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ABSTRACT: This study conducts the first large-sample comparison of the impact of dropsondes in the tropical cyclone
(TC) inner core, vortex, and environment on NWP-model TC forecasts. We analyze six observing-system experiments, fo-
cusing on four sensitivity experiments that denied dropsonde observations within annuli corresponding with natural break-
points in reconnaissance sampling. These are evaluated against two other experiments detailed in a recent parallel study:
one that assimilated and another that denied dropsonde observations. Experiments used a basin-scale, multistorm configu-
ration of the Hurricane Weather Research and Forecasting (HWRF) Model and covered active periods of the 2017–20
North Atlantic hurricane seasons. Analysis focused on forecasts initialized with dropsondes that used mesoscale error co-
variance derived from a cycled HWRF ensemble, as these forecasts were where dropsondes had the greatest benefits in the
parallel study. Some results generally support findings of previous research, while others are novel. Most notable was that
removing dropsondes anywhere, particularly from the vortex, substantially degraded forecasts of maximum sustained
winds. Removing in-vortex dropsondes also degraded outer-wind-radii forecasts in many instances. As such, in-vortex
dropsondes contribute to a majority of the overall impacts of the dropsonde observing system. Additionally, track forecasts
of weak TCs benefited more from environmental sampling, while track forecasts of strong TCs benefited more from in-vortex
sampling. Finally, inner-core-only sampling strategies should be avoided, supporting a change made to the U.S. Air Force
Reserve’s sampling strategy in 2018 that added dropsondes outside of the inner core.

SIGNIFICANCE STATEMENT: This study uses a regional hurricane model to conduct the most comprehensive as-
sessment to date of the impact of dropsondes at different distances away from the center of a tropical cyclone (TC) on
TC forecasts. The main finding is that in-vortex dropsondes are most important for intensity and outer-wind-radii fore-
casts. Particularly notable is the impact of dropsondes on TC maximum wind speed forecasts, as reducing sampling any-
where would degrade those forecasts.

KEYWORDS: Hurricanes/typhoons; Dropsondes; Forecast verification/skill; Data assimilation;
Model evaluation/performance; Numerical weather prediction/forecasting

1. Introduction

Airborne reconnaissance conducted by the U.S. Air Force
Reserve (USAF) and the National Oceanographic and Atmo-
spheric Administration (NOAA) has improved NWP-model
forecasts of tropical cyclones (TCs) for about forty years. The
effort to use the data for NWP began in the early 1980s, when
airborne missions began transmitting a limited amount of
Global Positioning Satellite (GPS) dropsonde data for opera-
tional use (e.g., Burpee et al. 1984). The benefits of reconnais-
sance data have proven so great that they have led NOAA to
procure aircraft (e.g., Rappaport et al. 2009) and to invest a
great deal into improving real-time transmission and data
assimilation (Zawislak et al. 2022). Given these develop-
ments, NHC has increasingly relied on NOAA aircraft for
TC reconnaissance.

Numerous peer-reviewed studies have examined the impact
of reconnaissance data on NWP. Since dropsondes have the lon-
gest history of operational assimilation among reconnaissance

data types, all the earliest research naturally focused on how
dropsonde data affected TC forecasts. Initial studies focused
specifically on the impact of environmental dropsonde data
on TC track forecasts (e.g., Burpee et al. 1996; Aberson and
Franklin 1999). Later studies began assessing the impacts of
dropsondes on both track and intensity forecasts, though the
focus remained mostly on impacts of environmental dropsonde
data (e.g., Aberson 2002, 2010, 2011). In particular, Aberson
(2010, 2011) used fairly large samples to show that assimilating
dropsonde data improves TC forecasts, a result that has been
verified in a number of subsequent studies (see Ditchek et al.
2023a, hereafter D23A, their Fig. 1).

Starting around 2010, research began to focus on the impacts
of assimilating more types of reconnaissance data, including that
from dropsondes, from within the TC vortex. From these efforts,
a number of studies found that assimilating high-resolution,
in-vortex data considerably improves both track and intensity
forecasts (e.g., Zhang et al. 2009, 2011; Weng and Zhang
2012; Aberson et al. 2015; Weng and Zhang 2016). Further,
improved assimilation of inner-core data at the National Cen-
ters for Environmental Prediction (NCEP) has contributed to
recent improvements in NWP intensity forecasts (Zawislak et al.
2022).
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Though we now know that in-vortex and environmental
reconnaissance data both benefit TC forecasts, so far only
Harnisch and Weissmann (2010) assessed their impacts rela-
tive to one another. They found that dropsondes in remote re-
gions (i.e., 700–1200 km from the TC center) had less of an
impact on track forecasts than did dropsondes in the vicinity
of TCs (i.e., those between the core and remote regions). De-
spite their small sample (,20 cases), their results in part led
NHC to focus high-altitude synoptic-surveillance missions
closer to the TC center beginning with Hurricane Florence in
2018 (see D23A, their Fig. 3c).

To fill a gap in prior research, this study more comprehen-
sively evaluates the varying impacts of dropsonde data in the
TC inner core, broader vortex, and environment. To do so, an
experimental version of the Hurricane Weather Research and
Forecasting (HWRF) Model was used to conduct four observing-
system sensitivity experiments that denied dropsondes at various
annuli that correspond with natural breakpoints in reconnaissance
sampling. Experiments were run over active periods in the North
Atlantic basin (NATL; including the North Atlantic Ocean, the
Gulf of Mexico, and the Caribbean Sea) during the 2017–20 hurri-
cane seasons. Note that the experimental design used here (i.e.,
model, dropsonde data, specific date ranges used, TCs included,
and most of the verification performed) mirrors that of D23A,
which assessed the overall impacts of dropsondes on TC forecasts.
Thus, this investigation not only serves as an extension of D23A,
but it also enables comparisons between the four sensitivity ex-
periments and the two D23A experiments (one that assimilated
and another that denied dropsonde observations).

The remainder of this manuscript is structured as follows.
Given the similarities with D23A, section 2 will provide only
a brief overview of the experimental design. For a more de-
tailed description, please see D23A. Section 2 then provides
details on the four sensitivity experiments and additional veri-
fication techniques used. Finally, sections 3 and 4 detail results
from the experiments while section 5 provides a summary and
recommendations for future work.

2. Data and methods

a. Model

The sensitivity experiments presented here were conducted us-
ing the 2020 version of the experimental, parallel, basin-scale, mul-
tistorm version of HWRF (HB20; Zhang et al. 2016; Alaka et al.
2017; Alaka 2019; Alaka et al. 2020, 2022) that was developed by
NOAA’s Hurricane Research Division (HRD) of the Atlantic
Oceanographic and Meteorological Laboratory (AOML) in col-
laboration with the NOAANCEP Environmental Modeling Cen-
ter (EMC) and the Developmental Testbed Center (DTC). The
parent domain (D01) spans the entire NATL and eastern North
Pacific basins with a horizontal grid spacing of 13.5 km. HB20 is
configured with movable nests (D02 and D03) for up to five TCs.
D02 and D03 have cloud-permitting resolutions of 4.5 and 1.5 km,
respectively, and are two-way interactive with each other and with
D01 to transfer critical information about the TC and its environ-
ment across scales. Consequently, forecasts of all TCs in the basin

were impacted if dropsonde observations were assimilated in any
TC.

b. Experiment suite and scope

Dropsondes included in this assessment were the same as
those used in D23A}those launched into TCs between 2017
and 2020 from four different types of aircraft: The U.S. Air
Force Reserve’s (USAF) low-mid altitude WC-130J (C-130),
NOAA’s low-mid altitude WP-3D (P-3), NOAA’s high-
altitude Gulfstream IV-SP (G-IV), and NASA’s high-altitude
Global Hawk (GH).1 The resulting atmospheric profiles of
quality-controlled pressure, temperature, relative humidity, and
horizontal winds were transmitted in TEMP DROP messages
from the aircraft (NOAA 2020), adjusted to account for the ad-
vection of dropsondes while falling (Aberson 2008; Aberson et al.
2017), and converted to the standard NCEP Prepared Binary
Universal Form for the Representation of meteorological data
(PrepBUFR) format before being assimilated into HB20.

On average, reconnaissance missions concentrate dropsonde
sampling into three distinct annuli (Fig. 1). Inner-core dropsondes,
which sample the eye and eyewall, typically fall within 75 km
of the TC center. A natural minimum in dropsondes occurs at
75 km, with the frequency gradually increasing again until about
250 km. Those dropsondes between 75 and 250 km generally fall
outside the inner core but still within the vortex. They mostly
coincide with mid- and end-points of radial legs in the various
low- and midaltitude reconnaissance patterns. Occasionally, a
high-altitude circumnavigation at a radius of about 165 km also
contributes to dropsonde sampling within this annulus. Another
natural minimum occurs at 250 km, outside of which, high-altitude,
environmental sampling accounts for the vast majority of drop-
sondes. See D23A for more information regarding these recon-
naissance patterns.

As mentioned in the introduction, this study takes advantage
of the natural breakpoints in sampling (Fig. 1b) to conduct four
sensitivity experiments. The experiments denied dropsonde data
either outside (Figs. 2b,c) or inside (Figs. 2e,f) the 75- and
250-km radii, respectively, and are named as follows: No Inner
Core (NO-IC; Fig. 2b), No Vortex (NO-VOR; Fig. 2c), Inner
Core Only (ICO); Fig. 2e, and No Environment (NO-ENV;
Fig. 2f). Note that individual dropsonde observations rather than
entire dropsonde profiles were denied in these sensitivity experi-
ments. As such, some individual dropsondes could yield data
within two adjacent annuli due to the advection of dropsondes
while falling.

These four experiments were compared to ALL and NO
discussed in D23A. Their ALL (here called ALL-DROP for
clarity; Fig. 2a) assimilated dropsonde observations, whereas
their NO (here called NO-DROP; Fig. 2d) did not. Therefore,
these sensitivity experiments covered the same periods de-
scribed in D23A (their Table 1) and included 634 cycles, re-
sulting in 2139 individual forecasts. These forecasts covered
92 TCs, 41 of which had assimilated dropsonde observations.
Note that other than modifying how dropsonde observations

1 Only two GH flights occurred during the time period of this
study: one during Harvey (2017) and another during Lidia (2017).
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were assimilated, all experiments otherwise assimilated all con-
ventional, reconnaissance, and satellite data assimilated into
HB20.

For reference, Fig. 3 shows the TC-relative plan-view and
radial-view distributions of the number of individually assimi-
lated dropsonde temperature observations in D02 for each of
the four experiments. Note that for ICO and NO-ENV, some
dropsondes are present well outside of 75 and 250 km, respec-
tively. This only occurred when the D02 of two different TCs
sufficiently overlapped that the domains covered at least part
of both TCs. For example, consider ICO, which denied drop-
sonde observations outside of a 75-km radius of the TC cen-
ter. Observations within 75 km in one TC could also be
assimilated in the outer regions of a second TC. Since the
same dropsonde could be assimilated into multiple TCs with
overlapping D02, data points in Fig. 3 do not correspond 1-to-1
with actual dropsonde data, especially at radii. 1000 km.

As will become clear in the results, it is useful to understand
how dropsonde sampling varies as a function of TC intensity
as well as how well dropsondes in the various experiments
sample the outer wind radii. As such, Fig. 4 depicts 1) the dis-
tribution of dropsonde observations overall and by initial clas-
sification (i.e., columns 1–2) and 2) histograms of best track
outer wind radii values (i.e., R34 and R50; column 3). Each
initial classification had a symmetric distribution of coverage
within 250 km, but between 250 and 500 km there was a slight
northward sampling bias that decreased for stronger TCs
(Fig. 4, column 1). While a similar number of observations
were assimilated in each initial classification, differences in ra-
dial distribution did occur (Fig. 4, column 2). For example,

the stronger the TC, the more the inner core and environ-
ment was sampled. Interestingly, the peak in H345 sampling
occurred outside of 250 km, whereas for H12 the peak was in-
side that radius. Finally, note that the entire R34 and R50
distributions shift radially outward as TCs get stronger,
particularly when comparing tropical storms to hurricanes
(Fig. 4, column 3). This has some relevance to R34 and R50
results, so these graphics will be referred back to later in the
text.

c. Verification

As mentioned in the introduction, this study follows the
framework of D23A. A main finding in D23A was that sampling
TCs with dropsondes can directly improve TC forecasts only if
using sufficiently advanced data assimilation (DA) techniques
(i.e., HWRF-cycled mesoscale error covariance; their Fig. 21c).
In contrast, dropsondes had neutral impacts on the forecast
when using global-model error covariance during DA (their
Fig. 21d). These results reinforced the fact that appropriate DA
treatment is crucial for improved TC forecasts (e.g., Zhang et al.
2009; Lu et al. 2017; Tong et al. 2018). Thus, this paper focuses
on those forecasts with direct sampling by dropsondes that also
utilized HWRF-cycled mesoscale error covariance, which D23A
referred to as OBS-HCOV. Note that we treat OBS-HCOV
fromD23A as our “full sample” and call it such, for brevity.

The performance of each experiment was evaluated only for
NATL TCs by verifying forecasts against the NHC “best track”
(Landsea and Franklin 2013) available from NHC following the
standard NHC Forecast Verification procedures (Cangialosi
2022). Note that while uncertainties in position, intensity, and

FIG. 1. The number of individually assimilated dropsonde temperature observations in each TC’s D02 for the full
sample in D23A in (a) plan view and (b) radial view. Observations are shown in a TC-relative framework, where the
location of the TC center is interpolated to the time of each individual dropsonde observation before calculating the
azimuth and radial location of the observation relative to the TC center. Note that dropsonde humidity and wind ob-
servations were also assimilated, though are not shown for simplicity. Pink lines indicate the two breakpoints chosen
to design the four experiments: 75 and 250 km. This figure is identical to Figs. 4a and 4b in D23A except for the anno-
tations in (b) and the overlaying pink circles and lines at two radii: 75 and 250 km.
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significant wind radii are present in the best track (Torn and
Snyder 2012; Landsea and Franklin 2013) and in tracker output
(Zhang et al. 2021), these are not taken into account in current
TC-verification techniques. Further, results in this paper had no
additional postprocessing (e.g., interpolation to produce “early”
model forecasts; Cangialosi 2022). Thus, results are from the raw
output (i.e., late-model results) from the Geophysical Fluid
Dynamics Laboratory (GFDL) vortex tracker (Marchok 2002,
2021).

The choice to focus exclusively on late-model results is mo-
tivated by a few factors. First, recent operational testing with
HWRF has shown that changing the details of early model in-
terpolation can change maximum sustained 10-m wind speed

MAE skill by as much as 2%–3% over multiyear, full-basin
samples (not shown). Additionally, there is no unambiguous
“best practice” for applying the interpolator, as different
choices improve the early forecast at some lead times while
degrading it at others. Finally, the optimal interpolator appli-
cation also depends strongly on the TC characteristics and on
the amount of inner-core data gathered. As such, the ideal
early model interpolator configuration for the sample exam-
ined in this study would likely vary from the ideal configura-
tion in operations. Since the goal of this study is to examine
the impact of sampling differences on the subsequent forecast,
we feel that nuances in application of the early model interpo-
lation would likely obfuscate results.

FIG. 2. Plan-view schematics of (a),(d) the two experiments from D23A and (b),(c),(e),(f) the four sensitivity experiments. Light gray
shading indicates where dropsonde observations were allowed to be assimilated. The corresponding radii of the gray shading are given in
the top right of each subplot. The colors of each experiment used in this figure will be used throughout the paper.

WEATHER AND FORECAS T ING VOLUME 382172

Brought to you by NOAA AOML Library | Unauthenticated | Downloaded 10/30/23 02:44 PM UTC



FIG. 3. The number of individually assimilated dropsonde temperature observations
in each TC’s D02 in (a),(b) NO-IC; (c),(d) NO-VOR; (e),(f) NO-ENV, and (g),(h) ICO
in TC-relative (left) plan view and (right) radial view. Pink lines indicate the two divisors
chosen to design the four experiments: 75 and 250 km.
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FIG. 4. The number of individually assimilated dropsonde temperature observations in each TC’s D02 in ALL-DROP
in TC-relative (left) plan view and (center) radial view as well as (right) histograms of the best track (BT) outer-wind-
radii values (a)–(c) overall and stratified by (d)–(f) TS, (g)–(i) H12, and (j)–(l) H345. Pink lines indicate the two
breakpoints chosen to design the four experiments: 75 and 250 km. Blue lines in the right column indicate the mean BT
outer-wind radii value for FULL, TS, H12, and H345: 216, 159, 234, and 239 for R34, respectively, and 120, 84, 124, and
128 for R50, respectively.
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Variables assessed include track, two measures of TC inten-
sity [maximum sustained 10-m wind speed (VMAX); mini-
mum mean sea level pressure (PMIN)], as well as the two
outer surface-wind radii2 reported by NHC [34-kt wind radii
(R34) and 50-kt wind radii (R50); 1 kt ’ 0.51 m s21]. Note
that for R34 and R50, all quadrants were included individu-
ally in each sample. Finally, all results presented in this paper
are for homogeneous samples. To be included in the homoge-
neous sample: 1) for a given cycle, all experiments had to sat-
isfy the standard NHC forecast verification procedures and
2) a nonzero numeric value had to exist for a given variable in
all experiments. Note that this second condition only im-
pacted R34 and R50 samples. Both of these conditions are the
reason for sample-size discrepancies between D23A and full-
sample results presented in this paper of $96 h for track,
VMAX, and PMIN as well as at all lead times for R34 and
R50.

This study also explores how the sensitivity to changes in
observing-system sampling evolves with the TC life cycle.
To do so, it stratifies the full sample by initial classification into
four groups according to their best track Saffir–Simpson scale
(Simpson and Saffir 1974) classification at 0 h: 1) tropical depression
(TD;,17.5 m s21), 2) tropical storm (TS;$17.5 and,32.9 m s21),
3) category 1–2 hurricane (H12; $32.9 and ,49.4 m s21), and 4)
category 3–5 hurricane (H345; $49.4 m s21). As in D23A, TDs
rarely had assimilated dropsonde observations and will not be in-
cluded due to their small sample size.

Since land impacts can obfuscate interpretation of results
(e.g., errors in landfall timing can dramatically increase VMAX
errors, but landfall will ultimately diminish differences between
experiments by driving all forecasts to a similar weak intensity),
we also examine verification over water only for both the full
sample (FULL-W) and initial classification stratifications
(e.g., TS-W). More specifically, the overwater sample both
1) excludes an entire forecast if the TC was over land at the
initial time and 2) excludes specific forecast lead times when
the TC was initially over water but forecasted to later be
over land. This procedure carries a caveat that it reduces the
sample size at all lead times, and at long lead times the over-
water sample becomes undesirably small. As will become ap-
parent, this limitation shapes some of the approach to how
results are presented. Note that discussion of results will gen-
erally focus on areas of agreement between the full and over-
water samples.

As in D23A, this paper makes use of the consistency metric
introduced in (Ditchek et al. 2023b, hereafter D23B) to ob-
jectively identify forecast lead times with fully consistent or

marginally consistent improvement or degradation. This metric
effectively identifies those lead times with consistency by requir-
ing that the mean absolute error (MAE) skill, median absolute
error (MDAE) skill, and frequency of superior performance
(FSP; Velden and Goldenberg 1987; Goldenberg et al. 2015) ex-
ceed specified thresholds.

While the consistency metric alone is useful to compare
ALL-DROP and NO-DROP, this study examines consistency
at a somewhat higher level than in D23A in order to facilitate
comparison of the multitude of experiments over various lead
times. To do so, this study builds on the consistency-score meth-
odology described in D23B to objectively indicate the impact of
the observing-system changes relative to ALL-DROP. Briefly,
the consistency-score methodology assigns numeric values of
1 (fully consistent improvement), 0.5 (marginally consistent im-
provement), 0 (no consistency),20.5 (marginally consistent deg-
radation), and21 (fully consistent degradation) to the outcomes
of the consistency analysis (e.g., Fig. 5a). These values are then
averaged across either all lead times or a segment of lead times
for each experiment and multiplied by 100 to generate a score
that can be used to rank experiments by their overall consistency
(e.g., Fig. 5b). This score ranges from 2100% (which indicates
that all lead times considered had fully consistent degradation)
to 100% (which indicates that all lead times considered had fully
consistent improvement).

FIG. 5. A demonstration of the relative-impact methodology.
Colored rectangles at the left and right edges of each panel indicate
the experiment: ALL-DROP (green), NO-IC (blue), NO-VOR
(purple), NO-ENV (yellow), and ICO (orange). (a) The consistency-
metric scorecard for each experiment relative to NO-DROP at short
lead times (6–60 h) colored by the consistency-outcome scale
where “FC” is fully consistent, “MC” is marginally consistent,
and “NC” is not consistent. The numbers in each box are the nu-
meric values assigned to each consistency-metric outcome, as
detailed in D23B. (b) The consistency score for each experiment
over the lead times in (a). (c) The difference between each of the
sensitivity experiments and ALL-DROP colored by the relative-
impact category scale where “L” is large, “M” is moderate, and
“N” is neutral. The table on the bottom right depicts the cutoffs
for each category.

2 The experiments at hand do not allow us to examine R64 in
the same manner as other variables for several reasons. First,
D23A found that a disparity in observing-system strategy between
2017 and later years likely had strong impacts on R64 results,
which complicates analysis. Regardless, these experiments do not
address that issue. Further, the relatively smaller sample of R64 re-
duces the ability to stratify results even at short lead times. Finally,
many short lead times for TS have very few cases of R64 during
the first few days. Considering the difficulties imposed by these is-
sues, we have elected not to analyze R64 in this paper.

D I T CH EK AND S I P P E L 2175NOVEMBER 2023

Brought to you by NOAA AOML Library | Unauthenticated | Downloaded 10/30/23 02:44 PM UTC



Here, we calculated consistency scores for short- (6–60 h) and
long- (66–126 h) lead times, hereafter called “temporal” consis-
tency scores (e.g., Fig. 5b). Then, we took differences in temporal
consistency between the experiments and ALL-DROP and as-
signed each difference to one of five “relative-impact categories”
(e.g., Fig. 5c). For the example given in Fig. 5, only sampling the
environment (i.e., NO-VOR) would lead to track improvement
at short lead times over ALL-DROP. Note that differences be-
tween the average MAE skill of the sensitivity experiments and
ALL-DROP were also calculated to provide additional context
and will be included alongside the differences in temporal consis-
tency in subsequent figures.

A benefit of displaying temporal consistency scores relative
to ALL-DROP as in Fig. 5c is that one can immediately iden-
tify how consistent results are between experiments. For ex-
ample, if NO-ENV has degradation relative to ALL-DROP
and NO-VOR has improvement relative to ALL-DROP,
then it follows that only sampling the environment would ben-
efit the forecast of the variable being analyzed. Conversely,
if NO-ENV has improvement relative to ALL-DROP and
NO-VOR has degradation relative to ALL-DROP, then only
sampling the in-vortex region would benefit the forecast.
Other combinations of results are obviously possible, but they
require more nuanced interpretation.

Evaluation encompasses the FULL and FULL-W samples at
both short and long lead times as well as the three initial classifi-
cation stratifications for both samples at only short lead times.
Initial classification results at long lead times are omitted for
three reasons. First, there were generally smaller differences in
those results. Second, for outer wind radii in particular, large
fluctuations in forecast bias and MAE began at long lead times
when the sample size for wind radii decreased to fewer than
about 75. In some cases, these fluctuations influenced changes in
both MAE skill and consistency in ways that obfuscated inter-
pretation. Finally, the overwater sample size was much smaller
than the full sample (around half of the full sample at 120 h),
which was too small to stratify at long lead times.

Note that the above framework is most useful when examin-
ing NO-IC, NO-ENV, and NO-VOR. Thus, it will be used when
discussing results for those experiments in this paper. For ICO,
impacts are mostly negative relative to ALL-DROP, and it is
more useful to discuss impacts relative to NO-DROP. We there-
fore discuss the results of ICO in a separate section after detail-
ing results from the other experiments.

3. Results relative to ALL-DROP

This section is divided into discussions of track, intensity, and
outer-wind radii forecast results. For each variable, full results
are discussed first. Then, the sample is stratified by the initial TC
classification (i.e., TS, H12, H345) to illustrate how the impacts
of various sampling strategies change through the life cycle of a
TC. For more details on these stratifications, see section 2a.

a. Track

Figures 6 and 7 depict the impact of dropsondes on TC track
forecasts and serve as a template for many of the remaining
figures. Figure 6 depicts the MAE, MAE skill, as well as a

consistency scorecard for all experiments. Note that the MAE
skill and consistency scorecard are both computed with re-
spect to NO-DROP. Figure 7 then depicts differences in
temporal consistency scores as well as differences in time-
averaged MAE skill for both the full and overwater samples.
As described in section 2c, differences are computed with re-
spect to ALL-DROP to highlight how changes to the observ-
ing system impact results.

On average, observing-system changes impacted TC track
forecasts mostly at shorter lead times in the full sample (Figs. 6
and 7a). Though dropsondes anywhere improved the track fore-
cast, environmental dropsondes benefited forecasts the most
(Fig. 7a). In particular, only sampling the environment (i.e.,
NO-VOR) improved the temporal consistency of track fore-
casts relative to ALL-DROP at short lead times in FULL.

Only verifying overwater cases changed the results somewhat,
but it did not change the interpretation (Fig. 7c). Specifically,
the benefit of sampling only the environment (i.e., NO-VOR)

FIG. 6. The MAE, MAE skill, and the consistency metric of the
full sample for ALL-DROP (green), NO-IC (blue), NO-VOR
(purple), NO-ENV (yellow), and NO-DROP (red). Note that for
each experiment, skill was calculated with respect to (WRT) to
NO-DROP. Boxes between the MAE and MAE skill panels that
use the consistency outcome shading indicate the forecast lead
times where results were fully consistent, marginally consistent, or
not consistent based on the methodology described in D23B. The
sample size is given below the x axis.
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decreased slightly at short lead times to a neutral relative impact.
Yet the cost of not sampling the environment (i.e., NO-ENV)
increased considerably at long lead times. As such, removing en-
vironmental sampling moderately degraded the track forecast
for overwater cases. One reason why NO-ENV performed rela-
tively worse in FULL-W than FULL might be because overwater
cases are farther from the data-rich United States observation net-
work. That is, it could be that environmental sampling becomes
more important for storms in data-sparse regions. Nevertheless,
these results again highlight the importance of environmental
sampling for TC track forecasts.

Stratifying short-term results by initial classification revealed
that the most beneficial regions for dropsonde sampling changed
throughout the TC life cycle (Figs. 7b,d). In general, it was best
to sample the environment and not the vortex for TS. More spe-
cifically, entirely removing in-vortex dropsondes (i.e., NO-VOR)
moderately improved TS temporal track forecast consistency rel-
ative to ALL-DROP in both the full and overwater samples.
Conversely, removing inner-core dropsondes in H345 moder-
ately degraded short-term H345 track forecasts in FULL-W (i.e.,
NO-IC; Fig. 7d). Note that the suggested improvement due to re-
moving environmental dropsondes in FULL seems to be a result
of land impacts, as the signal disappears in FULL-W.

The above results are qualitatively similar to those of several re-
cent studies involving reconnaissance data. For example, Sellwood

et al. (2023) found that adding high-resolution inner-core data sig-
nificantly improved track forecasts of Maria (2017), which was a
category-3 hurricane at the time. Meanwhile, Sippel et al. (2022)
found that the impacts of adding reconnaissance data into the
NCEP GFS model evolved as TCs intensified. In particular, add-
ing flight-level reconnaissance observations (that mostly concen-
trate over the vortex; their Figs. 7 and 8) improved track forecasts
for hurricanes more than they improved forecasts of tropical
storms. In one of their examples, they showed that the added data
significantly degraded track forecasts of Hurricane Dorian (2019)
when it was a TS as it approached the Lesser Antilles, but similar
data significantly improved the forecasts a few days later when
Dorian was a hurricane and approaching the United States.
Section 5 discusses possible reasons why in-vortex dropsondes
might degrade track forecasts in weaker TCs.

b. Intensity

This section examines the impacts of the sensitivity experi-
ments on TC intensity forecasts. Though one can examine inten-
sity in terms of both VMAX and PMIN, the major focus here
will be on VMAX since PMIN-forecast MAE varied much less
among the experiments.

1) VMAX

Removing dropsondes anywhere degraded short-term
VMAX forecasts in both the full and overwater samples
(Figs. 8a and 9a,c). More specifically, VMAX forecast errors
at short lead times in all experiments suffered compared to
ALL-DROP (Figs. 9a,c). Note that both the relative impact
scores and differences in averaged MAE skill degraded more
in FULL-W than FULL. This reflects landfall acting to drive
the forecast intensity toward a similar weak value in all ex-
periments (i.e., it minimizes the differences). The MAE in-
creased the most when removing all in-vortex dropsondes
(i.e., NO-VOR). In particular, NO-VOR demonstrated a
large degradation in temporal consistency and a 6.6% and
9.7% decrease in average MAE skill relative to ALL-DROP
for FULL and FULL-W, respectively. Much of this degrada-
tion was associated with a larger negative VMAX forecast bias
(i.e., a weaker TC, Fig. 10a) than the other experiments. Mean-
while, changes to dropsonde sampling had smaller and generally
less consistent impacts on VMAX at longer lead times.

In-vortex dropsondes appear to have been the most impor-
tant for predicting intensity regardless of the initial classifica-
tion. More specifically, removing in-vortex dropsondes (i.e.,
NO-VOR) led to the most degradation of temporal consis-
tency, though for major hurricanes removing only inner-core
dropsondes had almost as large of an impact. These results
are qualitatively similar to a large body of previous research
that has shown the importance of thoroughly sampling the TC
vortex for VMAX forecasts (e.g., Zhang et al. 2009, 2011;
Weng and Zhang 2012; Aberson et al. 2015).

Changes to dropsonde sampling impacted VMAX forecasts
of initially weaker TCs the most in both FULL and FULL-W
(Figs. 9b,d). In particular, moderate to large degradations of
temporal consistency occurred at short lead times if removing
any in-vortex dropsonde observations in TS or TS-W. The

FIG. 7. Relative-impact scorecards for (a),(c) FULL and FULL-W
at short and long lead times and (b),(d) FULL and FULL-W strati-
fied by initial classification at short lead times. Included are results
for NO-IC (blue), NO-VOR (purple), and NO-ENV (yellow). The
sample sizes for FULL (FULL-W) are 296 (283) at 0 h and 219 (156)
at 60 h while the sample size for TS, H12, and H345 for the full (over-
water) sample are, respectively, as follows: 92, 107, and 94 (87, 103,
and 90) at 0 h and 61, 79, 77 (41, 55, and 54) at 60 h. Each cell
includes temporal consistency scores calculated with respect to
(WRT) to ALL-DROP as well as average MAE skill scores WRT
to ALL-DROP in parentheses.
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degradation at short lead times was accompanied by a de-
crease in average MAE skill relative to ALL-DROP in each
experiment, ranging from 5.0% to 18.1%. These results high-
light the importance of sampling tropical storms, especially
within the vortex.

The various experiments affected VMAX forecast biases
of initial tropical storms and hurricanes much differently
(Figs. 10a–d). Removing dropsondes anywhere in a TS (Fig. 10b)
generally made TCs forecasts weaker at short lead times. The
greatest impact on the bias came from removing environmental

dropsondes. Meanwhile, forecasts initialized from at least hurri-
cane intensity (Figs. 10c,d) clearly produced the weakest storms
at short lead times when removing in-vortex dropsondes (i.e.,
NO-VOR).

2) PMIN

Denying dropsondes had less impact on PMIN than on
VMAX, though the impact was larger in FULL-W than FULL
(Figs. 8b and 9e,g). For example, only denying inner-core

FIG. 8. As in Fig. 6, but for TC forecasts of (a) VMAX and (b) PMIN.

FIG. 9. As in Fig. 7, but for TC forecasts of (a)–(d) VMAX and (e)–(h) PMIN.
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dropsondes (i.e., NO-IC) meaningfully changed the temporal
consistency in FULL at short lead times (Fig. 9e). For FULL-
W, denying dropsondes anywhere over the vortex was detri-
mental (Fig. 9g). As with VMAX, both the relative impact
scores and averaged MAE skill values were more negative for
FULL-W compared to FULL.

Stratifying by initial classification reveals that in both the full
and overwater samples, H345 drove most of the degradation
noted at short lead times (Figs. 9f,h). Removing dropsondes any-
where over the vortex was detrimental to short term H345 in

both samples. In the overwater sample, TS also contributed to
the degradation seen in NO-VOR.

The differing results for PMIN and VMAX probably reflect
an inaccurate pressure-wind relationship in HB20. For example,
the VMAX bias in ALL-DROP was negative (i.e., too weak;
Fig. 10a), and removing dropsonde data worsened the bias by
making the forecast TCs even weaker. Inconsistent with the
VMAX bias, the PMIN bias was also negative in ALL-DROP
(i.e., too strong; Fig. 10e) so that removing dropsonde data
improved the PMIN bias. These contradicting results are

FIG. 10. The mean bias of NATL TC intensity forecasts between 6 and 60 h (i.e., temporal mean bias) for (top) VMAX and (bottom)
PMIN both (a),(e) overall and by initial classification into (b),(f) TS; (c),(g) H12; and (d),(h) H345 for ALL-DROP (green), NO-IC (blue),
NO-VOR (purple), NO-ENV (yellow), and NO-DROP (red).
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fundamentally similar to those in Lu and Wang (2023), who
found that assimilating inner-core radar data improved
VMAX and degraded PMIN in an experimental version of
HWRF.

c. Outer wind radii

This section examines the relative impacts of dropsondes on
forecasts of the outer wind radii (R34 and R50). While on aver-
age results were similar among experiments, differences emerged
when stratifying by initial classification.

1) R34

Dropsondes improved R34 in ALL-DROP with substantial
consistency over many lead times, and the sensitivity experi-
ments showed that sampling anywhere similarly benefited short-
term R34 forecasts (Figs. 11a and 12a,c) by improving a negative
forecast size bias (Fig. 13a). More specifically, short-term R34
forecasts did not appreciably differ from ALL-DROP in either
the full or overwater samples so long as dropsondes sampled ei-
ther the vortex or the environment (Figs. 12a,c). One likely rea-
son for this is that the R34 distribution spanned the boundary
between the vortex and the environment (Fig. 4c), so dropsonde
observations in either location would sample near R34 in many
cases. The degradation driven by inner-core dropsondes at lon-
ger lead times in Fig. 12a seems to be a reflection of landfall
since it does not occur in the FULL-W sample.

Stratifying by initial classification revealed more nuanced im-
pacts than suggested by the overall sample (Figs. 12b,d). While
the sensitivity experiments did not meaningfully change
short-term R34 forecast MAE on average, removing drop-
sondes in most regions degraded short-term TS forecasts
in both the full and overwater samples. On the other hand,
Figs. 13b–d shows that having dropsondes anywhere improved
the negative size bias for hurricanes more so than for tropical
storms. This was particularly true for H345 R34 forecasts, where
the large negative bias in NO-DROP was reduced between
3 and 3.75 km.

2) R50

The average R50 results behaved similarly to R34 (Figs. 11b
and 12e,g). As with R34, dropsondes improved R50 forecasts
with substantial consistency across many lead times. ALL-DROP
improved upon a negative size bias seen without dropsondes, and
the experiments here showed that sampling anywhere with
dropsondes likewise improved the bias (Fig. 13a). The im-
provement in FULL when the vortex was not sampled (i.e.,
NO-VOR; Fig. 12e) again appears to reflect land interaction,
as the signal did not show up in FULL-W.

As with R34, stratifying by initial classification revealed
more nuanced results (Figs. 12f,h). In general, as TCs intensi-
fied, the location of the most beneficial dropsondes for R50
migrated radially outward from the center in both the full and

FIG. 11. As in Fig. 6, but for TC forecasts of (a) R34 and (b) R50.
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overwater samples. First, in-vortex dropsondes were most im-
portant for TS forecasts of R50. More specifically, removing in-
vortex dropsondes (i.e., NO-VOR) in TS moderately degraded
the temporal consistency and substantially decreased the MAE
skill in both samples relative to ALL-DROP. For H12, the cate-
gorical change in consistency bordered the neutral/moderate
threshold for both in-vortex and environmental dropsondes in
both samples. Comparatively, removing in-vortex dropsondes
had less of an impact on H345 (i.e., NO-VOR). Additionally,
removing environmental dropsondes (i.e., NO-ENV) de-
graded the temporal consistency of R50 in H345 more than it
did weaker TCs. This signals that environmental dropsondes
were more important for stronger TCs, likely since the ob-
served R50 distribution in stronger TCs is at a larger radius
than in weaker TCs (cf. Figs. 4f–l). Finally, similar to the re-
sults for R34, dropsondes anywhere improved negative R50
forecast biases in hurricanes more than in tropical storms
(Figs. 13e–h).

4. Impacts of inner-core-only sampling

ICO relates directly to operationally implemented changes
in reconnaissance sampling that occurred after the 2017 hurri-
cane season (see D23A, their Fig. 3). Beginning in 2018,
USAF C-130 missions began systematically releasing drop-
sondes at the end points of their alpha-pattern formations
(around 150–200 km from the TC center). Prior to this
change, the C-130 dropsondes primarily only sampled the in-
ner 75 km of TCs to estimate PMIN and VMAX. Thus, ICO

serves as a rough proxy3 for the pre-2018 dropsonde strategy
employed on USAF flights. Considering that USAF has histori-
cally flown much more frequently than NOAA, C-130 missions
have often sampled TCs alone, and the ICO sampling configu-
ration for dropsondes frequently occurred in the past. Given
the addition of end-point dropsondes on C-130 flights, inner-
core-only sampling has rarely taken place since 2018.

ICO results are shown in a different manner than the
preceding results. As described in section 2c, ICO impacts are
mostly negative relative to ALL-DROP, and it is therefore
more useful to discuss the impacts of only sampling the inner
core (i.e., ICO) relative to not sampling at all (i.e., NO-DROP).
Thus, Fig. 14 depicts scorecard graphics displaying only consis-
tency-metric results overall and stratified by initial classification.

ICO sampling degraded some important aspects of hurricane
forecasts. In particular, despite benefiting track forecasts in TS,
ICO degraded H12 track forecasts relative to NO-DROP with
marginal consistency on days 4–5. Further, intensity forecasts in
H345 substantially suffered at most long lead times. In fact, the
H345 intensity forecasts in ICO had 5%–10% less skill than
NO-DROP after 72 h (not shown). Recall though that sampling
the inner core was important for hurricane intensity forecasts
when other dropsondes were present (Fig. 9). Thus, these ICO
results indicate that having inner-core dropsondes alone degrades
intensity forecasts, yet sampling the inner-core along with other

FIG. 12. As in Fig. 7, but for TC forecasts of (a)–(d) R34 and (e)–(h) R50 at short lead times. The sample sizes for R34 for FULL
(FULL-W) are 915 (871) at 0 h and 343 (291) and 60 h while the sample size for TS, H12, and H345 for the full (overwater) sample are, re-
spectively, as follows: 210, 353, and 352 (197, 338, and 336) at 0 h and 107, 73, and 160 (87, 63, and 124) at 60 h. The sample sizes for R50
for FULL (FULL-W) are 725 (694) and 0 h and 285 (247) at 60 h while the sample size for TS, H12, and H345 for the full (overwater)
sample are, respectively, as follows: 55, 318, and 352 (52, 306, and 336) at 0 h and 81, 48, and 156 (67, 44, and 124) at 60 h.

3 ICO included dropsonde observations not just from the
USAF C-130, but also from other reconnaissance aircraft as well
(see section 2b).
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regions of the TC benefits intensity forecasts. Further, while the
ICO strategy tended to degrade forecasts of outer wind radii in
TS, it actually improved those forecasts in hurricanes, particularly
H345. Nevertheless, considering the track or intensity degrada-
tion across many lead times for hurricanes, ICO results suggest
that only sampling the inner core with dropsondes is undesirable.
Further, these results suggest that adding end-point dropsondes
in 2018 likely benefited forecasts for hurricanes.

5. Summary and conclusions

This work represents the most comprehensive assessment to
date of the relative impact of TC dropsonde observations in the

TC inner core, in-vortex region, and environment on TC fore-
casts. It follows the framework of Ditchek et al. (2023a) (D23A),
which assessed the overall impacts of dropsondes in the 2017–20
NATL hurricane seasons following standard NHC forecast veri-
fication procedures (Cangialosi 2022). More specifically, it uses
the 2020 version of the basin-scale, multistorm configuration of
HWRF (HB20) to conduct four observing-system sensitivity ex-
periments that deny dropsonde data in various annuli. Except
for which dropsondes were denied, the experimental setup here
is identical to D23A. Thus, the experiments can be compared to
the D23A ALL (here called ALL-DROP) and NO (here called
NO-DROP) experiments, effectively creating a group of six
experiments.

FIG. 13. As in Fig. 9, but for TC forecasts of (a)–(d) R34 and (e)–(h) R50.
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Analysis focused on the subsample of D23A individual fore-
casts with direct dropsonde sampling that used HWRF-cycled
mesoscale error covariance during DA (i.e., OBS-HCOV from
D23A). This choice was guided by D23A, which concluded that
sampling TCs with dropsondes can directly improve TC fore-
casts only if using sufficiently advanced DA techniques (cf. their
Fig. 21c that included forecasts that used HWRF-cycled meso-
scale error covariance to their Fig. 21d that included forecasts
that used global-model error covariance). This study then

stratified results by initial TC classification to explore whether
and how the impact of different dropsonde-sampling strategies
changed throughout the TC life cycle. Results were shown for
both a full sample and an overwater sample, where forecasts of
TCs that were over land or lead times where TCs were fore-
casted to be overland were removed.

Because this study compares results from six different experi-
ments, we have taken a few steps to compare results in a tracta-
ble manner. As a starting point for subsequent analysis, this

FIG. 14. Consistency scorecards for NATL TC forecasts (a) overall and stratified by initial classification into
(b) TS, (c) H12, and (d) H345. The sample sizes for track (TRK), VMAX, and PMIN for FULL, TS, H12, and
H345 are, respectively, as follows: 296, 92, 107, and 94 at 0 h; 219, 61, 79, 77 at 60 h; and 110, 30, 27, and 50 at
120 h. The sample sizes for R34 for FULL, TS, H12, and H345 are, respectively, as follows: 915, 210, 353, and
352 at 0 h; 343, 107, 73, and 160 at 60 h; and 89, 16, 20, and 50 at 120 h. The sample sizes for R50 for FULL, TS,
H12, and H345 the sample sizes are, respectively, as follows: 725, 55, 318, and 352 at 0 h; 285, 81, 48, and 156 at
60 h; and 69, 12, 10, and 47 at 120 h.

FIG. 15. Summary graphic of the relative impact of the temporal consistency of each experiment compared to ALL-DROP for both
the full and overwater samples. Note that these results were previously displayed and are here organized by variable for NO-IC (blue),
NO-VOR (purple), and NO-ENV (yellow) at short lead times (i.e., 6–60 h).
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paper uses a new metric developed by Ditchek et al. (2023b)
(D23B) and used in D23A. This metric}the consistency
metric}helps identify when improvement or degradation oc-
curs consistently and not because of a handful of outliers,
which is a common problem in TC verification (see D23B for
more details). The consistency-metric results are then used to
evaluate the performance of each experiment at short and
long lead times relative to ALL-DROP. While the analysis is
admittedly high-level, the approach significantly improves the
clarity of the results.

Before summarizing results, it is useful to briefly discuss the
main takeaways from D23A that are relevant to this study (i.e.,
comparing ALL and NO from their OBS-HCOV sample).
Overall, D23A found that dropsondes directly improved fore-
casts of track, intensity, and outer wind radii (their Fig. 21c).
The impacts on outer wind radii were particularly positive and
extended through most lead times. Similar results are found in
this study when comparing ALL-DROPS to a NO-DROPS
baseline (Figs. 6, 8, and 11), albeit for a smaller sample than
D23A (see section 2c).

To aid in summarizing the main results found in this study,
Fig. 15 depicts relative-impact scorecards for all forecast varia-
bles assessed. The figure summarizes results for three of the four
experiments (i.e., NO-IC, NO-VOR, and NO-ENV). Note that
ICO is not included as forecasts generally were degraded rela-
tive to ALL-DROP (i.e., forecasts were degraded when drop-
sonde observations outside of the inner core were denied).
Additionally, since the most interesting and useful results oc-
curred at short lead times, the graphic excludes long lead times.

An immediately obvious result in Fig. 15 is that removing
dropsondes anywhere substantially degraded VMAX forecasts
(Figs. 15b,g). The worst forecast performance occurred when re-
moving in-vortex sampling (i.e., NO-VOR), especially for TS.
Further, considering that the largest number of dropsonde data
in H345 falls outside 250 km (Fig. 4k), these results suggest that
bringing sampling of major hurricanes inward somewhat could
improve forecasts of their intensity. These results agree with the
large body of research that has previously shown the benefits of
assimilating inner core data (e.g., Zhang et al. 2009, 2011; Weng
and Zhang 2012; Aberson et al. 2015). Nonetheless, the degra-
dation found when only sampling the in-vortex region (i.e.,
NO-ENV) suggests that sampling the environment also benefited
VMAX forecasts. This suggests that synoptic surveillance mis-
sions conducted by the NOAA G-IV, which are the primary
source of environmental dropsondes, benefit VMAX forecasts. A
likely reason for this benefit is that the deep-layer G-IV drop-
sondes sample otherwise unobserved aspects of the near-TC envi-
ronment. For example, though satellite-based retrievals such as
atmospheric motion vectors yield valuable data, they typically
give little information regarding the wind field below about
400 hPa near TCs [e.g., Fig. 6 of Lim et al. (2019) and Fig. 3 of
Li et al. (2020)]. Without such observations, analyses can miss
important details such as the profile of vertical wind shear.

In-vortex dropsondes provide several intensity-dependent
benefits in addition to substantially improving VMAX fore-
casts. For example, sampling the in-vortex region improved
forecasts of TS outer wind radii (Figs. 15d,e,i,j). Though the
importance of in-vortex sampling decreased considerably for

R34 forecasts in hurricanes, it generally remained important
for R50 forecasts in all TCs. This difference was likely due to
an outward-shifting distribution of the outer wind radii as
TCs intensified. While R34 in hurricanes spanned the bound-
ary between the vortex and the environment (cf. Figs. 4f–i,l),
R50 always fell within the vortex. An additional benefit of in-
vortex sampling was its substantial impact on PMIN in H345
(Figs. 15c,h). Given the relationship of PMIN to TC structure
and damage (e.g., Chavas et al. 2017; Klotzbach et al. 2020),
this suggests that dropsondes within the in-vortex region of a
major hurricane are particularly beneficial.

Figure 15 also demonstrates that track forecasts in weaker TCs
benefited more from environmental sampling, while forecasts in
stronger TCs benefited more from in-vortex sampling (Figs. 15a,f).
Though changing the sampling strategy from environment-focused
to vortex-focused as a TC intensifies could benefit track
forecasts, this would increase forecast MAE for both inten-
sity and outer wind radii in weaker TCs (Figs. 15b–e,g–j).
Alternatively, degraded track forecasts when in-vortex data
are added to weaker TCs could suggest a deficiency in DA.
Tropical storms are known to be more asymmetric than hur-
ricanes, and it is certainly plausible that asymmetric analysis
increments in weaker systems could degrade the track by
projecting onto larger scales than they should. While such
investigation is beyond the scope of this study, improving
DA methods to constrain increments to the appropriate
scales could improve the impact of dropsondes, particularly
those in the vortex, on the track forecasts. One possible ex-
ample of such a method has been provided in Huang et al.
(2021), who showed that scale-dependent localization in the
GSI framework can improve track forecasts.

Another result from this study is that only sampling the
inner-core region should be avoided. More specifically, ICO
routinely performed worse than ALL-DROP (not shown)
and even degraded forecasts relative to NO-DROP (Fig. 14).
Long lead time degradation relative to NO-DROP occurred
for H12 track, intensity, and outer-wind-radii forecasts as well
as H345 intensity forecasts. These results have a great deal of
operational relevance because USAF flights did not release
dropsondes outside the inner core prior to 2018. Thus, the
ICO configuration roughly represents the pre-2018 opera-
tional dropsonde sampling strategy when NOAA missions
were not present. In this situation, it would have been better
to not assimilate dropsonde data at all rather than to only as-
similate the inner core dropsonde data available from the
USAF. Fortunately, that strategy has been used infrequently
since USAF missions began routinely releasing dropsondes at
the ends of their radial legs (about 150–200 km from the TC
center) in 2018. Results here suggest that change has likely
benefited TC forecasts.

Future work should explore how dropsondes can optimally be
used with other airborne data, particularly within the TC vortex,
to improve TC forecasts. The results here suggest that substan-
tially increasing sampling with dropsondes in certain regions
could further benefit forecasts, though the ideal number of drop-
sondes may not be operationally practical. For example, fore-
casts of outer wind radii improve when they are sampled,
echoing the finding from D23A that sampling the near-core
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region is important for predicting the hurricane-force wind field.
While adaptive dropsonde sampling that targets outer wind radii
could further improve forecasts, a potential problem with this
approach is that it vastly increases the number of dropsondes de-
ployed (e.g., Fig. 16b). This is problematic not only given the
substantial cost associated with acquiring more dropsondes
(around $800 each; M. Brennan 2022, personal communication),
but also since launching that many dropsondes from a single air-
craft mission is physically and logistically challenging with cur-
rent technology. A superior long-term approach might be to
assimilate remotely sensed reconnaissance data that continu-
ously samples the wind and thermodynamic fields (e.g., Fig. 16c)
in addition to the current density of dropsonde data (i.e.,
Fig. 16a). Indeed, in recent years the Imaging Wind and Rain
Airborne Profiler (IWRAP; Guimond et al. 2014) and the
Doppler wind lidar (DWL; Bucci et al. 2018; Bucci 2020; Zhang
et al. 2018) have routinely been deployed on the NOAA P3s
and have been used to retrieve accurate, high-resolution profiles
within (IWRAP) and outside of (DWL) precipitation. Further
research needs to quantify how this additional data can be used
with currently assimilated data to improve TC forecasts. Ther-
modynamic data are more challenging, particularly within
precipitation, though recent experiments with airborne radio
occultation have shown promise (Haase et al. 2021).

Finally, though this study has yielded valuable comparisons
of the relative impacts of inner-core, in-vortex, and environ-
mental dropsondes, more work remains to improve the cur-
rent dropsonde-sampling strategy. Two ongoing studies are
assessing sampling strategies for G-IV synoptic surveillance
missions. One study is examining the impacts of dropsondes
launched during the inner circumnavigation, a flight pattern

that was added in 2018 (see D23A, their Fig. 3c). The second
study is assessing the impact of all G-IV reconnaissance, re-
connaissance from the G-IV inner circumnavigation, and re-
connaissance from the G-IV environmental targeting. Results
found from D23A, this study, and these future studies will
help optimize dropsonde sampling during reconnaissance
missions.
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