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Additional Sampling and Survey Details
The Gulf of Alaska (GOA) study area extends from 131°W longitude to 165°W longitude, and covers depths up to 1000 m (Zimmermann et al., 2019). Surveys were conducted in 1993 and 1996, and then biennially from 1999 to 2019. Stations are selected using a stratified random sampling design, and extensive information on survey data and how it was used in this study are available in Pirtle et al. (2023). 
The Aleutian Islands (AI) are a chain of volcanic islands stretching from southwest Alaska across the North Pacific, separating the western GOA from the Bering Sea.The study area extends from Unimak Pass at 165°W to Stalemate Bank at 171°E, and covers depths up to 500 m. Surveys were conducted in 1991, 1994, and then biennially from 1997 to 2018. Data used to model the AI includes some stations sampled during GOA survey years. Stations are selected using a stratified random sampling design, and extensive information on survey data and how it was used in this study are available in Harris et al. (2023). 
The Bering Sea area in this study includes the northern Bering Sea, eastern Bering Sea (EBS), and Bering Sea slope. The EBS has been surveyed annually since 1982, whereas the northern Bering Sea was sampled in 2010, 2017, and 2019, and the Bering Sea slope in 2002, 2004, 2008, 2010, 2012, and 2016. The northern and eastern Bering Sea are surveyed to a depth of 200 m, while the Bering Sea slope is surveyed to a depth of 1200 m. Stations in the northern and eastern Bering Sea use a systematic sampling design whereas the Bering Sea slope uses a stratified random design. Full details are available in Laman et al. (2023).

Table S1: Covariates used for species distribution models. The “response function used in GAMs” column describes the function specified to transform the covariate when estimating the linear predictor, where “2D smooth” refers to a Duchon spline (Duchon, 1977) with a 1st order smoothing penalty, and “1D smooth” may refer to either a univariate thin-plate spline with a 2nd-order smoothing penalty or a cubic regression spline (Wood, 2003).  Data source describes the method that was used to obtain each covariate.
	Covariate
	Units
	Response function used in GAMs
	Data source

	Geographic position (Latitude & Longitude)†
	--
	2D smooth
	Taken from the midpoint of the path of each haul

	Bottom current vector
	m/s
	2D smooth
	NEP5 ROMS (Regional Ocean Modeling System) pooled average 1991-2018 (AI and GOA) or 1982-2019 (EBS) (Hermann et al., 2013, 2016; Kearney et al., 2020)

	Bottom current vector Variation
	m/s
	2D smooth
	

	Bottom depth
	m
	1D smooth
	Recorded from each trawl station

	Slope
	°
	1D smooth
	Bathymetry maps post-processed using ArcGIS 10.7 Benthic Terrain Modeler (Walbridge et al., 2018; Wright et al., 2012).

	Aspect (North & East)
	--
	1D smooth
	

	Curvature
	--
	1D smooth
	

	Bathymetric position index (BPI)
	--
	1D smooth
	

	Bottom temperature
	°C
	1D smooth
	Recorded during each trawl

	Tidal current Maximum
	cm/s
	1D smooth
	Tidal inversion program (Egbert & Erofeeva, 2002)

	Sediment size*
	-log(mm)
	1D smooth
	EBSSED  (eastern Bering Sea sediment database; Richwine et al., 2018) 

	Terrain rockiness*
	%
	1D smooth
	Smooth sheets (Zimmermann et al., 2013b), EBSSED-2 (Richwine et al. 2018), and  trawlable seafloor models (J. L. Pirtle et al., 2015)

	Coral presence
	--
	Factor
	Modeled distribution from Rooper et al. (2017)


	Sponge presence
	--
	Factor
	

	Pennatulacean presence
	--
	Factor
	


* Sediment Size is used only in the EBS, while Terrain Rockiness is used in the AI and GOA
† Not included in MaxEnt models

Additional Modeling Details
Maximum Entropy
Maximum entropy (MaxEnt) models were fit using the maxnet package in R (Phillips et al, 2017). This type of model takes opportunistic or “presence-only” data and uses a combination of mathematical functions or “features” to model how the probability of suitable habitat responds to environmental covariates. We used the default settings for the feature set, which included linear, quadratic, and product interaction features. Hinge features were included in all models with 80 or more presence records. MaxEnt models fit using this package differ somewhat from traditional versions, in that they are fit as a inhomogenous Poisson process, which allows the latent Poisson abundance to be approximated from the model outputs (Phillips et al., 2017). 
General Additive Models
Four types of general additive models (GAMS) were used in this study. Each GAM were fit using the mgcv package in R (Wood, 2011). The paGAM uses presence/absence data to fit a complementary log-log (cloglog) linked model with a binomial error distribution (Barry & Welsh, 2002; Potts & Elith, 2006). Unlike a logit link, the cloglog link estimates the probability of observing zero or greater than zero events, meaning that it can approximate an underlying Poisson distribution. This approximation is made by applying the log function to the linear predictor from the cloglog model, and it is expected to be most accurate when predicting low abundances.  
 The hurdle model (hGAM; a.k.a. delta-model) separates observed catches in the survey into a binomial (presence-absence) component for the probability that the species is caught in a given haul, and a “positive” component for the mean density given that the species is present. The presence-absence component is fit using a cloglog link and the density component is fit using a log link. These component models use a combined zero-adjusted Poisson distribution (Zuur, 2009). The estimate of numerical abundance is obtained by applying the inverse cloglog function to the linear predictor of the  probability component and the inverse log function to the linear predictor of the density component, and then multiplying these two values together.
The Poisson and negative-binomial GAMs (GAMP & GAMnb) both use a log link function and both directly estimate abundance. The GAMnb estimates an additional parameter that can help account for the overdispersion commonly observed in ecological count data (McCullagh & Nelder, 1989). 
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