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Abstract 

Naturally-occurring tropical Pacific variations at timescales of 7-70 years—Tropical Pacific 
Decadal Variability (TPDV)—describe basin-scale sea surface temperature (SST), sea level 
pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, 
which can originate through oceanic processes, atmospheric processes, or as an ENSO residual. 
In this Review, we synthesise knowledge of these mechanisms, their characteristics and 
contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate 
oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; 
variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a 
large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and 
the propagation of salinity-compensated temperature (“spiciness”) anomalies from the 
subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal 
variability inducing (sub)tropical wind anomalies, which result in equatorial SST anomalies, 
and in atmospheric feedbacks that enhance persistence; and atmospheric teleconnections from 
Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies 
of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby 
wave activity is likely a dominant mechanism. A deeper understanding of the origin and 
spectral characteristics of TPDV-related winds is a key priority. 

Key points 

• Tropical Pacific decadal variations are linked to basin-scale sea surface temperature 
and sea level pressure anomalies, and are associated with a zonal reorganization of 
tropical Pacific heat content. 

• Salinity-compensated temperature anomalies (“spiciness anomalies”) can reach the 
equatorial thermocline, but their amplitude appears small and their influence on 
equatorial sea surface temperatures remains uncertain. 

• Variability of the Pacific upper-ocean overturning circulation exhibits a large anti-
correlation with equatorial Pacific SSTs at both interannual and decadal timescales, 
suggesting that similar mechanisms are operating at both timescales. 

• Internally generated subtropical/tropical wind anomalies can create equatorial SST 
anomalies, which in turn can reinforce the wind anomalies locally and through 
atmospheric teleconnections to increase their persistence. 

• Decadal SST anomalies in the Atlantic and Indian Oceans can induce wind anomalies 
in the tropical Pacific conducive to the formation of decadal SST anomalies of the 
opposite sign. 

Introduction 

The tropical Pacific exhibits variability over a broad range of timescales from seasonal to 
centennial. While the El Niño Southern Oscillation (ENSO) is the dominant mode of variability 
at interannual timescales (about 2-7 years), “natural” variations arising from processes internal 
to the climate system are also observed in the “decadal” range, namely at timescales longer 
than the ENSO timescales, but shorter than the centennial trend resulting from anthropogenic 
forcing. Internal variations at periods longer than 7 years can occur at both quasi-decadal and 
multi-decadal timescales1, and hence we define Tropical Pacific Decadal Variability (TPDV) 
as variability in the 7-70 years range. 
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TPDV is the tropical expression of large-scale patterns of variability like the Pacific Decadal 
Oscillation (PDO)2 in the North Pacific, and the Interdecadal Pacific Oscillation (IPO)3 over 
the entire Pacific basin. The positive phase of TPDV is characterized by warm SSTAs in the 
tropical Pacific, and along the western coasts of the Americas, and by negative anomalies in 
the central/western midlatitudes of both hemispheres, while the negative TPDV phase exhibits 
SSTAs of the opposite sign.  

Such TPDV could just result as a residual of interannual ENSO variability4, but various oceanic 
and atmospheric processes could also produce variability at decadal timescales, with important 
implications for the potential predictability of TPDV. Since the equatorial Pacific is connected 
to the subtropics through an oceanic pathway (Box 1), temperature anomalies created in the 
subtropics can reach the equatorial pycnocline and be brought to the surface by equatorial 
upwelling, a mechanism known as the “�̅�′ hypothesis”, with �̅ indicating the time mean 
circulation and �′ the temperature anomaly. Alternatively, changes in the ocean circulation 
could result in equatorial SSTAs through changes in equatorial upwelling (Box 1), a 
mechanism termed the “�!�& hypothesis”. These oceanic changes are part of a slow oceanic 
adjustment to atmospheric variability, which is mediated by oceanic wave activity occurring at 
decadal timescales. Atmospheric processes include influences from the extratropical Pacific, 
atmospheric response to equatorial SSTAs, and interactions with the Atlantic and Indian 
Oceans. However, no consensus exists on the effectiveness and relative importance of these 
processes. 

TPDV modulates ENSO characteristics5,6 and some of its global impacts4,7,8, and has been 
linked to the rate of change of the globally-averaged surface temperature9,10. Thus, the ability 
to predict the occurrence of different decadal epochs in the tropical Pacific has important 
societal implications, which has motivated the development of major decadal prediction efforts 
in several centres around the world. However, TPDV predictability remains elusive, hence the 
need to better understand its underlying mechanisms. A better understanding of TPDV is also 
needed to more robustly separate the forced climate response from internally-generated climate 
variability and to achieve more reliable future projections of tropical Pacific climate, which has 
implications for the global climate9. Some climate models used for both predictions and 
projections appear to underestimate internally-generated decadal variations11-13. Although this 
conclusion may be severely hampered by the relatively short duration of the observational 
record, as indicated by paleoclimate data (Box 2), an assessment of model fidelity in 
realistically reproducing the relevant mechanisms of decadal variability is essential. 

In this Review, we critically synthesise the current state-of-knowledge of the mechanisms 
proposed for TPDV, based on observations, ocean reanalyses, dynamical models, and 
paleoclimate evidence. Relative to other reviews on this topic4, which have considered both 
internal and anthropogenically-forced low-frequency variability, this synthesis focuses on 
internal decadal variations in order to allow for in-depth developments of the key concepts. 
We will describe salient features of TPDV in the context of the decadal phase transition that 
occurred in the late 1990s, followed by a description of the leading oceanic and atmospheric 
processes relevant for TPDV. We end with recommendations for future research and some 
hypotheses on how TPDV may change in a warmer world. 
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Observed tropical Pacific decadal changes 

Before reviewing the mechanisms proposed to explain TPDV, it is important to identify the 
key oceanic and atmospheric changes accompanying decadal phase transitions. To illustrate 
such changes, we consider the dramatic shift to colder equatorial SSTs that occurred during 
1999-2014 relative to 1984-1999, concurrent with phase transitions of both the PDO and IPO. 
The spatial structure of these SST changes (Fig. 1a, shading) is characterized by cold conditions 
in the equatorial Pacific, and warm anomalies in the central/western midlatitudes. This pattern 
is similar to that obtained through a statistical definition of TPDV, as the leading EOF of 7-70 
years band-pass filtered SSTAs in the tropical Pacific (25°S-25°N). The basin-wide TPDV 
pattern is then determined through linear regression of SSTAs on the associated principal 
component--the TPDV index (Fig. 1a, contours). The decadal SST pattern in the tropical 
Pacific is “ENSO-like”, but with a broader meridional extent and with the largest equatorial 
variability shifted further west than the interannual ENSO variance4,14. The large-scale SST 
changes from 1984-1999 to 1999-2014 are accompanied by sea level pressure anomalies in the 
extra-tropics of both hemispheres (Fig. 1b), and by wind anomalies that include an 
enhancement of the easterly trade winds in the tropics. 

This trade wind intensification has led to changes in the ocean density structure and 
circulation15,16, resulting in a reorganization of the tropical Pacific heat content11,17. Such 
reorganization is captured by the changes in SSH (Fig. 1c), a quantity dynamically linked to 
upper ocean heat content and thermocline depth. Positive SSH differences (higher heat content, 
deeper thermocline) occur in the western tropical Pacific, with maxima located off the equator, 
while negative SSH differences (reduced heat content, shallower thermocline) are found in the 
central and eastern part of the basin. These SSH differences are consistent with the SSH 
signature of TPDV (Fig. 1c, contours), and are also consistent with typical SSH decadal 
patterns1. Increased heat content is seen in the western tropical Pacific at the depth of the 
thermocline (Fig. 1e), and is primarily associated with westward-propagating Rossby waves18, 
while decreased heat content is found in the upper ocean east of the dateline (Fig. 1f). Oceanic 
changes during negative-to-positive decadal transitions largely mirror the surface and 
subsurface changes shown here18,19. Positive SSH anomalies are also present in the Indonesian 
Seas and eastern Indian Ocean (Box 1), suggesting a transfer of heat from the Pacific to the 
Indian Ocean in conjunction with negative TPDV phases20,21. Indeed, the Indian Ocean heat 
content exhibits a decadal modulation that is in phase with Pacific decadal variations, likely 
associated with changes in the western Pacific winds and their influence on the transport of the 
Indonesian Throughflow (ITF, Box1)22-24. 

The decadal transition after 1999 occurred in the presence of tropical trends11 (Fig. 1b), which 
are particularly pronounced in the SSH field25-27 (Fig. 1c, d). This SSH trend seems to have 
accelerated since 200021, and is particularly evident in the western Pacific, Indonesian Seas and 
eastern Indian Ocean (Fig. 1d), as a result of the tropical easterly surface trade wind 
intensification. This wind intensification and the zonal SSH gradient are not captured by state-
of-the-art climate models, introducing a large uncertainty in the attribution of the trend to either 
internal low-frequency variability or to climate change24,28-30. This ambiguity highlights the 
importance of a deepened understanding of internal low-frequency variability for robustly 
separating the two components. 

To that end, we now revisit the leading mechanisms proposed for TPDV. We first discuss the 
possibility that TPDV arises as a residual of interannual ENSO variations, and then consider 
mechanisms involving oceanic and atmospheric processes, including the �̅�′ and the �!�& 
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hypotheses, as well as the atmospheric influences from the extra-tropics and from the Atlantic 
and Pacific Oceans. The pattern of TPDV that emerges from a statistical EOF approach (Fig. 
1a, contours) of anomalies spanning a broad range of timescales (7-70 years) does not presume 
that a single set of dynamically-related physical processes is responsible for it, as demonstrated 
for the PDO, which results from the combination of different dynamical modes with different 
timescales31. The purpose of this paper is to elucidate the nature and relative importance of 
these processes. 

TPDV as an ENSO residual 

Since the tropical Pacific climate is dominated by interannual ENSO variations, a plausible 
hypothesis is that TPDV arises as a residual of ENSO. Indeed, the “ENSO-like”14 spatial 
pattern of TPDV can be reconstructed from decadal averages of evolving ENSO patterns, from 
their developing to decaying phases, and random event-to-event variations of those patterns4,32. 
In addition, uneven numbers of warm (El Niño) or cold (La Niña) events, can randomly occur 
during different decadal epochs (Fig. 2a), resulting in El Niño-like, or La Niña-like decadal 
conditions because of the differences in amplitude and spatial asymmetry of ENSO events. 
Also, uneven numbers of events with largest anomalies centered either in the Eastern (EP) or 
Central (CP) Pacific33 (Fig. 2a) can contribute to low-frequency background changes34. Similar 
to the influence of stochastic sub-seasonal disturbances on the development of El Niño35,36, 
ENSO events could also act as triggers for TPDV phase transitions, either through changes of 
off-equatorial winds responsible for discharging the heat content anomalies in the western 
Pacific37, or through low-frequency equatorial Pacific changes induced by nonlinear dynamical 
heating38. Off-equatorial western Pacific heat content anomalies (Fig. 1c) are a necessary 
condition for an ENSO event to trigger a TPDV transition37,39. 

The interpretation of TPDV as an ENSO residual also involves subsurface anomalies. Western 
Pacific heat content exhibits a decadal modulation, with a reduced heat content during periods 
of positive TPDV (prevailing negative anomalies during 1976-1999 in Fig. 2c, when the TPDV 
index in Fig. 2d is predominantly positive) and vice versa (prevailing positive anomalies during 
1999-2014 in Fig. 2b, associated with a predominantly negative TPDV). These low-frequency 
variations are punctuated by the heat content changes associated with the recharge-discharge 
activity of individual ENSO events (Fig. 2b), which are the dominant signal in the eastern part 
of the basin (Fig. 2c). The decadal modulation of tropical Pacific heat content could thus be 
interpreted as the low-frequency envelope of interannual ENSO variations. 

However, ENSO characteristics also depend upon the mean state40,41. The warm phase of 
TPDV, characterized by weaker trade winds and a deeper thermocline in the eastern equatorial 
Pacific, favours more frequent and stronger El Niño events of EP-type, as seen during 1976-
1999 (Fig. 2a, warm anomalies extending to the far-eastern part of the basin), while negative 
TPDV phases, like the 1999-2014 period, are characterized by weaker El Niño events with 
peak anomalies in the central Pacific (Fig. 2a). Dynamical model sensitivity experiments have 
indeed highlighted the impact of the initial background conditions on ENSO evolution and 
predictive skill42,43. The decadal modulation of ENSO, as captured in climate models by the 
second EOF of decadal SSTAs5,44,45 is significantly lag-correlated with TPDV45, with a large 
inter-model dependence44. ENSO decadal modulation appears to lead the opposite phase of 
TPDV by about two years, suggesting its possible role as precursor of TPDV phase 
transitions45. However, TPDV also leads the same phase of ENSO decadal modulation by two 
years with a higher correlation45, indicating that ENSO modulation by TPDV may be more 
prominent than the influence of ENSO activity on TPDV. 
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The �(�′ hypothesis and wave processes 

The �(�′ hypothesis considers the effect of equatorward advection of temperature anomalies 
within the pycnocline as a driver of TPDV (Fig. 3a). This mechanism was originally proposed 
for anomalies that leave the surface mixed layer to enter the subsurface ocean in the northern 
mid-latitudes46, and are advected by the mean circulation (the northern subsurface branches of 
the STC, Box1) toward the equator, where they are upwelled to the surface,	 altering SSTs 
and leading to a change of the TPDV phase. However, observational and modelling results 
based on temperature observations only showed that these anomalies decayed prior to reaching 
the equator47, casting doubt on the feasibility of this mechanism. Further works suggested that 
the South Pacific could be more suitable for the �̅ �′ mechanism48-50, due to its larger and more 
direct equatorward transport51-54, Indeed, the presence of the Intertropical Convergence Zone 
(ITCZ) in the tropical North Pacific alters the depth of the pycnocline and creates a “potential 
vorticity barrier”54 that limits the interior equatorward flow54,55 (Fig. 3). 

Moreover, a more careful examination of the mechanisms by which subtropical signals reach 
the equator highlighted two different types of mechanisms: spiciness anomalies advected as 
passive tracer by the mean circulation, and non-compensated temperature anomalies 
propagating as planetary waves. 

Advection of spiciness anomalies 

Ocean density increases with decreasing temperature and increasing salinity. Temperature 
anomalies with a density compensating salinity signal (“spiciness anomalies”56), do not affect 
density and can propagate along isopycnals as a passive tracer57 (Fig. 3a). These warm-salty or 
cold-fresh anomalies appear to be predominantly generated in the eastern subtropics of the 
Pacific basin58,59 through either shifts in spiciness gradients induced by wind-forced anomalous 
ocean currents57, or through buoyancy-forced penetrative mixing59. At large spatial scales, 
theoretical arguments suggest that pycnocline advection may result in a frequency spectrum of 
spiciness anomalies reaching the equator that has enhanced power in the decadal range60. Based 
on fully coupled model experiments57,61 a mechanism for TPDV was proposed, in which 
spiciness anomalies generated in the off-equatorial regions by changes in the tropical trade 
winds are advected toward the equator, where they are upwelled to the surface, rearrange 
equatorial sea surface temperatures, winds and the slope of the pycnocline (Box 1)61, and 
induce off-equatorial atmospheric forcing of spiciness anomalies of the opposite sign, resulting 
in a 10-year cycle. 

Spiciness generation and pathways from the eastern subtropics towards the western tropical 
Pacific are supported by observations62-67. Observations also show that spiciness anomalies 
undergo some decay during their propagation to the tropical region65,67,68. However, whether 
these anomalies are advected all the way to the equator and reach the surface at the equator is 
much less clear. The complexity of the LLWBCs and the high level of mixing and water mass 
transformation occurring in some parts of these swift currents69 cast doubt on the feasibility of 
a western boundary pathway. Modelling results using a Lagrangian approach however suggest 
that spiciness anomalies can reach the eastern equatorial band55, with a clear dominance of 
southern hemisphere pathways. A heat budget analysis of the modelled equatorial Pacific 
mixed layer reveals a potential influence of spiciness anomalies on TPDV68, yet with a small 
magnitude, leaving the efficiency of this mechanism unclear. 
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Wave propagation of non-compensated temperature anomalies    
 
Oceanic  Rossby waves  cause  isopycnal  displacements  that  appear as  temperature  anomalies  
over time-mean isopycnal  surfaces. Rossby wave  activity  has  been related to decadal  
subsurface  temperature  anomalies  in the  tropical  Pacific  with maxima  around 10°-15°N  and 
10°-14°S18,48,49,70-72  (Fig. 2c). These  anomalies  can reach the  equatorial  thermocline  via  the  
western boundary and propagate  eastward along the  equator as  equatorial  Kelvin waves  
altering  equatorial  SSTs.  However, the  origin of the  decadal  timescale  remains  unclear since  
the  Rossby wave  transit  time  at  the  latitudes  of the  Rossby wave  maxima  is  only 2-3 years.  One  
hypothesis  is  that  the  latitudes  of the  Rossby wave  maxima  coincide  with areas  of high zonal  
coherence  of the  wind forcing, which may be  more  efficient  in exciting larger amplitude  waves  
at  decadal  timescales71. In addition,  these  latitudes  coincide  with the  equatorward boundaries  
of the  subtropical  gyres, where  instability processes  may energize  planetary waves  originating 
in the  eastern midlatitudes  of both hemispheres  with longer transit  times  in the  decadal  range72.  
Finally, equatorial  signals  have  a  slow  eastward propagation due  to the  coupling of the  oceanic  
waves  with the  local  winds48.  More  generally, decadal  timescales  cannot  be  expected to 
coincide  with the  transit  time  of one  single  wave, but  result  from  the  collective  effect  of 
multiple  waves  generated over relatively broad latitude  bands  at  different  times, which may 
lead to a longer adjustment timescale.  
 
Coupled  climate model  experiments  suggest  that  a  mix of both advection and planetary wave  
activity contributes  to the  equatorward propagation of temperature  anomalies  with a  potentially 
larger impact  of anomalies  from  the  Southern Hemisphere49,50. CGCM  sensitivity experiments,  
where  oceanic  temperature  and salinity anomalies  were  blocked from  reaching the  equator in 
both hemispheres,  indicated that  the  southern � 	�′  process  acts  as  a  delayed negative  feedback 
for bi-decadal  (12-25yr) variability, whereas  oceanic  wave  adjustment  has  a  dominant  
influence  in the  decadal  range  (9-12yr)50.  The  role  of decadal  anomalies  from  the  South Pacific 
was  further illustrated by their influence  on the  evolution of El  Niño events  during the  first  
decade  of the  2000s, as  noted in decadal  prediction experiments73. Cold anomalies  in the  
southwestern tropical  Pacific  related to the  negative  TPDV  phase  during 1999-2014 may have  
impacted the  development  of El  Niño events73, possibly  leading to the  unexpected termination 
of El Niño in 201474.  

̅

The �′�( hypothesis 

Changes in the strength of the STCs’ transport (Fig. 3b) can affect equatorial upwelling and 
equatorial SSTs. Specifically, an increase in the STCs’ equatorward mass transport will induce 
enhanced equatorial upwelling, bringing colder pycnocline waters closer to the surface and 
cooling the equatorial SSTs, while reduced STC transport will result in warmer SSTs75. 
Originally illustrated in the context of simple models75-78, this hypothesis has also been 
extensively tested in observations19,79, ocean general circulation models80-83 and ocean 
reanalyses18,84. The pycnocline flow, zonally averaged east of the LLWBCs (“interior 
transport” hereafter)19 is used as a measure of the STCs’ strength. Since 9°N is a choke point 
for the equatorward flow (Fig. 3b), this latitude has been chosen to estimate the interior 
transport in the Northern Hemisphere, and 9°S is used in the Southern Hemisphere for 
equatorial symmetry19. Observational estimates of the interior transports at these two latitudes 
over the second half of the 20th century show a decline of the equatorward subsurface mass 
convergence after the mid-seventies, which was concurrent with the tropical Pacific warming 
associated with the “1976-77 climate shift”2,19(Fig. 4a, b). 
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Due to the sparsity of subsurface observations, 19 binned the data over multi-year periods to 
obtain transport estimates (Fig. 4a, b). Ocean reanalyses and ocean models forced by 
observationally-constrained surface fields allowed transport estimates at a higher time 
resolution and confirmed that increased interior equatorward mass convergence is associated 
with colder equatorial SSTs, and vice versa (Fig. 4c, d), with high correlations at both 
interannual and decadal timescales18,80,84 (Fig. 5c, d). Changes in interior transport at 
interannual timescales encapsulate the recharge/discharge of the equatorial upper-ocean heat 
content, underpinning ENSO evolution85. The relationship between transport convergence and 
SST anomalies at decadal timescales suggests that similar underlying dynamics may be at play 
also at lower frequencies86. 

Many climate models also show correlations between transport convergence and SST 
anomalies that are comparable with those obtained from ocean reanalyses (Fig. 4e), although 
some models exhibit much weaker relationships87,88. In addition, the transport variability is 
generally weaker in the models than in observations for the same SST variability (Fig. 4f)87,88, 
suggesting a higher sensitivity of modelled SSTs to STC variability. 

The total equatorward pycnocline transport includes both the interior transport and the transport 
of the LLWBCs. LLWBCs’ transport anomalies are of the opposite sign to the interior transport 
anomalies in both models and observational estimates80,89-91, leading to a partial compensation 
of the interior mass convergence. The sign of the boundary transport anomalies has been related 
to the development of anomalous gyre circulations in the western tropical Pacific, as implied 
by the SSH anomalies in Fig. 1c for the negative TPDV phase, with a clockwise (anticlockwise) 
circulation in the Northern (Southern) Hemisphere15,18,79. Given the complexity of the 
LLWBCs, and the sparsity of in situ observations in these regions, it is unclear whether 
numerical models can realistically simulate these currents and what fraction of their anomalous 
transport recirculates in the western Pacific, exits the Pacific through the ITF or acts to alter 
the equatorial mass balance. 

The strength of the ITF can also contribute to the mass and heat balance of the equatorial 
Pacific92, as seen in the case of the two extreme El Niño events of 1997/98 and 2015/16, whose 
difference in ocean heat discharge was controlled by different strengths of the ITF93,94. On 
interannual timescales, variations in the ITF strength are related to the SSH difference between 
the western Pacific and eastern Indian Ocean, as well as buoyancy forcing24,95. They likely also 
respond to slow changes in the large-scale SSH and salinity fields, leading to decadal-scale 
anomalous heat exchanges between the two basins21,96, and suggesting a potential oceanic 
pathway for the Indian Ocean influence on TPDV. 

The location of the winds that are most influential on the STC decadal variations is key to 
understanding their role in TPDV. The seminal results obtained with simplified ocean 
models75,78 suggested that wind variations in the subtropical regions could control the STC 
transport and remotely affect equatorial SSTs. However, meridional transport changes at each 
latitude appear to be established by westward-propagating oceanic Rossby waves, as part of 
the tropical adjustment to varying winds, and be largely controlled by the local wind forcing18, 
although influences from the 15°-20° latitude band may also play a role at decadal 
timescales83,97-99. The possible origin and nature of these winds are discussed in the following 
sections. 
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Influences from Pacific extratropical atmospheric forcing 

Modes of internal atmospheric variability, such as the North Pacific Oscillation (NPO)100 in 
the Northern Hemisphere and the South Pacific Oscillation (SPO)101 in the Southern 
Hemisphere, extend toward the tropics, and can influence the tropical Pacific climate by 
changing the patterns of surface winds102,103. Subtropical/ tropical wind anomalies in the 
central-eastern Pacific alter the off-equatorial turbulent heat fluxes, resulting in SST anomalies 
that can persist for several months through the Wind-Evaporation-SST feedback104 to impact 
equatorial dynamics. These SST patterns are known as the North and South Pacific Meridional 
Modes (NPMM and SPMM, respectively)105,106. The NPMM extends southwestward from the 
coast of California to the central equatorial Pacific106 (Fig. 6a), while the SPMM exhibits SST 
anomalies along the South American coast, elongating toward the equator105 (Fig. 6b). The 
processes by which the NPMM and SPMM can impact equatorial dynamics are clearer for the 
NPMM. They include the excitation of Summer deep convection near the ITCZ, which can 
result in equatorial wind anomalies107, and heat recharge/discharge in the equatorial pycnocline 
through meridional flows induced by NPMM-related wind stress curl anomalies, a process 
known as Tropical Wind Charging108. Both processes can affect ENSO development, but the 
Tropical Wind Charging mechanism appears to be the dominant player109,110. 

While the Meridional Modes are well-known ENSO precursors103,105,107,111,112, they are also 
involved in the development of TPDV. This was first shown with atmospheric models coupled 
to slab ocean models, namely ocean models that provide ocean memory, but lack ocean 
dynamics113,114. In these “Atm-Slab” models, frequency spectrum reddening of weather and 
climate variability at decadal timescales appeared to occur through a sequence of extratropical-
to-tropical influences (ENSO precursors to ENSO development) and tropical-to-extratropical 
feedbacks (ENSO teleconnections)113 – a series of links supported by observational analyses115. 
Indeed, model experiments116 indicate that ENSO teleconnections from the central equatorial 
Pacific can reinforce the NPMM and increase its persistence, resulting in the decadal NPMM 
variations detected in century-long coral time series from the northeastern subtropical 
Pacific117. 

TPDV anomalies obtained in Atm-Slab models are weaker and centred further south than those 
obtained in fully coupled climate models and observations, highlighting the effect of oceanic 
processes45,114. Additionally, the tropical wind anomalies associated with the Meridional 
Modes can induce meridional pycnocline flow, as illustrated by the Tropical Wind Charging 
mechanism, and could therefore provide the atmospheric forcing needed to alter the strength 
of the STCs and produce equatorial SST anomalies, as previously discussed. Sensitivity 
experiments with simple dynamical models also indicate that extratropical stochastic wind 
forcing can produce low-frequency changes in the equatorial thermocline and multi-year ENSO 
variations118. 

Since internal atmospheric variability typically peaks during the winter season in each 
hemisphere, they can independently influence the tropical Pacific. Some model results indicate 
a dominant influence of the Southern Hemisphere114,119-121. For example, a coupled model 
where the NPMM and SPMM were selectively disabled showed that the absence of the NPMM 
primarily impacted ENSO variability, while the SPMM significantly altered TPDV119. The 
prescription of heat fluxes typical of South Pacific Oscillation and North Pacific Oscillation 
forcing in century-long coupled model sensitivity experiments indicated a larger influence of 
the Southern Hemisphere on equatorial ocean dynamics responsible for TPDV121. Also, 
idealized coupled model experiments in which oceanic variability was nudged to climatological 
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values in the 30oS-10oS latitude band caused a ~30% reduction in decadal-scale SST variability 
in the equatorial Pacific120. The potential importance of the South Pacific influence has also 
emerged in an observational and modelling study122, which showed the important influence of 
South Pacific internal atmospheric variability on ENSO and Pacific decadal variability. 

On the other hand, a mode of variability linking the North Pacific with the Central Equatorial 
Pacific via the NPMM (and thus termed NP-CP mode) at decadal timescales has been recently 
identified in observations and ocean reanalyses31,38,123,124 as a source of tropical Pacific decadal 
variance. This mode involves SST anomalies typical of the NPMM, and includes a SSH 
component with a pattern similar to that typical of decadal differences123 (Fig. 1c), implying 
an important role for ocean dynamical processes. 

Thus, both hemispheres can potentially provide the atmospheric forcing for TPDV, but the 
question of which hemisphere dominates remains outstanding. The discrepancy between 
model- and observationally-based results regarding the influence of the North Pacific on TPDV 
likely reflects model deficiencies in capturing the North Pacific – Tropics interactions125, an 
aspect that warrants further investigation. 

Winds of Tropical Origin 

Anomalous off-equatorial winds can also arise as a response to decadal SST anomalies116. 
Numerical simulations using an Atm-Slab model showed that SST anomalies prescribed in the 
central equatorial Pacific, where decadal anomalies are more prominent, can excite 
atmospheric Rossby waves, whose subtropical component may weaken the subtropical trade 
winds in both hemispheres116 (Fig. 5a,b). Coupled climate model experiments with prescribed 
equatorial SST anomalies126 yielded similar results. The equatorially-forced subtropical wind 
anomalies can then be expected to reinforce the equatorial anomaly through both 
thermodynamical processes, like Summer deep convection107, or changes in equatorward mass 
transport induced by the anomalous winds18, and create a feedback loop between equatorial 
and off-equatorial regions that can redden the spectra and contribute to the meridionally 
broader SST anomaly pattern found at decadal timescales4,14. 

Low-frequency equatorial SST anomalies can also alter the Walker and Hadley circulations. In 
particular, coupled model simulations with prescribed idealized warming along the Pacific 
equator, mimicking climate change conditions, show an intensification of the ascending branch 
of the Hadley circulation, and an enhancement of the off-equatorial trade winds. The ocean 
adjustment to these wind changes involves the spin-up of the STCs, leading to a cooling of the 
equatorial Pacific at some later time127. Changes in the strength of the Hadley Cells in response 
to equatorial decadal SST anomalies were also detected in other numerical simulations 
investigating the nature of Pacific decadal variability. These numerical experiments, conducted 
with different modelling frameworks, demonstrated that an anomalously warm tropical Pacific 
produces an increased poleward atmospheric energy transport128,129, and changes in off-
equatorial Ekman pumping. The resulting ocean circulation adjustment leads to variations in 
STCs’ strength and provides a delayed negative feedback to the original equatorial SST 
anomalies99,129. The opposite is found for cold decadal conditions in the tropical Pacific. These 
results suggest the possibility of a feedback loop between equatorial SST anomalies and off-
equatorial wind variations which would support the view of TPDV as a tropical-extratropical 
coupled cyclic mode of variability. However, the ability to robustly detect these links in the 
relatively short observational record, given the presence of a large level of atmospheric noise 
remains a challenging scientific task that needs to be further explored in the future. 
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Influences from other oceans 

Outside all mechanisms internal to the Pacific basin that can influence TPDV, it has now been 
recognized that the Indian and Atlantic Oceans have the potential to generate variability in the 
Pacific130. Decadal SST variability in the Atlantic and Indian Oceans can generate inter-basin 
connections via changes in both atmospheric and oceanic circulations. The Indian to Pacific 
connections involve transport in the ITF (as previously discussed), while the ocean connection 
between the Atlantic and Pacific is considered small131. We thus focus on the atmospheric 
connections here. 

Consider an SST anomaly in either the tropical Atlantic or Indian Ocean. The atmosphere 
responds with overlying anomalous atmospheric convection and diabatic heating, with 
accompanying near-surface zonal wind convergence into the convective region and a zonal 
wind divergence aloft (Fig. 5c, d). The diabatic heating generates an eastward-propagating 
equatorial Kelvin wave, and westward-propagating Rossby waves to the north and south of the 
heat source, inducing a descending motion throughout the rest of the tropics that is typically 
strongest where the Kelvin and Rossby waves meet (Fig, 5c, d). This so-called “Gill-type 
response”132 alters the global Walker circulation on different timescales, from intra-seasonal 
through multidecadal133-140. These planetary waves act to spread the diabatically-generated 
tropospheric temperature anomaly through the entire tropics, a process commonly referred to 
as the “weak temperature gradient approximation”141,142. The resulting temperature changes 
away from the original heat sourceact to increase the vertical stability of the troposphere and reduce 
rainfall, a process known as the “tropospheric temperature mechanism”143. The two latter 
mechanisms provide thermodynamic explanations for the global Walker circulation changes 
(Fig. 5c, d). Alternate Atlantic to Pacific pathways have also been proposed to occur via the 
mid-latitudes along a curved pathway through the North Pacific to the western equatorial 
Pacific144,145; or through the tropics due to sea level pressure-induced surface wind changes 
across the Panama Isthmus146-148. Similarly, the linkages between the Indian to Pacific Ocean 
may also occur via wind changes across the Maritime Continent27 or through stationary 
extratropical wave trains149. 

Idealised numerical model experiments with prescribed surface warming in either the tropical 
Indian or Atlantic basins confirm the Gill-type induced global Walker circulation changes, 
including a Pacific trade wind acceleration (Fig. 5c,d), which leads to a central/eastern Pacific 
sea surface cooling in coupled model settings27,134,135,150-152 and is further amplified by the 
Pacific Bjerknes feedback133,135,138. These Pacific changes on decadal timescales can also 
modulate ENSO characteristics151,153. While the inter-basin connections from the tropical 
Atlantic and Indian Oceans rely on broadly similar mechanisms, the location of the Atlantic 
SST forcing in relation to the Pacific implies that the resulting Rossby wave-induced wind 
anomalies also act to modulate eastern Pacific winds. Also, the descending motion response 
tends to be locally reinforced in the central Pacific where the Rossby and Kelvin waves collide 
(Fig. 5c, d). 

TPDV appears to have responded to Atlantic and Indian Ocean forcing over the historical 
period. Using partially coupled experiments, where SSTs are constrained by idealised observed 
SST in one basin, Atlantic warming was shown to play a prominent role134,137,138,152 in the 
transition from TPDV+ in the 1990s to TPDV- in the early 2000s11. The Indian Ocean was 
reported as either playing a minor role135,137 or amplifying the Pacific response to the Atlantic 
forcing134. However, observations suggest that this recent dominance of the Atlantic may have 

11 



  

        
       

       
  

  
         

        
           

  
  

          
      

         
     

      
         
    

  
  
  

   
  

         
              
          

           
    

   
  

     
         

     
         

       
            

       
         

          
          

  
  

        
        

        
       

        
   

  
       

         

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

been different in the past130. The magnitude of the Pacific response to idealised Indian Ocean 
SST forcing appears to become more prominent further back in time (i.e., 1980-2010 or 1958-
2010)140,149, while the response to Atlantic Ocean SST forcing appears relatively 
consistent130,144,152. 

While there seems to be a reasonable understanding of this inter-basin connectivity, some 
questions remain regarding the exact mechanisms and their influence on TPDV. These include: 
What is the net effect of inter-basin coupling on TPDV amplitude? How has and will 
anthropogenic climate change alter these decadal inter-basin relationships154? 

Other sources of uncertainties arise from the apparent discrepancies between some model 
results. For example, while inter-basin interactions are thought to amplify TPDV, model 
simulations in which the Atlantic or Indian Ocean influence is removed suggest instead that 
TPDV is intensified in the absence of Atlantic/Indian Ocean coupling155,156. Also, the 
connection between the Atlantic and Pacific becomes less clear when partially-coupled 
numerical experiments become more realistic157. These uncertainties indicate possible 
limitations of currently used partially-coupled experiments158, suggesting the need for 
additional research.  

Relative Importance of Different Mechanisms 

This Review has critically explored several mechanisms proposed to explain internal decadal 
variations in the tropical Pacific. While it is plausible that TPDV may simply arise as a residual 
of random ENSO variations4,32, modelling results indicate that TPDV leads decadal ENSO 
modulation by a few years45, suggesting that ENSO decadal changes are likely a consequence 
of the slowly varying background conditions, rather than causing them. However, the 
relationship between ENSO and TPDV is complex and warrants further investigation. 

Results based on observations, ocean reanalyses, and models show a strong relationship 
between variations in the strength of the STCs at decadal timescales, as measured by the 
zonally-averaged equatorward pycnocline transport, and equatorial SSTAs, in support of the 
�′�& hypothesis. However, the largest correlations occur at zero lag, making a causal 
relationship between STC transport and equatorial SST changes unlikely. Instead, these results 
suggest that the concurrent STC and equatorial SSTs variations are both part of the tropical 
pycnocline adjustment to varying wind forcing. This adjustment is mediated by Rossby wave 
activity, whose westward propagation alters the zonal slope of the pycnocline and produces 
meridional transport anomalies18. The adjustment timescale depends on the wave transit time, 
which increases with latitude, as well as the characteristics of the wind forcing relevant for 
TPDV. 

Rossby wave activity alters pycnocline depth and manifests itself as temperature anomalies 
that propagate on mean isopycnals without a compensating salinity anomaly, thus 
encapsulating the non-compensated subset of the �̅�′ hypothesis. Apart from their transit times, 
these waves can also contribute to decadal timescales through their interaction with the forcing, 
for example by responding preferentially to the larger spatial and temporal scales of the 
winds71. 

Propagation of salinity-compensated temperature anomalies (“spiciness anomalies”), another 
component of the �̅�′ hypothesis, is well supported by climate and ocean-only models55,61, but 
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the limited observational evidence available raises questions about whether these anomalies 
actually reach the equatorial region. In addition, an ocean-only model analysis suggests that 
the influence of spiciness anomalies on the heat budget of the equatorial thermocline may be 
small68. 

The origin of the atmospheric forcing driving the oceanic mechanisms at decadal time scales 
remains unclear. We have considered three main groups of atmospheric processes relevant for 
TPDV: The atmospheric response to decadal SSTAs in the equatorial Pacific; internal 
atmospheric variability in the extratropical Pacific; and atmospheric influences from the 
Atlantic and Indian Oceans. Current evidence suggests that these various processes may all be 
potentially important. Additional research is needed to more precisely assess their relative role 
in TPDV. 

Summary and Future Perspectives 

Tropical Pacific decadal variations at periods between 7 and 70 years are linked to coherent 
basin-scale sea surface temperature and sea level pressure anomalies, and have global impacts. 
Despite a more limited historical record of subsurface data, it is clear that the surface 
manifestations of TPDV are associated with a reorganization of tropical Pacific upper-ocean 
heat content, most notably in the zonal direction, suggesting the involvement of ocean 
dynamical processes. Our Review has highlighted mechanisms of TPDV of which we are more 
confident, while pointing out aspects that are less certain and in need of additional research. In 
particular, the relationship between STC variability and changes in equatorial SSTs, 
underpinning the �!�& mechanism, emerges as a robust feature of TPDV across different 
datasets. The concurrent nature of this relationship does not support a causal influence of 
transport changes on SST changes, but instead highlights the importance of oceanic adjustment 
processes for modifying both quantities. This relationship holds for both interannual timescales 
associated with ENSO and for longer decadal timescales on which we have focused, suggesting 
that similar processes are operating on both timescales. 

In spite of these similarities with ENSO, questions remain about the nature of TPDV. While 
ENSO is an ocean-atmosphere coupled phenomenon, whose growth and phase transitions rely 
on coupled feedbacks, it is not clear if this is also true for TPDV. Although there are indications 
that low-frequency equatorial heating127, or individual ENSO events37 can induce off-
equatorial winds favourable for a TPDV phase reversal, there is still uncertainty about the 
origin and nature of the winds involved. Internally-generated wind anomalies in the 
subtropical/tropical regions can create equatorial SST anomalies102, which can then reinforce 
the subtropical wind anomalies through atmospheric teleconnections, increasing their 
persistence to enhance lower-frequency variability116. Decadal timescale SST anomalies in the 
Atlantic and Indian Oceans can also induce wind anomalies in the tropical Pacific conducive 
to the development of SST anomalies of the opposite sign134,137,150,152. However, the extent to 
which wind forcing from the extra-tropics or from other ocean basins may itself be the result 
of forcing from the tropical Pacific is not clearly understood. Furthermore, the relative 
magnitude of these various sources of wind variability in forcing TPDV is not known. A further 
uncertainty is related to whether the wind variations arise from deterministic processes 
operating on decadal timescales, or whether the decadal timescale processes that we observe 
in the Pacific are simply the result of stochastic white noise forcing that the ocean integrates 
through its inertia to produce a red noise spectral response. A full understanding of TPDV 
requires that we resolve these outstanding uncertainties via further research. 
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Properly designed coupled model sensitivity experiments, where SSTs are prescribed in certain 
regions could be used to isolate the contribution of the different regional sources of wind 
anomalies. Since these experiments may be affected by model biases and delicate to conduct158, 
they should be complemented by analyses of multi-variate empirical models159, which are 
trained on observations and allow a cleaner decoupling of feedbacks among different variables 
and regions160-162. In addition, simple ocean models that capture Rossby wave dynamics18,163 
can help assess the role of different aspects of the winds, including location and spectral 
characteristics, in reproducing key features of TPDV. 

Although spiciness anomalies do not seem to significantly affect TPDV, current evidence is 
based on a limited number of analyses using just over two decades of observations available 
from the Argo floats, and primarily conducted with ocean-only models. However, the expected 
concentration of variance at decadal time scales of spiciness anomalies arriving at the equator, 
and the resulting rearrangement of the tropical climate, suggests that spiciness anomalies could 
still be potentially important driver of TPDV in the coupled setting. Thus, the role of spiciness 
should be further investigated in the context of coupled models. Availability of long time series 
from model simulations with realistic mixing parameterizations, achieved through either higher 
spatial resolution or improved model design, would be critical to more reliably assess the 
impact of spiciness on TPDV. 

This review has focused on the oceanic and atmospheric processes that govern TPDV arising 
naturally within the climate system. We have not addressed the question of how TPDV may 
change in response to external forcing. However, we can expect changes in the characteristics 
of TPDV as a result of anthropogenic forcing. Increasing surface temperatures will result in 
increased ocean stratification164, leading to faster Rossby wave propagation, shorter adjustment 
timescales and reduced growth and predictability of Pacific decadal variability165, which may 
lead to weaker, shorter timescale TPDV in the future166. The expected reduced influence of 
Atlantic variability on ENSO, due to increased tropospheric stability167 may also reduce the 
influence of Atlantic decadal variability on TPDV. On the other hand, the Wind Evaporation 
SST feedback is projected to increase due to warmer sea surface temperatures and increased 
evaporative response, which can lead to an enhanced impact of the NPMM on ENSO and 
possibly on TPDV168,169. These and other possible processes, and their interactions, need to be 
assessed in climate models to determine how TPDV may change in a warmer world. 

Box 1.  Mean ocean and atmospheric circulations in the tropical Pacific 

The equatorial Pacific Ocean is often described as a system with a warmer and dynamically 
active upper layer, and a colder and more quiescent bottom layer (shading along the equator, 
figure, bottom). These two layers are separated by a region of sharp vertical density 
(temperature) gradients, known as the pycnocline (thermocline), and are overlaid by a near-
surface frictional layer – the Ekman layer. 

The pycnocline links subtropical regions to the equator: subtropical waters can penetrate into 
the ocean interior at the latitudes where surfaces of constant density (isopycnals) meet the near 
surface layer, and then flow equatorward along those isopycnals (black dashed lines in bottom 
panel of figure, Fig. 3 for a three-dimensional perspective). At the equator, these waters are 
brought to the upper layers by the upward vertical velocity (a process known as upwelling), 
and returned to higher latitudes by the flow in the surface Ekman layer (black solid arrows in 
bottom panel of figure), creating shallow overturning circulations in both hemispheres termed 
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709 Subtropical  Cells  (STCs)75. Warm  tropical  SSTs  drive  the  atmospheric  Hadley Cells  (see  
figure, top), with air rising near the  equator, flowing poleward in the  troposphere  at  10-15 km  
above  the  surface, and descending in the  subtropics, with an equatorward return flow  near the  
surface  that  is  deflected westward because  of the  Earth’s  rotation, creating the  easterly trade  
winds.   
 
The  tropical  Pacific  Ocean circulation also exhibits  a  rich system  of zonal  currents, (see figure, 
top) with both westward and eastward flowing currents, the  most  noteworthy of which is  the  
Equatorial  Undercurrent  (EUC), a  strong eastward flowing jet  centred on the  equator with a  
core  in the  pycnocline  (see  figure, bottom). The  zonal  slope  of the  pycnocline  - deeper in the  
west, and shallower in the  east  - is  in balance  with the  easterly equatorial  trade  winds, and 
provides  the  pressure  gradients  that  drives  the  EUC. The  trade  winds  are  the  surface  branch of 
the  zonal  atmospheric  Walker circulation, consisting of an ascending branch over the  warm  
waters  of the  western equatorial  Pacific  “Warm  Pool”,  and a  descending branch in the  colder 
and dryer eastern equatorial Pacific “Cold Tongue” (  see figure, top).  
 
The  interior wind-driven zonal  circulation is  connected in the  western Pacific  to the  
equatorward flowing Low-Latitude  Western Boundary Currents  (LLWBCs), which are  an 
important  conduit  for the  redistribution of subtropical  water to the  western equatorial  Pacific170  
and then into the  tropical  current  system, including the  EUC and the  Indonesian Throughflow  
(ITF).  
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LLWBC: Low Latitude Western Boundary Current 
NEC: North Equatorial Current; 
NECC: North Equatorial Countercurrent; 
EUC: Equatorial Undercurrent; 
SEC: South Equatorial Current; 
SECC: South Equatorial Countercurrent; 
EAC: East Australian Current; 
ITF: Indonesian Throughflow: 
LC: Leeuwin Current; 
KC: Kuroshio Current 

Box 2.  Paleoclimate insights 

The brevity of the instrumental record limits analyses of TPDV with instrumental observations. 
Paleoclimate proxies, particularly tropical corals and sclerosponges, provide opportunities to 
track the low-frequency variations of the tropical oceans over centuries. Over the most recent 
phase transitions of TPDV, corals have recorded associated changes in dynamically relevant 
fields, including sea surface temperature171,172, salinity173-175, westerly wind bursts176, and 
upwelling177,178. Proxy records have provided evidence of interactions among different ocean 
basins at both interannual179 and decadal180 timescales. Proxy records from the Eastern Tropical 
North Pacific, where SST anomalies may reflect NPMM activity, illustrate high levels of 
decadal variability coherent with the Central Equatorial Pacific records, supporting the 
potential involvement of the NPMM in TPDV174. 

Additionally, paleoclimate analyses provide a perspective into the range of TPDV found over 
centuries-millennia, which can be used to assess model simulations of TPDV. The Box Figure 
compares TPDV across five different instrumental products, two generations of climate models 
(CMIP5, CMIP6; historical and Past1000 experiments), and three different sources of paleo 
data using violin plots181. TPDV is described in terms of the standard deviation of decadal 
variations (7-70 years) of the Niño3.4 index (annually average sea surface temperature 
anomalies in the 5°S-5°N, 170°W-120°W region). Violin plots for each dataset are based on 
decadal standard deviations of 100-year sliding windows allowing for 50 years overlap 
between segments. Individual dots represent the decadal standard deviation of each unique 
100-year segment. The median and interquartile range of these values is indicated by the white 
dots and vertical lines, respectively, while the width of the violin plot for each standard 
deviation indicates the corresponding frequency of occurrence. Notably, the instrumental 
record does not cover the full range of decadal variability suggested by both paleoclimate proxy 
reconstructions and climate models, although the median standard deviation is very similar 
among products. 
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811 Figures  
812 
813 

814 
815 
816 Figure  1. Observed  Pacific  decadal changes. a) The difference of  linearly  detrended  SST  anomalies182  

between 1999-2014 (Period 2)  (shading) and 1984-1999 (Period 1),  and the  negative  phase  of the  basin-
wide  TPDV pattern  (contours). The  TPDV  pattern  was  obtained by regressing the decadal  SST  
anomalies  on the TPDV  index (leading Principal  Component  of  decadal  SST  anomalies  in 25°S-25°N).   
b)  Differences  (Period 2 minus  Period 1)  of  linearly detrended sea level  pressure  (shading)  and vector  
wind  anomalies183  (arrows)  over  1958-2020 c)  Differences  of  linearly detrended SSH  anomalies184  
(shading), and  tropical SSH  signature  of TPDV, computed  as the  regression  of decadal SSH  anomalies 
on the TPDV  index.  d)  Same as  c),  but  for  un-detrended SSH  data.  e)  Differences  (Period 2 minus  
Period 1)  of  detrended temperature anomalies  zonally averaged between the western ocean boundary 
and the dateline,  and displayed as  a function of  latitude and depth.  Contours  indicate the time mean 15o, 
20o, and  25o  isotherms, highlighting  the  thermocline  layer. f)  Same  as e), but for temperature  values 
averaged from  the dateline to the eastern ocean boundary.  SST  contour  interval  in a)  is  0.1oC,  while  
SSH  contour  interval  in c)  and d)  is  1 cm.  TPDV is  associated  with  basin-wide  SST,  SLP  and  wind  
anomalies,  and involves  a reorganization of  heat  content  in the tropics.   
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Fig. 2. Relationship between TPDV and El Niño Southern Oscillation. a) Evolution of SST 
anomalies182 averaged in the equatorial band (5°S-5°N), displayed as a function of longitude (x-axis) 
and time (y-axis), with time increasing upward. b) Evolution of SSH anomalies185 (m), a proxy for upper 
ocean heat content, averaged west of the dateline, as a function of latitude and time. c) Evolution of 
SSH anomalies (m) averaged east of the dateline, as a function of latitude and time. Anomalies of both 
SST and SSH are obtained by removing the climatological monthly mean and linearly detrending the 
data over the period 1958-2015. d) Time evolution of the TPDV index, computed as the leading 
Principal Component of decadal (7-70 years) SST anomalies in the tropical band (25°S-25°N). The 
index in d) is based on ERSSTv5. ENSO variability exhibits a decadal modulation with more El Niño 
activity and prevailing negative heat content anomalies in the western tropical Pacific during positive 
TPDV phases, and vice versa for negative TPDV phases. 

19 



  

                                                                          

  
       

      
	          

            
         

                
           

          
        

            
      	     

         
   

846
847
848
849
850
851
852
853
854
855
856
857
858
859

845 

Figure 3. Subtropical Cells influence on TPDV. a) Schematic illustration of advection of spiciness 
anomalies (pink shading) by the mean circulation on the 25.0 kg m-3 isopycnal surface, illustrating the 
�#�′ mechanism. Shading indicates isopycnal depth184. A density ridge in the 5°-10°N latitude band, 
known as “potential vorticity barrier”54 is indicated by the gray dashed line. Equatorward spiciness flow 
along these isopycnal surfaces is also highlighted on the zonally averaged isopycnal depths (from 23 kg 
m-3 to 25.5 kg m-3 with a spacing of 0.5 kg m-3) in the latitude-depth plane on the bottom panel. b) 
Schematic illustration of the �′�& mechanism, where the mean (black arrows) and anomalous (red 
arrows) flow are presented on the 25.0 kg m-3 isopycnal surface, which is located in the middle of the 
upper pycnocline. Flow along these isopycnal surfaces connects the subtropical to the tropical regions, 
as highlighted by the contours of zonally averaged isopycnal depth (from 23 kg m-3 to 25.5 kg m-3 with 
a spacing of 0.5 kg m-3) in the latitude-depth plane on the bottom panel. Both �#�′ and �′�& mechanisms 
were proposed as potential contributors to TPDV. 
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Figure 4. Assessment of the �′�# hypothesis. a) Observational estimates of mean zonally-integrated 
interior meridional pycnocline transports at 9°N and 9°S computed over 1956-65, 1970-77, 1980-89, 
and 1990-99. Transport units are Sverdrups (1Sv = 106 m3 s-1). Error bars are for one standard deviation 
error. b) Mean meridional transport convergence (in Sv) across 9°N and 9°S computed as the difference 
between Southern Hemisphere minus Northern Hemisphere transports. SST anomalies averaged over 
the central and eastern equatorial Pacific (9°N-9°S, 90°W-180°W). c) Meridional transport convergence 
anomalies (seasonal cycle removed) across 9.5°N and 9.5°S in the Pacific from the GODAS ocean 
reanalysis186 during 1980-2021. Transport convergence is compared with SST anomalies averaged over 
9.5°N-9.5°S, 90°W-180°W. Meridional velocity anomalies used to compute the transports and SST 
anomalies are linearly detrended. Correlation at zero lag between the time series is -0.82. d) Same as c) 
but for 7-year low pass filtered anomalies. Correlation at zero lag is -0.90. Numerals in d) indicate 
values of mean decadal transport anomalies (black) and mean decadal SST anomalies (red) over the 
periods identified by the vertical dashed lines. e) Correlations between transport convergence at 9°N 
and 9°S and equatorial SST anomalies in four ocean reanalyses184,185,187,188 and 12 CMIP6 historical 
simulations. For each model, the 95% confidence interval is shown. f) Standard deviation of equatorial 
SST anomalies vs. the standard deviation of the transport convergence at 9°N and 9°S for the ocean 
reanalyses and the historical CMIP6 simulations. Panels a) and b) are from 19, panels c) and d) are 
adapted from 18, and panels e) and f) are adapted from 88. 
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Figure 5. Atmospheric processes involved in TPDV. a) SST (shading) and sea level pressure (SLP, 
contours) anomalies typical of the North Pacific Meridional Mode (NPMM). The SLP anomalies are 
associated with changes in the off-equatorial trade winds, which produce SST anomalies through the 
wind-evaporation-SST feedback. b) As in a), but for the South Pacific Meridional Mode (SPMM). To 
calculate these indices, we linearly remove the Niño 3.4 index influence on wind and SST anomalies 
106 and identify the NPMM and SPMM indices, respectively, as the first SST expansion timeseries of 
an SST-wind maximum covariance analysis performed over 21oS-32oN, 175oE-95oW106 and 10oS-35oS, 
180oE-70oW189. The tropical atmospheric response to positive interdecadal SST differences in the Indian 
(1999-2008 minus 1988-1998) and Atlantic (1999-2014 minus 1982–1998) Oceans is respectively 
presented in c) and d). The lower panel includes the forcing SST anomalies in shading, while the 
modelled precipitation anomalies are shown as contours (green=positive; purple=negative), and the 
overlaying wind vectors represent the surface zonal and meridional winds. The mid-panels present 
equatorial sections of temperature (shading) and zonal and vertical wind vectors (arrows), meridionally 
averaged in the (10oS-10oN) latitude band. Note that the vertical winds are magnified by a factor of 300 
to ensure scale comparability with the zonal wind. The upper panel represents the 200hPa geopotential 
height (shading) with overlaying wind vectors representing the 200hPa zonal and meridional winds. 
Data presented in c) and d) are based off AGCM simulations run by 190 and Naha et at. (2023b, in 
revision). 
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