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Highlights 

● The Hydrodynamic response to bathymetric changes is investigated for Tampa Bay. 

● Numerical experiments are conducted using original and synthetic bathymetry. 

● Local changes in tides and currents are found due to bathymetric changes. 

● These local changes can propagate throughout the bay. 

● Accurate bathymetry is essential for coastal ocean modeling applications. 
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ABSTRACT 

Bathymetric changes within estuarine and coastal waters can alter the hydrodynamic evolution of 

sea level and currents, which in turn can influence the ecosystem by altering material property 

distributions. Here we apply the Tampa Bay Coastal Ocean Model (TBCOM), with an 

unstructured, high-resolution grid to investigate the hydrodynamic response to bathymetric 

changes at the periphery of the Tampa Bay mouth over a relatively small area when compared to 

the whole model domain. Two separate numerical experiments are conducted with the same 

forcing, one using the original bathymetry and the other employing a revised synthetic 

bathymetry. The simulated sea level, amplitude and phase of the M2 tide, and associated currents 

are compared for the two experiments. Significant changes in water level (up to +/-10 cm) and 

current velocities (up to 20 cm/s) are found in the shallow peripheral area with the two different 

bathymetric data sets. These bathymetric influences are not limited to the locations where the 

bathymetric changes occur; they also extend remotely to areas of the bay. Since Tampa Bay 

bathymetry varies with storm-induced sediment redistributions and human actives such as 

shipping channel dredging and beach nourishment, these findings emphasize the need for 

accurate and updated bathymetry for coastal ocean modeling and applications. 

Keywords Numerical Model, Water level, Coastal ocean circulation, Sensitivity study, 

Bathymetry 
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1. Introduction 

Coastal areas have rapidly growing populations, with approximately 3 billion people 

already living within 200 kilometers of the coastline (Creel 2023). As of 2014, United States 

coastal counties housed 127 million people, which is as much as the entire population of Japan 

(NOAA’s National Coastal Population Report: Population Trends from 1970 to 2020, 

https://aambpublicoceanservice.blob.core.windows.net/oceanserviceprod/facts/coastal-populatio 

n-report.pdf). While containing nearly 40% of the United States population, coastal counties 

account for less than 10% of the total continental United States land mass. With economies 

fueled by tourism and recreation, marine commerce, aquaculture and offshore energy, coastal 

communities face challenges from sea level rise, high-tide flooding, beach erosion, waste 

disposal and hurricanes, all of which require adequate modeling systems for assessing 

environmental impacts of both natural and human-induced changes (e.g. Amoudry and 

Souza,2011). 

Essential to any coastal ocean or estuary model is accurate underlying bathymetry. Local 

bathymetric changes may produce changes in tide and wind-driven response magnitudes (Talke 

et al., 2014; Orton et al., 2015). The bathymetry of the continental shelf can affect the coastal and 

estuarine processes through the complex linkage between the small-scale processes and the 

large-scale dynamics from the deep ocean (e.g. Ezer, 2013; Weisberg et al., 2014). 

The impacts due to bathymetric changes are difficult to estimate analytically given the 

geometric complexity of most coastal and estuarine regions; hence the need for numerical 

circulation models. Examples for Tampa Bay include Weisberg and Zheng (2006) and Meyers et 
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al. (2008). Infrastructure effects such as causeways were investigated by Meyers et al. (2013, 

2017) and Zhu et al. (2015) using a much higher resolution model to assess the effects of channel 

deepening and widening on the Tampa Bay hydrodynamics. Elsewhere, Familkhalili and Talke 

(2016) showed the amplification of both tides and storm surge, which is influenced by reduced 

hydraulic drag caused by greater mean depths. Using smoothed bathymetry, Ye et al. (2018) 

highlighted the central role played by bathymetry in the hydrodynamic variables of the 

Chesapeake Bay estuarine system. Ralston et al. (2019) discovered that the deepening and 

straightening of channels causes a reduction in friction and reduces the overall risk of flooding in 

certain parts of Hudson River estuary. Zhang et al. (2021) found that the changes in the 

bathymetry at the mouth of the Changjiang Estuary can affect the circulation patterns throughout 

the estuary. 

Tampa Bay (Fig. 1) is an active area of sediment transport, erosion, and sedimentation 

caused both by natural processes (e.g. Berman et al., 2005; Westfall et al., 2018; Rodgers et al., 

2018) and human activities (e.g. Wang et al., 2009, Wang et al., 2011, Roberts and Wang, 2012). 

A newly formed Center for Ocean Mapping and Innovative Technologies (COMIT) at University 

of South Florida is developing new approaches to effectively map the coastal zones, leading to 

improved high-resolution modeling, to help build resilient coastal ecosystems, communities, and 

economies. 

As part of COMIT, the Tampa Bay Coastal Ocean Model (TBCOM) (Chen et al., 2018, 

2023b) serves as a hydrodynamic application tool. TBCOM employs the unstructured grid (Fig. 

2) Finite Volume Community Ocean Model (FVCOM, Chen et al., 2003) with a resolution high 

enough to include Tampa Bay, Sarasota Bay, the Intra-Coastal Waterway and all of the 

interconnected inlets that provide access to the adjacent Gulf of Mexico. To include the effects 
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from the Gulf of Mexico, TBCOM is nested in the West Florida Coastal Ocean Model 

(WFCOM; Zheng and Weisberg, 2012; Weisberg et al., 2014), which FVCOM-based gets its 

open boundary values from the Global Hybrid Coordinate Ocean model (HYCOM). Previous 

and recent applications of FVCOM to estuaries and lakes are extensive (e.g. Chen et al., 2009; 

Huang et al., 2011; Mao et al., 2020; Chen, 2021; Sahoo et al., 2021; Li et al., 2022; Mou et al., 

2022; Ge et al., 2022; Zhou et al., 2023). 

Here we employ TBCOM to investigate the effects of bathymetric changes near the 

mouth of Tampa Bay on the circulation throughout the entire Tampa Bay. The remainder of the 

paper is organized as follows: Section 2 describes the data and methods, including general 

information of study area, TBCOM, and the experimental design. Section 3 provides the 

experimental results. Section 4 then discusses the results and summarizes the findings. 

2. Data and methods 

2.1 Bathymetric data 

The original topographic (elevation and bathymetry) data set used by TBCOM was compiled by 

National Oceanic and Atmospheric Administration (NOAA) and United States Geological 

Survey (USGS, Hess, 2001) with a resolution of 30 m (Fig. 1). The vertical reference frame, tidal 

datum field of this data set was generated by a combination of a circulation model and spatial 

interpolation. The datum field was then interpolated to a uniform grid and referenced to mean 

lower low water (MLLW). 

In order to investigate the sensitivity of TBCOM to bathymetric changes, a new 

bathymetric grid was used in place of the original NOAA-USGS data in this area. The new grid 
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includes newly collected bathymetric data for Boca Ciega Bay, two inlets to the Gulf, and a 

portion of lower Tampa Bay (courtesy of Dr. Ping Wang and students) (Fig. 3). These data were 

collected using a narrow single-beam shallow water Odem echo sounder and DGPS during high 

tides, using a mean sea level (MSL) vertical chart datum. These newly collected data were then 

supplemented with surrounding bathymetric data of unknown source, to form a new grid for 

comparison. The chart datum(s) for the remaining portions of the new grid is uncertain. Thus, 

with the discrepancy of data sources for the new grid, one must view these data as “synthetic” 

data that were used for a sensitivity test. Some of the differences in bathymetric data between 

the original and the synthetic bathymetry maps may be real, but others may be artifacts, to be 

corrected as new, datum controlled data become available. 

2.2. Tampa Bay Coastal Ocean Model 

Numerical circulation models for Tampa Bay started with two-dimensional barotropic 

applications (e.g. Goodwin, 1980, 1987, 1989; Ross, 1973; Ross et al., 1984). Galperin et al. 

(1991, 1992) were the first to investigate fully three-dimensional, time, and density dependent 

circulation utilizing the Princeton Ocean Model (POM) of Blumberg and Mellor (1987). This 

was followed by further applications of slightly modified POM versions by Vincent et al. (2000), 

Meyers et al. (2007), Meyers and Luther (2008), followed by a Regional Ocean Model System 

(ROMS, Haidvogel et al., 2008) by Zhang and Wei (2010). All of these initial, baroclinic 

applications derived their open boundary values at or near the bay mouth and therefore, with the 

exception of tides, lacked interactions with the adjacent Gulf of Mexico. 

To include the effects of the adjacent Gulf of Mexico, Weisberg and Zheng (2006) 

applied FVCOM with horizontal resolution as fine as 300 m to include the various connecting 
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inlets, adjacent Sarasota Bay, and the Intra‐Coastal Waterway. This model was further refined (to 

have resolution as fine as 20 m) to resolve all of the inlets connecting these water bodies with the 

Gulf of Mexico and the main shipping channel (Zhu et al., 2015a, 2015b, 2015c; Chen et al., 

2019). 

Estuaries are heavily influenced both by terrestrial-based water bodies and the open 

ocean (e.g. Raimonet and Cloern, 2016). Freshwater inflows from rivers and land runoff 

establish the salinity gradient that drives the estuarine circulation (e.g. Hansen and Rattray, 1965; 

Geyer and MacCready, 2014), create nutrient distributions (e.g. Damme et al., 2005) and support 

ecological diversity (e.g. Feyrer et al., 2015). Across-shelf transport via upwelling and 

downwelling circulations, caused either by local winds or deeper ocean interactions, connect the 

estuary with the continental shelf and the deeper ocean (e.g. Weisberg, 1976; Wang and Elliot, 

1978; Weisberg and He, 2003; Weisberg and Liu 2022). 

TBCOM is designed to include influences from both the land and the ocean. The estuary 

and adjacent Gulf of Mexico portion of the TBCOM is based in the Zhu et al. (2015a, b, c) and 

the Chen et al. (2019) model applications. For the land component, daily river discharges are 

downloaded from the USGS (https://waterdata.usgs.gov/nwis) and input to the model. By nesting 

into WFCOM, TBCOM includes the continental shelf and the deeper ocean connections. Thus, 

TBCOM downscales from the deep ocean, across the continental shelf and into the estuaries. The 

astronomical tides are included in the open boundary forcing of WFCOM. Other local forcing 

includes surface winds and heat fluxes provided by the NOAA NCEP NAM (National Oceanic 

and Atmospheric Administration’s National Centers for Environmental Prediction North 

American Mesoscale Forecast System) with spatial and temporal resolutions of 12 km and 3 hr, 

respectively. Data assimilation presently includes nudging of the sea surface temperature (SST) 
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to the satellite derived Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, 

Donlon et al., 2012) daily SST product to correct for possible systematic temperature drifts 

caused by the net surface heat flux biases (e.g. Virmani and Weisberg, 2005). Nudging is a form 

of data assimilation method used in ocean modelling, whereby the model is gently pushed 

towards a known state over time. This method has been widely used in ocean data assimilation 

(e.g. Holland and Malanotte-Rizzoli, 1989; Malanotte-Rizzoli and Young, 1992; Abbasi et al., 

2018). The nudging scheme of FVCOM is described in Chen et al. (2006). Finally, after 

implementing daily, automated nowcasts, and 3.5 day forecasts, TBCOM was established in 

September 2017 and has run unabated ever since. The veracity of TBCOM has been tested using 

comprehensive in situ observations (Chen et al. 2018, 2023b). TBCOM is used to assess the 

responses of the Tampa Bay estuary to either naturally occurring (e.g. Beck et al., 2022; Chen et 

al. 2018b, 2020, 2022; Liu et al., 2017, 2022, 2023) or anthropogenic (Liu et al., 2021; Chen et 

al. 2023a) perturbations. The TBCOM hindcast products also have been used to support the 

studies of an anchored spar-buoy seafloor geodetic system at the mouth of Tampa Bay (Xie et al. 

2019, 2021). 

2.3. Experimental design (sensitivity study) 

The coastal regions are subject to high energy events that transport sediment and quickly 

change the depth structure of navigable waterways. The objective of this research is to determine 

how the coastal and estuary circulation near and within Tampa Bay may react to bathymetric 

changes. Thus, two numerical experiments conducted over a two month duration (February 1, 

2018 to March 31, 2018) were run: one with the original bathymetry data supplied by USGS and 

NOAA and the other using synthetic bathymetry data for the relatively shallow region near Boca 
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Ciega Bay and Fort DeSoto Park, FL on the northern side of the Tampa Bay mouth (Fig. 3). The 

initial conditions are a restart file saved from the TBCOM hindcast results on January 31, 2018. 

To allow for an adjustment to the synthetic bathymetry, we discarded the first month of 

simulation (February 1, 2018 to February 28, 2018) by which time the flow field was fully 

adjusted. The model results for the following month (March 1, 2018 to March 31, 2018) were 

used to diagnose the results. 

3. Results 

This section compares model results from the two experimental runs, each with a 

different bathymetry for the region shown in Figure 3. The comparisons include both water level 

and currents. 

3.1. Water Level 

Due to its generally shallow depths and low land elevations, the Tampa Bay region is highly sensitive to 

both sea level and depth changes. Figure 4 shows the differences of the simulated water level for the 

two experiments instantaneously sampled at 1:00 UTC Mar 1st, 2018. Obvious changes (-10 to 

10 cm) are noted in areas where the bathymetry data are significantly different. In the momentum 

equation, the friction term can be linearized to be proportional to Cd/H (e.g. Jay, 1991; Friedrichs 

and Aubrey, 1994; Familkhalili and Talke, 2016), where Cd is the linearized drag coefficient and 

H is the depth. The change in water depth alters bottom friction, affecting both water level 

amplitude and phase propagation. Despite the localization of the changes in bathymetry, 
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differences in sea level, albeit small at about 1 cm, occur throughout the bay due to propagation 

away from the region where the bathymetry changes were made. 

Being that tides are the dominant contributor to water level and currents within Tampa 

Bay, we assess how the localized bathymetric changes affected the M2 tidal constituent 

throughout the bay. This was done by calculating the amplitude and phase for the M2 tide at all 

of the 115369 node points within the model domain using the least squares harmonic analysis 

method of Foreman (1977). 

Figure 5 compares the amplitude and phase of the M2 tide with the two different 

bathymetries over the region where they changed. The amplitude of M2 tide is generally between 

20 to 25 cm (Fig. 5a and 5b). Within the shallow region of Fort DeSoto Park, we see a decrease 

in amplitude where the synthetic bathymetry is shallower (Fig. 3). Farther to the north, the 

V-shaped region of Long Bayou (Fig. 1), where the bathymetry did not change, also shows a 

decrease in the M2 amplitude. This is attributed to shallower water depths within the 

Intra-Coastal Waterway to the south of Long Bayou. Thus, upstream bathymetric changes can 

affect downstream tidal variations. Along with amplitude changes, phase changes are also 

evident, as shown for the M2 tide (with the original and the synthetic bathymetry data) in Figures 

5d, and 5e, respectively. The phase differences (Fig. 5f) are as large as 30°owing to 

location-dependent changes in propagation speeds. This finding is consistent with both 

theoretical and realistic studies in other estuaries (e.g. Friedrichs and Aubrey, 1994; Friedrichs, 

2010; Chant et al., 2018). The change in the bottom friction can cause the change the tidal energy 

flux (Ralston et al., 2018). The convergence or divergence of tidal energy flux will end up with 

the change in tidal amplitude and phase. 
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Given these localized changes Figure 6 extrapolates these over the entirety of Tampa Bay. 

While not large, the M2 tide amplitude and phase changes are not insignificant either. The 

increased drag by decreased depth even over a relatively small portion of the bay near its mouth 

imposes an amplitude change of around 0.5 cm over most of the bay. The phase also changes by 

a few degrees. 

The differences between the two sets of harmonic constants including amplitude and 

phase for two experiments are also calculated as complex distance (or complex error) in the 

complex plane (Foreman et al. 1993; Huang et al. 2022); that is, 

(( 2 2𝐴 𝑐𝑜𝑠𝑃 −𝐴 𝑐𝑜𝑠𝑃 + 𝐴 𝑠𝑖𝑛𝑃 −𝐴 𝑠𝑖𝑛𝑃
1 1 2 2 ) ( 1 1 2 2) )𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2 

where A1  and A2 are modeled tidal amplitudes with synthetic and original bathymetry, 

respectively, and P1 and P2 are modeled tidal phases with synthetic and original bathymetry, 

respectively. We can also see the complex distances of M2 tide between the two experiments are 

larger in the area with synthetic bathymetry data. Inside Tampa Bay, the distances range from 0.5 

to 0.6 cm (Fig. 7). 

Figure 8 compares the amplitude and phase of the K1 tide with the two different 

bathymetries over the region where they had changed. The K1 tide amplitude is generally 

smaller than M2 tide (Fig. 8a). Similar to M2 tide, K1 tidal amplitude and phase changes 

throughout the bay due to the difference in the bathymetry. Amplitudes and phases of other tidal 

constituents will also be altered by changes of bathymetry. Further investigations will eventually 

be conducted using new (versus synthetic) data being collected by COMIT. 

3.2. Currents 

Figure 9 presents the one-month average of depth-averaged velocities in the area with 

synthetic bathymetry (Fig. 9a), the difference in time and depth-averaged current velocities (Fig. 
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9b) between the two experiments, and the magnitude of these differences (Fig. 9c) near Fort 

DeSoto Park. We can see that the magnitude of time and depth-averaged currents are generally 

less than 10 cm/s (Fig. 9a). The depth-averaged currents are stronger at the locations with 

complex constrictions such as tidal inlets, narrow areas of intra-coastal waterways, and shipping 

channels. In these regions, the magnitude can be as large as about 20 cm/s. The change of the 

current velocities and their magnitudes (Fig. 9b and 9c) are larger in the area with synthetic 

bathymetry, especially near narrow channels such as those at tidal inlets. At some locations 

within a narrow channel, the magnitudes of the velocity changes may be larger than the original 

magnitude of velocity itself. 

Figure 10 shows the same variables as Figure 9 over the entire Tampa Bay region of 

interest. The changes in currents inside Tampa Bay are not as significant as areas with the 

synthetic bathymetry data. But we can still see a relatively large change of current magnitude in 

the area (Fig. 10c) following the shipping channel and constrictions form a complex geometry as 

shown in Figure 1. This is mainly because the area with synthetic bathymetry data is near the 

shipping channel and the stronger current in the channel and the area with complex geometry 

(Chen et al., 2019) when compared with the other areas. This again demonstrates the importance 

of the accurate bathymetry in coastal ocean modeling. 

Recognizing that instantaneous and averaged current velocities may differ, the 

instantaneous surface currents with synthetic bathymetry data and the vector of difference 

between the two experiments near the area with new data and the entire Tampa Bay region at 

1:00 UTC Mar 1st, 2018, are shown in Figures 11 and 12, respectively. Figure 13 provides the 

magnitude of the difference in surface currents between the two experiments at the same time. 

There are significant differences in simulated current velocities due to bathymetric changes near 
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the area with synthetic bathymetry data. The differences of currents between two experiments 

can be as large as the currents, and sometimes even larger than the currents because of small tidal 

phase differences. The maximum velocity difference exceeds 50 cm/s. Since the synthetic 

bathymetric data covers a part of the shipping channel, the bathymetry changes in that part of the 

shipping channel could cause differences in ocean currents locally (between the two numerical 

experiments). Any changes of currents in the shipping channel may propagate along the deep 

channel network and spread to the upper Tampa Bay area. 

4. Discussion and conclusions 

We used the Tampa Bay Coastal Ocean Model (TBCOM) to investigate the sensitivity of 

a very high resolution, estuarine hydrodynamic model to variations in localized bottom 

bathymetry. This is important because relatively shallow regions frequently lack high resolution 

bathymetry, and even where such data may exist, sedimentation and dredging may alter the 

bathymetry on short and episodic time scales. Understanding and accurately quantifying 

estuarine circulation and water levels are critical for maritime transportation and commerce, 

coastal flooding and risk, and ecosystem services. Therefore, it is prudent to assess how prone 

these variables may be to alterations in bathymetry. 

With horizontal resolution as fine as 20 m, TBCOM derives its open boundary values 

from the West Florida Coastal Ocean Model (WFCOM), which in turn derives its open boundary 

values from the Hybrid Coordinate Ocean Model (HYCOM), thereby downscaling from the deep 

ocean, across the continental shelf and into Tampa Bay. The original bathymetry for TBCOM 

harkens back to a joint NOAA-USGS product compiled in 2001. More recent, localized 

bathymetry data merged into a synthetic data grid provided an opportunity to assess the 
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sensitivity of Tampa Bay sea level and currents to localized variations in bathymetry, especially 

over relatively shallow areas near the bay mouth. This was completed by running two separate 

simulations, one with the original bathymetry, the other with the synthetic bathymetry, thereby 

focusing on how these two different simulations express the M2 tide constituent amplitude and 

phase, both locally and throughout the bay. 

Local differences were found to be significant, especially where the water depths are 

shallowest. By altering the relative importance of bottom drag, both the amplitude and phase of 

the M2 tide are altered. Being that the bathymetric changes occur near the mouth of Tampa Bay, 

the modifications to the M2 amplitude and phase also propagated throughout the bay, albeit at 

relatively small magnitudes (less than a 1 cm in amplitude and only a few degrees in phase). 

Nonetheless, for shallow estuaries synthetic bathymetry data (with well constrained uncertainties 

in depth, position, and vertical datum used) may be significantly different and improved with 

respect to previous bathymetry data of unknown origin, unknown uncertainties, and unknown 

vertical datum used at the time of the original collection. The results of our sensitivity test 

confirm that it is important to have these model-underpinning bathymetry data as accurate as 

possible. Not only is this important for water level and currents, but also for any scalar variables, 

if mixed over the water column, as usually occurs in shallow water, that will be diluted based on 

water depth. Thus, it is not possible to accurately assess salinity, or anything else of ecological 

importance if the underlying water depth itself is not accurately known. Moreover, since all 

water properties, including sediments, pollutants, nutrients, fish larvae, etc., are affected by the 

circulation, the hydrodynamic response to bathymetric change has ramifications beyond the 

estuarine hydrodynamics themselves. For these reasons, accurate updates of estuarine 

bathymetry are a necessary part of any estuarine environmental support program, especially in 
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areas prone to erosion or redeposition, or anthropogenic activities such as dredging or beach 

nourishment. 
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Fig. 1. The major structural features and subregions of Tampa Bay, with 
color-coded bathymetry (units in m). The area with updated bathymetry data is indicated by the 
red box. 
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 Fig. 2. The TBCOM grid (a) and zoomed views of Tampa Bay regions (b). The red lines indicate 
the shipping channel. 
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Fig. 3. Original bathymetry from USGS and NOAA(a), synthetic bathymetry (b), and the 
difference between two bathymetric data (c) (units in m). 
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Fig. 4. The water level difference between two experiments at 1:00 Mar 1st 2018. 
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Fig. 5. TBCOM simulated M2 tide amplitude with the different bathymetries (a and b), and the difference 
between two experiments (c). TBCOM simulated M2 tide phase with the different bathymetries (d and e), 
and the difference between two experiments (f). 
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Fig. 6. TBCOM simulated M2 tide amplitude with the different bathymetries (a and b), and the 
difference between two experiments (c) for the whole Tampa Bay. TBCOM simulated M2 tide 
phase with the different bathymetries (d and e), and the difference between two experiments (f) 
for the whole Tampa Bay. 
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Fig. 7. Complex distances of the M2 tide changes. 
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Fig. 8. TBCOM simulated K1 tide amplitude with the different bathymetries (a and b), and the 
difference between two experiments (c) for the whole Tampa Bay. TBCOM simulated M2 tide 
phase with the different bathymetries (d and e), and the difference between two experiments (f) 
for the whole Tampa Bay. 
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Fig. 9. One month averaged of deep averaged velocities in the area with original 
bathymetry (a). The difference of one month averaged of deep averaged velocities 
between two experiments (b). The magnitude of difference of one month averaged of 
deep averaged velocities between two experiments (c). 

Fig. 10. One month averaged of deep averaged velocities in the area with original bathymetry (a) 
for the whole Tampa Bay. The difference of one month averaged of deep averaged velocities 
between two experiments (b) for the whole Tampa Bay. The magnitude of difference of one 
month averaged of deep averaged velocities between two experiments (c) for the whole Tampa 
Bay. 
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Fig. 11. TBCOM simulated currents (red arrows) and velocity difference between two 
experiments. 
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Fig. 12. TBCOM simulated currents (red arrows) and velocity difference between two 
experiments for the whole Tampa Bay. 
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Fig. 13. The magnitude of velocity difference between two experiments at 1pm Mar 1st 2018. 
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