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Supplementary materials36

Methods overview37

We used an integrated population model to estimate variation in mortality over time for snow crab in the38

eastern Bering Sea and generalized additive models (GAMs) to relate the estimated variation in mortality39

to potential stressors in the environment. The population dynamics model was fit to abundance and size40

composition data from the National Marine Fisheries Service (NMFS) summer bottom trawl survey on the41

eastern Bering Sea shelf to estimate total mortality by maturity state and year for male snow crab. We42

then developed indices for temperature occupied, disease prevalence, cannibalism, and crab density from the43

NMFS survey to test as covariates in GAMs. Cod predation indices were developed using stomach content44

data collected on NMFS surveys in addition to cod size composition and abundances. Indices for fishery45

related effects were collated from fisheries statistics from the Alaska Department of Fish and Game and also46

included in the GAMs.47

Ecological detective work in the marine environment is hampered by the difficulty of observation and this is48

particularly so on the eastern Bering Sea shelf. The waters in which snow crab reside range from 50-200 meters49

deep and are seasonally covered by ice, making data collection only feasible in the summer. Consequently,50

the survey based portions of our analyses are derived from a yearly snapshot of the population over an51

approximately 30 year period. Each of the hypotheses explored here clearly result in some mortality. We52

know that millions of crab are eaten by cod every year, the directed and bycatch fisheries kill crab, larger53

crab eat smaller crab, and crab die from bitter crab disease each year. The goal of our analysis is to place54

each of these processes in a historical context to try to understand the relative impact of each and what55

was different about the recent collapse. More than one way exists to analyse the available data on this56

issue. Below we describe our approach, including a description of each of the components of our analysis,57

a discussion of the rationale behind our modeling decisions, and sensitivities and simulation tests of our58

models, all of which provide what we think is sound reasoning for our analysis.59

Population dynamics model60

The population dynamics model presented here incorporated the best available information on relevant61

population processes to estimate total mortality for male snow crab on the eastern Bering Sea shelf and is62

similar in structure to the model used to assess eastern Bering Sea snow crab for management (Szuwalski,63

2021). The model tracked numbers of male crab at size at maturity state over time with size bins ranging64

from 30-95 mm carapace width with 5 mm bin widths. Only male crab were modeled because male and65

female crab appear to have somewhat different dynamics and the male crab in the modeled size range are66

better selected by the survey gear (Szuwalski, 2021). Snow crab are sexually dimorphic, with male snow crab67

growing to nearly twice the size of females, which accounts for the better selection in the survey. Only crab68

smaller than 95 mm were modeled for two reasons: 1) to attempt to isolate the effect of the directed fishery69

(crab of >101 mm carapace width are targeted in the fishery; discussed further below) and 2) almost all of70

the crab that disappeared since 2018 are in this size range. The population dynamics model operates on a71

half year time step, starting in July at the time of the NMFS survey. Total mortality (Z) is estimated by72

year (y) and maturity state (m). Other estimated parameters include the initial numbers at size by maturity73

state, yearly log recruitments, a vector of scalars that determine the proportions of estimated recruitment74

split into the first two size bins, and a variance component for the penalty on total mortality. Parameters75

determining growth, maturity, and survey selectivity were estimated outside of the model and specified when76

estimating mortality and catchability. Mortality is the only population process that occurs in the first half77

of a given year:78
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Nt=y+0.5,s,m = Nt=y,s,me−Zt,s,m/2 (1)

Growth occurs at the beginning of the second half of the year for immature crab and is represented in the79

model by multiplying the vector of immature crab at size by a size-transition matrix Xs,s′ that defines the80

size to which crab grow given an initial size. Snow crab are observed to undergo a ‘terminal molt’ to maturity81

after which growth ceases (Tamone et al., 2005). Accordingly, all immature crab are assumed to molt and no82

mature crab molt in our model. The newly molted crab are assigned to a maturity state based on observed83

ogives of the proportion of mature new shell males by size calculated from chelae height measured in the84

NMFS survey data (Otto, 1998), which varies over time (ρy,s; Figure S4). The average probability of having85

undergone terminal molt is used in years during which data were not collected. This process results in two86

temporary vectors of numbers at size:87

nt=y+0.5,s,m=1 = ρy,sXs,s′Nt=y+0.5,s,m=1 (2)
88

nt=y+0.5,s,m=2 = (1 − ρy,s)Xs,s′Nt=y+0.5,s,m=2 (3)

The size transition matrix Xs,s′ was constructed using growth increment data collected over several years89

(see Szuwalski [2021] for a summary) to estimate a linear relationship between pre- and post-molt carapace90

width (Figure S5), (Ŵ pre
s,w and Ŵ post

s,w , respectively) and the variability around that relationship was charac-91

terized by a discretized and renormalized normal distribution with a size-varying standard deviation, Ys,w,w’92

(Figure S5).93

Xs,w,w′ = Ys,w,w′∑
w′ Ys,w,w′

(4)

Ys,w,w′ = (∆w,w′)
ˆLs,w−(W̄w−2.5)

βs (5)

L̂post
s,w = αs + βs,1hatW pre

s,w (6)

∆w,w′ = L̄w′ + 2.5 − Ww (7)

It is important to note that crab can ‘outgrow’ this model, which is represented by the pre-molt-carapace94

widths (e.g. 87.5 and 92.5 mm carapace width in Figure S5) that have low probability of molting to any of95

the sizes that are included in the population dynamics model.96

Recruitment by year, τy, was estimated as a vector in log space and added to the first two size of classes of97

immature crab based on another estimated vector δy that determines the proportion allocated to each size98

bin.99

nt=y+0.5,s=1,m=1 = nt=y+0.5,s,m=1 + δyeτ
y (8)

100
nt=y+0.5,s=2,m=1 = nt=y+0.5,s,m=1 + (1 − δy)eτ

y (9)

Finally, the last half of the year of mortality is applied to the population after growth, molting, and recruit-101

ment occurs. Note that this allows a crab to experience two different mortalities within a given year as it102

undergoes terminal molt.103

Nt=y+1,s,m=1 = nt=y+0.5,s,m=1e−Zt,s,m/2 (10)
104

Nt=y+1,s,m=2 = (Nt=y+0.5,s,m=2 + nt=y+0.5,s,m=2)e−Zt,s,m/2 (11)
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Survey selectivity105

The observed numbers of crab at size by year in the NMFS survey reflect the ability of the trawl gear to106

capture the crab, also known as ‘selectivity’. The selectivity of trawl gear can change according to size, and107

consequently needs to be accounted for in the population dynamics model when fitting to the survey data.108

Values for survey selectivity at size were specified using data from experimental Nephrops trawls (a small109

trawl net designed to maintain bottom contact), operated by the Bering Sea Fisheries Research Foundation110

in collaboration with the NMFS summer survey. The experimental trawls were performed at the same time111

and location as the NMFS summer survey tows to evaluate the efficiency of the NMFS survey trawl gear112

at capturing snow crab (Somerton et al., 2013). The Nephrops gear used by the BSFRF was assumed to113

capture all crab in its path given strong bottom contact. The resulting area-swept estimates of numbers of114

crab at size from the BSFRF and NMFS surveys (N̂y,s,NMF S and N̂y,s,NMF S , respectively) can be used to115

infer the selectivity of the NMFS gear in year y as:116

Sy,NMF S = N̂y,s,NMF S

N̂y,s,BSF RF

(12)

The experimental trawls captured snow crab in the years 2010, 2011, 2016, 2017, and 2018, but the spatial117

foot print and sample sizes varied by year (Figure S6). The calculated selectivities by size and by year were118

fairly consistent for snow crab of carapace widths 40 - 95 mm, but the signal was less consistent for crab119

larger than ~100 mm carapace width (Figure S7). The selectivity of large crab determines the estimated120

scale of the population in a population dynamics model, but the information we have on selectivity of large121

crab is poor and different assumptions about selectivity lead to very different inference about the stock122

(Szuwalski, 2021b). The lack of clear information on the scale of the population exploited by the fishery is123

one of the key reasons we used the range of sizes included in this model and excluded the directed fishery124

data from the analysis. A GAM was fit through the estimates of selectivity and the resulting estimates by125

size were directly specified in the population dynamics model.126

‘Catchability’ represents the fraction of the population available to the survey gear (either as a result of127

spatial mis-match or the inability of the gear to come in contact with the animals as a result of burrowing128

or hiding in untrawlable habitat). The capability for modeling time-varying catchability was built into the129

model in the form of a vector of parameters equal to the length of the time series of data. When time-130

varying catchability was estimated, the yearly catchability parameters were used to scale the selectivity131

curve described above up or down.132

Objective function133

The objective function for the population dynamics model consists of likelihood components (representing134

the fit of the model to the data) and penalty components (which incorporate constraints in the fitting based135

on prior information) that are summed and minimized in log space to estimate parameters within the model.136

Several data sources were fit to using the following likelihoods. Observed size composition data for immature137

and mature males were fit using multinomial likelihoods and were implemented in the form:138

Lx = λx

∑
y

Nx,y

∑
l

pobs
x,y,lln(p̂x,y,l/pobs

x,y,l) (13)

Lx was the likelihood associated with data component x, where λx represented an optional additional weight-139

ing factor for the likelihood, Nx,y was the sample sizes for the likelihood, pobs
x,y,l was the observed proportion140

in size bin l during year y for data component x, and p̂x,y,l was the predicted proportion in size bin l during141

year y for data component x. Sample sizes were input as 50.142

Observed indices of abundance for immature and mature males were fit with log normal likelihoods imple-143

mented in the form:144
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Lx = λx

∑
y

(ln(Îx,y) − ln(Ix,y))2

2(ln(CV 2
x,y + 1)) (14)

Lx was the contribution to the objective function of data component x, λx was any additional weighting145

applied to the component, Îx,y was the predicted value of quantity I from data component x during year y,146

Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefficient147

of variation for data component x during year y.148

Penalties and priors149

Smoothing penalties were placed on estimated vectors of deviations for immature and mature natural mor-150

tality (and immature and mature catchability in the simulation analyses aimed at understanding the es-151

timability of mortality and catchability) using normal likelihoods on the second differences of the vectors.152

Normal priors were also placed on the mean value of natural mortality and catchability and the deviation153

of the estimated mortality from that mean. A prior value of 0.27 is used for the average natural mortality154

based on assumed maximum age of 20 and Hamel’s (2015) empirical analysis of life history correlates with155

natural mortality. The priors used for catchability were derived from the selectivity experiments described156

above. The normal priors were of the form:157

Px = λx

∑
y

((Îx,y) − (Ix,y))2

CV 2
x,y

(15)

Px was the contribution to the objective function of the penalty associated with model estimate x, λx was158

any additional weighting applied to the component, Îx,y was the predicted value of population process I159

relevant to penalty x during year y, Ix,y was the prior value of process I relevant to penalty x during year y160

and CVx,y was the input coefficient of variation for penalty x during year y.161

An example of the way in which these equations were implemented can be seen in lines 132-218 of162

‘snow_down.TPL’ in our github repo ‘snow_down/models/model_vary_m’.163

Population dynamics model sensitivities164

Modeling decisions are necessarily made in the process of writing population dynamics models and it is165

possible for these decisions to influence the outcome of an analysis. Within the context of our model, these166

decisions include what processes to allow to vary over time, the weights assigned to different data sources167

and penalties in the objective function, which parameters to place priors or penalties on, and what those168

priors or penalties should be. We ran several sensitivity analyses to understand the implications of these169

modeling decisions on the outcome of our analysis.170

Does allowing mortality or catchability to vary over time improve model fits?171

Catchability and mortality are somewhat confounded within population dynamics models (Thompson, 1994).172

Fewer crab observed in a given year can be attributed to either crab dying or by crab moving out of the173

surveyed area either by walking out of the boundaries or burying themselves into the substrate. At the same174

time, it is also clear that catchability and mortality likely vary over time in reality in spite of the fact that175

they are often assumed to be time-invariant in population dynamics models (Johnson et al., 2014). Somerton176

et al. (2013) showed that catchability varied somewhat by substrate and depth for snow crab in the EBS.177

The spatial distribution of snow crab varies over time and substrate and depth vary over space, so it follows178

that catchability should also vary over time.179
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We started exploring the impacts on model output of including time-variation in mortality and catchabil-180

ity by fitting a model with no time-variation in mortality or catchability. Then we compared the output181

of this model to models that allow time-variation in mortality, catchability, and both processes simultane-182

ously (Figure S8 & Figure S9). The model with no time-variation in mortality or catchability was able to183

capture the general trend in immature and mature survey abundance solely through estimating variability184

in recruitment. Allowing time-variation in catchability improved the fits to immature survey abundances185

more than time-varying mortality, but time-variation in either process improved fits in a similar manner for186

mature survey abundances. Mature size composition data were fit similarly for all models, but immature187

size composition data were better fit by the models that allowed time-varying catchability (Figure S8). Part188

of the reason this difference in fits to immature size composition data occurs is the variability in the first189

several size bins resulting from the poor selectivity of the survey for small animals. Sometimes the peaks190

seen in larger size classes are reflected in the preceding years’ data for the smallest size classes, sometimes191

those peaks are not reflected (compare Figure S10 to Figure S11). As a consequence, positive residuals occur192

in the smallest size classes when a pseudocohort is consistently seen in large size classes, but not observed193

in the smallest size bins (e.g. 1991 vs. 1992; 1997 vs 1998).194

The model without time-variation in mortality or catchability explained 67% of the deviation in the abun-195

dance indices, time-varying mortality explained 77%, time-varying catchability explained 94%, and both196

processes varying explained 99% of the historical deviance. Model selection based on information criteria197

(e.g. AIC; Akaike, 1974) are often used to identify a model within a suite of models that most parsimoniously198

fits the data. Adding time-variation in natural mortality or catchability alone improved model fits parsimo-199

niously (AIC of 3434.15 for base model vs. 1593.836 and 1321.486 for time-varying mortality and catchability,200

respectively). However, adding time-variation in both processes resulted in a higher AIC (1449.275) than201

implementing time-variation in catchability, owing to the large number of parameters estimated. While202

catchability and mortality are somewhat confounded, catchability is also confounded with other sorts of203

error (e.g. observation) and allowing a relatively unconstrained estimation of catchability over time resulted204

in over-fitting the data, the consequences of which will be seen in simulations below. Even with this paring of205

potential models, there are several assumptions that could influence the output of our models. The following206

sensitivities are aimed at exploring the impacts of those assumptions on model output.207

How well can the model estimate mortality and selectivity with simulated data?208

One of the most essential exercises to perform with a population dynamics model before using its output is209

to perform a ‘self-test’ in which data are simulated from the population dynamics model with appropriate210

error and then fit to by the model. The goal of this test is to determine whether or not a model can return211

the parameter values underlying the simulated data with the available quantity and quality of data. For our212

analysis, the ability of the model to estimate mortality and catchability are of particular interest because213

they are candidates for use as input into GAMs to attempt to link the estimates to environmental stressors.214

Recruitment is also of interest because of its confounding with the other processes.215

Log-normal error was added to the true underlying abundance from the simulation model with three different216

coefficients of variation: 0.01, 0.10, and 0.30. Simulated data sets were generated 100 times under each217

observation error scenario and the population dynamics models were fit to them. Two population dynamics218

models were fit: one in which time-varying natural mortality was estimated and one in which time-varying219

natural mortality and time-varying catchability were estimated. Estimates of mortality were closer to the true220

underlying values than estimates of catchability (compare Figure S12 to Figure S13). Mature mortality was221

better estimated than immature mortality regardless of data quality or model configuration. The correlation222

between estimated and simulated mortality was 0.65 and 0.96 for immature and mature mortality for the223

0.01 observation error scenarios, respectively. The ability of the models to estimate mortality became more224

similar as data quality decreased. Overall, the model was best able to estimate mature mortality and this is225

likely a consequence of its separation from estimated recruitment in time. In general, estimates of catchability226

for both maturity states were unreliable.227

As a result of these simulation analyses, two modeling decisions arose. First, we used estimated variation in228

mortality from models that only estimate time-variation in mortality because the estimates of mortality from229
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models that estimated time-variation in both mortality and catchabilty were less reliable. This precludes230

attempts to identify relationships between estimated catchability and environmental variables. Second, the231

inability of the model to capture the scale of the population (Figure S14) underscores the need to relate232

mortality to the environmental covariates outside of the model, rather than attempting to build them into233

the model (similar to Dorn and Barnes, 2022). The covariates described below are indices of a particular234

environmental stressor, not absolute quantities that could provide scale to the model.235

How do the assumptions about weighting and priors influence the estimated quantities?236

Some aspects of the model that may influence the outcome of the fitting are specified by the user with no237

clear ‘correct’ value. These include the weights assigned to the size composition data, some priors placed238

on population processes, and the weights assigned to the smoothness penalties. We performed sensitivity239

analyses for these parameters to check how different specifications changed the fits to the data and the240

estimates of mortality and catchability. We input a range of values for the size composition weights (25, 50,241

100), the prior on the mean natural mortality in log space (-1.6, -1.2, -0.8), the input standard deviation for242

the penalties on natural mortality (0.01, 0.1, 0.2) and the smoothness penalty on the estimated time series’243

of mortalities and catchabilities (0.001, 0.1, 0.5, 0.1).244

Differences among sensitivity scenarios resulted in very small changes in the fits to the data (Figure S15),245

but larger changes in estimated mortalities and catchabilities (Figure S16). The smoothness penalty placed246

on mortality over time appeared to be the largest driver of changes in estimates of M and q, so we looked at a247

wider range of smoothness penalties (i.e. 0.001, 0.1, 0.25, 0.5, 1, 5, 10, 1000). Trajectories of mortalities were248

roughly preserved across this range. The prior on mean natural mortality predictably scaled the estimated249

time series up or down. The best available information suggests natural mortality should be approximately250

0.27 given an assumed (but based on a range of studies; see Szuwalski, 2021 for a summary) maximum251

age of 20 years for wild snow crab. Based on these analyses, we elected to use small smoothing penalties252

because there is no evidence to suggest that mortality should be particularly smooth from year to year and253

relatively tight priors on the mean mortality given outside information to support an average mortality value254

based on longevity. These analyses also underscore the fact that the scale of the population is difficult to255

estimate with the data available and the need to relate mortality to the environmental covariates outside of256

the population dynamics model. This likely comes from the fact that recruitment and immature mortality257

are confounded (i.e. fewer immature crab in a given year can be because of increased immature mortality or258

because of lower recruitment).259

Covariate construction260

A wide range of factors could potentially influence mortality of snow crab on the eastern Bering Sea shelf,261

including temperature, predation, disease, cannibalism, and fisheries effects. The NMFS summer trawl262

survey provides a rich spatio-temporal data set to develop time series of temperature occupied, predation,263

disease, and cannibalism (Zacher et al., 2022). The fisheries-dependent observer data provide spatio-temporal264

information on bycatch (AKFIN, 2022). The main text notes that more than 10 billion crab have gone missing265

since 2018. This number is derived from the input total numbers observed in the survey to the assessment,266

which decreased from 11.7 billion animals in 2018 to 940 million animals in 2021. However, this figure does267

not account for the selectivity of the survey gear and includes both sexes. If survey selectivity is accounted268

for, the number of missing crab increases dramatically, with the most recent assessment estimating a decline269

from ~47 billion in 2017 to 2.58 billion in 2022. Regardless of the metric used, the number of crab missing270

from the Bering Sea survey was exceptionally large.271

Currently, estimating spatially-explicit, time-varying mortality is not computationally feasible, nor are data272

on movement available to inform such a model. Consequently, our analysis aggregates the spatial data273

for snow crab into time-series. The end goal is to use these time-series in predictive models to identify274

relationships between estimated mortality and stressors, so attention has to be paid to creating appropriate275

comparisons. For example, a predation index needs to consider not only the total consumption of crab by276
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cod, but also the total number of crab in the ocean of the size that can be consumed by cod to be comparable277

to changes in estimated mortality rates (discussed more below).278

Another important point for consideration in covariate construction is the estimation of mortality by maturity279

state. Snow crab in the EBS undergo an ontogenetic migration in which juvenile crab settle on the northeast280

portion of the shelf after their pelagic phase, then migrate southwest into deeper and (usually) warmer281

waters (Ernst et al., 2005; Parada et al., 2010). This means that the conditions and stressors experienced282

by immature crab can be different than those by mature crab. To address this issue, the spatial data sets283

for temperature, disease, and cannibalism were split based on the size above which half of the population284

was mature in a given year. The size at which more than half of the population is mature changes by year,285

depending on recruitment dynamics and other demographic processes (Figure S17). After the survey data286

were split at the 50% at maturity size, time series of maturity-specific environmental stressors (Figure S18)287

were created as described below.288

Temperature289

Temperature is one of the key physical variables that structures the benthic ecosystem of the EBS (Mueter290

and Litzow, 2008). The cold pool, a mass of water <2 degrees Celsius, can act as a barrier to species291

interaction based on temperature preferences of different species. Snow crab are a stenothermic species,292

preferring cold water and juvenile snow crab in particular are rarely found outside of the cold pool (Dionne,293

2003). The cold pool is directly related to the winter ice extent in the Bering Sea and has varied dramatically294

over time as the ecosystem moves between cool and warm stanzas (e.g. 2006-2010 vs. 2014-2019; Figure 1b of295

the main text and Figure S19). As the cold pool changes from year to year, so does the spatial distribution296

of snow crab (Figure S20). The ontogenetic migration of snow crab results in crab of different sizes and297

maturity states experiencing different temperatures in a given year (Figure S21). The ‘temperature occupied’298

for different sizes of crab by year Ts,y was calculated here as an average of the observed bottom temperatures299

at the stations at which crab of a given size were captured ti, weighted by the area-swept density of crab at300

a given station di:301

Ts,y =
∑

i diti∑
i di

(16)

The resulting time series of temperatures occupied by size were then split by maturity state by identifying a302

cutoff beyond which half of the population was mature and aggregating the temperatures above and below303

the cutoff to represent immature and mature temperature occupied (Figure S22).304

Predation305

Pacific cod (Gadus macrocephalus) are the most important predator of snow crab based on stomach content306

data collected in the NMFS bottom trawl survey (Long and Livingston, 1998), with 16.5% of cod stomachs307

containing snow crab (Burgos et al., 2010). Crab ranging from 8-57 mm carapace width constitute 95% of the308

crab consumed by cod in the Bering Sea, but crab up to 106 mm carapace have been observed in cod stomachs309

(Burgos et al., 2010). An index of summer daily consumption (tons/day) of snow crab between 30-95mm310

carapace width eaten by Pacific cod in the eastern Bering Sea was developed using cod stomach content311

data from the survey to estimate the proportion by weight of crab in cod diets and the size composition of312

crab by carapace width of prey found in cod stomachs, stratified by year, survey stratum, and cod length313

(collection and analysis methods described in Livingston et al. 2017). Cod total consumption rate (metabolic314

demand) was calculated using a cod bioenergetics model (Holsman and Aydin 2015) to estimate laboratory-315

measured maximum consumption rates adjusted for bottom water temperatures and cod abundance-at-length316

measured at each haul location (following methods described in Barbeaux et al. 2020), and summed to an317

eastern Bering Sea ecosystem-wide total.318

Changes in the cold pool can alter the interaction between snow crab and Pacific cod over time. Decreases319

in the size of the cold pool coincide with more northerly positions of the centroids of abundance of cod320
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(e.g. 2003 and 2018-2019; Figure S23 & Figure S24). This increased interaction coincided with increased321

numbers of crab consumed by cod in the last several years (Figure S3). The estimated number of cod322

greater than 50 cm was also near all-time highs around the period during which crab collapsed (Figure S25).323

However, this period of time also coincided with the appearance of the largest pseudo-cohort of snow crab324

ever seen in the Bering Sea. Given the generalist nature of Pacific cod, one would expect to see an increase325

in the amount of crab consumed by cod during this period of time even if there weren’t differences in the326

interactions between the species as a result of changes in the cold pool or increases in abundance of large327

cod. To evaluate the possibility cod consumption has influenced the mortality of snow crab over time, the328

relative impact of consumption with respect to the population size must be considered. Predation indices329

were calculated for crab by year Pm,y by calculating the ratio of the extrapolated biomass of crab consumed330

by cod to the estimated biomass of crab, Ny,m,s ∗ ws:331

Pm,y = cody,m∑
s Ny,m,s ∗ ws

(17)

The exact amount of crab eaten cannot be calculated from the available diet data because they are a332

snapshot of consumption at one point during the year and consumption would be expected to change with333

spatial overlap and temperature-driven changes in metabolism occurring throughout the year. Consequently,334

removals due to predation cannot be directly incorporated into the model as fishery removals might be. The335

index of consumption described above incorporates the most available data on cod predation, but some336

strong assumptions are made (e.g. summer diet is representative of the entire year). As a sensitivity to these337

assumptions, we also tested the ratio of the number of cod greater than 50 cm to crab abundance in a given338

year as an alternative index of predation in the GAMs. Ultimately, changing the index of predation did not339

impact the results of the fitting of the GAMs; temperature and mature population size were still the only340

significant covariates and the estimated shapes of relationships and deviance explained were very similar341

between models with the different predation indices. Consequently, the models presented in the main text342

use the index of consumption as the predation index because it uses the most available information on cod343

predation (i.e. stomach contents and the abundance and size composition of cod).344

Disease345

Bitter crab syndrome is a fatal disease in snow crab caused by a parasitic dinoflagellate (Meyers et al. 1996).346

The presence of disease is recorded in the NMFS summer trawl survey data for the subset of crab that are347

individually measured based on a visual inspection. Diseased crab are visually detected by a pink-orange348

discoloration of the carapace and opaque hemolymph. The spatial distribution of bitter crab disease is349

predominantly on the northeastern shelf where smaller immature animals are found (Figure S26). For this350

analysis, disease prevalence was calculated simply as the number of infected individuals identified in the351

survey divided by the total number of individuals caught in the survey for the respective maturity states352

(Figure S18).353

Cannibalism354

Cannibalism has been proposed as a potential driver of the dynamics of snow crab in eastern Canada (Lovrich355

et al., 1997). In laboratory studies, crab smaller than 55 mm carapace width were at high risk of being356

cannibalized when housed with larger crab (Lovrich et al., 1997). Crab larger than 55 mm carapace width357

were much less likely to be cannibalized, but the frequency of injury could be high. Here we developed an358

index of cannibalism based on two aspects of the spatial distribution of snow crab: the overlap of crab smaller359

than 55 mm carapace width with crab larger than 95 mm carapace width (Figure S27) and the density of360

crab larger than 95 mm carapace width within the shared space. The proportion of 55 mm carapace width361

crab in the overlapping area represents the ‘exposure’ of the smaller population to cannibalism and the362

density of crab larger than 95 mm carapace width within that area represents the potential ‘intensity’ of363

cannibalism in the shared area. We calculated an index of cannibalism over time as the product of exposure364

and intensity. Consequently, a scenario in which there was large overlap, but low densities of large crab365
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would result in a low cannibalism index value. Similarly, a scenario in which there was low overlap, but high366

densities would result in a low cannibalism index value. This produces an index that is comparable with367

estimated mortality–a higher cannibalism index would be expected to be associated with higher mortality if368

cannibalism is a strong driver of mortality in the size ranges of crab modeled here.369

The proportion of smaller than 55 mm carapace width crab overlapping with larger than 95 mm carapace370

width crab was calculated by finding the intersection of the station IDs at which at least one crab of both size371

classes was observed. The density of crab larger than 95 mm carapace width was calculated as the number372

of >95 mm carapace width crab observed at those stations multiplied by the area swept. This exercise was373

also done by 5 mm size bins to show the overlap of small crab of different sizes with large crab (Figure S28).374

The final index aggregated all crab smaller than 55 mm carapace width (Figure S29). Indices of cannibalism375

were only included in the immature models given laboratory observations indicate cannibalism is rare among376

crab of similar sizes, though molting crab can be vulnerable.377

Fisheries data378

Snow crab are caught both in a directed fishery (i.e. a fishery aimed at capturing snow crab) and non-directed379

fisheries (i.e. fisheries with targets other than snow crab). In the directed fishery, under-sized and/or dirty380

shelled male crab are often discarded and all females are discarded. Snow crab are discarded from non-381

directed fisheries using a variety of gear types (including trawl, pots, hook-and-line) and targeting a variety382

of species (e.g. Pacific cod, walleye pollock, and yellowfin sole) that operate over a wide fraction of the Bering383

Sea shelf (Figure S30). Figure S30 is plotted in log space, so it appears that the bycatch is spread widely384

over the shelf, but in normal space, the bycatch is more concentrated (e.g. Figure S31). The location of the385

centroids of the bycatch have moved over time and increases in latitude correspond with warm years in which386

reduced ice extent allowed for fishing farther north (Figure S32). Bycatch in trawl fisheries are by far the387

largest sources of bycatch mortality (Figure S33). Data on discards and bycatch of snow crab are collected388

by at-sea observers on fishing boats and the percent observer coverage ranges from 10% to 100%, depending389

on the fishery. Some fraction of the mortality imposed by non-directed fleets is likely unobserved due to390

crab being struck by the gear and not captured. Consequently, indices of the relative mortality imposed by391

fisheries discards and bycatch were calculated here as the ratio of the observed numbers of crab discarded392

or bycaught in a given year divided by the estimated population numbers in a given year. Only discard393

mortality is considered for the directed fishery in our models because the range of sizes modeled exclude the394

largest males, which are the targets of the commercial fishery for snow crab.395

Crab density396

The numbers of crab estimated from the population dynamics models were also used as covariates in the397

GAMs. Changing densities of crab could capture aspects of intraspecific competition not captured in other398

covariates. Each respective model of mortality incorporates the population size of the corresponding maturity399

state given their spatial co-occurence. Immature mortality also incorporates mature population size because400

crab are thought to move more extensively after maturing in the pursuit of mates, which suggests that their401

overlap with the immature portion of the population could be larger than the snapshot the survey provides.402

This increased overlap could result in impacts on mortality, hence the inclusion of mature population size in403

the immature mortality models.404

Generalized additive models405

Generalized additive models (GAMs) were used in the R programming language (package mgcv; Wood,406

2011) to relate changes in estimated mortality by maturity state and year, mm,y to environmental covariates407

by maturity state and year, ϕm,y, because of their flexibility in fitting potential non-linear relationships.408

Models were first fitted in which all potential relevant covariates were included in the model of the form:409
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mp,y = s(ϕm,y) + ϵi (18)

where ‘s()’ is a smoothing function based on thin-plate splines, ϕ is a matrix of environmental covariates410

scaled to mean 0 and standard deviation 1, and ϵ is normally distributed error. The number of knots allowed411

in the thin-plate splines were restricted to 3 given the relatively short time series and number of potential412

stressors. Significance of covariates for the full models can be seen in Table S1 and Table S2 and the resulting413

smooths in Figure S34 and Figure S35. Model diagnostics were acceptable given relatively short time series414

(Figure S36 & Figure S37). Leave-one out cross validation was performed for the models by systematically415

excluding a year of data, refitting the model, and recording the deviance explained and significance of the416

covariates. The consistent significance of specific covariates in this exercise lends some credence that those417

covariates’ influence in the model was not the result of outliers (Figure 2e). Some collinearity existed among418

covariates (Figure S38 & Figure S39), but none of the collinear variables were significant in the models.419

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6198 0.0451 13.7414 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 2.1378 2.5245 4.7219 0.0169
s(disease) 1.0000 1.0000 3.1106 0.0931
s(discard) 1.0000 1.0000 0.7423 0.3991
s(bycatch) 1.0000 1.0000 1.0154 0.3256
s(mat_pop) 1.8350 1.9593 4.1602 0.0252
s(predation) 1.0000 1.0000 2.7661 0.1119

Table S1: GAM output for full model predicting mature mortality. Deviance explained = 71.32 %

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1741 0.0107 16.3429 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(disease) 1.0000 1.0000 0.7417 0.4004
s(temperature) 1.8755 1.9825 11.4119 0.0005
s(mat_pop) 2.0000 2.0000 12.6704 0.0004
s(imm_pop) 1.6270 1.8596 1.7683 0.1424
s(predation) 1.0000 1.0000 0.6671 0.4247
s(bycatch) 1.0000 1.0000 0.0050 0.9445
s(cannibalism) 1.7533 1.9368 2.8501 0.1134

Table S2: GAM output for full model predicting immature mortality. Deviance explained = 78.43 %

Models that excluded insignificant variables from each full model were used in out-of-sample prediction and420

randomization tests (see Table S3 & Table S4 for covariate significance and deviance explained and Figure S40421

& Figure S41 for model diagnostics). One thousand iterations of a randomization test were performed in422

which the covariate time series were randomized, the models refit, and the deviance explained recorded.423

This test was aimed at understanding if the explanatory power of the model was a result of the number of424

covariates considered and the flexibility of the model or if the results were an indication of some underlying425

signal in the data. If the deviance explained by the model using the non-randomized data exceeded the426

95th quantile of the randomization trials, the deviance explained from the fitted model is less likely to be427

a result of over-fitting resulting from too many covariates or too flexible smooths. The deviance explained428

from both of the trimmed models exceeded the 95th quantile of deviance explained from the randomization429

(Figure S42 & Figure S43). Out-of-sample predictions were made by excluding the last 1,2, and 3 years of430

data, refitting the model, then attempting to predict the held out data based on the covariates observed in431

those years (see figure 2 of the main text for a discussion and Figure S44 for a larger version of figure 2).432
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.6198 0.0481 12.8854 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.8741 2.2587 4.2891 0.0246
s(mat_pop) 1.8497 1.9631 6.7637 0.0036

Table S3: GAM output for trimmed model predicting mature mortality. Deviance explained = 60.46 %

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 0.1741 0.0125 13.9569 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.7403 1.9315 9.3351 0.0007
s(mat_pop) 1.9803 1.9985 6.6509 0.0056

Table S4: GAM output for trimmed model predicting immature mortality. Deviance explained = 59.53 %

Sensitivities to model assumptions in GAMs433

Modeling decisions are also necessarily made in the process of fitting GAMs and it is possible for these434

decisions to influence the outcome of an analysis. Within the context of our model, these decisions include435

the assumed error structure, the treatment of the uncertainty associated with the estimates of mortality, and436

the allowed shape of the smooths estimated in the GAMs. The following sensitivities address the implications437

of these modeling decisions on the outcome of our analysis.438

Error structure439

Impacts of assumptions about error structure were explored by assuming beta distributed data in the GAM440

and transforming the continuous total mortality rates to an exploitation rate ranging from 0 to 1. This441

transformation still resulted in mature population and temperature being the most important variables442

related to mortality, however the deviance explained decreased to 58% and 70% for mature and immature443

mortality, respectively, compared to 71% and 78% for the model presented in the main text. A potential444

shortcoming of the method presented in the main text is that predicted mortality could be less than zero.445

This was not the case in any of the model fittings, and would present a problem primarily if the model was446

extrapolated to data beyond the observed ranges. A potential fix to this issue is to log the response variable,447

but this resulted in unacceptable patterns in the residuals, so this model was not used.448

Does incorporating the uncertainty in the estimates of mortality change analysis outcomes?449

The models presented in the main text use the maximum likelihood estimates of mortality from the popu-450

lation dynamics models as response variables in the GAMs. However, each of those estimates of mortality451

have associated uncertainty estimated in the fitting process. One way of evaluating the impact of incorpo-452

rating the estimated uncertainty from the population dynamics model into the GAM fitting process can be453

accomplished in 4 steps:454

1. Invert the Hessian matrix produced from fitting the population dynamics model to calculate a covari-455

ance matrix describing the relationships between each of the estimates of mortality,456

2. Simulate time series of the estimated mortality from a multivariate normal distribution with a mean457

of the point estimates of mortality deviations and the product of step 1 as the covariance matrix,458

3. Refit the GAMs to these simulated mortality time series and record the deviance explained and p-values459

for each covariate,460

4. Repeat these steps many times.461
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A similar methodology can be seen in Johnson et al. (2022). Each of these steps were taken in the R462

programming language. Inverting the Hessian was accomplished by using the function ‘solve()’; simulating a463

time series of mortality deviations was accomplished using the function ‘mvrnorm()’. The resulting simulated464

time series of mortality were very similar to the maximum likelihood estimates of mature and immature465

mortality, reflecting relatively precise estimates of mortality (Figure S45). The deviance explained across466

simulated time series were also similar to that produced with the MLE time-series of mortality. Temperature467

and mature population remained the most important variables in predicting mortality across GAMs fitted468

to simulated time-series of mortality (Figure S46). Given this outcome, the model presented in the main469

text does not consider the uncertainty associated with treating the estimates of mortality as ‘data’ in the470

fitting of the GAMs.471

Shape of estimated relationships472

The model presented in the main text constrains the number of knots available to the GAM to fit the data for473

each covariate to 3, but the shapes of GAM-estimated smooths are not constrained. This modeling choice was474

made because it is not immediately clear a priori what the shape of the smooths should be. For example,475

the relationship between immature population size and immature mortality could conceivably be linear476

positive (e.g. higher populations result in higher mortality due to intraspecific competition), linear negative477

(e.g. larger population sizes dilute the impact of external stressors like predation and fishery effects), dome-478

shaped (somewhat harder to interpret, but perhaps different processes are important at different population479

sizes), or monotonic in either direction (e.g. population size modulates external stressors to a point, after480

which other processes are more important).481

The model in the main text is unconstrained with respect to the shape of the estimated relationships between482

mortality and covariates. However, the relationship between immature mortality and mature population size483

was markedly dome-shaped and a satisfying biological explanation for this shape is not immediately appar-484

ent. To explore the impacts of unconstrained estimation of this relationship, we refit the models using shape485

constrained additive models in the R package ‘scam’ (based on Pya and Wood, 2015). This allows the user486

to specify constraints on the shape of relationships between model variables (e.g. monotonically increasing487

or decreasing). We refit our model for immature mortality with the assumption that the relationship be-488

tween immature mortality and mature population size can only be monotonically increasing (similar to the489

estimated relationship between mature mortality and mature population size). The rest of the covariates490

were specified as linear predictors, except temperature, which remained a non-linear smooth. Given the491

importance of temperature in the hypotheses we present, we were particularly interested to understand how492

the assumptions about the shape of other significant covariates influence the estimated relationship between493

temperature and mortality.494

Temperature and mature population size were still significant covariates within the shape constrained additive495

model and immature population size became significant (Table S5). The estimated relationship between496

mortality and temperature was still strongly positive, but became more linear with the shape constraints497

imposed on mature population size (Figure S47). The relationship between immature population size and498

immature mortality was negative (i.e. all other things considered, more immature crab were associated with499

lower mortality). While the immature population relationship is potentially interesting, the most important500

outcome of this exercise is that temperature still returned positive relationship with estimated mortality.501

Using temperature as the only covariate in an unconstrained GAM explained 37% and 38% of the deviance502

in immature and mature mortality (not shown). All of these points suggest temperature is a key covariate503

in the estimated mortality dynamics for snow crab in the eastern Bering Sea.504

How could temperature relate to mortality mechanistically?505

Increased temperature was consistently correlated with increased estimated mortality in our models, but the506

range of temperatures observed were not beyond the thermal tolerances of snow crab. Foyle et al. (1989)507

captured 20 snow crab of carapace size 85-95 mm in 1986 and raised them in the lab in a range of thermal508

regimes to understand the impacts of increased temperatures on mortality and caloric requirements for snow509
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -0.0325 0.1850 -0.1757 0.8623
disease 0.0236 0.0162 1.4561 0.1607
imm_pop -0.0374 0.0174 -2.1454 0.0442
predation 0.0002 0.0169 0.0137 0.9892
bycatch -0.0003 0.0147 -0.0194 0.9847
cannibalism -0.0090 0.0153 -0.5887 0.5626
B. smooth terms edf Ref.df F-value p-value
s(temperature) 1.0005 1.0009 6.7766 0.0167
s(mat_pop) 1.7664 2.0738 3.5320 0.0466

Table S5: GAM output for a shape constrained model predicting immature mortality. Deviance explained
= 59.53 %

crab. In addition to identifying the thermal tolerances of snow crab (crab stop eating around 12 degrees510

C), Foyle et al. observed a doubling of caloric requirements for snow crab held in 3 degrees Celsius water511

as compared to those in 0 degree waters. Here we calculated an index of the caloric requirements for the512

modeled fraction of the population of snow crab in the eastern Bering Sea over time using the abundance513

at size of snow crab observed in the NMFS survey, the temperature occupied of crab at size calculated from514

observations of bottom temperature in the NFMS survey, and the observations of caloric requirements of515

snow crab by temperature produced by Foyle et al. (1989). The relationship between temperature and the516

caloric requirements of snow crab (kCalt) reported by Foyle et al. was:517

kCals=90mm,t = 2.2 ∗ e
−(t−5.2)2

30.7 (19)

Snow crab numbers at size (s) by year (y) (Ns,y) and the temperature occupied at size by year (Ts,y) were518

calculated as described above. The caloric requirements reported in Foyle et al. were based on observations519

of crab that were 85-95 mm carapace width, so these results need to be extrapolated to the range of sizes520

used in this analysis. Kleiber’s law (Kleiber, 1947) states there is a consistent relationship between the body521

mass and metabolic requirements of organisms (kCal). The relationship has been generalized as:522

kCalm = mass0.75 (20)

Calculating the metabolic requirements for snow crab at size by year, kCalsnow
s,y , can be calculated by523

evaluating the caloric requirements of 90mm carapace width crab at a given temperature were calculated,524

then scaling that up or down based on Kleiber’s law:525

kCalsnow
s,y = 2.2 ∗ e

−(t−5.2)2
30.7

3000.75 w0.75
s (21)

Caloric requirements increased sharply in 2018 and to explore potential impacts of this increase, we analyzed526

the weight at size data available (Figure S48). A GAM was used to predict observed weights at size wi,s,y527

using the bottom temperature in which the crab was collected, ti, measured carapace width cwi, and year528

as a factor:529

wi,s,y = s(cwi) + s(ti) + year + ϵ (22)

The GAM explained 97.4% of the deviance in the weights of snow crab and all covariates were significant530

(Table S6).531

In general, higher temperatures were associated with higher weight at size (Figure S49). The weight at size532

curves for 2015 and 2017 were scaled significantly higher than the base year of 2011, whereas the year 2018533
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A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 218.5199 2.2252 98.2019 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2015 6.4525 3.1690 2.0361 0.0419
as.factor(AKFIN_SURVEY_YEAR)2017 12.6093 2.4840 5.0763 < 0.0001
as.factor(AKFIN_SURVEY_YEAR)2018 -11.9217 6.2536 -1.9064 0.0568
as.factor(AKFIN_SURVEY_YEAR)2019 4.0886 2.7473 1.4882 0.1369
B. smooth terms edf Ref.df F-value p-value
s(WIDTH) 6.4225 7.5862 6340.9617 < 0.0001
s(GEAR_TEMPERATURE) 1.9362 2.3359 17.0800 < 0.0001

Table S6: GAM output for model predicting male snow crab weight. Deviance explained = 97.4%

was marginally significantly lower (p=0.057). The marginal significance likely resulted from the relatively534

small sample size of weight at size available in 2018 (N=27), but the effect size was large (the coefficient535

associated with 2017 was 12.60; the coefficient associated with 2018 was -11.92) which translated to large536

differences in estimated weight at size between the years reported in the main document. Previous studies537

looking at the impacts of starvation on the weight at size of snow crab (e.g. Hardy et al., 2000) reported small538

changes in weight at size (roughly 2.6% of weight lost over 5 months), but larger changes in the weight of the539

hepatopancreas. However, there are some key differences between these studies and the field observations540

we report. First, the maximum observed mortality was 20% in the starvation studies; the mortality levels541

estimated in the Bering Sea exceeded 90% in some years. Second, the starvation experiments were in542

laboratory environments where no foraging occurred. Seventy crab were confined in containers measuring543

122 x 183 x 40 cm in Hardy et al. (2000), which greatly restricted movement and would presumably impact544

caloric expenditure and the initiation of catabolism of muscle tissue.545

A word on methods546

Attribution of changes in population processes in ecology is a difficult problem, particularly for wild pop-547

ulations that are difficult to directly observe and impossible to experiment on in situ. There are a large548

range of methodologies that claim to identify causality in observational data (structural equation modeling,549

empirical dynamic modeling, etc.). Some of the difficulties in determining causality in ecological time series550

are related to the generally short time series that are available, non-linear dynamics, and departures of pop-551

ulations or covariates into unexplored parameter space. These issues can present problems for any modeling552

framework and we have tried to address these to the best of our ability with the models used here. The use of553

p-values has been (rightfully) criticized in the literature and the explanatory power of our models are likely554

overstated given these criticisms. Ultimately, the numerous sensitivities and simulation tests performed here555

were undertaken to try to understand if a suite of covariates appear to be important under different modeling556

decisions and considerations of uncertainty, in spite of the potential short-comings of the data available and557

models selected. Temperature and population density appear to be these covariates.558

Frequently asked questions559

Are you sure the collapse wasn’t a result of cod predation?560

The predation index (i.e. the crab consumed by cod divided by the crab available; Figure S18) was near the561

time series average during the collapse in 2018 and 2019. If predation were a strong driver of the mortality562

during the collapse, it is difficult to explain why estimated mortality was not high when the predation indices563

were much higher in the late 1990s and mid-2010s. Furthermore, the distribution of the cod population564

during 2018 and 2019 extended much farther north, beyond the portion of the snow crab population that is565

included in this analysis. Movement north can happen in particularly warm years and would serve to reduce566

the relative predation pressure on the portion of the population of crab in this analysis because the cod that567
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moved north would be consuming crab outside of our study area. Finally, a large fraction of the missing568

crab from the recent collapse were not of the sizes typically eaten by cod (Figure S50).569

Although our predation indices incorporate the best available information about cod diet and abundance,570

these indices are snapshots taken during the summer survey. It is possible that the consumption of crab was571

different in other times of the year and, if this were true, knowing how predation changed throughout the572

year could alter our results.573

Are you sure the collapse wasn’t a result of trawling?574

The bycatch index steadily declined since the beginning of our study, with the relative impact of trawling575

in 2018 and 2019 below the historical average (Figure S18). It is difficult to reconcile the idea that trawling576

could have contributed to the collapse with the relatively low mortality rates estimated during the periods577

when the bycatch index was many times higher in the 1990s. Furthermore, if trawling were a large source578

of mortality for snow crab, it is difficult to understand how the largest pseudocohort ever observed could579

have established and survived for ~8 years on the Bering Sea shelf, during which the trawling pressure was580

relatively consistent. It should be noted that trawling occurred farther north in 2018 than usual and some of581

this effort overlapped with the area in which the largest densities of crab were observed and lost (Figure S30).582

However, the intensity of trawling in that area and the observed bycatch of snow crab in the areas of highest583

density were very small compared to other areas in the Bering Sea and historical values (Figure S31).584

Not all of the mortality associated with non-directed fleets is observed. It is possible that crab on the seafloor585

are impacted by the trawling gear and die as a result of their injuries. The index used in this analysis is a586

reliable indicator of the trend in bycatch mortality provided the ratio of observed to non-observed mortality587

is consistent over time. If this is not the case, that could change the outcome of our analysis, but there is588

no clear methodology for accurately determining that ratio.589

What do crab eat? If they starved, did there appear to be large declines in their prey base?590

Snow crab have a wide-ranging diet of bivalves, polychaetes, crustaceans, and gastropods in the northern591

Bering Sea (Kolts et al., 2013). They appear to be a generalist, consuming whatever they can capture and592

crush with their claws. Kolts et al. (2013) reported that most prey items were consumed in proportion to593

their estimated abundances, except polychaetes, which seemed to be preferentially selected. Indices of prey594

biomass can be calculated from the NMFS trawl, however the survey gear does not sample these species well.595

With that caveat, the average of three of the clusters of scaled prey biomass by group from the survey were596

below the long-term mean in 2018 and 2019 (Figure S51). While this is suggestive, these time series require597

further validation before placing any confidence in them and were therefore not used in the main analysis.598

Even if these time series were reliable and there appeared to be abundant forage for snow crab in warm years,599

the metabolic trade-off between the energy required to obtain, handle, and digest their prey and the energy600

derived from prey would need to be considered when trying to understand if metabolic demands could be601

met. This would be a useful area of further research, particularly if reliable time series of benthic forage602

could be identified and maintained.603

If it was a large mortality event, did you see large numbers of empty carapaces in the survey?604

Hundreds of millions of carapaces are discarded by molting crab each year even when there are no mortality605

events and these are rarely seen in the survey nets. So, even with a massive mortality event, one might not606

expect to see the carapaces remaining from the event. Why the carapaces are not seen in the survey nets is607

not completely clear, but potential hypotheses include relatively fast disintegration on the sea floor or poor608

selectivity by the survey gear. Discarded carapaces may sit flat on the bottom and be passed over by the609

net.610
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Were that many crab really in the eastern Bering Sea to begin with? Was the ‘collapse’ an611

artifact of some survey error?612

The NMFS summer survey was originally designed to estimate crab abundances (Zimmermann et al., 2009)613

and the recent survey methodology has been repeatedly validated as a useful tool for estimating crab abun-614

dance (see Somerton et al., 2013, for example). Snow crab are widely distributed on the shelf and conse-615

quently well sampled by the survey. There are 375 survey locations in the NMFS eastern Bering Sea trawl616

survey, of which 349 are on a 400 square nautical mile grid. The remaining stations are in high density617

sampling areas around islands in the Bering Sea implemented to better estimate crab abundances around618

those islands. On average, snow crab are observed at 233 of the 349 survey stations on the standard grid.619

In 2018 a large number of stations returned estimated high densities of crab (see Fig. 1 of main text), which620

means that the large estimates of abundance in 2018 were not driven by one or two large survey tows.621
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Figure S1: Observed abundance by carapace width of Tanner crab in the NMFS summer survey.
18



Figure S2: Fishery CPUE (top; black lines are median, grey box represents 25-75th quantiles, circles are
outliers) and number of crab caught in the directed snow crab fishery (bottom). Vertical dashed line repre-
sents the introduction of individual transferrable quota management. CPUEs before and after are difficult
to compare as a result of changes in fleet behavior.
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Figure S3: Consumption of crab by Pacific cod at size over time. Dashed line represents the size at which
crab enter the population dynamics model presented in the text.
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Figure S4: Observed proportion of mature new shell crab in the NMFS summer survey. Red line represents
the median over years and the blue lines are the observed data. Chela height data were not collected in years
without a blue line. These data are used to separate the numbers at size into mature and immature states
for the input data to the population dynamics model.
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Figure S5: Empirical relationship between pre- and post-molt size (left) derived from crab captured in the
wild pre-molt and observed to molt in the lab. Calculated size-transition matrix used in the population
dynamics model (right).

22



Figure S6: Locations of the BSFRF experimental trawls to evaluate the capture efficiency of the NMFS
summer trawl survey for snow crab in the eastern Bering Sea.

23



Figure S7: Inferred selectivity from the BSFRF experimental trawls.
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Figure S8: Fits of models with increasing complexity in mortality and catchability. Index of abundances
are on the left with observations in black dots with 95% confidence intervals; colored lines are model fits.
Size composition data are at the right with observations in box plots (aggregated over year; black lines are
median, grey box represents 25-75th quantiles, circles are outliers) and colored lines are model fits.
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Figure S9: Estimated processes from model with increasingly complex time-variation in mortality and catch-
ability.
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Figure S10: Fits for individual years to immature size composition data from a model in which mortality
varied over time.
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Figure S11: Fits for individual years to mature size composition data from a model in which mortality
varied over time.
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Figure S12: Estimates of catchability by maturity state (black lines) compared to the underlying values
(red line) from simulations testing the estimation ability of the population dynamics models.
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Figure S13: Estimates of mortality by maturity state (black lines) compared to the underlying values (red
line) from simulations testing the estimation ability of the population dynamics models.
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Figure S14: Estimates of recruitment (black lines) compared to the underlying values (red line) from simu-
lations testing the estimation ability of the population dynamics models.
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Figure S15: Model fits from sensitivity tests. Indices of abundances are on the left with observations in
black dots with 95% confidence intervals; colored lines are model fits. Size composition data are at the right
with observations in box plots (aggregated over year; black lines are median, grey box represents 25-75th
quantiles, circles are outliers) and colored lines are model fits.
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Figure S16: Estimates of mortality and catchability by maturity state over sensitivity runs. Lines are
colored based on the smoothness penalty on mortality.
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Figure S17: Size (in mm carapace width) at which half of the crab in the population are mature over time
(note, this is not the probability of undergoing terminal molt, rather the proportion of the number of mature
vs. immature crab at size in the population).
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Figure S18: Calculated covariates incorporated into GAMs to relate stressors to estimated mortality. Two
covariates (discard and predation) are only relevant for one maturity state based on the critical role size
plays in the process (i.e. discards are primarily relatively large crab and predation is primarily smaller crab).
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Figure S19: Observed bottom temperature at the time of the NMFS summer survey. Less than 2 degrees C
represents the cold pool, seen in green and blue here.
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Figure S20: Distribution and intensity of densities (in log numbers) of crab <55 mm carapace width in the
NMFS summer survey.
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Figure S21: Average temperature occupied over time of crab by 5 mm size bin.
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Figure S22: Average temperature occupied over time of crab by maturity state defined by the size at which
50% of crab are mature according to chela height.
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Figure S23: Centroids of abundance for Pacific cod in the Bering Sea over time (left). Right panels show
the time series of the centroids broken down by latitudinal and longitudinal components.
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Figure S24: Location and number of crab observed in cod stomachs over time. These are the raw data
used to calculate crab consumption by cod and have not been adjusted for sampling effort, but provide
background for the spatial distribution of predation over time.
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Figure S25: A comparison of indices of cod predation on snow crab. Left column are the calculated con-
sumption of crab by cod (top) and the raw numbers of cod greater than 50 cm. The right column is the left
column divided by the estimated number of crab in the eastern Bering Sea.
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Figure S26: Location and intensity of bitter crab disease over time from visual prevalence observations in
the NMFS summer survey.
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Figure S27: Overlap of large males (>95 mm carapace width) and males smaller than 55 mm carapace
width. Opacity of the dot represents the density of crab. Blue represents overlapping distribution. Green
and red represent non-overlapping observations of small and large males, respectively.

44



Figure S28: Relative risk at size for cannibalism over time.
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Figure S29: Times series by size of the density of large males in overlapping space (top), the propotion
of small males in the overlapping area (middle), and the product of the two (bottom), which is used as an
index of cannibalism in the models relating estimated mortality to environmental stressors.

46



Figure S30: Location and intensity of bycatch of snow crab over time in log space.
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Figure S31: Comparison of location and intensity of bycatch in 2018 for natural and log space.
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Figure S32: Centroids of bycatch over time calculated over the entire year (left). Centroids broken into
time series of latitudinal and longitudinal components calculated over the entire year and during the months
December through March which roughly overlap with mating.
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Figure S33: Bycatch in numbers by gear types reported from NMFS observer programs.
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Figure S34: Smooths resulting from the full model estimating the relationship between environmental
covariates and immature mortality.
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Figure S35: Smooths resulting from the full model estimating the relationship between environmental co-
variates and mature mortality.
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Figure S36: Diagnostic plots for the full model relating immature mortality and environmental stressors.
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Figure S37: Diagnostic plots for the full model relating mature mortality and environmental stressors

54



Figure S38: Pairs plots displaying the correlation between covariates for immature crab. Diagonal represents
the distribution of a given variable.
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Figure S39: Pairs plots displaying the correlation between covariates for mature crab. Diagonal represents
the distribution of a given variable.
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Figure S40: Diagnostic plots for the trimmed model relating immature mortality and environmental stressors.
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Figure S41: Diagnostic plots for the trimmed model relating mature mortality and environmental stressors.
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Figure S42: Results of randomization trials for the trimmed model relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure S43: Results of randomization trials for the trimmed models relating estimated immature mortality to
environmental stressors. Grey bars represent the number of trials in which the randomized model explained
the deviance on the x-axis. Dashed vertical red line represents the 95th quantile of the deviance explained
by the randomized trials. Blue line represents the deviance explained with the real data.
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Figure S44: Predictive skill of the GAMs for immature and mature mortality. Reproduced from figure 2 in
the main text to provide better detail.
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Figure S45: Simulated time series of estimated immature and mature mortality that incorporate the un-
certainty associated with the fitting process of the population dynamics model. Each grey line represents
one iteration of multiplying the maximum likelihood estimates of the mortality deviations by the covariance
matrix. The black line represents the MLE.
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Figure S46: P-values associated with iterations of fitting the GAMs to simulated time series of estimated
immature and mature mortality using the covariance matrices estimated in the fitting of the population
dynamics model.
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Figure S47: Estimated smooths between immature mortality and temperature occupied and mature popu-
lation from shape constrained additive models.
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Figure S48: Observed weight at size over time colored by temperature (Celcius) at which the crab was
collected.
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Figure S49: GAM estimated relationships between temperature and carapace width on observed weights of
crab.
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Figure S50: Numbers at size over time of snow crab (left). Observed numbers of crab (red line) in 2019
and 2021 vs. projected numbers of crab from 2018 and 2019 given a mortality equal to 0.27 (the assumed
value in the assessment; top left). Numbers of missing crab at size (red line) with the size of crab beneath
which cod predate upon (dashed vertical black line).
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Figure S51: Hierarchical clusters of scaled benthic prey group biomass in the eastern Bering Sea. Blue lines
are the fits from a LOESS smoother with a span set to 0.12. Grey lines in the background are the individual
scaled time series of observed prey biomass. Names of the species group included in each cluster are to the
right of each figure.
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