
1.  Introduction
Flash floods are a type of flood that occurs within minutes to several hours of heavy rainfall or other causes 
(Doswell III, 2015; Gourley et al., 2013; Hong et al., 2013). In recent years, fatalities and damages caused by 
flash flooding have been increasing worldwide, making it one of the most destructive weather types (Ashley & 
Ashley, 2008).

To identify flash flood risks, researchers have sought various approaches. One of the most common practices for 
flash flood warnings over the US and the world is the Flash Flood Guidance (FFG) (Georgakakos et al., 2022). It 
has been adopted as the operational early warning system for flash flooding by the US National Weather Service 
since the 1970s (Georgakakos, 1986). FFG is defined as an estimate of total rainfall that causes bankful flow. 
As it suggests, this method does not take into account the full continuum of land surface responses to extreme 
rainfall and river routing processes. Beyond FFG, there are other attempts to quantify flash flood risks. We 
generalize them into event-dependent and event-independent approaches. An event-dependent approach directly 
calculates flash flood risks based on archived flash flood events (Alipour et  al.,  2020) or a flashiness index 
(Gannon et al., 2022; Li et al., 2022; Saharia et al., 2017, 2021; Smith & Smith, 2015). The term flashiness index 
was introduced to measure how quickly and how high streamflow rises in an event (Baker et al., 2004). Among 
variants of the flashiness index, the Richards-Baker Flashiness Index (RBI) is one of the earliest indices, denoted 
by the time derivative of daily streamflow (Baker et al., 2004). Gannon et al. (2022) evaluated the RBI at daily 
time scales and found little or no correspondence between basin responses and watershed areas. This result 
differs from Saharia et al. (2017) who revealed a significant relationship of increasing flashiness with smaller 
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watersheds, with the discrepancy being attributed to the latter study's use of sub-hourly stream gage data instead 
of daily. Since it is event-dependent, this approach presumably delivers accurate and precise results. Alterna-
tively, an event-independent approach seeks a statistical model that relates climate variables and basin physiog-
raphy to flash flood risks (Lin et al., 2020; Ma et al., 2019). In doing so, this approach bypasses the requirement 
for observations, which is particularly useful in ungauged basins or rural regions. Its validity, however, requires 
particular attention.

Given the dense stream gage network in the US, we propose a new method using the flashiness index applied 
to specific events. Although the definition of flashiness is diverse, this study adopts the approach of estimating 
the slope of the rising limb of the hydrograph. The flashiness index used in previous studies is only a static 
quantity that is irrespective of event frequency and duration (Li et al., 2022; Saharia et al., 2017, 2021; Smith & 
Smith, 2015). Weather forecasters, emergency responders, and the public are particularly concerned about the 
risk of a flash flood event, which can be quantified by frequency. Additionally, we particularly value the repre-
sentativeness of this index with respect to simplicity and reproducibility. In light of these concerns, we adopt the 
idea from the Rainfall Intensity-Duration-Frequency (R-IDF) curve that encapsulates three-dimensional informa-
tion of a rainfall event (Perica et al., 2013), and apply it to quantify a flash flood event. Hence, we introduce the 
Flashiness-Intensity-Duration-Frequency (F-IDF) curve for the first time. Similar to the R-IDF curve, the F-IDF 
curve describes the intensity (based on flashiness values), duration, and frequency of flash flood events. We 
envision that such a measure has practical implications in flash flood forecasting and risk management. The aim 
of this article is threefold: (a) introducing the methods of calculating a F-IDF curve; (b) mapping F-IDF values for 
all US stream gages; and (c) investigating geographical and hydrometeorological factors associated with F-IDF 
values. The newly introduced F-IDF curve can be applied to observed or simulated hydrographs, meaning that it 
can be integrated into any flood forecast system.

2.  Materials and Methods
2.1.  Flashiness-Intensity-Duration-Frequency

The F-IDF curves in this study are computed as follows: (a) Select flood events by which streamflow exceeds a 
2-year threshold; (b) Find the maximum rising (positive) slope S of a hydrograph using a recursive moving time 
window (i.e., D = 1, 2, 3, 4, 5, and 6 hr); (c) Concatenate flashiness values and extract the seasonal maxima for 
each duration D; (d) Fit the seasonal maxima into a general extreme value distribution (GEV) and logPearson 
Type III distribution (LP3); (e) Find an optimal fit based on the Bayesian Information Criterion; and (f) Return 
flashiness values for different frequencies (i.e., 1-in-2-year, 1-in-5-year, 1-in-10-year, 1-in-25-year, 1-in-50-year, 
and 1-in-100-year). The resulting flashiness value F is a measure of rapidness and magnitude changes over the 
time window and is represented in Equation 1. An illustrative example is given in Figure 1a.

𝐹𝐹 =
max{𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑡𝑡−1, 𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑡𝑡−2, . . .𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑡𝑡−𝑑𝑑}

FAC × 𝑑𝑑
,� (1)

where Ot is the observed streamflow time series at time t, d is the duration, FAC is the drainage area (km 2). The 
unit of F is dependent on the observation but is generally expressed in units of [L/T 2]. We standardize the unit of 
flashiness value to be measured in mm/h 2. In this study, we use the USGS stream gage record at a 15-min time 
interval, so a conversion factor 0.4078 is applied to convert ft 3/s/km 2/15-min to mm/h 2.

Repeating the process of calculating flashiness values at different durations and different frequencies, we can 
depict the F-IDF curve as shown in Figure 1b for one streamgage site. The shape of the F-IDF is similar to the 
R-IDF, where intensity decreases with longer duration but increases with event rarity.

There are several noteworthy points in calculating F-IDF values. First, because flash floods typically occur within 
6 hr of the causative rainfall, we did not consider events with durations greater than 6 hr. Second, the rationale 
for selecting seasonal maxima rather than annual maxima is two-fold: (a) Increase sample sizes; (b) Capture 
multi-modal rainfall peaks across different seasons. Third, we select two extreme value distributions in this 
study: (a) LP3 distribution and (b) GEV distribution. The LP3 distribution is a common approach in hydrologic 
frequency analysis, recommended by the US Water Resources Council (England et al., 2017; Singh, 1998). The 
GEV is an alternative approach that harmonizes the type I, type II, and type III extreme value distributions into 
a single family to allow a continuous range of possible shapes. Wallis and Wood (1985) compared LP3 and GEV 
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distribution and found the goodness-of-fit for the two methods varied across different sites, indicating the need to 
diversify GEV distribution methods. Third, given the short gage record length (average 22.3 years over the entire 
set of records), we only extrapolate return periods to 100 years; otherwise, there are large uncertainties associated 
with the fitted GEV model (details refer to Section 3.1).

3.  Data
3.1.  CONUS-Wide Streamflow

We intended to collect 15-min streamflow time series data for all stream gages over the CONUS from 1950 to 
2020. However, not all gauge sites have continuous data, especially at a sub-hourly frequency. A map of stream 
gage data length distribution is shown in Figure S1 of the Supporting Information S1. We filter out gages that 
have available data of less than 20 years to ensure enough data samples for fitting the extreme value distributions. 
There are 3,722 gages left after filtering. Next, we harmonize an equal time interval of 15 min for all stream gages 
by using linear interpolation because some gages have an interval of 30 min. The linear interpolation method is 
often used to fill in gaps in streamflow data (Petrone et al., 2010).

3.2.  Catchment Attributes

To analyze the flashiness values with basin characteristics, we use the basin attributes from the HydroATLAS 
data set (Linke et al., 2019). These attributes include eight sections: Hydrology (i.e., annual runoff, precipita-
tion, natural discharge, inundation extent, groundwater table, river area, and river volume), Physiography (i.e., 
channel slope, catchment slope, elevation, and drainage area), Climate (i.e., annual precipitation, potential evap-
oration, actual evaporation, climate moisture index, aridity index, air temperature, snow cover), Soils & Geology 
(i.e., soil water content—average water in soils, clay fraction, silt fraction, sand fraction, karst fraction, soil 
erosion), Human (i.e., road density, urban density, population), Land Cover (i.e., area extent of trees, shrubs, 

Figure 1.  (a) An illustrative example of calculating Flashiness-Intensity-Duration-Frequency values. The figure is produced 
with the Python Matplotlib library; (b) the empirical F-IDF plot and points are real events that surpass 2-year flashiness 
values.
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herbaceous,  cultivated land, water bodies, snow, and artificial lands—constructed or interfered by human rather 
than formed naturally), Natural Vegetation (i.e., evergreen, deciduous, savanna, grassland, tundra, desert), and 
Wetland (i.e., lake reservoir, river, and peatland). There are 59 basin attributes in total used in this study. We 
spatially join these attributes to the catchments of all stream gages and use the values representing the total water-
shed upstream of the gage. A detailed description of these attributes is provided in Linke et al. (2019).

4.  Results
4.1.  Mapping CONUS-Wide F-IDF Values

After iterating through steps 1–5 in Section 2.1 for each stream gage, we can map the CONUS-wide F-IDF values. 
Figure 2 shows the 1-hr flashiness values at six return periods (2-year, 5-year, 10-year, 25-year, 50-year, and 
100-year) as an example. Maps for other durations (i.e., 2-hr, 3-hr, 4-hr, 5-hr, and 6-hr) can be found in Figures 
S2–S6 of the Supporting Information S1. A general observation for these maps as indicated in Figure 1b is 
that F-IDF values decrease with frequency and duration, in a similar manner as with R-IDF values. We 
can identify flashy regions in the CONUS by clustering stream gages that have flashiness values larger than 1 
(shown in Figure 2). Those five regions are (a) the West Coast, (b) the Missouri Valley, (c) the Appalachians, 
(d) Flash Flood Alley (Central Texas), and (e) Southwest. The results agree well with Saharia et al. (2017) and 
Li et al. (2022), despite slight differences in defining the flashiness variable. We also compared our results with 
real flash flood events from 1970 to 2020 in a newly developed US flood database (Figure S7 in Supporting 
Information S1; Li et al., 2021). These flash flood events were verified by the US National Weather Service. Our 
identified regions also emerge, except for the Pacific Northwest region, which has a low incidence of flash flood 
reports. A similar finding is reached by Smith and Smith (2015), who reported the differences are in nature due 
to different measures.

The main drivers for flash floods are region-dependent. On the West Coast, the main atmospheric agent for flash 
flooding is atmospheric rivers, which transport considerable moisture from the tropics to mid-latitudes. Even 
though atmospheric rivers produce long-duration winter rainfall and snowfall, the steeply sloped terrain and 
compact watersheds can generate fast-rising runoff (Saharia et al., 2017; Smith & Smith, 2015). Further inland, 
the contributions of warm-season thunderstorms to flash flood occurrences start to dominate, especially for the 
Missouri Valley (Region 2) and Flash Flood Alley region (Region 4). Flash floods are frequently instigated by 
training thunderstorms (a series of thunderstorms passing through the region with only short breaks in between). 
Flash Flood Alley also bears frequent tropical cyclones and hurricanes off the Gulf Coast. The Appalachians 
(Region 3) are another known hot spot for flash flooding, extending from Georgia up to Maine. Besides the 
hilly terrain, extratropical cyclones are the synoptic weather types that frequently hit this region and result in a 
sequence of flood events (Li et al., 2021). The Southwest (Region 5) is renowned for its hot and dry environment 
that initiates convective thunderstorms during the North American monsoon season (Smith et al., 2019). Besides 
the atmospheric forcings, land surface conditions such as impervious area ratio, antecedent soil moisture, ground-
water level, catchment drainage density, etc., jointly determine flash flood hazard.

4.2.  Causative Analysis Between Extreme Rainfall Events and Flashiness

The primary causative factor of flash floods is extreme rainfall. We associate the F-IDF with the R-IDF on an 
event basis using flash flood event reports coordinated by the National Weather Service from 1 June 2018 to 31 
May 2019 (Li et al., 2021). We retrieve the event rainfall data from the Multi-Radar Multi-Sensor (MRMS) hourly 
rainfall records for the stream gauge accumulating basin. Subsequently, for respective rainfall event durations 
(1-hr, 2-hr, 3-hr, 6-hr, 12-hr, and 24-hr), we compare the event rainfall with R-IDF from the NOAA Atlas 14 
product to ascertain the return periods. We replicate this process for flashiness to derive flashiness return periods.

Figure 3 illustrates the number of events characterized by different return periods of R-IDF and F-IDF. First, 
100-year rainfall events trigger the majority of flash flood events across various rainfall and flash flood event 
durations, with the only exception being the 1-hr rainfall event where 10-year rainfall induces the maximum 
number of flash flood events. Second, an upward trend of rainfall return periods correlating with an increase in 
flash flood events is observed. While lower return periods of flashiness are instigated by all rainfall return peri-
ods, rare return periods of flashiness are exclusively triggered by more extreme rainfall. Lastly, a decline in the 
number of events corresponds with the extension of flash flood event durations, attributable to a greater sample 
size for shorter-duration flash flood events.
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4.3.  Geographical Factors Related to Flashiness Values

We present a comprehensive view of factors determining flashiness values by utilizing 59 basin attributes and 
analyzing their correlation with flashiness. Figure 4a depicts the Spearman Correlation Coefficient (CC) between 

Figure 2.  Maps of F-IDF values at 1-hr duration. Highlighted (numbers from 1 to 5) regions are clustered flashy regions in the CONUS. 1: West Coast; 2: Missouri 
Valley; 3: the Appalachians; 4: Flash Flood Alley; and 5: Southwest.
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flashiness values and 59 basin attributes across 3,722 gage sites. For each site, we have CCs for six event dura-
tions and six return periods, but only the minimum, median, and maximum values are shown in the table. Overall, 
climate exerts the most positive correlation with flashiness values, with annual precipitation ranked 1st place 
(Median CC = 0.49), followed by actual evaporation and moisture and aridity index (CC = 0.45), and air temper-
ature (CC = 0.32). It’s worth noting that the aridity index is positively related to the amount of moisture in 
the land. In other words, the lower the aridity index, the drier the land is. Hydrologic variables are mostly 
negatively correlated with flashiness in decreasing order: natural discharge (CC = −0.32), degree of regulation 
(CC = −0.36), river volume (CC = −0.46), and river area (CC = −0.50). The exception is land surface runoff 
which has a positive CC of 0.43. Physiographic variables exhibit a negative correlation with flashiness, with 

Figure 3.  Heatmaps of numbers of events associated with rainfall return periods (i.e., 2, 5, 10, 25, 50, and 100) and flashiness return periods (i.e., 2, 5, 10, 25, 50, and 
100) at different durations. The “Sum” is the summation of event numbers for corresponding columns or rows.
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elevation (CC = −0.30) and drainage area (CC = −0.63) being the most significant factors. The soils & geology 
group has a relatively weak association with flashiness. Soil water content has the greatest CC of 0.44 within 
this class, followed by clay fraction (CC = 0.19), silt fraction (CC = 0.07), and sand fraction (CC = −0.14). The 
human group shows positive correlations with road density (CC = 0.33) and urban density (CC = 0.23) being 
the most significant ones. The notable features in the land cover group are deciduous trees (CC = 0.25), artificial 
surface (CC = 0.15), herbaceous (CC = −0.30), and deciduous shrubs (CC = −0.43). Similar to land cover, the 
natural vegetation group shows the temperate deciduous region has a positive correlation (CC = 0.22) with 
flashiness, while grassland (CC = −0.42), open shrub (CC = −0.35), boreal evergreen (CC = −0.27), and boreal 
deciduous (CC = −0.24) have negative correlations. The wetland group does not exhibit a significant positive 
correlation.

Figure 4.  (a) A table of Spearman Correlation Coefficients between flashiness and filtered basin attributes. A single asterisk 
(*) indicates a 95% confidence level, and two asterisks (**) indicate a 99% confidence level to reject a null hypothesis 
(zero correlation). (b) Plots of positive and negative correlation coefficients (by aggregating respective variables) with 
respect to return periods and duration. The black dotted line shows the mean correlation coefficient while the band shows 
the interquartile range from Q25 to Q75. The significance of the slope is tested against a zero slope using the general linear 
F-statistic with the fitted regression model.
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The controlling factors above can be summarized as follows. First, small river reaches tend to have higher flash-
iness values, as the negative correlations between river area, volume, and natural discharge testify to this point. 
Second, flood defense infrastructures impede flash flood generation, as indicated by the negative impact of the 
degree of regulation. Third, flashiness is highly related to wetness or annual precipitation. Fourth, flash floods 
are typically not snowmelt-driven processes as seen with the weakly negative correlations to snow cover. Fifth, 
regarding soil types, the degrees of soil types contributing to flashiness are ranked as: clay > silt > sand, which 
is a reversed order of permeability. Sixth, wet soils, urban density, and road density help generate flash floods 
by impeding soil infiltration. Lastly, dense vegetation and land cover (e.g., shrub and grassland) increase surface 
roughness and thus negatively correlate with flashiness.

We divide the 59 factors into positive correlation and negative correlation and plot their respective changes 
with regard to return periods and durations in Figure 4b. The significance of each slope is tested against a zero 
slope with the general linear F-statistics (Gordon, 2012). As the occurrence of flash flood events becomes less 
frequent (i.e., larger return period), the absolute correlation coefficient decreases. When reaching higher levels of 
intensity (i.e., 100-year event), the event flashiness is less influenced by basin attributes as the causative rainfall 
emerges as the primary driver. The correlation coefficients increase with the duration of the event (see Figures 4b 
and 4d). Likewise, correlation increases with longer-duration events, as shown in the F-IDF curve in Figure 1b, 
and becomes more influenced by basin attributes.

5.  Discussion
5.1.  The Representativeness of Flashiness Index

In this study, we chose the maximum sub-hourly time derivative of streamflow over a time window as the basis 
for building the F-IDF curves. First, using data collected at a time scale appropriate for the application requires 
consideration. For investigations of flash flooding, a sub-hourly time step is ideal. Acknowledging many other 
variants of flashiness indices (Gannon et  al.,  2022; Kim & Choi, 2011; Saharia et  al.,  2017, 2021; Smith & 
Smith, 2015), this approach has several benefits. First, it is fairly simple, reproducible, and easy to comprehend. 
Second, it represents both the flood magnitude and flood rising limb, which is the nature of the term “flashiness” 
introduced by Baker et al. (2004).

This study only considers flash flood events with durations less than 6 hr which is a common definition for flash 
flooding (Clark et  al.,  2014). But for large basins (where the time of concentration is long) or long-duration 
storms, this duration of F-IDF can be further extended to 12 and 24 hr by tuning the time window parameter in 
Equation 1.

5.2.  Correlation With Basin Attributes

We calculated the Spearman Correlation Coefficient of flashiness index against 59 basin attributes acquired 
from the HydroATLAS. As noted, the CC values are generally low (CC < 0.7) for those factors. That is mainly 
because flash flooding, by nature, is a dynamic weather-driven phenomenon that is challenging to predict by 
static features (such as basin slope and annual precipitation). Similarly, Smith and Smith (2015) found that most 
of the CCs of a number of flash flood peaks with basin attributes are lower than 0.6. Second, the CC values 
are calculated with a uni-variate analysis, but we expect a higher value if we choose a multi-variate analysis, 
such as regression models and/or machine learning models. Since the main focus of this study is to provide a 
proof-of-concept of the flashiness index, we will explore the predictability of a statistical model in a future work.

5.3.  Implications for Hydrologic Science and Flash Flood Response

Our proposed new metric—F-IDF curve, has implications not only for hydrologic science but also for flash flood 
preparedness and responses. For the first time, this study quantifies the frequency of flash floods based on the 
flashiness variable computed from observed streamflow data, which provides a metric of the rapidity and severity 
of flooding. The same variable and associated analysis can be applied to streamflow simulations from hydrologic 
models. Then, the forecast flashiness and its associated frequency for a given duration can be provided ahead of 
time. Weather forecasters can then use such metrics to guide the issuance of flash flood warnings. Additionally, 
it is worth noting that the implementation of F-IDF curves is model-agnostic, meaning that it can be integrated 



Geophysical Research Letters

LI ET AL.

10.1029/2023GL104992

9 of 10

into any flood forecast system. Second, for hydrologic modelers, the F-IDF curve provides a means of identify ing 
flash flood events. Prior to this study, the identification of a flash flood event was vague and subjective. A 
common definition—a flood that occurs within 6 hr of a rainfall event—was too obscure for modelers to identify 
the start and end date of an event. However, with the help of the F-IDF curve, one can easily establish a quantita-
tive threshold to determine a flash flood event. For instance, in a flood study, a 2-year streamflow return period 
has often been used as a threshold to identify a flood event, given that this threshold approximately corresponds to 
an overbank flow rate (Dalrymple, 1960). Similarly, we can use a 2-year flashiness value at a particular duration 
to sift through flash flood events. Third, for city planners and decision-makers, the existing F-IDF values can 
inform them of the risk of flash floods in the local area (by providing the hazard component in the risk assessment 
framework). There are undoubtedly other applications beyond those mentioned here. In summary, this newly 
introduced metric has implications not only for the scientific community but also for its potential role in the 
science-informed, policy-making process.

6.  Conclusions
This article introduces the F-IDF curve to quantify the intensity, duration, and frequency of flash floods adopting 
a similar concept of the R-IDF curve. The F-IDF curves are quantified for 3,722 US stream gages. We examined 
the causative relation between R-IDF and F-IDF using 1-year flash flood events over the US. Additionally, the 
correlation of flashiness with regard to 59 basin attributes is also explored and discussed. The conclusions are 
drawn as follows:

1.	 �F-IDF curves are capable of revealing the spatial variability of flashy basins across the US and the follow-
ing places are identified as flash-flood-prone regions: the West Coast, Missouri Valley, Appalachians, Flash 
Flood Alley in Texas, and the Southwest.

2.	 �The flash flood events in the US are predominately triggered by extreme rainfall. An increase in rainfall return 
periods corresponds to higher return periods of flash flood events.

3.	 �Among the explored basin attributes, mean annual precipitation is the most positively correlated with flashi-
ness while the basin's drainage area is the most negatively correlated variable.

4.	 �The correlations weaken with increasing return periods and shorter event durations. This is attributable to the 
extremity of the rainfall overwhelming the influence from underlying basin attributes.

Similar to flood studies, predicting flashiness values in ungauged basins is a grand challenge that warrants scien-
tific exploration. We plan to integrate F-IDF curves into flash flood forecast models over the US and beyond in 
a future work.
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