Geophysical Research Letters^{*}

RESEARCH LETTER

10.1029/2023GL104992

Key Points:

- We introduce the Flashiness-Intensity-Duration-Frequency curve to quantify flash flood intensity
- The CONUS-wide Flashiness-Intensity-Duration-Frequency values are provided at 3,722 stream gage locations
- The relations between 59 basin attributes and flashiness values are explored

Supporting Information:

Supporting Information may be found in the online version of this article.

Correspondence to:

Y. Hong, yanghong@ou.edu

Citation:

Li, Z., Gao, S., Chen, M., Zhang, J., Gourley, J. J., Wen, Y., et al. (2023). Introducing Flashiness-Intensity-Duration-Frequency (F-IDF): A new metric to quantify flash flood intensity. *Geophysical Research Letters*, 50, e2023GL104992. https://doi. org/10.1029/2023GL104992

Received 13 JUN 2023 Accepted 1 NOV 2023

Author Contributions:

Conceptualization: Zhi Li, Yang Hong Data curation: Zhi Li Formal analysis: Zhi Li Investigation: Zhi Li, Shang Gao Methodology: Zhi Li, Shang Gao, Jiaqi Zhang, Jonathan J. Gourley Project Administration: Yang Hong Software: Zhi Li Supervision: Yang Hong Validation: Zhi Li, Mengye Chen Visualization: Zhi Li, Yixin Wen Writing – original draft: Zhi Li

© 2023 The Authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Introducing Flashiness-Intensity-Duration-Frequency (F-IDF): A New Metric to Quantify Flash Flood Intensity

Zhi Li^{1,2} , Shang Gao³, Mengye Chen², Jiaqi Zhang², Jonathan J. Gourley⁴, Yixin Wen⁵, Tiantian Yang², and Yang Hong²

¹Department of Earth System Science, Stanford University, Stanford, CA, USA, ²School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA, ³School of Natural Resources and the Environment, Tucson, AZ, USA, ⁴National Severe Storms Laboratory, NOAA, Norman, OK, USA, ⁵Department of Geography, University of Florida, Gainesville, FL, USA

Abstract Flash flooding is a damaging weather event, yet it remains challenging to quantify its severity. We propose a development—the Flashiness-Intensity-Duration-Frequency (F-IDF) curve—to quantify flash flood intensity based on the frequency and duration of the event. As a proof-of-concept, we mapped Contiguous US (CONUS)-wide F-IDF values at 3,722 stream gage locations and explored their relations with basin attributes. It is found that (a) The return periods of flash flood events are highly associated with the return periods of rainfall events; (b) Climatological precipitation amounts exhibit the most positive correlation with flashiness while a basin's drainage area is the most negatively correlated; (c) Correlation of flashiness with basin attributes decreases with increasing F-IDF return periods and shorter event durations. Both aspects are attributable to the rainfall signal overwhelming the underlying basin attributes as the intensities become more extreme. This new metric has implications for hydrology and emergency responders.

Plain Language Summary Flash floods are among the most devasting natural hazard types that can cause severe property damage and loss of life. However, it's challenging to measure and quantify the severity. This study proposes a new way of quantifying flash flood intensity using a newly developed Flashiness-Intensity-Duration-Frequency (F-IDF) curve. It links flash flood severity with how often they happen and how long they last. We mapped F-IDF values across the United States and found that certain areas are more prone to flash floods than others. The amount of rain and the size of the basin area are the most important factors in determining how severe a flash flood is. This new quantification tool can help experts better identify and respond to flash flood risks.

1. Introduction

Flash floods are a type of flood that occurs within minutes to several hours of heavy rainfall or other causes (Doswell III, 2015; Gourley et al., 2013; Hong et al., 2013). In recent years, fatalities and damages caused by flash flooding have been increasing worldwide, making it one of the most destructive weather types (Ashley & Ashley, 2008).

To identify flash flood risks, researchers have sought various approaches. One of the most common practices for flash flood warnings over the US and the world is the Flash Flood Guidance (FFG) (Georgakakos et al., 2022). It has been adopted as the operational early warning system for flash flooding by the US National Weather Service since the 1970s (Georgakakos, 1986). FFG is defined as an estimate of total rainfall that causes bankful flow. As it suggests, this method does not take into account the full continuum of land surface responses to extreme rainfall and river routing processes. Beyond FFG, there are other attempts to quantify flash flood risks. We generalize them into event-dependent and event-independent approaches. An event-dependent approach directly calculates flash flood risks based on archived flash flood events (Alipour et al., 2020) or a flashiness index (Gannon et al., 2022; Li et al., 2022; Saharia et al., 2017, 2021; Smith & Smith, 2015). The term flashiness index was introduced to measure how quickly and how high streamflow rises in an event (Baker et al., 2004). Among variants of the flashiness index, the Richards-Baker Flashiness Index (RBI) is one of the earliest indices, denoted by the time derivative of daily streamflow (Baker et al., 2004). Gannon et al. (2022) evaluated the RBI at daily time scales and found little or no correspondence between basin responses and watershed areas. This result differs from Saharia et al. (2017) who revealed a significant relationship of increasing flashiness with smaller

watersheds, with the discrepancy being attributed to the latter study's use of sub-hourly stream gage data instead of daily. Since it is event-dependent, this approach presumably delivers accurate and precise results. Alternatively, an event-independent approach seeks a statistical model that relates climate variables and basin physiography to flash flood risks (Lin et al., 2020; Ma et al., 2019). In doing so, this approach bypasses the requirement for observations, which is particularly useful in ungauged basins or rural regions. Its validity, however, requires particular attention.

Given the dense stream gage network in the US, we propose a new method using the flashiness index applied to specific events. Although the definition of flashiness is diverse, this study adopts the approach of estimating the slope of the rising limb of the hydrograph. The flashiness index used in previous studies is only a static quantity that is irrespective of event frequency and duration (Li et al., 2022; Saharia et al., 2017, 2021; Smith & Smith, 2015). Weather forecasters, emergency responders, and the public are particularly concerned about the risk of a flash flood event, which can be quantified by frequency. Additionally, we particularly value the representativeness of this index with respect to simplicity and reproducibility. In light of these concerns, we adopt the idea from the Rainfall Intensity-Duration-Frequency (R-IDF) curve that encapsulates three-dimensional information of a rainfall event (Perica et al., 2013), and apply it to quantify a flash flood event. Hence, we introduce the Flashiness-Intensity-Duration-Frequency (F-IDF) curve for the first time. Similar to the R-IDF curve, the F-IDF curve describes the intensity (based on flashiness values), duration, and frequency of flash flood events. We envision that such a measure has practical implications in flash flood forecasting and risk management. The aim of this article is threefold: (a) introducing the methods of calculating a F-IDF curve; (b) mapping F-IDF values for all US stream gages; and (c) investigating geographical and hydrometeorological factors associated with F-IDF values. The newly introduced F-IDF curve can be applied to observed or simulated hydrographs, meaning that it can be integrated into any flood forecast system.

2. Materials and Methods

2.1. Flashiness-Intensity-Duration-Frequency

The F-IDF curves in this study are computed as follows: (a) Select flood events by which streamflow exceeds a 2-year threshold; (b) Find the maximum rising (positive) slope *S* of a hydrograph using a recursive moving time window (i.e., D = 1, 2, 3, 4, 5, and 6 hr); (c) Concatenate flashiness values and extract the seasonal maxima for each duration *D*; (d) Fit the seasonal maxima into a general extreme value distribution (GEV) and logPearson Type III distribution (LP3); (e) Find an optimal fit based on the Bayesian Information Criterion; and (f) Return flashiness values for different frequencies (i.e., 1-in-2-year, 1-in-5-year, 1-in-10-year, 1-in-25-year, 1-in-50-year, and 1-in-100-year). The resulting flashiness value *F* is a measure of rapidness and magnitude changes over the time window and is represented in Equation 1. An illustrative example is given in Figure 1a.

$$F = \frac{\max\{O_t - O_{t-1}, O_t - O_{t-2}, \dots O_t - O_{t-d}\}}{FAC \times d},$$
(1)

where O_t is the observed streamflow time series at time t, d is the duration, FAC is the drainage area (km²). The unit of F is dependent on the observation but is generally expressed in units of [L/T²]. We standardize the unit of flashiness value to be measured in mm/h². In this study, we use the USGS stream gage record at a 15-min time interval, so a conversion factor 0.4078 is applied to convert ft³/s/km²/15-min to mm/h².

Repeating the process of calculating flashiness values at different durations and different frequencies, we can depict the F-IDF curve as shown in Figure 1b for one streamgage site. The shape of the F-IDF is similar to the R-IDF, where intensity decreases with longer duration but increases with event rarity.

There are several noteworthy points in calculating F-IDF values. First, because flash floods typically occur within 6 hr of the causative rainfall, we did not consider events with durations greater than 6 hr. Second, the rationale for selecting seasonal maxima rather than annual maxima is two-fold: (a) Increase sample sizes; (b) Capture multi-modal rainfall peaks across different seasons. Third, we select two extreme value distributions in this study: (a) LP3 distribution and (b) GEV distribution. The LP3 distribution is a common approach in hydrologic frequency analysis, recommended by the US Water Resources Council (England et al., 2017; Singh, 1998). The GEV is an alternative approach that harmonizes the type I, type II, and type III extreme value distributions into a single family to allow a continuous range of possible shapes. Wallis and Wood (1985) compared LP3 and GEV

distribution and found the goodness-of-fit for the two methods varied across different sites, indicating the need to diversify GEV distribution methods. Third, given the short gage record length (average 22.3 years over the entire set of records), we only extrapolate return periods to 100 years; otherwise, there are large uncertainties associated with the fitted GEV model (details refer to Section 3.1).

3. Data

3.1. CONUS-Wide Streamflow

We intended to collect 15-min streamflow time series data for all stream gages over the CONUS from 1950 to 2020. However, not all gauge sites have continuous data, especially at a sub-hourly frequency. A map of stream gage data length distribution is shown in Figure S1 of the Supporting Information S1. We filter out gages that have available data of less than 20 years to ensure enough data samples for fitting the extreme value distributions. There are 3,722 gages left after filtering. Next, we harmonize an equal time interval of 15 min for all stream gages by using linear interpolation because some gages have an interval of 30 min. The linear interpolation method is often used to fill in gaps in streamflow data (Petrone et al., 2010).

3.2. Catchment Attributes

To analyze the flashiness values with basin characteristics, we use the basin attributes from the HydroATLAS data set (Linke et al., 2019). These attributes include eight sections: Hydrology (i.e., annual runoff, precipitation, natural discharge, inundation extent, groundwater table, river area, and river volume), Physiography (i.e., channel slope, catchment slope, elevation, and drainage area), Climate (i.e., annual precipitation, potential evaporation, actual evaporation, climate moisture index, aridity index, air temperature, snow cover), Soils & Geology (i.e., soil water content—average water in soils, clay fraction, silt fraction, sand fraction, karst fraction, soil erosion), Human (i.e., road density, urban density, population), Land Cover (i.e., area extent of trees, shrubs,

herbaceous, cultivated land, water bodies, snow, and artificial lands—constructed or interfered by human rather than formed naturally), Natural Vegetation (i.e., evergreen, deciduous, savanna, grassland, tundra, desert), and Wetland (i.e., lake reservoir, river, and peatland). There are 59 basin attributes in total used in this study. We spatially join these attributes to the catchments of all stream gages and use the values representing the total watershed upstream of the gage. A detailed description of these attributes is provided in Linke et al. (2019).

4. Results

4.1. Mapping CONUS-Wide F-IDF Values

After iterating through steps 1–5 in Section 2.1 for each stream gage, we can map the CONUS-wide F-IDF values. Figure 2 shows the 1-hr flashiness values at six return periods (2-year, 5-year, 10-year, 25-year, 50-year, and 100-year) as an example. Maps for other durations (i.e., 2-hr, 3-hr, 4-hr, 5-hr, and 6-hr) can be found in Figures S2–S6 of the Supporting Information S1. A general observation for these maps as indicated in Figure 1b is that F-IDF values decrease with frequency and duration, in a similar manner as with R-IDF values. We can identify flashy regions in the CONUS by clustering stream gages that have flashiness values larger than 1 (shown in Figure 2). Those five regions are (a) the West Coast, (b) the Missouri Valley, (c) the Appalachians, (d) Flash Flood Alley (Central Texas), and (e) Southwest. The results agree well with Saharia et al. (2017) and Li et al. (2022), despite slight differences in defining the flashiness variable. We also compared our results with real flash flood events from 1970 to 2020 in a newly developed US flood database (Figure S7 in Supporting Information S1; Li et al., 2021). These flash flood events were verified by the US National Weather Service. Our identified regions also emerge, except for the Pacific Northwest region, which has a low incidence of flash flood reports. A similar finding is reached by Smith and Smith (2015), who reported the differences are in nature due to different measures.

The main drivers for flash floods are region-dependent. On the West Coast, the main atmospheric agent for flash flooding is atmospheric rivers, which transport considerable moisture from the tropics to mid-latitudes. Even though atmospheric rivers produce long-duration winter rainfall and snowfall, the steeply sloped terrain and compact watersheds can generate fast-rising runoff (Saharia et al., 2017; Smith & Smith, 2015). Further inland, the contributions of warm-season thunderstorms to flash flood occurrences start to dominate, especially for the Missouri Valley (Region 2) and Flash Flood Alley region (Region 4). Flash floods are frequently instigated by training thunderstorms (a series of thunderstorms passing through the region with only short breaks in between). Flash Flood Alley also bears frequent tropical cyclones and hurricanes off the Gulf Coast. The Appalachians (Region 3) are another known hot spot for flash flooding, extending from Georgia up to Maine. Besides the hilly terrain, extratropical cyclones are the synoptic weather types that frequently hit this region and result in a sequence of flood events (Li et al., 2021). The Southwest (Region 5) is renowned for its hot and dry environment that initiates convective thunderstorms during the North American monsoon season (Smith et al., 2019). Besides the atmospheric forcings, land surface conditions such as impervious area ratio, antecedent soil moisture, ground-water level, catchment drainage density, etc., jointly determine flash flood hazard.

4.2. Causative Analysis Between Extreme Rainfall Events and Flashiness

The primary causative factor of flash floods is extreme rainfall. We associate the F-IDF with the R-IDF on an event basis using flash flood event reports coordinated by the National Weather Service from 1 June 2018 to 31 May 2019 (Li et al., 2021). We retrieve the event rainfall data from the Multi-Radar Multi-Sensor (MRMS) hourly rainfall records for the stream gauge accumulating basin. Subsequently, for respective rainfall event durations (1-hr, 2-hr, 3-hr, 6-hr, 12-hr, and 24-hr), we compare the event rainfall with R-IDF from the NOAA Atlas 14 product to ascertain the return periods. We replicate this process for flashiness to derive flashiness return periods.

Figure 3 illustrates the number of events characterized by different return periods of R-IDF and F-IDF. First, 100-year rainfall events trigger the majority of flash flood events across various rainfall and flash flood event durations, with the only exception being the 1-hr rainfall event where 10-year rainfall induces the maximum number of flash flood events. Second, an upward trend of rainfall return periods correlating with an increase in flash flood events is observed. While lower return periods of flashiness are instigated by all rainfall return periods, rare return periods of flashiness are exclusively triggered by more extreme rainfall. Lastly, a decline in the number of events corresponds with the extension of flash flood event durations, attributable to a greater sample size for shorter-duration flash flood events.

4.3. Geographical Factors Related to Flashiness Values

We present a comprehensive view of factors determining flashiness values by utilizing 59 basin attributes and analyzing their correlation with flashiness. Figure 4a depicts the Spearman Correlation Coefficient (CC) between

	Sum	1641 5 <u>22</u>	370	102 1 <u>45</u>	5 375 3 [.]	55 153	32 560	276	134	117 4	04 3023	1439	513 3	56 1 <u>2</u>	8 123	382 29	941	1317	550 33	4 162	71	388 2822	1236	630 3	14 144	114	341 27 <u>7</u> 9	1219	652 29	1 117	108 34	1 2728
	100	271 88	77	28 44	73 5	81 26	5 69	72	63	19 8	7 575	254	107	58 59	24	76 5	78	224	114 68	3 60	16	69 551	197	123	77 51	24	63 535	191	133 Z	9 33	23 7	0 529
	.00	199 62	51	6 20	42	82 16	7 104	25	8	21	3 269	169	73	48 4	0 01	40 2	62	144	93 2	5 95	5	40 242	125	98	18 25	2	28 220	129	93	24	13 0	2 320
ain	50	000 02	01	10 17	72 3	47	104	25	40	21 4	300	007	07		21		02	040	30 30	23		-10 -542	120	07	20	° I	20 332	100	400	24	15 2	0 400
1hr-r	25	263 97	63	12 12	70 5	17 24	8 104	26	16	26 6	487	227	87 :	56 12	26	60 4	68	213	77 70	14	14	62 450	199	87	ə 9 7	15	62 439	198	100 4	6	15 6	2 426
12	10	355 116	78	15 42	67 6	73 34	8 121	51	18	27 7	3 638	334	95	74 15	5 31	69 6	18	279	122 61	28	19	70 579	282	134	13 26	21	68 574	271	132 5:	2 19	18 6	9 561
	5	341 100	44	23 20	64 5	92 32	1 90	58	17	7 7	6 569	276	87 (69 21	5	75 5	33	283	79 64	20	7	77 530	271	110	26	15	67 531	260	112 4	20	12 6	7 518
	2	212 59	57	18 5	59 4	10 18	3 72	44	12	17 5	8 386	180	64	51 9	16	62 3	82	174	65 36	5 15	10	70 370	162	78	35 9	31	53 368	161	82 2	8 15	27 5	1 364
	Sum	1722 542	378	111 149	393 2	95 160	12 589	284	142	122 4	21 3160	1503	536 2	66 12	1 132	401 20	169	1389	569 34	7 172	72	406 2956	1300	658 2	25 150	118	357 2909	1286	673 20	4 120	113 24	59 2855
	Sum	544 470	450	00 55	407.40		02 000	204	142	FO 4	40 4000	1000	100 4	00 10	1 132	401 30	000	1303	014 40	0 77	07	400 2550	077	000 0	20 70		111 005	050	075 30	4 120	110 00	0 040
	100	511 1/2	156	38 55	137 10	40	0 200	104	67	59 14	49 1039	457	198 1	28 65	52	135 10	39	419	214 13	0 77	21	128 995	3//	224 1	38 76	39	111 965	350	266 12	0 01	43	2 948
j.	50	221 69	46	9 31	53 4	29 21	4 78	24	28	23 4	1 408	193	74 :	37 22	2 32	36 3	94	173	88 47	7 24	16	43 391	165	95	50 19	18	40 387	182	80 4	. 22	18 3	9 382
hr-ra	25	251 90	34	11 19	59 4	64 24	2 96	22	12	10 6	446	226	70 :	53 6	17	59 4	31	201	71 50	20	7	60 409	194	90	14 18	9	58 413	200	83 4	3 3	9 5	9 402
2	10	415 102	83	24 20	76 7	20 38	6 110	67	17	6 9	8 684	347	103	75 20	4	99 6	48	321	114 51	1 25	8	98 617	320	130	38 16	19	90 613	307	126 4	16	16 9	0 596
	5	167 81	37	18 20	38 3	61 17	3 67	43	8	20 4	1 352	167	55	55 8	17	42 3	44	162	50 51	1 10	12	49 334	135	88	33 11	25	33 325	142	87 2	8 19	20 3	2 328
	2	157 28	22	11 4	30 2	52 12	7 38	24	10	4 2	8 231	113	36	18 6	10	30 2	13	113	32 18	3 17	2	28 210	109	31	22 10	8	25 205	105	31 2	9	7 2	7 199
	_																															
	Sum	1738 560	376	111 148	3 397 33	30 16	24 601	286	142	122 4	24 3199	1526	545 3	70 13	1 132	404 31	80	1415	572 35	1 175	73	409 2995	1326	661 3	29 150	0 119	362 2947	1311	676 31	0 120	113 36	55 2895
	100	597 212	175	44 69	165 12	262 55	1 236	126	77	72 1	71 1233	544 :	242 1	51 75	5 67	159 12	238	509	257 15	6 85	35	156 1198	463	273 1	59 80	51	140 1166	440	317 14	5 55	55 14	10 1152
. E	50	251 64	35	7 23	54 4	34 23	9 77	12	20	12 5	6 416	213	59	30 18	3 26	45 3	91	190	74 36	5 29	10	46 385	184	78 4	16 23	10	42 383	201	58 4	5 19	10 4	2 376
nr-ra	25	255 73	73	19 20	55 4	95 23	6 94	41	11	20 8	0 482	211	72	72 12	2 20	82 4	69	180	82 59	9 19	13	87 440	181	108	11 18	29	72 449	185	91 4	6 17	22 7	4 435
3	10	322 122	53	22 27	72 6	18 31	6 114	57	18	10 6	6 581	294	99	72 14	8	64 5	51	286	87 56	5 19	9	70 527	264	123	36 10	24	60 517	247	141 2	9 14	16 5	8 505
	5	164 51	23	13 3	26 2	80 15	i 3 41	24	14	4 2	9 265	148	35 2	26 8	6	30 2	53	130	43 25	5 15	4	27 244	121	50	28 12	1	26 238	124	43 2	5 11	5 2	7 236
	2	149 38	17	6 6	25 2	41 12	9 39	26	2	4 2	2 222	116	38	19 4	5	24 2	06	120	29 19	9 8	2	23 201	113	29	19 7	4	22 194	114	26 1	3 4	5 2	4 191
	Sum	1771 570	376	114 146	5 407 33	384 16	50 609	287	146	123 4	35 3250	1550	556 3	72 13	8 133	413 31	62	1438	590 35	1 180	73	417 3049	1357	673 3	34 152	2 119	371 3006	1342	686 31	7 121	113 37	74 2953
	100	586 194	178	44 70	186 12	258 54	1 229	123	79	73 1	88 1233	554	208 1	59 64	88	169 12	242	533	230 14	6 98	48	165 1220	488	236 1	62 91	66	151 1194	479	272 16	0 59	66 15	55 1191
. <u>e</u>	50	230 66	58	20 16	39 4	29 21	1 89	25	10	25 6	i1 421	178	84	51 20) 16	62 4	11	170	89 55	5 11	9	70 404	141	120 4	15 10	22	55 393	147	106 4	3 13	18 5	4 386
ır-ra	25	240 99	43	8 25	59 4	74 24	1 103	27	22	8 7	2 473	208	90 4	46 23	3 9	72 4	48	186	94 51	1 27	4	70 432	190	111	22	11	62 438	187	109 3	4 21	10 6	1 422
9	10	326 103	55	22 28	51 5	85 32	2 99	64	14	8 4	6 553	295	90 (66 14	8	44 5	17	256	87 60	0 19	5	48 475	250	112	11 14	11	42 470	237	121 2	B 11	11 4	2 450
	5	195 52	25	5 3	42 3	22 15	i1 52	27	8	4 3	8 280	143	40 3	36 4	3	38 2	64	130	41 25	5 7	4	37 244	128	50	20 2	5	35 240	133	40 2	2 5	3 3	6 239
	2	194 56	17	15 4	30 3	16 18	4 37	21	13	5 3	0 290	172	44 ·	14 13	3 9	28 2	80	163	49 14	4 18	3	27 274	160	44 :	24 13	4	26 271	159	38 2	5 12	5 2	6 265
	_										-																					
	Sum	1727 551	372	113 144	409 33	316 160	05 601	284	146	119 4	37 3192	1506	544 3	72 13	9 132	412 31	05	1401 :	574 35	0 177	73	417 2992	1325	657 3	34 147	116	373 2952	1311	671 31	8 116	111 37	75 2902
	100	486 176	171	45 74	171 11	46	5 205	104	69	70 2	01 1114	477	193 1	24 57	84	185 11	20	471	192 13	1 87	36	194 1111	419	206 1	46 85	63	173 1092	405	231 15	1 58	56 18	32 1083
j.	50	195 66	50	12 8	76 4	07 14	7 105	31	15	19 8	3 400	137	86	70 13	3 20	78 4	04	136	107 43	3 18	22	75 401	136	116	14 16	25	66 403	150	116 3	3 13	23 6	6 406
hr-ra	25	244 65	37	21 20	35 4	22 23	4 67	49	20	8 3	2 410	218	57 (66 24	1 7	32 4	04	183	76 65	5 27	3	28 382	174	89	50 16	6	28 373	178	94 4	3 16	11 2	3 365
5	10	328 126	64	10 29	40 5	97 34	5 110	37	20	17 4	7 576	285	110	54 24	1 9	48 5	30	273	99 64	16	4	50 506	258	141	39 13	11	40 502	239	150 3	5 12	12 3	7 486
	5	276 66	33	12 12	37 4	36 25	66 64	44	8	4 3	1 407	243	55	37 9	3	34 3	81	200	58 34	10	5	36 343	203	63	26 7	8	33 340	201	53 2	7 7	6 3	5 329
	2	198 52	17	13 1	50 3	31 15	8 50	19	14	1 4	3 285	146	43 2	21 12	2 9	35 2	66	138	42 13	3 19	3	34 249	135	42	19 10	3	33 242	138	27 2	3 10	3 3	2 233
	Sum	1682 548	369	120 146	5 400 32	265 15	75 599	285	147	124 4:	30 3160	1481	539 3	77 13	8 135	408 30	078	1370	573 35	6 179	74	412 2964	1294	664 3	34 151	117	367 2927	1282	683 31	7 118	112 36	59 2881
	100	427 123	115	29 63	131 8	88 39	6 144	86	35	62 1	56 879	394	152 8	83 34	66	148 8	77	381	166 91	1 47	29	160 874	350	178	95 54	51	143 871	333	203 9	0 45	47 15	50 868
Ë	50	138 100	79	26 16	78 4	37 14	0 105	43	39	10 1	03 440	145	84 8	81 27	20	91 4	48	156	60 78	3 44	10	88 436	132	82	32 38	16	80 430	129	97 8	17	12 8	1 420
24hr-ra	25	250 69	56	13 20	65 4	73 20	6 102	46	29	20 5	1 454	192	82 8	87 17	24	52 4	54	187	105 65	5 24	21	48 450	181	115	53 15	24	46 444	198	114 4	7 14	31 4	1 445
	10	345 90	34	16 17	34 5	36 32	0 102	33	19	13 3	4 521	290	86	44 30) 7	36 4	93	265	97 39	31	5	38 475	251	111	35 24	9	35 465	250	111 3	3 23	7 3	1 455
	5	270 90	60	22 26	55 5	23 29	2 82	46	16	15 5	1 502	267	75	56 23	8 8	47 4	76	216	76 62	2 23	2	46 425	224	114	36 11	8	36 429	212	110 3	8 11	8 3	6 415
	2	252 76	25	14 4	37 4	08 22	1 64	31	9	4 3	5 364	193	60	26 7	10	34 3	30	165	69 21	1 10	7	32 304	156	64	23 9	9	27 288	160	48 2	5 8	7 3	0 278
		25	10	25 50	100 S	um 2	5	10	25	50 1	00 Sum	2	5	10 25	5 50	100 S	um	2	5 10	0 25	50	100 Sum	2	5	10 25	50	100 Sum	2	5 1) 25	50 10	00 Sum
			1hr-fl:	ashines	s			2hr-f	lashin	ess			31	nr-flas	hiness				4hr	r-flashi	iness			51	nr-flash	niness			6h	r-flashir	less	

Figure 3. Heatmaps of numbers of events associated with rainfall return periods (i.e., 2, 5, 10, 25, 50, and 100) and flashiness return periods (i.e., 2, 5, 10, 25, 50, and 100) at different durations. The "Sum" is the summation of event numbers for corresponding columns or rows.

flashiness values and 59 basin attributes across 3,722 gage sites. For each site, we have CCs for six event durations and six return periods, but only the minimum, median, and maximum values are shown in the table. Overall, **climate** exerts the most positive correlation with flashiness values, with annual precipitation ranked 1st place (Median CC = 0.49), followed by actual evaporation and moisture and aridity index (CC = 0.45), and air temperature (CC = 0.32). It's worth noting that the aridity index is positively related to the amount of moisture in the land. In other words, the lower the aridity index, the drier the land is. **Hydrologic variables** are mostly negatively correlated with flashiness in decreasing order: natural discharge (CC = -0.32), degree of regulation (CC = -0.36), river volume (CC = -0.46), and river area (CC = -0.50). The exception is land surface runoff which has a positive CC of 0.43. **Physiographic variables** exhibit a negative correlation with flashiness, with

Geophysical Research Letters

Figure 4. (a) A table of Spearman Correlation Coefficients between flashiness and filtered basin attributes. A single asterisk (*) indicates a 95% confidence level, and two asterisks (**) indicate a 99% confidence level to reject a null hypothesis (zero correlation). (b) Plots of positive and negative correlation coefficients (by aggregating respective variables) with respect to return periods and duration. The black dotted line shows the mean correlation coefficient while the band shows the interquartile range from Q25 to Q75. The significance of the slope is tested against a zero slope using the general linear *F*-statistic with the fitted regression model.

elevation (CC = -0.30) and drainage area (CC = -0.63) being the most significant factors. The **soils & geology** group has a relatively weak association with flashiness. Soil water content has the greatest CC of 0.44 within this class, followed by clay fraction (CC = 0.19), silt fraction (CC = 0.07), and sand fraction (CC = -0.14). The **human** group shows positive correlations with road density (CC = 0.33) and urban density (CC = 0.23) being the most significant ones. The notable features in the **land cover** group are deciduous trees (CC = 0.25), artificial surface (CC = 0.15), herbaceous (CC = -0.30), and deciduous shrubs (CC = -0.43). Similar to land cover, the **natural vegetation** group shows the temperate deciduous region has a positive correlation (CC = 0.22) with flashiness, while grassland (CC = -0.42), open shrub (CC = -0.35), boreal evergreen (CC = -0.27), and boreal deciduous (CC = -0.24) have negative correlations. The **wetland** group does not exhibit a significant positive correlation.

The controlling factors above can be summarized as follows. First, small river reaches tend to have higher flashiness values, as the negative correlations between river area, volume, and natural discharge testify to this point. Second, flood defense infrastructures impede flash flood generation, as indicated by the negative impact of the degree of regulation. Third, flashiness is highly related to wetness or annual precipitation. Fourth, flash floods are typically not snowmelt-driven processes as seen with the weakly negative correlations to snow cover. Fifth, regarding soil types, the degrees of soil types contributing to flashiness are ranked as: clay > silt > sand, which is a reversed order of permeability. Sixth, wet soils, urban density, and road density help generate flash floods by impeding soil infiltration. Lastly, dense vegetation and land cover (e.g., shrub and grassland) increase surface roughness and thus negatively correlate with flashiness.

We divide the 59 factors into positive correlation and negative correlation and plot their respective changes with regard to return periods and durations in Figure 4b. The significance of each slope is tested against a zero slope with the general linear *F*-statistics (Gordon, 2012). As the occurrence of flash flood events becomes less frequent (i.e., larger return period), the absolute correlation coefficient decreases. When reaching higher levels of intensity (i.e., 100-year event), the event flashiness is less influenced by basin attributes as the causative rainfall emerges as the primary driver. The correlation coefficients increase with the duration of the event (see Figures 4b and 4d). Likewise, correlation increases with longer-duration events, as shown in the F-IDF curve in Figure 1b, and becomes more influenced by basin attributes.

5. Discussion

5.1. The Representativeness of Flashiness Index

In this study, we chose the maximum sub-hourly time derivative of streamflow over a time window as the basis for building the F-IDF curves. First, using data collected at a time scale appropriate for the application requires consideration. For investigations of flash flooding, a sub-hourly time step is ideal. Acknowledging many other variants of flashiness indices (Gannon et al., 2022; Kim & Choi, 2011; Saharia et al., 2017, 2021; Smith & Smith, 2015), this approach has several benefits. First, it is fairly simple, reproducible, and easy to comprehend. Second, it represents both the flood magnitude and flood rising limb, which is the nature of the term "flashiness" introduced by Baker et al. (2004).

This study only considers flash flood events with durations less than 6 hr which is a common definition for flash flooding (Clark et al., 2014). But for large basins (where the time of concentration is long) or long-duration storms, this duration of F-IDF can be further extended to 12 and 24 hr by tuning the time window parameter in Equation 1.

5.2. Correlation With Basin Attributes

We calculated the Spearman Correlation Coefficient of flashiness index against 59 basin attributes acquired from the HydroATLAS. As noted, the CC values are generally low (CC < 0.7) for those factors. That is mainly because flash flooding, by nature, is a dynamic weather-driven phenomenon that is challenging to predict by static features (such as basin slope and annual precipitation). Similarly, Smith and Smith (2015) found that most of the CCs of a number of flash flood peaks with basin attributes are lower than 0.6. Second, the CC values are calculated with a uni-variate analysis, but we expect a higher value if we choose a multi-variate analysis, such as regression models and/or machine learning models. Since the main focus of this study is to provide a proof-of-concept of the flashiness index, we will explore the predictability of a statistical model in a future work.

5.3. Implications for Hydrologic Science and Flash Flood Response

Our proposed new metric—F-IDF curve, has implications not only for hydrologic science but also for flash flood preparedness and responses. For the first time, this study quantifies the frequency of flash floods based on the flashiness variable computed from observed streamflow data, which provides a metric of the rapidity and severity of flooding. The same variable and associated analysis can be applied to streamflow simulations from hydrologic models. Then, the forecast flashiness and its associated frequency for a given duration can be provided ahead of time. Weather forecasters can then use such metrics to guide the issuance of flash flood warnings. Additionally, it is worth noting that the implementation of F-IDF curves is model-agnostic, meaning that it can be integrated

into any flood forecast system. Second, for hydrologic modelers, the F-IDF curve provides a means of identifying flash flood events. Prior to this study, the identification of a flash flood event was vague and subjective. A common definition—a flood that occurs within 6 hr of a rainfall event—was too obscure for modelers to identify the start and end date of an event. However, with the help of the F-IDF curve, one can easily establish a quantitative threshold to determine a flash flood event. For instance, in a flood study, a 2-year streamflow return period has often been used as a threshold to identify a flood event, given that this threshold approximately corresponds to an overbank flow rate (Dalrymple, 1960). Similarly, we can use a 2-year flashiness value at a particular duration to sift through flash flood events. Third, for city planners and decision-makers, the existing F-IDF values can inform them of the risk of flash floods in the local area (by providing the hazard component in the risk assessment framework). There are undoubtedly other applications beyond those mentioned here. In summary, this newly introduced metric has implications not only for the scientific community but also for its potential role in the science-informed, policy-making process.

6. Conclusions

This article introduces the F-IDF curve to quantify the intensity, duration, and frequency of flash floods adopting a similar concept of the R-IDF curve. The F-IDF curves are quantified for 3,722 US stream gages. We examined the causative relation between R-IDF and F-IDF using 1-year flash flood events over the US. Additionally, the correlation of flashiness with regard to 59 basin attributes is also explored and discussed. The conclusions are drawn as follows:

- 1. F-IDF curves are capable of revealing the spatial variability of flashy basins across the US and the following places are identified as flash-flood-prone regions: the West Coast, Missouri Valley, Appalachians, Flash Flood Alley in Texas, and the Southwest.
- 2. The flash flood events in the US are predominately triggered by extreme rainfall. An increase in rainfall return periods corresponds to higher return periods of flash flood events.
- 3. Among the explored basin attributes, mean annual precipitation is the most positively correlated with flashiness while the basin's drainage area is the most negatively correlated variable.
- 4. The correlations weaken with increasing return periods and shorter event durations. This is attributable to the extremity of the rainfall overwhelming the influence from underlying basin attributes.

Similar to flood studies, predicting flashiness values in ungauged basins is a grand challenge that warrants scientific exploration. We plan to integrate F-IDF curves into flash flood forecast models over the US and beyond in a future work.

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

The F-IDF values with joined basin attributes at US stream gages are available at Li (2023) with a Creative Commons Attribution 4.0 International license. The basin attributes are retrieved from Linke et al. (2019). The USGS 15-min streamflow time series is downloaded using the software provided by Hodson et al. (2023).

References

Alipour, A., Ahmadalipour, A., Abbaszadeh, P., & Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the Southeast US. *Environmental Research Letters*, 15(2), 024011. https://doi.org/10.1088/1748-9326/ab6edd

Baker, D. B., Richards, R. P., Loftus, T. T., & Kramer, J. W. (2004). A new flashiness index: Characteristics and applications to midwestern rivers and streams. *Journal of the American Water Resources Association*, 40(2), 503–522. https://doi.org/10.1111/j.1752-1688.2004.tb01046.x

Clark, R. A., Gourley, J. J., Flamig, Z. L., Hong, Y., & Clark, E. (2014). CONUS-wide evaluation of national weather service flash flood guidance products. Weather and Forecasting, 29(2), 377–392. https://doi.org/10.1175/WAF-D-12-00124.1

Dalrymple, T. (1960). Flood-frequency analyses, manual of hydrology: Part 3 (No. 1543-A). USGPO. Doswell, C. A., III. (2015). Hydrology, floods and droughts: Flooding. In Encyclopedia of atmospheric sciences (2nd ed., pp. 201–208). https:// doi.org/10.1016/B978-0-12-382225-3.00151-1

Acknowledgments

This work is supported by University of Oklahoma Hydrology and Water Security Program.

Ashley, S. T., & Ashley, W. S. (2008). Flood fatalities in the United States. *Journal of Applied Meteorology and Climatology*, 47(3), 805–818. https://doi.org/10.1175/2007jamc1611.1

- England, J. F., Jr., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, W. O., Jr., Veilleux, A. G., et al. (2017). Guidelines for determining flood flow frequency—Bulletin 17C: U.S. geological survey techniques and methods book 4, chapter B5. (p. 148). https://doi.org/10.3133/tm4B5. March2018
- Gannon, J., Kelleher, C., & Zimmer, M. (2022). Controls on watershed flashiness across the continental US. Journal of Hydrology, 609, 127713. https://doi.org/10.1016/j.jhydrol.2022.127713
- Georgakakos, K. P. (1986). On the design of national real-time warning systems with capability for site-specific, flash-flood forecasts. Bulletin of the American Meteorological Society, 67(10), 1233–1239. https://doi.org/10.1175/1520-0477(1986)067<1233:otdonr>2.0.co;2
- Georgakakos, K. P., Modrick, T. M., Shamir, E., Campbell, R., Cheng, Z., Jubach, R., et al. (2022). Flash flood guidance system implementation worldwide: A successful multidecadal research-to-operation effort. *Bulletin of the American Meteorological Society*, 103(1), E1–E22. https:// doi.org/10.1175/BAMS-D-20-0032.1

Gordon, R. A. (2012). Applied statistics for the social and health sciences. Routledge.

- Gourley, J. J., Hong, Y., Flamig, Z. L., Arthur, A., Clark, R., Calianno, M., et al. (2013). A unified flash flood database across the United States. Bulletin of the American Meteorological Society, 94(6), 799–805. https://doi.org/10.1175/BAMS-D-12-00198.1
- Hodson, T. O., Hariharan, J. A., Black, S., & Horsburgh, J. S. (2023). Dataretrieval (Python): a Python package for discovering and retrieving water data available from U.S. federal hydrologic web services. U.S. Geological Survey Software Release. https://doi.org/10.5066/P9415TX3
- Hong, Y., Adhikari, P., & Gourley, J. J. (2013). Flash flood. In P. T. Bobrowsky (Ed.), Encyclopedia of natural hazards. Encyclopedia of Earth sciences series. Springer. https://doi.org/10.1007/978-1-4020-4399-4_136
- Kim, E., & Choi, H. (2011). Assessment of vulnerability to extreme flash floods in design storms. International Journal of Environmental Research and Public Health, 8(7), 2907–2922. https://doi.org/10.3390/ijerph8072907
- Li, Z. (2023). F-IDF values at USGS stream gage sites (v1.0) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7806694
- Li, Z., Chen, M., Gao, S., Gourley, J. J., Yang, T., Shen, X., et al. (2021). A multi-source 120-year US flood database with a unified common format and public access. *Earth System Science Data*, 13(8), 3755–3766. https://doi.org/10.5194/essd-13-3755-2021
- Li, Z., Gao, S., Chen, M., Gourley, J., Liu, C., Prein, A. F., & Hong, Y. (2022). The conterminous United States are projected to become more prone to flash floods in a high-end emissions scenario. *Communications Earth and Environment*, 3(1), 86. https://doi.org/10.1038/ s43247-022-00409-6
- Lin, K., Chen, H., Xu, C., Yan, P., Lan, T., Liu, Z., & Dong, C. (2020). Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. *Journal of Hydrology*, 584, 124696. https://doi.org/10.1016/j. jhydrol.2020.124696
- Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., et al. (2019). Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. *Scientific Data*, 6(1), 283. https://doi.org/10.1038/s41597-019-0300-6
- Ma, M., Liu, C., Zhao, G., Xie, H., Jia, P., Wang, D., et al. (2019). Flash flood risk analysis based on machine learning techniques in the Yunnan Province, China. *Remote Sensing*, 11(2), 170. https://doi.org/10.3390/rs11020170
- Perica, S., Martin, D., Pavlovic, S., Roy, I., Laurent, M. S., Trypaluk, C. A. R. L., et al. (2013). NOAA atlas 14 volume 9 version 2, precipitation-frequency atlas of the United States, southeastern states (p. 18). NOAA, National Weather Service.
- Petrone, K. C., Hughes, J. D., Van Niel, T. G., & Silberstein, R. P. (2010). Streamflow decline in southwestern Australia, 1950–2008. Geophysical Research Letters, 37(11), L11401. https://doi.org/10.1029/2010GL043102
- Saharia, M., Kirstetter, P.-E., Vergara, H., Gourley, J. J., Emmanuel, I., & Andrieu, H. (2021). On the impact of rainfall spatial variability, geomorphology, and climatology on flash floods. *Water Resources Research*, 57(9), e2020WR029124. https://doi.org/10.1029/2020WR029124
- Saharia, M., Kirstetter, P. E., Vergara, H., Gourley, J. J., Hong, Y., & Giroud, M. (2017). Mapping flash flood severity in the United States. Journal of Hydrometeorology, 18(2), 397–411. https://doi.org/10.1175/jhm-d-16-0082.1
- Singh, V. P. (1998). Log-Pearson type III distribution. In Entropy-based parameter estimation in hydrology. Water science and technology library (Vol. 30). Springer. https://doi.org/10.1007/978-94-017-1431-0_15
- Smith, B. K., & Smith, J. A. (2015). The flashiest watersheds in the contiguous United States. Journal of Hydrometeorology, 16(6), 2365–2381. https://doi.org/10.1175/JHM-D-14-0217.1
- Smith, J. A., Baeck, M. L., Yang, L., Signell, J., Morin, E., & Goodrich, D. C. (2019). The paroxysmal precipitation of the desert: Flash floods in the southwestern United States. *Water Resources Research*, 55(12), 10218–10247. https://doi.org/10.1029/2019WR025480
- Wallis, J. R., & Wood, E. F. (1985). Relative accuracy of Log Pearson III procedures. Journal of Hydraulic Engineering, 111(7), 1043–1057. https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043)