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Multivariate NN-RCM Full Conditionals

As previously mentioned, the structure, reminiscent of multivariate linear regression mod-
els, allows us to derive the full conditionals for each observed location s; independently.
Therefore, in the implementation of the MCMC algorithm, the spatial field w(s;) can
be sampled in a fully parallel fashion. The full conditional posterior distribution for s;,
where i = 1,..., k are obtained using the Bayesian normal linear model posterior inference
formulas,

w(s;)|— ~ Ny(u(s;), S(si)),

where

u(s;)) = S(si) T'(sz')‘lfl(si)wmsi)+A’(7'21q)71y(8i)+ Z I, o @ (w)bu,s,
ueN—1(s;)
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where the set u € N~1(s;) is the group of locations which has s; as a neighbor. The
notation I'y s, indicates the rows of I'(u) that corresponds to the neighbors located at s;

and by,s, = w(u) = X enqups; 1 (U, 7)wy.

*igrenier@ucsc.edu
Tbruno@soe.ucsc.edu
}jessica.matthews@noaa.gov



The full conditionals for the spatial random effects I'(s;) and ®(s;) can also be obtained
for each location separately. Similar to the spatial field, we leverage the Bayesian linear
model posterior inference equations to obtained the closed-form full conditional distribu-
tions.

L(si)[= ~ Nimngq(U(si), V(s:), ®(si)),
si) = V(si) (wn(s,yw(si) + (@ — kg — 1)Con(sy),s,)
)

- (wN(Si)wlN(si) + (a0 — kg — 1)CO,N(si)>
P(si)|— ~ IW(a—kqg+2q(1+m),(a—kq—1)Cqsn(s) + Qsi) + R(ss)
/

si) = (w(si) —T'(s;))wn(si))(w(s;) —T'(si)wn(si))
(55) = (a—kq—1)(I(s;) — C;}V(Si)ce,N(si),s)'Ce,N(si)(T(Si) - C;}V(si)co,zv(si),s)-

Finally, for each sampling iteration of the MCMC algorithm, we have global full con-
ditionals for each element 7'q2 of the observational error 72. The likelihood and the choice
of prior for the observational errors in the hierarchical structure leads to conditional con-
jugacy. Therefore, the full conditional of 7'(12 is also an inverse gamma distribution,

k Z (wq(si) — . (&'))2
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Special case: univariate observations full conditionals

We again call attention to the special case of univariate spatial observations. Setting ¢ = 1,
the model simplifies to

y(s) = z(s)B + w(s) + €(s),
where
y(5)|8,w(s),7° ~ N(x(5)8 + w(s), 7°)
B ~ Np(0, s31)
w(s)|v(s), ¢(s), 0% ~ N(y(s)wn(s), ¢(s))
o(s) -1

v(s)|p(s) ~ Nm(c(;}v(s)co7N(s),sa mCB,N(s))
¢(s) ~ IG(a—k+ (1 +m), (a0 —k = 1)Co 5n(s)),
m(0?,7?) = IG(7?|a;, by) x IG(0?|as, bsy),
where p is the dimension of the fixed effects and m is the number of neighbors. We recognize
the framework of a multivariate linear regression model in the prior structure of the spatial

random effects w(s). By using the posterior equations from the Normal-Normal model, we
obtain a closed-form solution for the full conditional distribution of w(s):

w(si)|— ~ N(u(si), 0% (s1),



Vo 1 LN (Y s)wngs) | ylsi) Vus
:LL(SZ) — <O’2¢(SZ')+T2> Uzd)(si) + 7_2 + Z b

where the notation v, s, indicates the element of v(u) that corresponds to the neighbors
located at s; and by,s, = w(w) = 3 e n(u)\s; TurW(1)-

To obtain the full conditional distributions of the random effects ~(s;) and ¢(s;), we
use the normal equations from the linear models posterior inference.
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qa(si)) = (w(si) =7 (s)wn(si))?

r(si) = (a—k=1)((s) = Cgn(snConss) Coness) (V(50) = Cg oy Conisi.s)
Finally, we are left with the posterior inference of the observational error 72 and the

partial sill 02. In contrast to the multivariate model, the partial sill is factored out of the
covariance matrix. In the previously defined model, we therefore have

0*Co = a*(C,, + €21).

This allows us to learn the full posterior distribution for the partial sill under the hierar-
chical NN-RCM model. The choice of prior for the observational error and partial sill both
lead to closed-form full conditional distributions:

o%— ~IG | ag + g bo+ (wsi) = 7'(8i‘)wzv(sz‘))2
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Sensitivity Analysis of Parameter Choices

A sensitivity analysis of the choice of number of neighbors, the range parameter as well
as the smoothness parameter was conducted for the univariate simulated dataset setting.
The goal of the analysis is to explore the impact of such choices on the inference and on
the predictive power of the model.

Following the same framework as presented in section 3.1, we estimate the posterior
parameters of the NNRCM model using m = 10,15 and 20 neighbors, a range v varying
between 0.6 and 1, and three possible smoothness parameter x = 0.5,1 and 1.5. Table
to Table |3| summarize the posterior estimates found for each combination of smoothness
and number of neighbors for two different range values (v = 0.6 and 1). Table [2| to Table
then look at the predictive scores under the same two simulations.

We conclude that the posterior estimates are not sensitive to the neighborhood size as
they remain unchanged for a given range and smoothness parameter. As expected, the
sensitivity to the smoothness parameter is such that the posterior estimate of the range
becomes smaller (larger) as the smoothness parameter increases (decreased).

k=05 k=1 kK=15|k=05 k=1 kK=15|k=05 k=1 kK=15

o 2534 2536 2535 2590 2590 2582 2532 2544 2540
o? 0.79 0.75 0.73 0.8 0.75 0.72 0.81 0.76 0.73
T 0.33 0.41 0.47 0.3 0.40 0.47 0.29 0.39 0.46
v 0.68 0.47 0.38 0.72 0.49 0.4 0.72 0.5 0.4

Table 1: Estimated parameters for varying number of nearest neighbors and smoothness
parameter (data simulated with v = 1)

m = 10 m =15 m = 20
k=0.5 1 1.5 | k=0.5 1 1.5 | k=05 1 1.5
PMSE 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
CRPS 0.30 0.29 0.29 0.30 0.29 0.29 0.30 0.29 0.29
PPLC 845 759 749 808 740 738 797 734 735
Coverage 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 2: Posterior predictive assessment using test set for varying number of nearest neigh-
bors and smoothness parameter (data simulated with v = 1)



m =10 m =15 m = 20
k=005 kK=1 kK=15|Kk=05 kK=1 K=15|k=05 K=1 K=15
« 6739 6751 6709 6499 6494 6507 6686 6645 6600
o? 0.81 0.72 0.69 0.8 0.70 0.67 0.79 0.68 0.65
T 0.25 0.42 0.48 0.27 0.47 0.53 0.28 0.49 0.56
v 1.23 0.87 0.77 1.29 0.91 0.8 1.30 0.93 0.82

Table 3: Estimated parameters for varying number of nearest neighbors and smoothness
parameter (data simulated with v = 0.6)

m =10 m =15 m = 20
k=0.5 1 1.5 | k=05 1 1.5 | k=05 1 1.5
PMSE 0.13 0.13 0.13 0.12 0.13 0.13 0.12 0.13 0.14
CRPS 0.21 0.22 0.22 0.21 0.22 0.23 0.21 0.22 0.23
PPLC 1234 1353 1430 | 1263 1410 1481 1269 1439 1508
Coverage 1 1 1 1 1 1 1 1

Table 4: Posterior predictive assessment using test set for varying number of nearest neigh-

bors and smoothness parameter (data simulated with v = 0.6)



Sensitivity Analysis of Prior Distributions

A sensitivity analysis of the prior distributions for the partial sill o and the nugget pa-
rameter 2 was conducted for a univariate simulated dataset.

For this simulation study, 10,000 observations were generated with a range parameter
v = 1, partial sill > = 1 and using an exponential covariance function. The dataset
was evenly assigned to a training to fit the model and a testing set to assess predictive
performance.

We evaluate the performance of the model using five different priors for ¢? and four
different priors for €2. The prior distributions are shown in Figure [1] to illustrate the
variability of their shape. The prior for the degrees of freedom « is kept constant, with the
choice of a Pareto distribution with shape parameter equal to 1. Note that for the reported
results below, the choice of neighborhood size is m = 15 and the smoothness parameter is
kept constant at x = 0.5.

For Table [5| and Table |§|, we note that the posterior estimates for o2 and &2 are more
sensitive to the choice of prior for ¢? than the one for 0. The estimate of the range
v remains constant under any prior specification. In terms of the predictive power, the
model performs similarly under any prior specification. Thus, we conclude that the model
produces reliable estimates and is not sensitive to the choice of prior.

Figure 1: Prior choices for o2 and &2 for the sensitivity analysis.



Prior for £2 | Prior for o2 | o2 v £2
IG(3, 2) 0.838 0.761 0.251
IG(1, 1) 0.84 0.759 0.249
1G(3,2) IG(2, 1) 0.838 0.761 0.252
IG(3, 0.5) 0.835 0.762 0.255
IG(5, 10) 0.854 0.754 0.234
IG(3, 2) 0.859 0.747 0.222
IG(1, 1) 0.861 0.746 0.22
IG(1, 1) I1G(2, 1) 0.859 0.747 0.223
IG(3, 0.5) 0.855 0.748 0.228
IG(5, 10) 0.876 0.739 0.204
I1G(3, 2) 0.916 0.709 0.151
IG(1, 1) 0.918 0.708 0.148
IG(3, 0.5) IG(2, 1) 0.916 0.709 0.151
IG(3, 0.5) 0.912 0.711 0.155
IG(5, 10) 0.931 0.703 0.137
IG(3, 2) 0.71  0.846 0.465
IG(1, 1) 0.711 0.846 0.463
IG(5, 10) IG(2, 1) 0.709 0.847 0.467
IG(3, 0.5) 0.706 0.849 0.473
IG(5, 10) 0.727 0.839 0.437

Table 5: Comparison of parameter estimates under different prior specification for o2 and
¢2. The prior for v is Gamma(2, 2/d), where d is the minimum distance between two
observations)



Prior for &2 | Prior for 0> | PMSE CRPS PPLC
IG(3, 2) 0.148  0.230 2167
IG(1, 1) 0.148  0.230 2158
1G(3,2) IG(2, 1) 0.148  0.230 2164
IG(3, 0.5) 0.148  0.230 2173
IG(5, 10) 0.148  0.230 2168
IG(3, 2) 0.148  0.229 2077
IG(1, 1) 0.148  0.228 2069
IG(1, 1) I1G(2, 1) 0.148  0.229 2082
IG(3, 0.5) 0.148  0.229 2096
IG(5, 10) 0.148  0.228 2031
IG(3, 2) 0.150  0.226 1854
IG(1, 1) 0.150  0.226 1846
IG(3, 0.5) IG(2, 1) 0.150  0.226 1853
IG(3, 0.5) 0.150  0.226 1864
IG(5, 10) 0.150  0.225 1807
I1G(3, 2) 0.151  0.242 2689
IG(1, 1) 0.151  0.241 2682
IG(5, 10) I1G(2, 1) 0.152  0.242 2691
IG(3, 0.5) 0.151  0.242 2701
IG(5, 10) 0.151  0.240 2634

Table 6: Posterior predictive assessment under different prior specification for ¢? and
¢2. The prior for v is Gamma(2, 2/d), where d is the minimum distance between two
observations)



