

Journal of Geophysical Research

Supporting Information for

Development and Evaluation of a North America Ensemble Wildfire Air Quality Forecast: Initial Application to the 2020 Western United States "Gigafire"

P. Makkaroon¹, D.Q. Tong^{1,2}, Y. Li¹, E. J. Hyer³, P. Xian³, S. Kondragunta⁴, P. C. Campbell^{2,5}, Y. Tang^{2,5}, B. D. Baker⁵, M. D. Cohen⁵, A. Darmenov⁶, A. Lyapustin⁶, R. D. Saylor⁵, Y. Wang⁷, I. Stajner⁸

¹Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA, USA

²Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA

³Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA

⁴Center for Satellite Applications and Research, NOAA/NESDIS, College Park, MD, USA

⁵NOAA Air Resources Laboratory, College Park, MD, USA

⁶NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁷University of Maryland Baltimore County, Baltimore, MD, USA

⁸National Centers for Environmental Prediction, NOAA National Weather Service, College Park, MD, USA

Contents of this file

Tables S1, S2

Introduction

The configurations of participating models are included in the ensemble forecast. And the evaluation results for the weighted ensemble.

Table S1. The configurations of participating models are included in the ensemble forecast.

Air Quality Model	Operational/ Research Center	Domain	IC/BC (for regional model)	Grid Spacing	Fire Emission	Plume Rise Scheme	Other Emission
GMU- CMAQ	GMU	CONUS	Meteorology: GFS Chemical: GEOS5	12km×12km	GBBEPx (Zhang et al., 2012, 2014, 2019)	Sofiev 2012	Anthropogenic, biogenic, dust, seasalt
NACC- CMAQ	NOAA/GMU	CONUS	Meteorology: GFS Chemical: GEFS- Aerosol	12km×12km	GBBEPx (Zhang et al., 2012, 2014, 2019)	Briggs 1969	Anthropogenic, biogenic, dust
HYSPLIT	NOAA	CONUS	Meteorology: NAM Chemical: N/A	0.15°×0.15°	NOAA NESDIS Hazard Mapping System; USFS BlueSky (Larkin et al., 2009)	Briggs 1969	N/A
GEOS	NASA	Global	-	12km×12km, with output at 0.25°×0.3125°	QFED (Darmenov and da Silva, 2015)	Distributed in the PBL	Anthropogenic, biogenic, dust, seasalt, volcano

GEFS- Aerosol	NOAA	Global	-	0.25°×0.25°	GBBEPx (Zhang et al., 2012, 2014, 2019)	Freitas 2007	Anthropogenic, dust, seasalt
ICAP- MME	NRL	Global	-	1°×1°	Varies (Xian et al., 2019)	Varies (Xian et al., 2019)	Varies
NAAPS	NRL	Global	-	0.333×0.333°	FLAMBE (Reid et al., 2009)	Distributed uniformly through the bottom 4 layers	Anthropogenic, biogenic, dust, seasalt

GMU: George Mason University

CMAQ: The Community Multiscale Air Quality Modeling System

NACC: National Oceanic and Atmospheric Administration-U.S. Environmental Protection Agency Atmosphere-Chemistry Coupler

HYSPLIT: Hybrid Single-Particle Lagrangian Integrated Trajectory

GEOS: Goddard Earth Observing System

GEFS: Global Ensemble Forecast System Aerosols

ICAP-MME: International Cooperative for Aerosol Prediction Multi-Model aerosol forecasting Ensemble

NAAPS: Navy Aerosol Analysis and Prediction System

NOAA: National Oceanic and Atmospheric Administration

NASA: National Aeronautics and Space Administration

NRL: Naval Research Laboratory

GFS: Global Forecast System

NAM: North American Mesoscale Forecast System

GBBEPx: Blended Global Biomass Burning Emissions Product

HMS: Hazard Mapping System

QFED: Quick Fire Emissions Dataset

FLAMBE: Fire Locating and Modeling of Burning Emissions

Table S2. Evaluation surface $PM_{2.5}$ prediction compared to EPA Airnow measurements for the days has all individual model forecast available.

	Ensemble Mean	Weighted Ensemble Mean
RMSE (mg/m ³)	33.26	10.80
CORR	0.52	0.57
NMB	0.38	-0.22
NME	0.66	0.47
$MB (mg/m^3)$	3.9	-2.24
ME (mg/m ³)	6.67	4.74
аН	97.84	79.28
aFAR	14.69	6.21