17 45)TV1,TN2,TN ミ, XA,YA
```



```
C*
    NCKHECK FCR LCCATICN IN BOXED AREA.
    NCK=NCK+1
    IF(XA &LT: PXO OCR XA OGT, PXI)GO TO 174R
C CCNFÜTE ERRCRS
    PTINE=(AXL*(XA-EXL)+\triangleYL*(YA-BYL))*RSSQ
    PX=AXL*PTIME+BXL
    PY=AYL#PTIME + EYL
    DIST=SCRT ((PX-XA)**2 +(PY-YA )** 2)
    DT=AES(RTM-PTIME)
    1737 IF(CIST GT. ECPF*CT IGO TO 174%
    1 7 3 8
        IF(PTINE &L
            SN1 (NT)=TN1
```

```
    SN3(NT)=TN3
    SDIST(NT)=CIST
    JUIR (NT) = C4EP*AT AN <́( PX -X A,PY -YA )+5.5
    SPTN (AT)= PTINE
    SERTN(NT)=CT*ETPF
    1740 GOTC 173ल
C 1745 IFINT,GTATICNS/AIKFORTS CHECKED.
    1146 FORNATI:NC ENCCUNTERS PKEDICTED')
C SLRT STATICNS EY ENCOUNTER TIME.
    1753 CALL ISCRT(SPTM,KY,NT)
            DO 1775 I=1,NT
            J=KY (I)
            JPTN=JHHNN(SPTM(J)
            JT1=JF\vdashMN(SPTM(J)-SERTM(J))
            JT2 = JFFNN(SPTM(J) + SERTM(J))
            K=JCIF(J)
    1765
    WRITE(6,177, JPTM, SN|(J), SN2(J),SNZ(J),SDIST(J),CP(K),JT1,JT2
    1770 FCRNAT(I5,2X,3A4,F\in.1,1X,A2,I6,IE)
    CONTINUE
    WRITE(6,1777)NT
    1777 FORNAT(1HE,I4,'
    178% WRITE(6,1785)'
C
    C1785 FORNAT(////)
    GU TC 2103
COFIND BCUNCARY POINTS OF CONE.
CONPUTE LCCATICN CF PCINTS ALONG PATH UF ECFO AT BTIM AND ETIM
    1800 WRITE(6,1805)
    18Z5 FORNATI'`ETIME/ETINE/RANGE/OVERLAY/ECFO NUMRERS'I
    REAC (50,181SI)JT E, JTE,IRNG,OVLY,IEC
    1810 FORNAT(3I5;2X,A };11II)
    IGTLENG=IRNG/2* % %
    ISVGT(LINC)=
    LNSAV(LINC)=&
    GTNAX(LINC)=0
    1809 GTNIN(LINC)=0
    DO 1811 LINC=1,2%x
    YB(LINC)=%.
    XE(LI^C)=?
    YE(LINC)=2.
    PHIB (LINCI)=a
    PHIE (INC)=0.
    SL(LINC)=3.
    1811 XB(LINC)=@
    DO 1850 JE=1,MXNCE
    J=IEC(JE)
    L=LECEN(J)
    IF(LOLEOg)GC TCGGSD
    IF(NCE(L):GE;Z)GC IO 1852
    1853 FORNATI' YOU CANT PRECICT FRDH ONE OB. ECHC',I 3,' IGNCRED.')
    GOTC 105%%
    1852 IECH=JEC(L)
    IF(IECF.GT.É)GC TO 184j
    IF(CCF(1,1,I).NE.O..CR.COF(1,3,I).NE.&.IGO TO 1851
    IF(CCF
    PX=AX(L)*FTINE(L)+EX(L)
    PY=AY(L)*FTIME(L)+EY(L)
    COF (1,3, IECF)=PX
    COF (1,1,IECH)=PY
    COF(2,1;IECH)=10.
    COF(2,4:IECF
    NHAN(IECK)=2
    SLENG (IECH)=45.
    JEC (L)=IECH
    60 IC 1848
    1851 CONTINUE
    WRITE (6,1849)
    1849 FORN\triangleT(: NC CCNTCUR FOR ECHO'.I2)
    GC TC 185C
    1848 CALL ECHC(IECH)
```

1850 CONT INUE
LINE＝
I $N T=56$
DO $1816 \quad 1=4,9$
1816
GATE $(I+10)=I+S K(I+19)$
GATE（I）＝IHSK（I）
GATE $(19)=J T E / 1 E$ か

GATE（13）$=$ NOC（JTE， 1 ）
GATE $(18)=$ IGTLENG
$8 T 24=$ FCUR（JTE）
ET24＝FCUR（JTE）
DO $1 \varepsilon 22 \quad J E=1$ ，MXNCE
$J=I E C(J E)$
L＝LEGEA（J）
IF（L．LE•O）GC TC 192忩
NOBL＝ACB（L） 1 ）CNCE TO 1823
$I E C H=J E C(L)$
$\triangle N C E=A C B L$
EUPH＝ANAX1（SGRT（SDE2（L）／ANOE）．10．）
RTN＝FTIME（L）
IF（BT24．GE．RTM）GC IO 1814
BTIN $=$ ET $24+24^{\circ}$
ETIN $=\mathrm{ET} 24+24$ ．
GO TC 1815
1814
BTIN $=\mathrm{PT} 24$
ETI
IF（ETIN．LT．RT IM）ET IM＝ETIM＋24．
$B T=A E S(E T I M-R T M)$
$E T=A B S(E T I M-R T M)$
ETPH＝ANAX1（SGRT（STE2（L）／ANOE）．©． 11
IF（ETFH．GT．$\triangle B S(E T-E T)) E T P H=A B S(E T-B T) / 2$.
$Q X 1=A Y(L) *(E T I M-E T F H)+B Y(L)$
$Q Y 1=A X(L) *(E T I M-E T P H)+B X(L)$
$0 \times 2=\Delta Y(L) *(E T I M+E T P H)+B Y(L)$
QYZ $=A X(L) *(E T I M+E T P H)+B X(L)$
$X M=(G Y 2-6 Y 1) /(G X 2-6 X 1)$
CALL ELLIPS（XM，TANW，XK，ELPS，IFCH）
IF（ECFF．GT．XK）ECPH＝XK
$R A D=S G R T((E L P+* E T+X K) * * 2 /(T A V W * T A N W+1)$.
$R \times 1=6 \times 1+R A D$
$R \times 2=6 \times 1-R \Delta D$
RY1 $=$ TAAW＊$(R \times 1-Q \times 1)+Q Y 1$
$R Y 2=T \Delta A W *(R X 2-Q X 1)+Q Y 1$
RAD＝SGRT（ $(E C P H * E T+X K) * * 2 /(T A V W * T A N W+1)$.
$S \times 1=6 \times 2+R A C$
$S \times 2=6 \times 2-R A C$
$S Y 1=T \Delta A W *(S \times 1-Q \times 2)+Q Y 2$
$S Y 2=T \Delta N W *(S \times 2-Q \times 2)+Q Y 2$
LINE＝LINE＋1
XB（LINE）$=R X 1$
$Y B(L I A E)=R Y 1$
$X E(L I N E)=R X 2$
$Y E(L I N E)=R Y 2$
CALL SETLIN（LINE）
LINE $=$ LINE 1
$X B(L I A E)=R X 1$
$Y B(L I N E)=R Y$
XE（LINE）$=S X$
CALL SETLIN（LINE）
$\operatorname{LINE}=\operatorname{LINE}+1$
$X B(L I N E)=S X$
$\begin{aligned} Y B(L I A E) & =S Y 1 \\ X E(L A E) & =S \times 2\end{aligned}$
XE $(L I N E)=S X 2$
$Y E(L I N E)=S Y 2$
CALL SETLIN（LINE）
LINE＝LINE +1
XB（LINE）$=$ RX2
$Y B(L I A E)=R Y 2$
$X E(L I \Lambda E)=S X 2$
$Y E(L I A E)=S Y 2$
CALL SETLIN（LINE）
182の CONTINUE
IWARA＝IIAE
CHECK IF CVERLAY IS TC RE CISPLAYED

```
    MXNCLA=LINE
    IFICVLY.EG.3F IGC TO 184\%
    IOVLY=1
    IINE=LINE+1
    IF (CVLY-EG. 2 HSTA)ICVLY \(=2\)
    GO TC(1825,1835), I (VLY
    182
    REAC ( 18 Sg, ENC =18
    FORNAT (7F10.4)
    GOTC 1825
```



```
    *), PHIE(LINE), SL(LIAE)
        MXACLA=LINE
    LINE=LINE+
1343
    GCTC 1825
    ILNE \(=\) L
    DO 3 L=1, LNCNT
    CALL CET LIN(ILNE,L,IPOINT)
    LNSAV(L)=IL. AE
3 CONTINUE
C...START CC LCCP CF AZINUTH
    DO 66 II =1,368
CCNVERT TC NATHMAT ICAL LEEREESP
    IF (IAZ.LE•9G) ANGLE=9 I IAZ
    IF(IAZ.GT.9@) ANGLE=45の-IAZ
    ANGLE =ANGLE *CTR
    DO 14 S I \(\mathrm{CT}=20.226\)
    146 CONTINUE
    GATE (1)=I \(\Delta Z / 1<3\)
    GATE (2)=NCD(IAZ, 1: )/1
    GATE (2) = NCD (IAZ, II)
    LINE =IFCINT (LNS \(\triangle V(L)\)
    IF (XE(LINE).EG.Я99.)CO TO 59
    INT=8
    IF(LINE.LE.IWARN)INT=56
    I PHIE \(=\) PHIP(LINE) \(+_{0}=\)
    IPHI=FFIE(LINE) +.5
    \(J A Z=I \Delta Z\)
    IF (JAZ.LT. IPHIB) EO TC 59
    PHIDFF=AES(PHIB(LIAE)-PHIE(LINE))
    IF(PHICFF.GT.1.AND.PFIDFF•LT.17G.) CO TO GS
    IRNG=GTMIN(L)
    IF(INT.GT.GATE(IRNE)) GATE(IRNG) \(=\) INT
    I RNG \(=I R N G+1\)
    IF (IRNG.GT. GTMAX(L)) EC TO E7
    GUTC 75 ©
    GU TC 75 (AES (XE (LINE)-XB(LINE)).GE..BP*1)GO TO lRE
    SL(LINE) \(=999.9999\)
    RANGE=XE(LINE)/CCS(ANGLE)
    GO TC \(1 \mathbb{Z}\)
    RANGE = (YE(LINE)-SL(LINE)*XS(LINF))/(SIN(ANGLE)-SL(LINE)*COS (ANGLE)
    *)
107 RANGE=ABS(RANGE)
    IRNG=RANGE/FLCAT (ICTLENG) +20.
    IF (JAZ.GT. IPFIE. ANC.JAZ.LT.IPHI)GO TO \(18 \varepsilon\)
    IF(IAES (IRNG-GTNIN(L)).LT.IABS(IRNG-GTMAX(L)))GO TU 129
    I RNG \(=\) CTM \(\Delta X(L)\)
    GO TC 138
\(129 \quad I R N G=G T M I N(L)\)
lo8 IF(IRNG.GT. GTMAX(L))IRNG=GTMAX(L)
    IF (IAT.GT.GATE(IRNG) IGATE(IRNG)=INT
    IFIISVGT (L).EQ. RIGC TO 53
    JRNG=ISVGT(i)
55 IF (IAES(IRNG-JRNG) \(L E \cdot 1) G O\) TO 5 ?
    IF(IRNG-JRNG) \(54,59.56\)
    \(J R N G=J R N G+1\)
    IF(INT•GT•GATE(JRNE) )GATE(JRNG) \(=\) INT
    GO TC 55
    JRNG = JRNG-1
    GO TC 52
    ISVGT \((L)=I R N G\)
```



```
571 IF (JAZ。LT IPFI) GC TO 59
57 CALL GETLIN (ILNE,L,IPOINT)
    LNSAV(L) \(=\) ILNE
GOTC58
```

continue
INT $=1 \mathrm{t}$
$D C 1865 \mathrm{JE}=1$, $\mathrm{MX} \cap C E$
$J=I E C(J E)$
$L=L E C E N(J)$
IFCH=JECOIGC TC $1 \varepsilon \in 5$
IECH=JEC(L) $1 F(E E C+$ TO 1865
$I E=S L E N G(I E C T)$
$00186 \mathrm{C}^{\circ} \mathrm{I}=1, I E$
IF (IECAZ (IECH:I).Nt. IAZ)GO TO 1थs?
KRNG =IECRNG (IECト, I)
IF (KRNG•GT. 22 D) STOF NAIN
IF I IAT.GT.GGTE(KRNE) OGATE(KRNG) =INT
IF(GATE(KRNG-1).LT.INT) GATE(KKIVG-1) $=1$ NT
IF F KRAG. GE. 219) GC TO 186
IF(GATEIKRNG+1). LT. INT)GATE(KRNG+1)=INT

1862 1865

CONTINUE

6\% CONTINUE
GO IC 21 N
500 WRITE (6, 194)
144 FORNATHFa, 23RENC (F TAPE ENCUUNTERED////)
GUTC 21 OITE
501 WRITE(6, 195)
FORNAT(1-X, 28HERROF IN WRITIVG ENCOUNTERED/////
C GOTCELIIar PCSITICN AT GIVEN TIME

OA CEPEACENT
REAC (50, 1797) JE, JT IM
C*******
WRITE (6, 67め7) JE, JT IM
L=LEGEN (JE)

GTIN = FCUR (JTIM)
IFIGTIN. LT.FTIME (L)) GTIM=GIIM+24.
$P X=A X(L) * G T I N+B X(L)$
$P Y=A Y(L) * G T I N+B Y(L)$
$P Y=A Y(L) \neq G T I N+B Y(L)$
DT $=\triangle \mathrm{AS}(\mathrm{GTIN}-F T I N E(L))$
RAC $1=C T * S G R T(S C E 2(L) /(N O B(L) *(A X(L) * * 2+A Y(L) * * 2)))$
RACJ=3.*RAD1

$A Z N=F A C I R(-P X,-P Y)$
WRITE E $6 ; 1905) \Delta L M, R N G, R A D 1, R A D=$
1935
GOTC 213 ल
3290 CONTINUE
270 WRITE(0:271)
C.

GORNAT: NO ECHC')
$26 A C C E P I$ PPI FRCN BENDIS CISPLAY
2081 FORNATI\{H, 'AREA/INTENSITY')
REAC (5O, 2CQ5)IAREA, INTSW
2095
FORNAT(2I5) $\begin{aligned} & \text { WRITE(} 6 \text {, } 2 \text {) } 5 \text {)IAREA, INTSW }\end{aligned}$
INTEA=8\% INT SW
Co READ PFI DATA FRCN LX
2ig CALL CCNTUR(INTEN, IAREA, AREA, IECINT, IGL)
REAC (50,2 215)INTRPT
2015 FORNAT (A4)
2016 FRRNAT(1X,A4)

DO 2C24 I=INTSW, 7
$1 \mathrm{CT}=$?
DO 2025 IECH $=1$, IECN
IF(IECINT(IECH).EQ.I IICT=ICT+1
2025
CONTINUE
IF(ICT.EG\& $)$ GO TC $2 Z 24$

H AREA GREATER THAN',I4, ' SG KM'/

```
    ** A}AREA/AZIMUTH/RAN(EE'
    DO 2320 IECF=1, IECN
    IF(IECINT(IECF).NE.I)EU TO 2:2:X
    X=CCF(1, 1, IECL)
    R=SGRT(X*X+Y#Y) #FLCAT(IGL)
    CALL \triangleRCTAN(X,Y,\DeltaZ)
    I AR=AREA(IECF)+.S
    IR=R+.F
    IAZ=\DeltaZ+.5
    WRITE(6, 2x 1 ミ)IAK,I IZ,IR
    2013 FORNAT(IX,I4,I8,16)
    2020 CONTINUE
    2024 CUNTINUE 
    2899 WRITE(t,2T11)STCRM(INTSW),IARFA
    2911 FORNAT('NNC',A4,' FCHOES FOUND WITF AREA GREATER THAN',I4,' SG KM'
    *)
    2914* IF(INTRPT.EG.4tSTOF)CO TO 210.
C PREEICT WFEN ECHC hILL BE NFAREST GIVEN POINT.
    3000 WRITE(6,3**1)
    3&N1 FORNAT(' ECHC NC/ EZM/ RNG')
C***363 CEFENCENT
    REAC (E星, 3{N2) JE, AZN, RNG
    3002 FORNAT(I5,2F5.ox)
```



```
C******
    L=LEGE\(JE)
    IF(L LE. a)GC TC =OSg
    AZ=AZN*OTR
    XA=RNG*CCS(\DeltaZ)
    YA=R^C*SIN(\DeltaZ)
    DEN=\DeltaX(L)**2+\DeltaY(L)**?
    PTINE=(AX(L)*(XA-BX(L))+\DeltaY(L)*(YA-BY(L)))/UEN
    DT=AES(PTINE-FTINE(LI)
    SD=STE2(L)/NCB(L)
    IF(NCE(L).LT. 2 )S[=.5
    ERTN=CT*SC
    T:=JFFNN(PTINE-ERTN)
    T1=JトFNN(PTINE)
    T2= JFFNM(PTINE+ERTN)
    PX=AX(L)*PT INE+EX(L)
    PY=AY(L)*DTINE+EY(L)
    OS=SGRT((PX-XA)**2+(PY-YA)**2)
    SDC=STE2(L)/N(NCE(L)*CS)
    WRITE(6,3'Q5)CS;SCL,T1;TR,T2
    3035
    GO TC 2193
C
23A WRITE(6,2%1) ERR')
    GJTC 21% 
C...GUALITY CCNTRCL FCR FENCIX
500% WRITE(E,5#G5)
    5095 FORNAT(% PPI CHECK')
    REAC(50, 5010)ALFA
    5010 FORNAT(A4)
    WRITE (6,5E1/ ) ALFA
    WRITE(6,5a1j)
5:015 FORNAT('TEST PATTERN')
    REAC(5R,5R10) BETA
    WRITE (6,5010) BETA
    IF(ALFA.NF.4F YES)CO TO 51:.%
    II=1
5020 CALL TFREAC(1I,GATE, 22%,LENR,$5%30,$5ESC)
    DO S625 K=1,19
5025 IHSK(K)=GATE(K)
    CALL CECCCE(IHSK, IAZ,ITLT, ISTC.,JUL, ITIME,IULY,IGL,ITC)
    ISAVTM=ITIME
    JULS AV=JUL
```



```
503% FORNATI
    DO 5%31 I= 1,7
    5031 IKNT(I)=0
    5035 DO 5045 K=20,219
```

```
    KNT=CATE(K)/8
    IKNT (KAT)=IKNT(KNT)+1
```

5.345

5050

FORN $\triangle T(2 \times 1 N T E N S$
$* 9 \times, 1+5,9 \times, 1+7)$
WRITE $(6,5365)(I K N T(I), I=1,7)$
5065
GORNAT S 51 OO
5055 CALL TIMCFF (JUL, IT IME, JULSAV, ISAVTM, IDFF, ITFF)
IF (IAES (ITFF).GT•1.OR•IABS(IDFF).GT.1)WFITE(E,5?7\%)JLLITINE
5872 FFRAT ' NERRCR IN IATESTMEO NATC
5075 FUNNAT MAZINUTH = , I4, RAEIAI. = , I4)
II $=1 \mathrm{I}+1.2^{\text {m }}$
508 WRITE 6,5085$)$
5D85 FORNAT: ${ }^{2}$ EOFF ENCCUNT [RED ON I/P1////)
GO-TC 21ax
5092 WRITE (6,5995)
5095 FORNATI' SERRCR IN FELCING I/P•////I)
GO TC 522 \%
5100 IF (BETA. NE. 4F YESICO TU 21%
C....SET INTENSITY SWITCFES
 I $P=1$
DO 5 12, $I I=1,351,1$.
$005125 \quad I J=1,10$
I $A L=I I+I J-2$
GATE (1)=I $\Delta Z / 1 a x$
$\operatorname{GATE}(2)=\operatorname{NCD}\left(I \Delta Z, 1 x_{f}\right) / 1 \dot{u}$
GATE (3) = NCC (IAZ, 1:)
DO 5126 IK $=4,19$
5126 GATE (IK)=,
5119 GATE $(I)=(I \neq 8) 159$
UO $5112 I=16$ é, 219
5112 GATE(I)=IP*
CALL TFWRIT (11, GATE, 220, \$5115.\$5126)
5125
I $P=I P+1$
IF (IP.EG.8) I $P=1$
$513 R$ CONTINUE
5115 WRITE $(6,5116$
5116 FORNATIGENC CF C/F TAPE /////1 GO TC 219
5128 WRITE(6,5121) 5 WR WRITING ON O/P TAPE•////)
GO TC 21%
ENC
FUACTICN LEGEN(K) , YB(GEC), YE (2RQ), SL (2OX), PHIB(2Q), PHIE (2QG)

*IGC, ECXTN, IHSK (1S)
INTEGER*2 I ECAZ
CHAR IECRNG
CHAR GATE, IHSK
LEGEN $=\varnothing$
IF (K GGT. . ANC. K .LE. MEN)I EGEN=MAP(K)
RETURA

ENC

SUBRCUTIAE CCNTUR(INTEN, IAREA;AREA, IECINT, IGL), PHIB(2QG), PHIE (2Q\&)

\#IECRNG(10,9 $\varnothing Q)$, IECNO, IGTLENG, MAP $(182), \operatorname{MEN}, \operatorname{COF}(12,4,1 \ell), G A T E(22 \varnothing)$
*IGC, BEXTN.IFSK(19)
DINEASICA AREA(12)
DINENSICN IECINT (1)
INTEGER ECXTN
INTEGER*2 IECAZ
CHAR IECRNG
CHAR IARY ($360,2 x 8)$, CATE, ItSK
DG $10 \quad \mathrm{I}=1,1 \%$

```
    DO If \(k=1,4\)
DO ix \(J=1,1\)
CCF \(I, K, j)=0\)
    \(\operatorname{CCF}(I, K, J)=\) Pi
\(\triangle R E A N X=5 \neq I \Delta R E A\)
    AREA \(=\).
    \(3 \quad \mathrm{I}=1\)
    I CCN \(=1\)
    JEGATE=190
```



```
    DO 2: \(K=1,19\)
    \(2.30 \quad I H S K(K)=C \Delta T E(K)\)
        CALL CECCCE (IHSK, IEZ, ITLT, ISTC,JUL, ITIME,IULY,IGL, ITC)
        IF(IAZOGTAG) CCTE
        BUXTN =ITIN
JTIN
FEXTN
    WRITE(G:2x4)
FURNATI ¥AY/ TINE, TILT•)
    WRITE(6, 2®5) JUL, JTIM, ITLT
    FORNAT(14,216)
```



```
    IFIDLuNF.I-1)GC TC 16
    \(0 G 2{ }^{\circ} 2=1, I C C\)
    202 I ARY (I,J)=!
        IST \(=1 G \bar{C}+2\).
        DE 2O1 J=IST,219
    2ヵ1 IF(GATE(J):LTOINTEN) COTE(J)=?
```



```
        I \(\triangle K Y\left(1,23^{3}\right)=2\)
        IF(IAZ.EG.359)GC TL i5
        \(\mathrm{I}=\mathrm{I}+1\)
        GUTTE 5,17\()\)
    16 WRITE(6:17) - INVALIC DATA. AZIMLTH ERROR - ***:)
        RETURA
        \(J=J E \subset \Delta T E\) R 16
        IS \(A V=30{ }^{\circ}\)
C...LERO CL'T IECAZ ANE ILCENG
    00985 I \(K=1,613\)
        IECRNG(1, IK \()=\boldsymbol{6}\)
IECRAG \((2, I K)=\%\)
        IECRAG(2,IK)
IECAZ
I
IK)
    \(9 \times 5 \quad \begin{array}{ll}I E C \Delta Z(2, I K) \\ I=1\end{array}\)
    \(23 \mathrm{~K}=6\)
    ARE \(\triangle(I E C N C)=6\).
    MINTEN=56
```



```
    \(J=J-1\)
\(J S \Delta V=J\)
    IF(J.CT.IGC)GC TC \(\angle 6\)
    \(I=I+i\)
    \(J=J E G A T E\)
    IF(I.EG.ISAV)RETURA
    GO TC 25
    \(26 \quad\) Jill \(=\) J
    JMIA= J
    \(\begin{aligned} & \\ & J M A X=J\end{aligned}\)
    IMIA \(=I\)
    I \(M \Delta x=I\)
    CALL EALRY(IARY, I, J, I \(1, \mathrm{~J} 1,812 \%\) )
    GO TC 25 EXT PCIMT
C.SCAN FCR NEXT PCINT
295 GO TC \((155,35,45,55,(5,75,65,95)\), IP
    \(155 \quad\) II =
        J \(1=\mathrm{=}+1\)
        GO TC 121
    \(35 \quad\) Il \(=1-1\)
    IF(II.EG。の) II = = も
    \(\mathrm{J} 1=\mathrm{J}+1\)
    GUTC 161
45
    \(\mathrm{J}=\mathrm{J}\)
\(11=1-1\)
    \(\mathrm{IFO}_{\mathrm{G}} \mathrm{T}\left(\mathrm{I} \cdot \mathrm{EG} \mathrm{i}^{\text {? }}\right.\) ) I \(1=36 \hat{2}\)
```

 \(\begin{array}{ll}J \\ I & =\mathrm{J}-i \\ \text { I }\end{array}\)

GC
II
I
」1＝」－
GO $T C$
I $1=1+1$
$I F(I 1, E G .361) I I=1$
$J!=J-i$
GUTC 1×1
$\begin{array}{ll}J & =J \\ 1 & =1\end{array}$

GO TC
$j 13$
10
$J=J+1$
$I 1=I+1$
IF（I1．EG． 261$)$ II $=1$
$1: 31$ CALL QUNDRY（IARY，I，J，I $1, J 1, \$ 120.1$
$I P=I F+1$
ICCUNT＝ICCUNT＋1
IF（IP．GT OR）IP＝ 1
IF（ICCUNT．GT．E）GC TO 125
$K=k+1$
IF（K．EG． $9 \times$ ISTICP CCNTUK
$\mathrm{J}=\mathrm{J} 1$
IFI
TC 122
IF（I：LT：ININ）IMIN＝1
GO TC 123
I $B=1-2 \epsilon 8$
IF（IP．LT•IMIN）ININ＝IP
123 IF IF（J．CTT•JMIN）JN IN＝
IF（J．LT•JNIN）JMIN＝J
IECAZ $(2, k)=I$
IECRNG（2，K）＝J
$\operatorname{ICCAZ}(1, K)=I-1$
IECRAC（1，K）＝J

$I \Delta R Y(I, J)=I \Delta R Y(I, J)+1$ n
ICCUNT＝1
IF（IF－2） $71,71,72$
I $P=I F+5$
GO TC 29
72
$\begin{array}{ll}G O \\ \text { I } & \text { I } \\ \text { O }\end{array}$
125 CUNTINUE
DO 1HRL＝1，K
I $A=I A \operatorname{SS}(I E C \Delta Z(2, K)-I E C A Z(2, L))$
IF（IA．LE．1．CR．IS．CE．＝59）GO TO 165

CONTINUE

161 F

＊）
RETURA
$\operatorname{IECAZ}(1, K)=\operatorname{IECAZ}(1, L)$
IECRNG（1，K）＝IECRNG（1，L）
IF（JNIN．EG．1）JMIN＝
MAXINT＝IAT
I HCLC＝IMIN
MINTEN＝NINTEN＋4
186
$I=I N I N$
IF（ININ．LT．1）I＝36日 ININ
DO $229 J=J M I N j^{J N A X}$

＊IARY（I，J）$=I \Delta R Y(I, J)+1$ 1 ∂
I $M=I-1$
IF（IN．EQ•O）IN＝360

＊I $\operatorname{ARY}(I, J)=I \Delta R Y(I, J)+1 e, 3$
IF（IARY（I，J）．LT•1\％）GC TO 229
IF（ $\operatorname{IARY}(1, J i-1 ; i), G T \cdot M A X I N T) M A X I N T=I A R Y(I, J)-1:$ E．

CONT INUE IMIN＝ININ＋1

IF（ININ．LE．INAX）CU TC 22 2́
$I=1 H C L C$
IF（IFCLC．LT．1）I＝1
$J=J S \Delta V$
GOTC 195
191 IMIN＝IFCLC
$\mathrm{I}=\mathrm{IN} \mathrm{IN}$
IF（I © LT，1）I $=3 \epsilon_{k}+I M I N$
D门19：$J=J N I A, J N \Delta X$
IF（IARY（I，J）．GT•1：）IAKY（I，J）＝：
CONTINUE
$\operatorname{IMIN}=\operatorname{IN} I \mathrm{~N}+1$
IF（ININ．LE．INAX）CO TC 192
$I=1 H C L C$
IF（IFCLC．LT．1）I＝1
$J=J S A V$
IF（AREA IFCNC）．LT．FLCAT（IAREA））GU TO 23
CALL CSTLNC（L，K）
IECINT（IECNC）＝MINTEN／E
IECNC＝IECNC＋1

IF $\begin{aligned} & \text { FINDLT：} 3 \text { SO WRITE } \\ & \text { RETUKN }\end{aligned}$
RE！Uk
WRITE（E，506）
FOKNAT1BECF ENCCUNTERED UN 1， $1 / / / /)$
STCP CCNTUR
501 WRITE（6，577）
507 FORNATi YERRCR IN KFAEING OV 12 $1 / 1 / / 1$
RETURA
$\begin{array}{ll}532 & \text { WRITE } \\ 503 & \text { FORNAT } 3 \text { ？}\end{array}$
STCP CCNTUR

FORNATIFFM）

RETURA
ENC
SUEKCUTINE SETLIN（LINE）
CONNCNXP（9 X），XL（

＊ICC，ECXTN，IFSK（IG）
CHAR IECRNG
INTEGER＊？IECAZ
CHAR GATE，IFSK
$A=X B$（LINE）
$B=Y B(L I N E)$
$C=X E$（IINE）
$D=Y E(L I N E)$
SL（LINE）$=(D-e) /(C-\Delta)$
$C A L L A R C T A N(\triangle, B, E)$
CALL $\triangle R C T \Delta N(C, C, F)$
$\operatorname{IF}(\triangle \cdot E G \cdot$ ．．．$\Delta N C \bullet E \cdot E G \bullet \cdot) E=F$
$\operatorname{IF}(C \cdot E G \cdot \lambda \cdot A N L \cdot C \cdot E G, \ldots) F=\bar{E}$
IF（E OEG•F）GC TC 5
IFIF－E．
XE（LINE）＝
YE（LINE）$=$ E－SL（LINE）＊
PHIB（LINE）$=E$
PHIE（LINE）＝$=6 \%$ 。

```
    IF(YE(LINE).LT.1.)FHIE(IINE)=E
    LINE=LINE+I
    < 3(LINE)=%
    YB(LIAE)=YE(LINE-1.)
    SL(LINE)=SL(LINE-1)
    PHIS(LINE)=.
    PHIE(LINE)=F
    IF(YE(LINS).LT.1.)PHIP(LINE)=F
    XE(LINE)=C
    YE(LINF)=C
    RETURA
    * XY(LINE)}=\mp@code{%
    XE(LINE)=i
    YE(LINE)=R
    PHIB(LINE)=.
    PHIE(LINE)=E
    IF(YE(LINE)\cdotLT.I.)HHIE(LINE)=E
    LINE=LINE+1
    X3(LINE)=C
    YB(LINE)= C
    XF(LINE)=*.
    YE(LINE)=Y\dot{E}(LINE-1)
    PNIP(LINf)=F
    PHIE(LINE)= at天.
    IF(YE(LINE).LT:1.)HHIE(LIVE)=F
    SL(LINE)=SL(LINE-1)
    RETURA
    IF(E.LT.F)GC TC 2
    PHIB(IIAF)=F
    PHIE(LINE)=t
    RETURA
    PHIB(LINE)= E
    PHIE(LINE)=F
    RETURA
    EvL
    SUERELTINE ARCT &N(U,V, THETA)
    RTL= = T.29577951
    IF(U.FG\bullet:ANC.V.GE:O)TFEIA=,
    IF(U.EG: OANCOVOL,AOTRETA=12, TO
    IF(U:LT:O.!)TFETA=2「ご-ムTAV(V/U)*&TC
    KETUKN
    ENL
    SUBRCUTINE ISCRT(V,KY,N)
    REAL V(2)
    C
    2%
    DO INTAILIZE
        K*}=1)
        N=N-1
        VKI=^.
        TEST FCR ENC CF SOIRT
        F(NKI LLEONORETUKN
        K1=nK1
        NK1= i
        DO jo J=K, Ki
        MI=KY(J)
        M2 =KY (J+1)
        IF(V(N1).LE.V(N2))CC TU ミ氵
        KY(J)=N2
        KY(J+1)=N1, %)KZ=J-1
        IF(NK)
        CONTIN
    CONTINUE
    NK1=NIN\partial(\\otimes,NK1)
    GOTC 2j
    ENL
```



```
    **ISVGT(4g),GGMIN(4,),GTMAX(4%),SLENG(IG),NHAM(1G),IECAZ(IG,9GJ),
    *IGC,ECXTN,IFSK(1G)
    I NTEGER*2 IECAZ
    CHAK IECRNG
    CHAR GATE.IFSK
```

```
    PI=_.1415926
    IE=SLENGIIECL)
    IHAN=NFAN(IECF)
    Du 4 I=1,IE
    Y=CCF(1,3,IECF)
    X=CCF(1,1,IECF)
    OU 4i'5N=?, It AN
    U=<.*(N-1)*PI*I/FL(A||IE)
    CCSU=CCS (U)
    SINU=SIN(1)
    x=x+C(F(^, 1, IECF)* COSU + CUF(v,2,IECF)*SINU
    Y=Y+CCF(1,3,IECF)*COSU+CUF(N,4,IECF)*SIN:U
    4i5
    CONTINUE
    CALL ARCTAN(X,Y,AZ)
    I}\subsetC\DeltaLIIECF,I)=\Delta
    cuntinue
    RETURA
    ENC
    SIJERCUTINF LNSCRT(LNNAX,IPUINT,NXNOLNS)
```



```
        *IGE, ECXTN:IFSK(IG)
            DINENSICN IFCINT(2:*),PHIFULO(2, )
            INTEGGR*2 IECDZ
            CHAR IECRNG
            CHAR CATE,IFSK
            D() 197 J={1,2%Y
    PHIHCLC(J)=.
    197
    IPLINT(J)=%
            UO2z
            ICLUNT=3
            0
            IF(PFIFCLCiI).EG.9.9.)GO TG 2:%
            ICCUNT=ICCUAT+1
            IF(ICCUNT;EG&1)GC,TO 19%
            IPCI^T(J)=I
            PHININ=PトIE(I)
            PHENC=FHIE(I)
            GUTC 2:2
            IF(PFENL-PHIE(I) )? 2,2~2,143
            CUNTINUE
            LINE=IFCINT(J)
            PHIHCLC(LINE)=9ヶ夕.
            CONTINUE
            IFINXNCLN.GE.23.ISTOP LNSORT2
            DO 9, I=1,36%
            I < <=I-1
            LVCNT=?
            D O. GCN J=1, NXNCLN
            K=IPCINT(j)
            IF(PFIE(K).LE.I\DeltaL.ANE.PHIE(K).GF.IALILINCNT=LNCNT+I
            cont INUE
            IF(I.EG:I)GC TC S:
            IF(L^CNT.LE.LNMAX)CO TU G&`
            L.NNAX=L^CNT
            IF(LANAX.GT.4n)STOF LNSORT4
            CONTINLE
            IF((LANAY+MXNOLN).(T.2&&)STOP LNSORTこ
            DUROL=1,LNM\DeltaX
            IPCINT(L+NXNCLN) =L +M\timesNULN
206 XB(L+NXNCLN)=999.
            MXNCLN=MXNCL\Lambda+LNCNI
            RHTURA
            ENLD
                            SUERCUTINE GETLIN(ILNE,L,IPOINT)
```



```
    *IGC,ECXIN,IFSK(19)
    DINENSICA IPCINT(2:?)
    INTEGER ECXTN
    INTECER CTMIN,GTNAX
    I VTEGER*2 IECAZ
    CHAR IECRNG
    CHAR GATE,IHSK
```

ILNE＝［LNE＋1
IF（ILNE．GT．2kO）STOR CETLIN
$J=1 P(I N T(I L N E)$
IF（XE（J）．EG．999．）RETURN
$\Delta=x \in(J)$
$B=Y \in(J)$
$C=X E(J)$
$D=Y E(J)$
R1 $=$ SGRT $(\Delta * \Delta+E * E)$
$R 2=S G R T(C * C+C * C)$
R $3=2 \%$＊FLOAT（IGTLENE）
IF（R1．GT•R3．ANC．R2．GT•R3）GO TU 5．7
IF（R1－R2）76，76，74
GTNIA $(L)=R 1 / F L C \angle T(I G T L E N G)+2 *$
$G T N A X(L)=R 2 / F L C A T(I G T L E N G)+2$
GOTC75
GININ（L）$=$ R2／FLCAT（IGTLENG）+20 。
GTNAX（L）＝R1／FLCAT（IGTLENE） 22°
IF（GTNAX（L）．GT． 22^{*} ）GTMAX（L）$=200$
RETURA
ENC
SUBRCUTINE TINCFF（101，IT 1，IO2．IT2．IDFF，ITFF）
I UFF＝
ITFF＝：
I $\cup A Y 1=I C 1$
ID $\Delta Y 2=I C 2$

$\left[M I N 1=\left(I T 1-I+R 1 * 1^{*} *\right) / 1 \cap\right.$

IMIN2 $=(I T 2-I \vdash R 2 * 1 \quad x) / 1 r 9$
ISEC2＝IT2－（ItR2＊1＋＋＋IMINて＊1い！）
IF I CI－IC2）1， 4 ，EETURN
IF ITT：GT．ITNIGE TC
SEC2 $=1 S E C 2+6!$
IMIへ2＝IMIへ2－1
ISCCF＝ISEC2－ISEC1
IF（ININ2•GE•ININI）OD TU－
$I M_{1} I N L=I M I N 2+6$ ．
I $H R^{\prime} \mathcal{C}=I+R 2-1$
I MNCF＝IMIN2－ININ
IF（IHR2．GE：IFRI）© Ti G
$I H R \angle=I-R 2+24$
$I H \Delta Y=I C \Delta Y 2-1$
IHRCF＝IHR2－IFRI
$I \cup F F=I C A Y 2-I C A Y 1$
ITFF＝－
IF（ISEC1．GE．ISEC2）（O TU 6
ISECI＝ISECI＋60
ISCDF＝ISECI－ISEC？
IF（ININI．（E．IMINE）（O TO 7
［MINI＝IM［N］＋6z
IHRI＝IFR1－1
IMACF＝IMINI－IMIN2
IF（IHRI．CE．IHR2）CD TC B
IHRI $=I \vdash R 1+24$
IHAYI＝IDAYY－1
IHRCF $=I H R Y-I F R 2$
$I D F F=I C A Y 1-I C \Delta Y 2$

RETURN
SUERCLTINE RACRY（I ARY，I，J，I 1，J1，＊）
CONNCN XE（9G），XE（
＊，ISVGT（4
＊IGL，ECXTN，IHSK（19）
INTECER＊2 IECAZ
CHAR IECRNG
CHAR IARY $\left.360,2 \% 0^{2}\right)$ ，GATE，IHSK
IF（IARY（II，JI）．CT．I？S）RETURN
IF（I $\triangle R Y(I 1, J 1) \cdot L E \cdot$ ）RETURN

IF ICAT＝： $\mathrm{CT} \cdot 2$ OSTCP ：NERY

```
    \(I_{2}^{2}=I \quad-1\)
    IF(12.EG.~) \(12=3 \mathrm{c}\)
```



```
    \(1 D=I \angle R Y(I ?, J 1)\)
    I \(O=I \triangle R Y(I 1, J 1-1\)
    \(I I=I \triangle F Y(I F J I)\)
\(I F I E . E G . Y I C A\)
    IFIIC.ECOSICNT \(=1 C N T+1\)
    IF(IC:E6.n)ICNT =ICNT+1
    IF(II.EG.(x) ICNT \(=1 C N T+1\)
    IF(ICNT:EG•*)RETURN
    IC=1 \(\Delta マ Y(I 2, J 1+1)\)
    \(I E=I \Delta R Y([2, J]-1)\)
    \(1 \mathrm{H}=1 \operatorname{ArY}(12, \mathrm{~J} 1-1)\)
    \(I J=I \wedge 2 Y(13, J 1+1\)
    IF (It. NE: : ANC.IC. NE.?)
```



```
    IFIICAE: \(\Delta N C\) IG•AE ? \(G\)
    IF(IFANE:ANC:II:NE:, GU
```



```
    \(I \Delta R Y(i), j 1)=?\)
    RTURA
    IF (II•EG•Y• \(\triangle N C \cdot I C \cdot+\cap \cdot a \cdot\) IND.ICNT.EG.2)CO TO 1
```



```
    (10.LT•••)RETUR
    \(I+R Y(I 1, J 1)=7\)
    RETURN
    E W
    SUHRCUTIAE CSTLAC(L,k)
```



```
* IGE, ELXTN, IFSK(1S) ,
    I VTEGER*2 I[CAZ
    CHAR IECRNG
    CHAR CATE,IHSK
    DTK = 17453 :
    \(D F=1 .+-4\)
    PI=天.1415925
    IECH=IECNC
    MCCUN \(T=K-L+1\)
    [ \(\mathrm{HAN}=9\)
    IF (NCCUNT•LT•18) IH:M-MCOUNT/2+1
    INHAN (IECF)=IトムM
    DU \(1 \mathrm{~J}=1\), 18
    DUI I = 1,4
    \(A=I E C S Z i l z\)
    \(R=I E C R N G( \}, L)\)
    \(\times S 1=R * S I \wedge(\Delta * C T R)\)
    \(Y S I=R \neq C C S(A * C T K)\)
    \(\times \operatorname{LEC}=\) -
    \(\mathrm{L}=\mathrm{L}+1\)
    DU \(\mathrm{O}=\mathrm{L} 1, \mathrm{~K}\)
    \(A=I E C A \angle(1, I)\)
    \(R=I E C R N G( \}, I)\)
    \(X_{B}^{B(I)=Q * S I N(\triangle * C T R)}\)
    \(Y B(I)=R \neq C C S(\Delta * C T R)\)
    XS = XE(I)
    YS=YE(I)
\(X L E N G=X L E N G+S G R T((X S-X S 1) \neq * 2+(Y S-Y S 1) \neq * 2)\)
\(X S 1=X S\)
\(Y S i=Y S\)
CONTINUE
SLENG (IECH) =XLENC
DO 23 NH=2,IFAN
\(\mathrm{N}=\mathrm{NH}-1\)
Silin -
SI= i: \(1=L 1, K\)
\(X S=X E(I)\)
\(\hat{Y} S=Y \mathrm{H}\) (I)
S \(二=S 1+S G R T((X S-X S)) * * 2+(Y S-Y S)) \neq * 2)\)
```



```
            PY=(YS-YS 1)/(S2-S 1)
            QX=XS-FX*S?
            QY=YS-FY*S2
            CN=2*N*PI/XLENG
            U1=CN*S1
            SINI=SIN(U1)
            SIN2=SIN(U2)
            COS1=CCS (U1)
    COSCEFCS (U2)
            T?=6X/CN*SIN2+PX* (CN**(-2)*COS
            TI=GX/CN*SINI+PX*(CN**(-2)
            CCF(N1)
    C COCLEFF,IECH)=CCF(NF.I,IECH)+2.1XLENG*(T2-T1)
    T?=-6x/C1* SINSE FOF X COORUS
            Ti=-6x/C\*CCS 1+PX*(CN**(-2)*S IN2-S2/CN*COS2)
            T- -6x/CA*CCS 1+PX*(C)**(-2)*S [N1-S1/CN*COS 1)
    C CCCOF(NF,2,IECH)=CCF(NF,2,INCH)+2./XLENG*(T2-T1)
            T2=GY/CN*SIN2+PE* CRN** COURUS
            TL=GYCN*SIN2+PY*(CN**(-2)*COS2+S2/CN*SIN2)
C COCF(NL,3'IECL)=CCF(NH,S,NECH)+2.1XLENG*(T2-TI)
            T2=-6Y/CN*CCS2+PY** Y CCURLS
            T2=-6Y/CN*CCS2+PY*(C)**(-2))*SIN2-S2/CN*COS 2)
            COF(NF,
            S1=S2
            XS1= XS
            YS1=YS
    120
C%OD CONTINUE
    CALNTINUE
    COF 1, FARMCNIC COEFF
    CCF(1,4;IECF)=\mp@subsup{\}{}{\circ}
    S1=A.
    DO 3: I=L1,K
    XS=Xe(I)
    YS=Ye(I)
    S2=SGRT ( (XS -XS 1)** 2+(YS-YS 1)**2)+S 1
    IF(AES(S1-S2):LE.DF) CC TO %
    PX=(XS-XS 1)/(S2-S1)
    PY= YS-YS S )/,(S2-S 1)
    QX=XS -FX*S2
    QY=YS-FY*S2
    T2=.5*FX*S2**2+6x*s2
    T1=:E*PX*S1**2+6X*S (
    COF(1,1,IECF)=CCF(1,1,IECH)+(T2-T1)/XLENG
    T2=
    T1=:5*FY*S1**2+6Y*S 1
    COF(1, 2,IECH)=C(F(1,:,IECF)+(T2-T1)/XLENG
    S1=S2
    XS1= XS
    YSI=YS
3y. CONTINUE
    RETURN
    ENC
    SUERCUTINE ELLIPS(XM,TANH, XK, ELPS,IECF)
    *PISVET(4, ),GTMIN(4,),GTMAX(4.3),YE(2QQ);SL(ENG),PHIR(2QG),PHIF(2&D)
```



```
    *IGCECXTN, IHSK(1S
    DINEASICN ELFSI?
    INTEGER*2 IECAZ
    CHAR IECRNG
    CHAR CATE,IHSK
    A=CCF (2,1,IECF)
    C=CCF(2, ,IECH)
    D=CCF(2,4;IECH)
    IF(B.NE, .OCR.C.NE.&.)GO TU 1
    XK=SGRT( }A*\dot{A}+C*C
    TANW=-1./XM
    ELPS=`.
    GO TC 2
    A2 = A # D
    B2=8*E
    C2=C*C
    D2=C*C
```

$A B=A * P$
$A D=A * C / 2$.
$B C=B * C / 2$.
BD=e *
$C D=C * C$
$D E N=\Delta 2 *(E D * C C-(\triangle C+E C) * C 2)-A C *(B 2 * C C-A B * D 2)+C 2 *(B 2 *(A D+B C)-A B * B D)$
$X K=S G R T(\Delta 2+E 2+C 2+D \mathcal{L})$
$F N 1=X K *(E \Gamma * C[-(A C+E C) * C 2)-A C *(X K * C C)+C 2 *(X K *(A D+R C))$
$F N 2=A 2 *(X K * C[)-X K *(B 2 * C D-A B * D 2)+C 2 *(-A B * X K)$
$F \cdot \sqrt{3}=A 2 *(-(A C+E C) * X K)-A C *(-A B * X K)+X K *(B 2 *(A D+B C)-A B * B C)$
FLPS (1)=FN1/CEN
ELPS $(2)=F N 2 / \mathrm{CEN}$
ELPS $(3)=F N 3 / \mathrm{EN}$
W=ATAN(ELPS(2)/(ELPS(1)-ELPS(こ)))/2.
TANW $=T \Delta N(W)$
SIAW=SIN(W)
$\operatorname{COSW}=\mathrm{CCS}(W)$
$A P R I N=E L F S(1) * C C S W * * \hat{2}+E L P S(2) * S I N W * C O S W+E L P S(3) * S I N W * * 2$
CPRIN = ELPS (1)*SINW** $2-E L P S(2) * S I N W * C O S W+E L P S(3) * C C S W * * 2$
IF (APRIM.GT.CPRIN)TANW=-1./TANW

$X K=A N I N I(S G R T(A 2+R), S Q R T(C 2+E 2 j)$
$\mathrm{T} \Delta \Lambda W=-1.1 \mathrm{XM}$
RETURA
ENC

[^0]: *Instead of a cone for determining what airports may be affected, the modified parallelogram of the preceding section could be used.

[^1]: *As part of the specifications, a half-inch magnetic tape interface at

