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PREFACE

The publication of this annual Climate Assessment is the second time we
have attempted to summarize contemporary climate data and statistics on the
state of the global climate system. This year, at the end of the decade, we
have focused on global observations from an historical perspective.

A summary of this type is motivated by an international concern for
potential global warming and possible consequences which may occur.
Although a comprehensive study has recently been completed by the
Intergovernmental Panel on Climate Change (IPCC), this report has been
written to stay abreast of new results and to display new analyses which
more clearly define contemporary climate anomalies. Therefore, this
assessment is also a contribution to a new project for the World
Meteorological Organization (WMO) on the Early Detection of Climate Change.

The purpose of this report is to provide a technical resource which
can be used to address questions concerning the possibility of changes to
the global climate system. Depending on how the question is asked, these
analyses can contribute to an assessment of the current state of the climate
system. However, not all observational evidence supports the global change
hypothesis. Furthermore, during this past decade there have been some
outstanding climate events: a record El Nino/Southern Oscillation (ENSO)
event in the Pacific, record monthly warm surface temperatures in the
Northern Hemisphere, and severe droughts in several regions.

We admit that we are not able to provide a complete analysis of all
pertinent variables. The assessment of global cloud cover, the analysis of
ocean circulation, or a measure of the vitality of the surface vegetative
cover is beyond the present scope of this report. We have also omitted
important topics on climate impacts of the national economy. In succeeding
years, however, we hope to build on this year's accomplishments to develop
an improved and more sensitive climate assessment.

I would also like to emphasize the collaborative nature of this
report. It is derived from NOAA contributions from the National
Environmental Satellite, Data, and Information Service (NESDIS), the Office
of Oceanic and Atmospheric Research (OAR) and the National Weather Service
(NWS) However, we have included some special contributions from
universities in the U.S., and important results from several laboratories in
the U.K. and U.S.S.R. I would like to thank all the contributors for their
cooperation and willingness to share new results. Special recognition
should also go to the co-editors, Michael S. Halpert and Chester F.
Ropelewski, for bringing the project to completion. Partial support for
this project came from the Climate Perspectives Project of the NOAA Office
of Climate and Global Change.

No single report of this kind can hope to be complete and
comprehensive. Nevertheless, our goal is to provide a coherent description
of the climate of the 1980s using key climate parameters as soon as they
become available.

David R. Rodenhuis, Director
Climate Analysis Center
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EXECUTIVE SUMMARY

Based on surface temperature estimates for the 1980's, this climate
assessment agrees with other related studies that this decade is the warmest
in the record. Moreover, the following characteristics of surface
temperature during the decade are now also clear. These include:

The Northern Hemisphere dominates the record.

The 1986 to 1990 period is clearly warmer than the first
half of the decade and the temperature anomaly patterns
are similar for each 5-year period.

Temperature anomalies in the first half of the year
(December through May) in both hemispheres dominate the
annual anomaly patterns.

The Southern Oscillation has a clear effect on the
interannual variability of the global temperature, but it
does not explain all of the observed patterns and
variations.

Still to be resolved are the small but important difference between
satellite and radiosonde estimates of the global tropospheric temperatures.
These differences may point to inadequacies of the radiosonde network or
in the algorithms for converting satellite data to temperature.

A preliminary examination of the Northern Hemisphere tropospheric
circulation patterns suggest:

There have been small, but significant, systematic shifts
in the hemispheric circulation patterns during the 1980's

Components of the circulation changes during the 1980's
are consistent with the observed surface temperature and
precipitation anomaly patterns.

Precipitation has traditionally been harder to characterize than
surface temperature. However, the analysis presented here suggests:

The summer monsoon rainfall amounts for western Africa,
southeastern Asia and northern Australia have decreased
over the past decade or longer.

The summer monsoon rainfall over the Indian sub-continent
had very large year-to-year variations in the past
decade, but no clear decadal trend is evident.

The global precipitation analysis suggests that mid-
latitude precipitation may have increased during the past
decade while tropical monsoon precipitation decreased.
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Thus, while several temperature and precipitation records were set
during the 1980's, it is still not clear whether these are simply large
excursions of the climate system or whether these variations signal
trends towards a clearly different climate.

Investigation of interannual variability has confirmed that the large
swings in the Southern Oscillation were associated with some of the largest
global scale year-to-year variability of the 20th century. In particular,
during the decade of the 1980's, the Southern Oscillation experienced its
strongest warm episode of the century (1982/83) and its strongest cold
episode in 50 years (1988) These were associated with:

Record droughts in India, Australia and the western
Pacific, and record rainfall in western South America
during the 1982-83 warm episode.

Record rainfall in India and Australia during the 1988
cold episode.

Large temperature anomalies in the global tropics and in
northwestern North America.

Variations in the global scale tropospheric and surface
temperature and precipitation patterns.

The cryospheric component of the climate system has only been
measured consistently for less than twenty years. Analyses of these data
suggest:

Record Northern Hemispheric surface temperatures in
spring of 1990 may be related to snow cover deficiencies
over Eurasia.

O Sea ice area shows no clear trends during the decade.

While our understanding and analyses of all of the climate variations
that occurred in the 1980's is far from complete, certain aspects of the
variability can be listed. We hope that a description of these climate
system characteristics of the past decade serves as a piece to the "large
puzzle" that must be solved.
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INTRODUCTION

The purpose of this review is to identify the principle features of
the global climate during the decade of the 1980' S. Temperature,
precipitation, and circulation anomalies are derived and, for the most part,
compared to the past 40 years.

Several previous studies have examined surface temperature and
precipitation records spanning much longer periods of time. The
temperature studies have two features in common, a) they all require
corrections to the early data, and b) they all suggest that surface
temperatures during the recent decade are several tenths of a degree
(0.3Â°C to 0.6Â°C) higher than a century ago (IPCC, 1990). To a large
extent the interpretation of these longer time series depends upon a
willingness to accept the validity of various corrections and
assumptions applied to data prior to the mid-1940 S.

We eliminate much of this problem by confining the bulk of the
analysis to the past 40 years. In effect, this report accepts the vast
body of previous work based on long-term surface data and concentrates
instead on the question "What, if anything, makes the climate of the 1980' S
unique?". This review attempts to tie variations in the surface climate
with those in the atmospheric circulation and other components of
the climate system.

3



SURFACE TEMPERATURE

GLOBAL

Surface temperatures for the decade of the 1980's averaged above normal
over most areas of the globe. Temperature anomalies averaged for the whole
decade (Fig. 1) show that almost all areas of the Northern Hemisphere
experienced positive anomalies. Only Greenland and Baffin Island
experienced mean negative anomalies less than -0.5Â°c. The largest positive
anomalies were found over the central and eastern Soviet Union and over
Alaska and western Canada. Northern Hemisphere sea surface temperature
(SST) anomalies were generally small and positive, except in an area in the
North Pacific and another area in the North Atlantic around Greenland. The
Southern Hemisphere was also dominated by above normal temperatures (Fig.
2) except for an area in central South America. SST anomalies in all three
southern ocean basins averaged above normal, with a fairly substantial area
in the east Pacific averaging greater than 0.5Â°C above normal. This latter
feature is most likely a reflection of the very large SST anomalies
associated with the El Nino/Southern Oscillation (ENSO) event of 1982-1983.

Time series of the estimated global land anomaly during the 1980's
(Fig. 3) shows that all median temperature anomalies were positive with the
exception of the slight negative value for 1985. Median temperature
anomalies in the latter half of the 1980's were clearly above those
earlier in the record. The median value for 1990, 0.5Â°C, was larger than
any other median value in this time series. Thus, approximately half of
the 2Â° latitude by 2Â° longitude land areas in this analysis had average
temperature anomalies of 0.5Â° or greater. 1990 is also particularly
striking because the median anomaly is equal to or greater than the
70th percentile of all other years with the exceptions of 1953, 1981,
1987, and 1989. The 1990 values are also notable because only slightly
more than 10% of the world's land areas experienced negative annual
temperature anomalies (one would expect approximately 50% for near normal
conditions) Extreme temperature anomalies for both 1981 and 1987 were
comparable to 1990 in showing 10% or more of the land areas with 1Â°C or
greater positive temperature anomalies.

Other warm periods appear in this time series, notably 1957 to 1961,
but in the early record only 1953 shows annual values comparable to
those of the 1980's. The effects of the El Nino/Southern Oscilla-
tion on these calendar year annual temperatures is not clear,
(Halpert and Ropelewski, 1991) but there is a tendency for larger positive
(negative) median values to be associated with the years following warm
(cold) episodes.
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The Northern Hemisphere time series (Fig. 4a) is almost identical to
the global series since most of the land area, as well as most of the
surface data, are located in the Northern Hemisphere. It is somewhat sur-
prising, however, that the overall character of the Southern Hemisphere
temperature time series (Fig. 4b) is very similar to the Northern
Hemisphere series. Both hemispheres show the 1980's to be warmer than
earlier decades. One difference is that the Southern Hemisphere median
Thetemperatures for 1980 and 1988 are both larger than those for 1990.

Southern Hemisphere also shows closer relationships to the
Southern Oscillation, with each of the warm episode years showing positive
median temperature anomalies (except for 1965) and each of the cold
episode years showing below median anomalies (except for 1988) The two
coldest years in the Southern Hemisphere series, 1956 and 1975, are
associated with cold Southern Oscillation episodes.

2.0
NORTHERN HEMISPHERE

1.0

0.0

-1.0

a
-2.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89

2.0
SOUTHERN HEMISPHERE

1.0

0.0

-1.0

b-2.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89
YEAR

Fig 4. A) Northern Hemisphere and B) Southern Hemisphere surface
temperature index based on the average annual temperature anomalies
in 2Â° latitude by 2Â° longitude areas over land. The solid line represents
the 50%, or median, temperature anomaly for each year. Each "box"
delineates the temperature anomalies at the 70th and 30th percentiles
while the "whiskers" (lines) delineate the 90th and 10th percentile
values. The anomalies are with respect to the 1951 to 1980 base period.
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The following global temperature estimates were obtained from the State
Hydrological Institute, Leningrad, USSR. These are consistent with time
series of median temperatures (Fig. 3) and similar estimates received from
the Climatic Research Unit, University of East Anglia.

Mean annual surface air temperature for the greater part of
the Earth (90 N - 60 S) as departures from an average for
the 1951-1975 period (Â°C)

0 1 2 3 4 5 6 7 8 9
1880 -0.31 -0.27 -0.31 -0.60 -0.40 -0.40 -0.52 -0.21 -0.08
1890 -0.36 -0.41 -0.39 -0.42 -0.36 -0.26 -0.15 -0.06 -0.35 -0.21
1900 0.06 -0.08 -0.17 -0.31 -0.42 -0.22 -0.14 -0.38 -0.33 -0.23
1910 -0.24 -0.28 -0.18 -0.20 -0.02 0.03 -0.17 -0.43 -0.34 -0.17
1920 -0.10 -0.09 -0.14 -0.18 -0.13 -0.08 0.15 0.03 0.05 -0.16
1930 0.04 0.12 0.07 -0.14 0.06 -0.02 0.04 0.16 0.13 0.01
1940 0.15 0.15 0.16 0.02 0.16 0.06 0.05 0.16 0.07 0.02
1950 -0.07 0.07 0.09 0.18 -0.02 -0.10 -0.19 0.07 0.17 0.12
1960 0.07 0.10 0.08 0.05 -0.25 -0.16 -0.06 -0.03 -0.12 0.04
1970 0.03 -0.15 -0.07 0.19 -0.09 -0.02 -0.16 0.18 0.10 0.21
1980 0.27 0.37 0.14 0.35 0.08 0.07 0.21 0.38 0.36 0.27
1990 0.52

These estimates are based on data from 301 and 265 land meteorological
stations in the Northern and Southern Hemispheres, respectively. The
description of analysis method and sources of this data are given in
Vinnikov et, al., 1990. The statistically optimum method for spatial
averaging, used in the analysis, provides a sufficiently accurate spatial
averaging procedure when using data from a limited number of stations,
smaller than used by other research groups. Updating was done at the State
Hydrological Institute, Leningrad, USSR, by using the facilities of WDC-B,
Obninsk, USSR and CAC/NOAA Washington D.C., USA

The data show that the last decade was much warmer than any other
during the period of instrumental meteorological observations based on land
stations in the Northern and Southern Hemisphere.

An examination of the two halves of the decade in the Northern Hemi-
sphere (Figs. 5 and 6) reveals that average temperature anomalies were
somewhat larger during the latter half of the decade over Asia and North
America. Specifically, temperatures averaged about 0.5Â°C warmer over
Siberia and northwestern North America. Elsewhere, anomalies were fairly
consistent during both periods, although the negative anomalies in Greenland
were larger during the first half of the decade. In the Southern Hemisphere
(Figs . 7 and 8) temperature anomalies over land were more consistent
between the two halves of the decade, except over northern Australia, where
anomalies were more than 0.5Â°C warmer during the latter half of the decade.
SST anomalies in the South Atlantic and in the southern Indian Ocean were
significantly larger during the 1986-1990 period with smaller anomalies
occurring over the eastern Pacific.

9
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Although most areas of the globe experienced above normal average
temperatures for the decade, the anomalies were inconsistent from season to
season. Figures 9-12 show the temperature anomalies for the two hemispheres
by traditional seasons. Over the Northern Hemisphere (Figs. 9a-12a), the
separation of anomalies into seasons shows that much of the decadal warmth
resulted from above normal temperatures during the DJF and MAM seasons, with
that warmth concentrated over northern and central Asia and over north-
western North America. During the JJA season, anomalies were smaller over
North America and negative over large parts of Asia. The temperature
anomalies were positive over Siberia during the SON season, but were less
than -1.0Â°c below normal over Alaska and western Canada. Over western
Africa, temperatures were above normal during the MAM, JJA, and SON seasons.
The DJF season, however, averaged below normal during the decade.
Temperature departures were generally small during all seasons in the
Southern Hemisphere (Figs. 9b-12b), except for over the Antarctic peninsula,
where large positive anomalies occurred during the MAM and JJA seasons.

12
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The large differences in temperature anomalies between the first and
second half of the year can be seen in Figs. 13 and 14. The December - May
period (Fig. 13) had average temperatures greater than 1. 5Â°C above normal
covering a large area over Alaska and western Canada. Another large area
with positive anomalies exceeding 1.0Â°C was found over Siberia. Large
negative anomalies were found over Greenland. During the June - November
period (Fig. 14), anomalies over Alaska and western Canada were negative,
albeit small. This shift implies a reduction in the amplitude of the annual
cycle over this region. In the Southern Hemisphere, the largest differences
between the December - May (Fig. 15) and the June - November period (Fig.
16) occurred over South America, where negative anomalies larger the -1.0Â°C
during the June - November were replaced by much smaller negative anomalies
during December - May. Temperature anomalies over Australia and southern
Africa, as well as hemispheric SST anomalies, were similar during both
periods.

The global seasonal time series (Fig. 17) suggest that the
character of the annual temperature anomalies is determined, to a large
extent, by the anomalies in the DJF and MAM seasons. This agrees with the
analysis shown in Figs. 13 and 14. The median anomalies tend to be smaller
in magnitude during JJA and SON. The lengths of the 10th and 90th
percentile lines (whiskers) clearly indicate that the largest spatial
variability occurs in northern winter (DJF) and the least in northern
summer (JJA).

The Northern Hemisphere median time series (Fig. 18) clearly shows
higher amplitude variations than the global plots during DJF. However, the
differences between the global and Northern Hemisphere time series
are much less in the remaining seasons.

The magnitudes of the Southern Hemisphere anomalies (Fig. 19) are
smaller than those in the Northern Hemisphere for each season. The
southern winter (JJA) and spring (SON) seasons do not appear to dominate
the annual temperature curves as the analogous seasons do in the
Northern Hemisphere. With the exception of the JJA season of 1984, all of
the Southern Hemisphere seasonal median temperatures are positive
during each season of the 1980's.
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REGIONAL

In the United States, the decade of the 1980's ranks as the second
warmest of the century, behind the 1930's and just ahead of the 1950's (Fig.
20a). Figure 20b shows the time series of the United States annual mean
temperature from 1901 through 1990. Although the decade as a whole averaged
well above normal, half of the years experienced mean temperatures below the
long-term mean. However, the warmth during 1981, 1986, 1987, and 1990,
which all averaged greater than than 1.0Â°C above normal, resulted in a much
warmer than average decade.

The distribution of temperature anomalies by seasons during the 20th
century for the United States is shown in Fig. 21. The bar graph depicting
mean spring temperatures (Fig. 21b) shows that spring temperatures during
the 1980's were by far the highest of the 20th century and accounted for the
majority of the above normal temperatures found in the United States during
the decade. Winter temperatures (Fig. 21a), while averaging higher than
the previous two decades, were still lower than the four prior decades.
Summer temperatures (Fig. 21c) ranked third highest of the century while
fall temperatures (Fig. 21d) ranked third lowest.

Global surface temperature observations have shown an increase during
the latter half of the 1980s (Fig. 3). This trend is also found in U. S.
surface temperatures (Fig. 20b). However, there appears to be no counter-
part in the lower troposphere (1000-400 mb) according to higher spatial
resolution satellite observations (Fig. 39) (Spencer, et al. , 1990) .
Assuming that the satellite data are correct, this implies that the upper
air circulation has been relatively unaffected by systematic surface
warming.

A technique developed by Klein (1983) for computing contemporaneous
surface temperature anomalies from the upper-air height anomaly pattern
may be useful in diagnosing the surface warming, since those specified
anomalies would tend to underestimate the actual observed anomalies. Thus,
higher surface temperatures, for a given circulation, would appear as a
negative error of the objectively specified temperatures.

The Klein specification technique is used to specify surface temper-
atures from prognostic 700 mb height anomaly patterns. Here we apply the
method to observed 700mb height anomalies.

The equations developed in this technique are of the form,

+ (1)

where Yj = specified surface temperature at station i,
Cm = coefficient for grid-point m,
Xm = 700 mb height anomaly at grid-point m.

The coefficients developed by this technique incorporate information
about the surface temperature-versus-height relationship in the dependent
datasets during the training period, 1948-1981 in this case. The training
datasets used as input for computing the coefficients are simultaneous
monthly mean 700 mb height anomalies at 133 grid-points over North America
and surrounding oceans (the predictors) and anomalies of monthly mean
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surface temperature at 109 stations over the continental United States
(the predictands) from 1948-81. The predictors are chosen in a stepwise
fashion so that the first predictor explains the largest fraction of the
variance of the training dataset, the second explains the next largest
fraction, exclusive of that explained by the first, etc.

The procedure used in the current study is to apply the equations
described above to a set of observed monthly mean 700 mb height anomalies
for 1981 to 1990. Surface temperature anomalies computed from this
dataset by means of the equations (specified temperatures) are then
compared with observed temperature anomalies at 109 stations for the same
period. The specified surface temperature anomaly errors, averaged over
the continental United States, are shown in Fig. 22. The time series
plotted is the result of a 13-point (12-month) running mean. Thus, the
series begins with July 1981 and ends with June 1990.

The time series of specified surface temperature anomaly errors shows
a sharp rise from negative values in 1981 (specified less than
observed) to mainly positive values in 1982. Specified temperature
anomalies over-estimate actual surface temperature anomalies from late
1983 through much of 1985. Since mid-1987, specified anomalies have been
consistently less than observed anomalies over the United States, by as
much as 0. C. Furthermore, there is a clear trend for decreasing values
of the error of specified anomalies beginning in mid-1984 and
continuing through mid-1990.

This trend is precisely the type that would occur if, for a given
circulation pattern, the average surface temperature during the latter
period was higher than in the 1951-80 period. The specified anomalies,
while appropriate, in the mean, for the period of the dependent data set
(1948-81), were increasingly underestimating the temperature in the
latter era. It is also consistent with the observed trend in surface
temperature for the United States (Fig. 20b).

Surface temperature analyses (obtained from the World Data Center-B,
Obninsk) over the Soviet Union were also significantly above normal during
the 1981-1990 period. All of the Soviet Union during the decade of the
1980's experienced positive temperature anomalies (Fig. 23) , with anomalies
greater than 1Â°C found over western Siberia. The areal extent of positive
temperature anomalies during the three earlier decades was smaller, although
there is a trend toward increasing amounts of area with positive temperature
anomalies with time.
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Figure 20. U. S. national annual temperature expressed as a)
decadal means for the decades 1901-10 through 1981-90, and as b) a
corresponding annual time series line graph with a filtered curve
for 1901-1990. The ten annual values within each decade were
averaged to determine a decadal mean value for the decade.
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PRECIPITATION

GLOBAL

Global precipitation is more difficult to characterize than
temperature. In part, this is because precipitation has a very large
spatial structure. In addition, large regions of the globe experience a
pronounced annual cycle of precipitation, with the majority, if not
all, of the precipitation falling over part of the year, and very little,
or none, falling during the remainder of the year. There is also an
apparent tendency for many areas to fail to observe or report
precipitation during the heart of the dry season.

A map of the annual precipitation for the decade (Fig. 24), indicates
that it was wet over much of North America and northern Europe, while
southern Europe and extreme eastern and southeastern Asia tended to be dry.
The large areas with no analyses attest to the lack of complete annual data
at a substantial number of stations. There were not enough data to
support annual analyses over northern South America, most of Africa and
large portions of Asia.

In general, the seasonal precipitation analyses for the decadeIn(Figs . 25 and 26) are based on more data than the annual summary.
addition, because of the inherent seasonality in precipitation, these
analyses provide the basis for a more meaningful interpretation of
precipitation anomalies during the decade.

The December through February season decadal percentiles (Fig. 25a)
shows relatively dry areas for northern North America and northeastern
Asia. The North American dry area is roughly coincident to the areas
showing positive temperature anomalies on the annual (Fig. 1), and
winter seasonal (Fig. 12), analyses. This suggests relationships between
winter snowfall and temperature in the region. Analysis of snow cover
suggests relationships are strongest in the spring season over Eurasia
(Fig. 37a). The Eurasian precipitation percentile patterns are
not particularly well related to the surface temperature patterns during
winter. Above median winter precipitation characterized the decade in
northern Europe while drier than median conditions were evident in southern
Europe.

The spring (March through May) precipitation analysis (Fig. 25b)
shows a tendency for a continuation of above median precipitation
over Northern Europe and below median to the south. The low amounts of
winter and spring precipitation in southern Europe and northern Africa
suggests that the median annual precipitation (Fig. 24) reflects a failure
of the normal seasonal rains in the Mediterranean region. In North
America, above median spring precipitation is evident in an area
stretching from the Great Basin southward into Mexico. Dry spring
conditions for the decade appear in the southeastern United States. Other
dry areas in eastern Asia suggest less than median precipitation during its
normal dry season.

The summer (June through August) precipitation analysis, Fig. 26a,
shows the drought conditions in the Sahel regions of western Africa.
Decadal summer rainfall in the Sahel was below the 30th percentile over
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a wide area. Generally speaking, precipitation of less than the 30th
percentile for one given rainy season represents drought conditions. The
low percentiles in the Sahel over a ten year period signify catastrophic
shifts in the decadal precipitation pattern. This is consistent with the
summer decadal 700 mb height anomalies (Fig. 43) which suggest that signi-
ficant changes occurred in circulation over northern Africa. The analysis
also suggests that the area of precipitation deficiency extended well
southward of the Sahel and into coastal regions of western Africa.

Below median summer precipitation for the decade is also evident
in the area from northeastern China through Southeast Asia (Fig. 26a).
Thus, of the major summer monsoon precipitation regions in the Northern
Hemisphere, only India shows no significant decadal anomaly. However,
the time series of precipitation for India (Fig. 32c) shows that the
decade was characterized by large interannual variability.

The decadal dry conditions in Southeast Asia and the Sahel extended
into the September through November season (Fig. 26b). This suggests that
normal monsoon conditions were not, in general, alleviated by late
season rains in these regions during the 1980's Large portions of North
America, including much of the United States, experienced above median
fall precipitation during the decade. An exception to this overall wet
pattern is over the eastern seaboard of the United States, with
"normal" conditions in an area from New England extending through the
Middle Atlantic area and dry conditions in extreme southern Florida.
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It is even more difficult to characterize precipitation over the
Southern Hemisphere than in the Northern Hemisphere since the land area
and number of surface reporting stations are relatively small.
Nonetheless, seasonal precipitation anomaly maps for the decade (Figs . 27
and 28) provide some measure of the large scale precipitation anomalies
during the 1980's S.

During the Southern Hemisphere summer (December through February),
dry anomalies dominate Australia as well as the higher latitudes of Africa
and South America (Fig 27a) Drier than normal conditions are also
indicated on several of the islands equatorward of Australia. In the
Pacific and Australia, these drier than normal conditions can be at least
partially attributed to the El-Nino/Southern Oscillation (ENSO)
episodes of 1982/83 and 1986/87 (Ropelewski and Halpert, 1987).
Apparently the "big wet" associated with the 1988 cold Southern Oscillation
episode was not sufficient to balance the ENSO related anomalously dry
periods. Likewise, the extremely wet conditions over far western
South America reflect the almost unprecedented precipitation associated
with the 1982/83 ENSO.

Anomalously dry conditions dominated the Southern Hemisphere fall
(March through May) over most areas except for southern South America, Fig
27b. While the extreme dry fall conditions over southeastern Africa might,
in part, be attributed to the ENSO events, the remainder of the
precipitation anomalies can't be easily explained in relation to the
Southern Oscillation.

In contrast to precipitation in the other seasons, southern winter
(June through August) over the decade was characterized by above median
rainfall over many land areas of the hemisphere (Fig. 28a). The above
median precipitation values over northern Australia can be attributed to a
few episodic events during this otherwise almost rainless season in
that part of the continent.

The dry springtime (September through November) conditions in
southern Australia and above median precipitation in western South
American (Fig. 28b) over the decade may be another manifestation of the two
ENSO episodes which occurred during this decade.
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It is far from obvious how to correctly characterize the temporal
evolution of precipitation on a global scale. In Fig. 29, we attempt to
capture annual global precipitation variability through the use a of
non-parametric statistical index. In this index, precipitation at each
station over the past 40 years is ranked and then transformed into a
percentile rank. Average percentile ranks are formed for each 2Â° latitude
by 2Â° longitude grid square. The statistics (median, 10, 30, 70, and 90th
percentiles) of these values for all grids (area weighted) are computed
for each year and plotted as a time series.

The median values of the global annual precipitation index for the
1980's suggest that this decade was, perhaps, more variable than
earlier decades in the record. The wettest year on record by this measure
was 1983, in which precipitation for half of the areas (median) ranked
in the 75 percentile or greater. Furthermore, 10 percent of the
areas experienced their wettest year in the 40 year record.
Conversely, 1988 was one of the driest years in the record, with the
lowest median index value in the series. These extremes may have been
related to the strong warm Southern Oscillation episode of 1982/83, on
the one hand, and the 1988 cold Southern Oscillation episode on theother.

The ten percentile values (lower whiskers) for the annual
precipitation index time series (Fig. 29) suggest that most of the
extreme dry periods occurred during the 1950's and early 1960's. This
interesting result, given the observed decrease in African and southern
Asian monsoon precipitation during the 1980's (Fig. 32), suggests that
precipitation may be on the increase in other regions.

None of the seasonal precipitation indices for the globe show any
strong systematic changes in global precipitation (Fig. 30) Only the
Northern Hemisphere fall season (September through November) suggests
that the early and mid-1980's were clearly wetter and the 1950's drier
than the other decades. These global scale seasonal indices also
show no clear association with the Southern Oscillation. Thus, these
indices may suggest no organized secular changes in the seasonal global
precipitation over the past 40 years. On the other hand, the indices
may be interpreted as showing that the observational network and data
base are not adequate to measure small changes in global scale
precipitation over the period.
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REGIONAL

Indices of precipitation for regions of the United States and
Europe (Fig. 31) suggest that mid-latitude precipitation during the
1980's was generally characterized by large interannual variability.
Nonetheless, wet conditions appear to have dominated the mid-western
United States over the past decade (Fig. 31b), while the western states
experienced dry conditions over the last four years of the decade (Fig.
31c). Dry conditions were also experienced in the southeastern United
States over the four year period 1985 to 1988.

Abnormally dry conditions in the Sahel continued and

intensified throughout the decade of the 1980's (Fig. 32a). An index based
on data for 20 stations distributed throughout the western Sahel (Lamb,
1982) is used to monitor rainfall for the June through September period.
Rainfall during these four months accounts for over 90% of the regions
yearly precipitation. Rainfall decreased during the early part of the
decade, with the driest seasons occurring during 1983 and 1984. Towards the
end of the decade, seasonal precipitation totals increased. 1988 and 1989
marked the first time since the 1960s that the Sahel had received near
normal rainfall in two consecutive years. Precipitation for the decade,
however, ended on a poor note as amounts were well below normal during
1990.

Similar precipitation indices for two other monsoon regions,
northern Australia (Fig. 32b) and southeastern Asia (Fig. 32d) also
show dry conditions for most of the decade. The northern Australia time
series for its summer monsoon period (November through April) shows
positive precipitation index values only for 1981, 1982 and 1989. It is
curious to note that during the 1980's, both the Sahel region and
southeastern Asia (Fig. 32d) consistently showed strong negative
precipitation index values while the Indian summer monsoon showed much more
year to year variability (Fig. 32c) In fact, according to this index,
India suffered one of its worst droughts, associated with the 1986/87
ENSO, followed by one of its wettest years, associated with the 1988 cold
Southern Oscillation episode. This suggests that the Indian summer
monsoon is more closely related to interannual variability in the climate
system while the two flanking monsoon areas appear to be responding more to
longer term secular climate changes.
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Dry conditions have affected the west coast of the United States during
their last four rainy seasons (Fig. 33) Although none of the individual
years during this period were as severe as the very dry years of 1976 and
1977, the cumulative effect of the last four October through March periods
has resulted in unprecedented water shortages.

The Palmer Drought Severity Index (PDSI) gives an indication of
prolonged periods of abnormal dryness or wetness. Figures 34 and 35 show
the percent area in the contiguous United States that experienced severe and
extreme wet and dry conditions, respectively. As might be expected, the
time series are out of phase, so that when large areas of the country are
very dry, small areas experience very wet conditions. During the 1980s, the
United States experienced two periods when more than 25% of the country had
severe and extreme PDSIs. Neither of these drought episodes affected as
much of the country as the droughts of the 1930s and the 1950s. However,
the wet spell in the middle of the decade (Fig. 34) was the largest of the
20th century. This is consistent with the precipitation anomaly analysis
for the decade (Fig. 24), which shows excess precipitation in the central
United States over the decade.

The number of hurricanes and tropical storms during the 1980's (Fig.
36) was near the long-term mean. However, two of the most devastating North
Atlantic hurricanes on record occurred in the late 1980's Hurricane
Gilbert was one of the strongest hurricanes in history and caused over $5
billion damage throughout the Caribbean, Mexico, and Texas in September
1988. During September 1989, Hurricane Hugo caused over $5 billion worth of
damage in the southeastern United States.
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WEST REGION PRECIPITATION

OCTOBER-MARCH, - 1895-96 to 1989-90
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Figure 33. October-March total precipitation for the West region of the United

States from 1895-96 - through 1989-90. Asterisks are actual values ; binomially
filtered values are indicated by the solid line.
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CONTIGUOUS UNITED STATES

SEVERE AND EXTREME DROUGHT
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NUMBER OF HURRICANES AND TROPICAL STORMSNORTH ATLANTIC OCEAN, 1886-1990
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Figure 36. Annual total number of hurricanes and tropical storms in the North

Atlantic Ocean from 1886 through 1990. Asterisks are actual values ; binomially

filtered values are indicated by the solid line.



CRYOSPHERE

SNOW AND ICE

The warmer than average temperatures in the Northern Hemisphere during
the 1980's may be linked in part to the variations in snow coverage. Snow
cover area has been monitored by satellites since 1966 and consistently on
a global scale since 1973. Time series of Eurasian snow cover and temper-
ature anomalies provide some evidence for the hypothesis that the two are
related (Fig. 37) This time series plot suggests that during the spring
and, to a lesser extent summer, snow cover area and temperature anomalies
are inversely related. Since positive "global" temperature
anomalies are strongly influenced by the Northern Hemisphere spring
temperatures in Eurasia (Fig. 1), the extreme temperature anomaly of
spring 1990 may have been, in part, related to the reduced snow cover area
during spring and summer. No strong relationships between snow cover
area and surface temperature anomaly were evident in the time series for
the fall and winter seasons.

The time series of anomalous areal extent of Arctic sea ice for the
summer and winter seasons (Fig. 38a) show no clear relationships to the
global or Northern Hemisphere surface temperature. Even though the warmest
year in the modern record, 1990, was also the year with the minimum
in summer (August - September) Arctic sea ice, other low Arctic sea ice
summers were associated with near zero or slightly negative
temperature anomalies. No systematic trends are apparent in the Arctic sea
ice time series for either season.

The time series of both the Antarctic summer and winter anomalous sea
ice areas (Fig. 38b) show little evidence of long term trends or relation-
ships to the Southern Hemisphere temperature anomalies. Sea ice
anomalies appear to be systematically larger early in the record compared
to the recent decade. The large negative winter anomalies in the
late 1970' S are associated with the evolution of a persistent polynya, or
large ice-free area within the Weddell Sea. The polynyas are thought
to be associated with low frequency fluctuations in the deep ocean
circulation.
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Fig. 37. Time series of Eurasian snow cover area derived from

satellite data (dashed) and Eurasian temperature anomaly (solid)
derived from an analysis of surface weather stations for a)
spring, and b) summer. The left hand scale gives the
temperature anomaly in degrees Celsius while the right hand scale
gives the snow cover area in 105 km 6
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ARCTIC SEA - ICE AREA ( 10**6) SQ KM FOR 1973-1990
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Fig. 38. a) Time series of the Arctic sea ice area anomalies
for the northern winter (solid line), average of January and
February, and summer (dashed line), , average of August and September.
b) Time series of the Antarctic sea ice area anomalies for the
southern winter (dashed line) , average of August and September,
and summer (solid line), , average of January and February. Sea ice
areas are derived from analyzed charts based on satellite data.
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TROPOSPHERIC ANALYSIS

TROPOSPHERIC TEMPERATURES

The time series of the global lower tropospheric (1000-400 mb)
temperature anomalies derived from Microwave Sounding Unit (MSU)
satellite observations (Fig. 39) show considerable interannual variability
but little evidence of strong temperature trends over the 1979 to 1990
period. As pointed out by Spencer and Christy (1990), there are
significant differences in the character of the "global temperature"
time series derived from the MSU and various time series based on surface
station data. In particular, virtually all surface based analyses
indicate that March 1990 (Table 1) was the warmest month and 1990 the
warmest year on record. The MSU data, however, indicate that December
1987 was the warmest month and that 1987 and 1988 both had anomalies
comparable or greater than those of 1990. The reasons for these differences
are the subject of continuing active research.

The time series of tropospheric mean temperature derived from
radiosonde data (Fig. 40) more closely resembles the surface temperature
record than the MSU temperature estimates. In this time series, 1990
appears to be the warmest year in the 33 year record (1958 to 1990) by
a small margin. Angell (1990) attributes the large positive
temperature anomalies of 1982, and 1987/88 to ENSO.
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700 MB HEIGHTS

The Northern Hemispheric circulation decadal mean at 700 mb during the
1980's is compared to the 1951-1980 base period in Fig. 41. Shading depicts
regions that are locally significant at the 95 and 99% level based on a
-sided t-test for 38 degrees of freedom (Panofsky and Brier, 1968) The

700 mb data consist of the monthly, seasonal and annual mean geopotential
heights derived from the twice-daily Northern Hemisphere 700 mb height
National Meteorological Center (NMC) analyses for the period 1951 through
1990. The data are originally on a 541 point grid converted to a more
uniform equal area grid of 358 points (Barnston and Livezey, 1987). The
data set has been corrected to remove a positive height bias, evident in
summer during the early and middle 1950's over the Caribbean and North
Africa (Barnston and Livezey, 1987).

In the decade of the 1980's, the largest 700 mb height anomalies
occurred during the winter (DJF) season, as the Aleutian and Icelandic lows
were more than 30 meters deeper (Fig. 42) than the mean. These and other
centers of negative height anomalies are regions of higher natural
variability and are not statistically significant. This is found to be true
for the other seasons and in the annual mean as well.

In general, the major centers of positive height anomaly centers in the
middle and higher latitude regions of the Northern Hemisphere are locally
significant at the 95% level (Figs . 41 to 45). Among these regions, for the
annual mean conditions (Fig. 41), is one extending from northwest Canada
across the northeastern United States into the Atlantic ocean. Another
region is centered over the Mediterranean Sea and extends over western
Europe. A small center near 55 105Â°E corresponds to the maximum in
observed surface temperature anomalies (Fig. 1). Other height anomalies are
consistent with the hemispheric temperatures observed during the decade.
The above normal heights found during the winter (Fig. 42) and the spring
(Fig. 44) seasons over northwestern North America and eastern Asia are also
consistent with the much above normal temperatures observed during those
seasons (Figs. 12 and 9, respectively). Positive height anomalies also
appear over the regions of northern Africa and southern Europe, which have
been experiencing relatively dry conditions (Figs . 24, 25 and 26) over the
decade. However, significant height anomalies in the subtropical oceans
should be considered with caution in light of "data quality and avail-
ability" in these regions and the changes in the data assimilation proce-
dures over the course of the 40-year period.
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TELECONNECTIONS

Variability of the geopotential height field in the Northern Hemisphere
extratropics is dominated by weather systems having periods of 10 days or
longer (Blackmon, 1976) These low-frequency fluctuations tend to occur
over distant geographic regions, and are often organized into distinct
spatial patterns or teleconnections (Wallace and Gutzler, 1981). Five
primary teleconnection patterns have been found in the Northern Hemisphere
extratropical middle troposphere, and are most prominent in seasonally
averaged data (Blackmon et. al. (1984) Interannual variability of the
teleconnection patterns can be examined using a 365-day averaging interval.
Standardized 700 mb indices describing the seasonal and interannual
evolution of the five teleconnection patterns for the period 1964-1990 are
shown in Figs. 46-48.

The Pacific/North American (PNA) pattern is the most robust of the
extratropical teleconnection patterns (Blackmon et. al., 1984). Both the
intra-annual and interannual behavior of the PNA pattern are strongly
influenced by the El Nino/Southern Oscillation (ENSO) cycle (Horel and
Wallace, 1981). The positive phase of the PNA pattern is characterized by
positive height anomalies over the east-central Pacific and western North
America, and by negative height anomalies over the northeast Pacific and the
southeast United States; a negative pattern index indicates anomalies in the
opposite sense.

Time series of 95-day and 365-day running mean PNA index values are
shown in Figs. 46a and 46b, respectively. Together, these two time series
illustrate a high-amplitude, high-frequency intra-annual pattern
superimposed upon a low-amplitude, low-frequency interannual pattern. There
is a clear tendency for the largest absolute values of the 95-day averaged
time series to be most pronounced during those winters in which the SOI is
significantly non-zero. The winter pattern then dissipates during spring,
but becomes re-established the following winter despite the return to near-
zero SOI values. The time series (Fig. 46b) suggests that during the
1980's the positive phase of the PNA pattern dominated. This is consistent
with the 700 mb height anomaly patterns (Figs . 41-45)

The West Pacific (WP) pattern reflects major meridional shifts in the
position of the western North Pacific jet stream. This pattern is
characterized by a north-south dipole of height anomalies having anti-nodes
centered over the west-central North Pacific and the Kamchatka Peninsula.
The time series of 95-day and 365 day running mean WP index values are shown
in Figs. 47a and 48a, respectively. The positive phase of the WP pattern
reflects positive height anomalies throughout the western North Pacific and
the Aleutians, and negative height anomalies throughout the west-central
North Pacific; a negative pattern phase indicates anomalies in the oppositesense.

As with all of the teleconnection indices, there exists a clear
tendency for persistence of a particular phase of the WP pattern, followed
by a sharp transition to the opposite phase of the pattern. Two major
positive and negative phases of the WP pattern occurred during the 1980's
(Fig. 48a) Prolonged positive phases occurred between 1984 and 1986, and
between 1988 and 1990. Prolonged negative phases occurred between 1981 and
1982, and between 1986 and 1987.
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Fig. 46. Time series of the (a) 95-day running mean and (b)
the 365-day -

running mean values of the standardized 700 mb teleconnection pattern indices for
the Pacific/North American (PNA) pattern. Running means are determined from
daily 700 mb height data for the period August 1964 through December 1990.
Indices are normalized using 27 7-year (1964-1990) daily mean and standard
deviation values. Large (small) tick marks along horizontal axes indicate 1
January (1 July) of a given year. Inset illustrates positive phase of the
teleconnection pattern index, with height anomalies over centers of action
indicated by (+) and (-) signs.
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The West Atlantic (WA) pattern is structurally similar to the WP
pattern, and reflects major meridional shifts in the position of the western
North Atlantic jet stream. The time series of 95-day and 365 day running
mean WA index values are shown in Figs. 47b and 48b, respectively. The
positive phase of the WA pattern reflects positive height anomalies
throughout the northwestern and north-central North Atlantic, and negative
height anomalies throughout the central North Atlantic; a negative index
value indicates anomalies in the opposite sense. The index was positive
throughout the late 1960's and the late 1970's, and negative throughout the
early 1970's and throughout most of the 1980's except for brief
interruptions during the 1982-83 and the 1986-87 ENSO events.

The East Atlantic (EA) teleconnection pattern reflects a wavelike
structure with three centers of action. The pattern encompasses a
meridional dipole of height anomalies over the eastern North Atlantic, and a
zonal "wave" of height anomalies extending eastward from the northeast North
Atlantic to the southwest Soviet Union. The time series of 95 -day and 365
day running mean EA index values are shown in Figs. 47c and 48c,
respectively. A positive phase of the EA pattern reflects anomalously high
500 mb heights over the North Atlantic and low heights over the subtropical
Atlantic and eastern Europe; a negative index value indicates anomalies in
the opposite sense. Interannual variability of the EA and WA patterns is
positively correlated prior to 1988. Weaker interannual variability of the
EA pattern was generally noted during the 1980's, however, while strong
interannual variability existed over the western and central Atlantic.

The Eurasian (EU) teleconnection pattern also reflects a wavelike
structure with three centers of action. The pattern extends eastward from
northern Europe to the central Soviet Union and the western North Pacific,
and reflects generally high teleconnectivity over the Eurasian Continent.
The time series of 95-day and 365 day running mean EU index values are shown
in Figs. 47d and 48d, respectively. A positive EU pattern is characterized
by negative height anomalies over northern Europe, positive height anomalies
over the west-central Soviet Union, and negative height anomalies over the
western North Pacific; a negative index value indicates anomalies in the
opposite sense. Large interannual variability of the EU pattern is observed
throughout the 1970's, with negative values tending to dominate during the
decade. Notably less interannual variability is observed throughout the
1980's. The mean height anomalies for the decade (Fig. 41) suggest a weak
negative EU pattern.
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Fig. 47. Time series of the 95-day running mean values of the standardized 700
mb teleconnection pattern indices for: (a) the West Pacific (WP) pattern, (b)
the West Atlantic (WA) pattern, (c) the East Atlantic (EA) pattern, and (d)
the Eurasian (EU) pattern. Running means are determined from daily 700 mb
height data for the period August 1964 through December 1990. Indices
are normalized using 27-year (1964-1990) daily mean and standard deviation
values. Large (small) tick marks along horizontal axes indicate 1 January (1
July) of a given year. Inset illustrates positive phase of the teleconnection
pattern index, with height anomalies over centers of action indicated by (+) and
(-) signs.
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Fig. 48. Time series of the 365-day running mean values of the standardized
700 mb teleconnection pattern indices for: (a) the West Pacific (WP) pattern,
(b) the West Atlantic (WA) pattern, (c) the East Atlantic (EA) pattern, and
(d) the Eurasian (EU) pattern. Running means are determined from daily 700 mb
height data for the period August 1964 through December 1990. Indices are
normalized using 27-year (1964-1990) daily mean and standard deviation values.
Large (small) tick marks along horizontal axes indicate 1 January (1 July) of a
given year. Inset illustrates positive phase of the teleconnection pattern
index, with height anomalies over centers of action indicated by (+) and (-)signs.
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The interannual behavior of the zonally averaged jet streams in the
Northern Hemisphere (Fig. 49a) and Southern Hemisphere (Fig. 49b) is
strongly influenced by sea surface temperature anomalies in the equatorial
Pacific. Specifically, large equatorward shifts in the zonally averaged jet
stream positions are apparent during the 1982-1983 and 1986-1987 ENSO
events. The large poleward contraction of the jets in mid-1988 may be
associated with the 1988 cold SO episode. During the 1988-89 period, large
negative SST anomalies characterized the equatorial Pacific. The Southern

Hemisphere jet appeared to have strengthened during this period, but relaxed
in 1990. The Northern Hemisphere high latitude jet remained strong through
the end of the decade. These interannual variations in the zonal mean jet
stream position are thought to influence the background circulation upon
which higher frequency weather systems evolve (Simmons et. al. , 1983).

ZONAL WIND ANOMALY INDEX
365 - DAY RUNNING MEAN

7.0 7.0

6.0 6.0

5.05.0

4.04.0

3.03.0

2.02.0

1.01.0

0.00.0

-1.0-1.0
-2.0-2.0
-3.0-3.0
-4.0-4.0 a
-5.0-5.0

79 80 81 82 83 84 85 86 87 88 89 90

ZONAL WIND ANOMALY INDEX
365 - DAY RUNNING MEAN

4.5 4.5

4.0 4.0

3.5 3.5

3.0 3.0

2.5 2.5

2.0 2.0

1.5 1.5

1.0 1.0

0.5 0.5

0.0 0.0

-0.5 -0.5

-1.0 -1.0
b

-1.5 -1.5
79 80 81 82 83 84 85 86 87 88 89 90

YEAR

Fig. 49. The u-component of the 250 mb zonal mean wind anomaly averaged over
10Â° latitude bands (<u>) for the period 1979 to 1990. The time series show 365-o
day running mean values of: (a) the difference between <u> centered at 55Â° N and
<u> centered at 35Â°N [<u>(55Â°N - 30Â°N) ] ; and (b) the difference between <u>
centered at 55Â°S and <u> centered at 25Â°S [<u>(55Â°s - 25Â°S)]. Large (small)
tick marks along horizontal axes indicate 1 January (1 July) of a given year.
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ATMOSPHERIC BLOCKING

An index of the extent and strength of the circumpolar 500 mb
vortex (Fig. 50) indicates an expanded and/or deepened circumpolar low
over the Northern Hemisphere during the mid-1980's. This suggests
that the polar front tended to extend equatorward of it's normal
position during the 1984 through 1986 period. No long term secular trendsare evident in this index.

Blocking patterns are more pronounced during the winter season and are
usually found between 40Â°W and 30Â°E, 40Â°E and 100Â° o E and 170Â°E and 120Â°W.
Figure 51a shows a time-longitude cross section of a wintertime blocking
index in a latitudinal band from 30Â° - 70Â°N between 1951 and 1990.
Occurrences of extended periods of blocking during the winters throughout
the 1980's is similar to earlier periods, although there appears to be less
short term blocking in the 1980's between 10 E and 40Â°E. There is a
suggestion that Atlantic sector blocking shifted eastward during the period.

In the summer (Fig. 51b), episodes of blocking are usually of shorter
duration than during winter over Europe and the USSR, but major blocking
regimes over the eastern Pacific are more common. During the decade of the
1980's, the majority of major blocking episodes over the Pacific-North
American sector appear to have shifted westward during the early part of the
decade. The last few years, however, has seen a shift of blocking episodes
back to the position found during the earlier decades.

MASS ANOMALIES
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Fig. 50. Time series of a circumpolar vortex mass index. Values are
anomalies with respect to the 1951 to 1980 base period. Positive anomalies
suggest deeper and/or expanded circumpolar vortex.

Figure courtesy of the Institute for Global Climate and Ecology (USSR).
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Fig. 51. Time-longitude cross section of a blocking index at 500 mb for the

latitudinal band from 30Â°N - 70Â°N for a) winter and b) summer. Blackened
circles show the centers of maximum total seasonal duration. Smallest circles
are for durations between 20 and 40 days, medium circles are for 41 - 60 days,
and largest are for > 60 days.

Figure courtesy of the Institute for Global Climate and Ecology (USSR) .
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OZONE

Monthly averaged SBUV data from the NASA Nimbus 7 satellite, beginning
in November 1978 and extending to September 1986, have been combined with
SBUV/2 data from the NOAA-9 satellite from March 1985 to October 1988 and
adjusted to ground-based data. Figure 52 shows the decadal time series fromboth satellites.

For total ozone, data from both instruments have been combined and
adjusted to the Dobson network. The satellite data are integrated from 6ON
to 60S and the time series is then fitted with an autoregressive time series
model which includes a trend, an annual and semi-annual cycle, an F10.7
solar flux term, and the QBO cycle. The calculated trend, within a 95
percent confidence interval, shows a decrease in the total ozone in this
time period of -2.45 (+.62) percent/decade.

SBUV AND SBUV2 ADJUSTED TOTAL OZONE
DOBSON UNITS
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MONTH NUMBER
Fig. 52. Time series of monthly averaged total ozone in Dobson units from

November 1978 through October 1988. The 1s are data from Nimbus 7, while the 2s
are data from NOAA 9. The overlap period extends from March 1985 to September1986.
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MAJOR CLIMATE EVENTS

SOUTHERN OSCILLATION

The decade of the 80's featured one of the strongest tropical
Pacific warm (El Nino/Southern Oscillation - ENSO) episodes (1982-83) of
the last century, one of the strongest cold episodes (1988-89) during the
last 50 years and a strong central Pacific warm episode (1986-87).
Figures 53 and 54 show the sea surface temperature anomaly patterns at
the height of these extremes in the Southern Oscillation and the time
series of the Tahiti-Darwin Southern Oscillation Index, respectively.
These three major episodes were accompanied by global circulation and
precipitation anomalies, which in some cases reached extreme
proportions.

During warm (cold) episodes, atmospheric convection as indicated by the
OLR index (Fig. 55) becomes enhanced (weakened) over the anomalously warm
(cool) water in the central equatorial Pacific. This abnormal convection
serves to anomalously heat (cool) the tropical troposphere, thus providing
an enhanced (weakened) equator to pole thermal gradient and enhanced
(weakened) subtropical apper-tropospheric jet streams, especially in the
winter hemisphere. The heating (cooling) of the troposphere is
initially found in the vicinity of the enhanced (weakened) convection,
but it gradually spreads throughout the tropics (Figs. 56 and 57) The
largest temperature anomalies are generally observed in the vicinity of
the anomalous convective activity.

The zonally averaged 500 mb temperature (Fig. 58) is used as an index
of the tropospheric heating and cooling associated with variations
in the intensity of tropical convective activity. Positive
anomalies (zonally averaged, exceeding 1Â°c, and locally exceeding
2Â°C, Figs. 58 and 57, respectively) were observed in the tropics during
the two ENSO episodes of 1982-83 and 1986-87. However, it is apparent
from Figs. 56 and 58 that the cold episode of 1988-89 also had a
remarkable impact on mid-tropospheric temperatures, with zonally averaged
anomalies less than -1.4Â°C (locally less than -2.5Â°C) in the tropical belt.

During periods of anomalously warm or cold conditions in the tropical
mid-troposphere there is a tendency for the mid-latitudes to
experience opposite temperature anomalies. Thus, during warm (cold)
episodes when the tropical mid-troposphere is anomalously warm (cold)
the mid-latitude mid-troposphere is anomalously cold (warm) This
tendency, which is evident in the zonally averaged 500 mb temperature
anomalies, is even more striking if the averages are computed for the
central and eastern Pacific sector (120Â°w-180, Fig. 59) instead of
over all longitudes. It is evident that the cold episode of 1988-89
affected the tropical and extratropical mid-tropospheric
temperature anomalies from early 1988 until early 1990 (a period of about
two years) During that period, the mid-latitudes in both hemispheres
were dominated by anomalously warm conditions, especially in the Pacific
sector, which were accentuated in the Northern Hemisphere during the
northern winter season.
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Consistent with the above changes in the pattern of mid-
tropospheric temperature anomalies, subtropical upper
tropospheric westerlies are stronger than normal during warm episodes
and weaker than normal during cold episodes (Fig. 60). Both the cooler
than normal period 1984-85 and the cold episode of 1988-89 featured upper
tropospheric easterly anomalies (weaker than normal westerlies) in the
subtropics and lower mid-latitudes of both hemispheres. During the warm
episodes of 1982-83 and 1986-87, stronger than normal westerlies were
observed in the subtropics of both hemispheres.

These changes in the intensity of the subtropical jet streams
and in the pattern of mid-tropospheric temperature anomalies are
associated with variations in the global pattern of precipitation anomalies.
The patterns of anomalous precipitation that are associated with both
warm or cold extremes of the Southern Oscillation have been
documented by Ropelewski and Halpert (1987, 1989). They show that
subtropical regions of North and South America experience above (below)
normal rainfall during warm (cold) episodes; periods when the
subtropical jet streams are stronger (weaker) than normal. Also, rainfall
tends to be less than normal, during warm episodes, over portions of
India and Australia as convective activity shifts eastward over the
anomalously warm water in the central equatorial Pacific. Conversely,
during cold episodes both the Australian and Indian monsoons are enhanced
and rainfall tends to be above normal. These conditions were observed
during the 1980's associated with the three extremes in the Southern
Oscillation cited above.
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WARM AND COLD REGIONS

During the decade of the 1980's, the most extensive regions (covering
more than twenty million sq. km) experiencing negative temperature anomalies
were observed over the oceans. Data over the oceans are surface temperature
anomalies from ship observations. Figure 61 shows the regions experiencing
warmer and colder than normal temperatures in the Northern Hemisphere for
the each season during December 1980 through November 1990 period.
Especially interesting is the number of occurrences of large colder than
normal areas in the Atlantic Ocean between 1983 and 1986. Large areas of
negative temperature anomalies were rare over the continents, although the
winter season (Fig. 61a) does indicate extensive areas of colder than normal
temperatures in 1983 in the United States and during a few winters around
Greenland and the North Atlantic.

The majority of areas experiencing warmer than normal temperatures were
found in the North Pacific Ocean during all seasons and over Asia during
spring and fall. Other regions experiencing positive temperature anomalies
were located in the equatorial Pacific (associated with the El Nino/Southern
Oscillation) and Southeast Asia during the JJA season. A number of small
areas with warmer than normal temperatures were found in the Arctic region
during winter. Northern Hemisphere temperature and precipitation
percentiles for each winter and summer season during the decade of the
1980's can be found in the appendix.
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MAJOR CLIMATE ANOMALIES IN THE WORLD: 1981 - 1990
1. California:

FIVE CONSECUTIVE DRY WINTERS (1986-1990).
Exceptionally large long-term precipitation deficits have accumulated throughout California since late 1986.
California has endured four consecutive dry winters, and a fifth dry winter was well underway. On a long-term
basis (since October 1986), precipitation deficits ranged from 164 mm at Bakersfield, CA (73.7% of normal) to
1151 mm at Eureka, CA (74.1% of normal). Less than 60% of the normal precipitation was measured at San
Francisco, Los Angeles, and Santa Maria, CA since October 1, 1986, producing deficits of more than 575 mm.
Runoff has averaged nearly two-thirds of normal for each of the last four winters, and reservoir levels continued
to fall at a time when they would normally rise. In addition, the state's worst freeze (late December 1990) since
the 1936-1937 growing season aggravated southern California's high fire potential by killing vegetation already
sapped of moisture by years of drought, turning it into highly flammable fuel.
2. Pacific Ocean Basin:

EL NINO/SOUTHERN OSCILLATION AFFECTS CLIMATE (1982-1983).
If El NiÃ±o/Southern Oscillation (ENSO) were simply an isolated regional phenomenon, or even confined to the
equatorial eastern Pacific, it would be of limited interest; however, it is a major constituent in a vast system of
ocean-atmosphere interactions, giving the phenomenon global meteorological implications. The abnormally
warm equatorial Pacific waters characteristic of ENSO brought the Intertropical Convergence Zone (ITCZ)
unusually far south, generating pronounced upper-level westerly winds. This in turn brought heavy rains that
produced massive floods in western Ecuador and coastal northern Peru during November 1982-June 1983. In
sharp contrast, rainfall in southern Peru and western Bolivia was only one-third of normal. The high sea surface
temperatures were also conducive to tropical cyclone development, making 1983 the "year of the cyclones" in
French Polynesia where numerous systems produce extensive damage. Farther west, Australia endured its
worst drought since the 1860's as summer (December 1982-February 1983) rainfall was one of the lowest on
record across the eastern half of the continent. Major fires raged in January as hot, dry northerly winds prevailed.
Major droughts also affected the Philippines and Indonesia as convective activity was suppressed.
3. United States:

THE DROUGHT OF 1988.
The United States Drought of 1988 was the most severe in the Midwest since 1936. The driest and/or hottest
period in over 90 years was recorded in parts of the Great Plains, Midwest, and lower Mississippi Valley. Low
river flow and reservoir storage hindered river navigation, restricted water usage, and reduced irrigation across
much of the nation. Over four million acres of forest were consumed by wild fires. In April 1988, long-term
moisture deficits existed over the Tennessee Valley, southern Appalachians, northern Plains, and much of the
West. During the late Spring and early Summer, large rainfall deficits combined with record high temperatures
to produce extreme drought conditions across much of the country. The drought peaked in early July as normal
rainfall finally returned to the central United States in the late Summer, easing the dryness. Much of the Far
West, however, has since remained in a drought (see #1 above).

4. Sahel Region:
SECOND CONSECUTIVE DRY DECADE.

The rainy seasons (typically June-September) across the African Sahel during the 1980's were generally
dominated by well below normal rainfall and above normal temperatures, particularly in 1983 and 1984. The
1980's continued a trend of abnormal dryness that has afflicted the region since the late 1960's. The long-term
drought and high temperatures caused widespread crop failures, agricultural problems, hydroelectric shortages,
navigational difficulties, and large-scale human suffering. Rainfall increased somewhat in 1985-1987, but
totals were still subnormal. Finally in 1988, near-normal precipitation moistened much of the region, but severe
flooding, especially along the Nile River in Sudan, accompanied the rains in some areas. The following year
brought similar conditions, making 1988-1989 the first consecutive years with seasonable rainfall since the
mid-1960's. Unfortunately, extremely dry and hot weather returned to the Sahel in 1990.
5. South America:

PROLONGED DRYNESS (1988 - 1989).
Unusually dry weather that began in mid-1988 persisted well into 1989. The dry spell commenced in much of
central and eastern South America during July, and the normally wet spring months (September-November)
showed a pronounced rainfall deficit. Increased late November and December precipitation in the northern
sections of the affected area eased dryness there, but southern portions, particularly northern Argentina and
Uruguay, remained abnormally dry. Subnormal rainfall continued during the first half of 1989 in the latter two
areas, and was aggravated by a heat wave in early January that sent temperatures soaring near 40Â°C in
Argentina. The combination of heat and dryness devastated the country's corn crop, producing a 50% drop from
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the previous year's yield and the worst harvest in 26 years. Long term precipitation deficits remained as the 1989
dry season (May-August) got underway. Fortunately, the 1989-1990 rainy season (approximately
October-April) brought ample, and occasionally excessive, rainfall to much of the region.

6. Europe:
COLD WINTER AND SPRING ACROSS THE CONTINENT (1987).

Severe winter weather plagued Europe in January 1987. Frigid Siberian air became entrenched over the
continent by early January, dropping temperatures to -45Â°C at Leningrad, at Berlin, and -9Â°C at London.
Coastal and river ice brought a halt to shipping in northern Europe. The cold was accompanied by a major
snowstorm in western Europe, and snow fell as far south as the French Riviera. In March and April,
unseasonable snow and cold hit the eastern Mediterranean countries. Freezing temperatures devastated Italian
citrus crops, and severe cold reduced the almond and citrus crops in Greece by 46% over the previous year.
Temperatures were as much as 6Â°C below normal during March and April, and cool weather occurred again
during late June and most of August.

7. Europe and Northern Africa:
HEAT WAVES AGGRAVATE PROLONGED DRYNESS (1990).

Prior to 1990, large precipitation deficiencies had accumulated during the normally wet winter months of
1987-88 and 1988-89 across many areas of southern Europe and the northern Middle East. In late 1989, very
dry conditions redeveloped across east-central Europe, and the dryness spread into south-central and
southeastern Europe during January and early February 1990. Rains in late February and early March provided
some relief, but dryness returned by the end of the month. Moderate rains in April brought limited relief;
however, another dry spell was under way by early May. During most of July, a dry heat wave enveloped much
of southern and central Europe as temperatures soared up to 7Â°C above normal. The hot weather persisted
through most of August, spreading as far north as southern Scandinavia. Cool, moist air swept across the
continent in early September, bringing some relief from the mid-summer heat and dryness, but unseasonably
hot weather returned to Europe and northern Africa during late September and early October. Weekly
temperatures averaged as much as 13Â°C above normal in the Balkans during late October, but cooler air
penetrated southward across the continent around mid-November and ended the second warm spell. Increased
precipitation late in the year eased short-term dryness, but long-term moisture deficiencies remained.

8. Eurasia:
RECORD WINTER MILDNESS (1988-1989).

The abnormally mild winter weather regime of late 1988 lingered across Siberia into 1989. In January, the largest
departures were reported near Lake Baykal. The warmth overspread much of Europe and Soviet Asia by
February, with weekly temperatures averaging up to 21Â°C above normal. The mild weather dominated
south-central and extreme eastern Siberia in March, spreading north westward through central and southern
Europe by April. More seasonable conditions were recorded across Europe by late April, but Siberia remained
anomalously mild into May.

9. China:
SPRING DROUGHT OVERTAKEN BY LATE SUMMER FLOODS (1981).

Millions of people suffered through food and water shortages as abnormally dry weather during the Spring of
1981 aggravated a drought which began late in the previous year. Most of Hebei province measured only 10-30%
of normal precipitation during the period. Although substantial rains relieved the drought in June 1981, Beijing's
twelve month (July 1980-June 1981) precipitation total was only 40% of normal, demonstrating a need for
additional rain to recharge Chinese reservoirs. Torrential rains continued through the rest of the summer and
early fall months, ending the drought but causing massive flooding in the central Chinese provinces of Sichuan
and Shaanxi. Extensive loss of life and property was reported as the Yangtze River reached its highest level this
century.

10. Australia:
RECORD RAINS CAUSE FLOODING (1984).

During January 1984, a monsoonal low pressure system covered the interior of Australia and spawned a series
of rain-bearing disturbances. Record rains inundated inland districts of New South Wales and extreme northern
South Australia. For the first time in recorded history, Lake Eyre (South) filled independently and overflowed
into Lake Eyre (North). During a few days in mid-February, a storm system dumped 800 mm of rain near
Wollongong, south of Sydney, causing severe flooding. At several locations, the rainfall event had a climatological
return period exceeding 100 years.

Anomalies were selected based on human impact, type, years of occurrence, and locations such that a balance would be achieved
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APPENDIX

Northern Hemisphere DJF and JJA temperature and precipitation percentiles
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