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T he de v elopment of offshore wind energy in the United States necessitates a sound understanding of trade-offs across ocean uses. Location data 
on private recreational fishing have been a glaring gap in understanding how society uses marine resources, despite its economic importance. 
In this study, we use a novel data set to start to fill that knowledge gap. We employ a flexible restricted likelihood spatial scan statistic on data 
from Fish Rules, a smartphone application, which provides georeferenced species-level regulations, to understand whether species-le v el data of 
user queries are clustered spatially. Originally de v eloped f or epidemiological studies of disease clusters, the fle xible scan statistic emplo y ed in 
this study uses a Bernoulli likelihood ratio test to assess the size, number, and significance of clusters in presence/absence data for recreational 
species. We use a second data set of known fishing locations to validate that the clusters identify private recreational fishing activity. We then 
discuss the analysis in the context of wind lease areas in the region, highlighting its value in supporting management decision-making. The 
results suggest that Fish Rules data identify areas with a high likelihood of being private angler fishing locations and can assess differential 
impacts of offshore wind de v elopment on private recreational fishing activities. 
Keywords: cluster analysis, offshore wind impacts, recreational fishing, spatial scan statistics. 
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Introduction 

Spatial management is a key strategy employed in marine re- 
source management and encapsulates a wide range of regula- 
tions and restrictions on human activities. In fisheries, spatial 
management includes fully protected conservation areas, gear- 
restricted areas, and seasonal management such as spawning 
closures and dynamic protected species closures (e.g. Sciber- 
ras et al. 2013 ). Spatial management of resources is also wo- 
ven throughout the concepts of marine spatial planning and 

ecosystem-based management (e.g. Arkema et al., 2006 ; Ehler,
2021 ). 

Offshore wind energy development is an issue that high- 
lights the need for spatially explicit analyses to support man- 
agement decision-making. In the United States, offshore wind 

development is managed by the Bureau of Ocean Energy and 

Management under the Energy Policy Act of 2005 (Public Law 

109–58—8 August 2005). Proposed offshore wind projects 
must undertake a review of the affected environment under 
the National Environmental Policy Act, including both poten- 
tial positive and negative economic and social effects of the 
project (85 FR 43363 § 1502.16). These environmental im- 
pact statements are meant to assess all potentially affected hu- 
man activities, including the likely impacts on commercial and 

recreational fisheries (Bureau of Ocean Management, 2021a ,
b ). Thus, a legal imperative joins the appeal for sound science 
in holistically understanding the impacts and trade-offs asso- 
ciated with offshore wind energy development. 
Received: 23 March 2023; Revised: 18 September 2023; Accepted: 20 Septemb
Published by Oxford University Press on behalf of International Council for the E
employee(s) and is in the public domain in the US. 
All of this necessitates an understanding of where human 

ctivities occur in the ocean. Substantial resources have been 

xpended in developing data streams and research aimed at 
nderstanding the spatial patterns of commercial fishing, from 

essel logbooks and human observers to vessel monitoring 
ystems and automatic identification system data (e.g. Hut- 
on et al., 2004 ; Scott-Denton et al., 2011 ; Muench et al.,
017 ; James et al., 2018 ; Scheld et al., 2022 ). Much less in-
estment has been made in understanding where recreational 
shers fish (National Research Council, 2006 ; McCluskey and 

ewison, 2008 ; The National Academies of Sciences, Engi- 
eering, and Medicine, 2017 ). Some US regions require log-
ooks comparable to commercial fisheries for for-hire and 

arge “party” recreational vessels [e.g. Joint Omnibus Elec- 
ronic Vessel Trip Reporting Framework Adjustment, 85 Fed.
eg. 71575 (10 November 2020) (to be codified at 50 CFR
48)]. However, the fishing activity from these sectors is of-
en dwarfed by private angler activity, for which the major-
ty of data are collected through surveys that tend to record
nly generic fishing locations such as inshore vs. offshore (Na-
ional Research Council, 2006 ; The National Academies of 
ciences, Engineering, and Medicine, 2017 ; Arlinghaus et al.,
019 ). This is despite the fact that recreational harvest is
arger than commercial harvest in some fisheries (Arlinghaus 
t al., 2019 ; Johnston et al., 2022 ). In addition, recreational
shing can be important to regional and national economies 
Fishery and Aquaculture Economics and Policy Division,
er 2023 
xploration of the Sea 2023. This work is written by (a) US Government 
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012 ; National Marine Fisheries Service, 2022 ; World Bank,
012 ). In the United States, it is estimated that a total of
88 million marine recreational fishing trips were taken in
019, generating over $89 billion in sales (National Marine
isheries Service, 2022 ) highlighting the importance of this
ector in the marine economy, and the need to understand
here recreational fishing is occurring in the context of other
lanned ocean uses such as wind energy development. Imped-

ments to assessing likely impacts on the private recreational
shery develop the potential to overlook a substantial com-
onent of the trade-off implicit in the decision of where, and
hether, offshore wind development should occur. 
An obvious challenge in understanding the activities of pri-

ate anglers is the cost and complexity of such an endeavour
National Research Council, 2006 ; The National Academies
f Sciences, Engineering, and Medicine, 2017 ). However, there
re a growing number of data sources that were explicitly de-
eloped for other purposes that may be used to better under-
tand recreational fishing activities. These include data from
atellites (Keramidas et al., 2018 ) and applications for phones
nd computers ( Carter et al., 2015 ; Jiorle et al., 2016 ; Ven-
urelli et al., 2017 ; Kellogg, 2020 ; Johnston et al., 2022 ).
owever, because they are data sets of opportunity, these ap-

roaches necessitate verification to ensure the data are ap-
ropriate for the envisioned alternate use (Venturelli et al.,
017 ; Keramidas et al., 2018 ; Johnston et al., 2022 ). In ad-
ition, it is unlikely that a single application will provide all
he information necessary to effectively manage recreational
sheries, meaning all available data should be leveraged for
anagement purposes. The value that can be generated from

uch multi-model and multiple data set analysis is well known
Burnham and Anderson, 2004 ; Bareinboim and Pearl, 2016 ).

In this study, we use a novel dataset to begin to understand
he spatial distribution of private recreational fishing along the
ortheast coast of the US. Fish Rules is a smartphone appli-
ation that uses georeferenced location data to present recre-
tional anglers with the relevant fishing regulations as of the
ate the app is accessed ( https://fishrulesapp.com ). We employ
 flexible spatial scan statistic to search for clusters where indi-
idual species’ regulation data have been accessed within por-
ions of the Atlantic Ocean off the coast of the Northeast and

id-Atlantic United States. To assess whether these clusters
ave any meaningful linkage to actual fishing activity, we test
he cluster’s ability to explain recreational charter and party
oat fishing locations. The research adds to the existing lit-
rature on private angler activity in the marine environment
y presenting a novel manner by which to verify the utility of
ata designed for a purpose other than management of recre-
tional fishing. The data represent the most detailed location
nformation on private recreational fishing activity currently
vailable, underlying the potential importance in both man-
gement and science applications. We showcase the method’s
anagement utility by assessing the overlap between species

lusters that are identified and offshore wind energy lease ar-
as and discuss implications in terms of species-specific recre-
tional fishing impacts. 

ethods 

tep 1: cluster identification 

he aim of this research was to assess whether the distribution
f points (latitude, longitude) representing anonymous an-
lers accessing species-specific regulations were spatially uni-
orm or whether the points were clustered in space. Follow-
ng Kulldorff ( 1997 ), a Bernoulli likelihood ratio test, com-
only known as a spatial scan statistic, was employed to as-

ess the significance of potential clusters in the binary pres-
nce/absence data generated by Fish Rules users. A scan statis-
ic was utilized, as opposed to kriging or kernel density esti-
ation, because of the interest in whether identified clusters

re significantly different from the surrounding locations, in
erms of species-specific information. In this context, presence
eant a view of the Fish Rules application was associated with

he species of interest, while absence meant that the view was
ssociated with some other species. The Bernoulli likelihood
unction was specified as 

L ( Z, p, q ) 

= p 

n Z ( 1 − p ) μ( Z ) −n Z q 

n G −n Z ( 1 − q ) μ( G ) −μ( Z ) −( n G −n Z ) . 

(1)

In this specification, G represented the study region, Z rep-
esented the spatial zone in (or equivalently the subset of
oints for) which the cluster was assessed for significance,
 was the probability of a species’ regulations being viewed
ithin zone Z , q was the probability of that species’ regula-

ions being accessed outside of zone Z , μ( G ) was the total
umber of records within the study region, μ( Z ) was the total
umber of records within the test zone, n G 

was the total num-
er of a specific species’ records within the study region, and
 Z 

was the total number of a specific species’ records within
he test zone. The null hypothesis was that p = q , while the
lternative hypothesis was p > q , i.e. a species’ regulation was
roportionally accessed more often within test zone Z than
utside of it. Operationally, zone Z was chosen to maximize
he likelihood function, and multiple non-overlapping Z win-
ows can be theoretically identified that meet a threshold of
tatistical significance chosen. 

For each candidate test zone Z , commonly described as a
indow, a likelihood ratio test statistic was calculated as fol-

ows: 

λ(Z ) = 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
n Z 

μ(Z ) 

)
n Z 

(
1− n Z 

μ(Z ) 

)μ(Z ) −n Z n G −n Z 
μ( G ) −μ( Z ) 

n G −n Z 
(
1 − n G −n Z 

μ( G ) −μ( Z ) 

)μ( G ) −μ( Z ) −( n G −n Z ) 

(
n G 

μ(G ) 

)n G (
1 − n G 

μ(G ) 

)μ(G ) −n G 
, 

if 
n Z 

μ(Z ) 
> 

n G − n Z 
μ(G ) − μ(Z ) 

1 , o therwise . 

(2)

Although the most common search window employed is
ircular, this research employed a flexibly shaped search win-
ow with a restricted likelihood function as defined by Tango
 2008 ). The flexible search window has been shown to out-
erform circular windows when faced with clusters departing
ubstantially from a circular pattern (Tango and Takahashi,
005 ; Otani and Takahashi, 2021 ). Given that recreational
shing generally tends to occur within 3 nautical miles of the
oast and follow the contour of the shoreline, there was some
xpectation that not all potential clusters would be circular.
n addition, the restricted likelihood flexible scan statistic has
een shown to perform well against a broad swath of alter-
ate methods, including the circular, elliptic, upper level set,
exibly shaped, dynamic minimum spanning tree, early stop-
ing dynamic minimum spanning tree, double connection,

https://fishrulesapp.com
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maximum linkage, and fast subset scan statistics (French et al.,
2022 ). 

The restriction on the likelihood function is a filter on the 
subset of observations to be formally tested for clustering. The 
aim of the filter was twofold. First, and most importantly, it 
filtered low-probability areas from being considered within a 
cluster, as traditional spatial scan statistics tend to overesti- 
mate the size of clusters (Tango, 2008 ). Second, the filtering 
had the effect of considerably speeding up the algorithm when 

compared to the original flexibly shaped scan statistic as the 
search space increases exponentially with the number of ob- 
servations included in the search window (French et al., 2022 ).

The filter itself was implemented by only including high- 
probability groups of observations in the likelihood function 

comparison, as assessed using a one-tailed test of significance.
Following Tango ( 2008 ), suppose that the study region was 
subsetted into M mutually exclusive spatial regions. For our 
purposes, the subsetting was implemented by aggregating the 
point data to a 10-min square grid, as is common in the re- 
gion (e.g. Murawski et al., 2005 ). The restricted likelihood 

then only assesses zone Z if all m individual regions in Z have 
an individual probability of significance less than some cutoff 
value αm 

. Mathematically, the restriction is defined as follows: 

∏ 

m ∈ Z 
I ( p m < αm ) = 

∏ 

m ∈ Z 
I 

( 

Pr 
(
N m � n m + 1 | N m ∼ Bin 

(
μ ( m ) , ̂  q 

))

+ 

1 
2 

Pr 
(
N m = n m | N m ∼ Bin 

(
μ ( m ) , ̂  q 

))
< αm 

) 

. 

(3) 

In Equation ( 3 ), ˆ q represented the probability of success 
under the null hypothesis, and the product of the indicator 
function I ( ·) was zero if at least one of the m ∈ Z present a 
mid p -value > αm 

and 1 otherwise. The filter was applied by 
multiplying this product by the likelihood function defined in 

Equation ( 1 ). The mid p -value was used to correct for the dis- 
continuous nature of the Binomial distribution. This research 

employed αm 

= 0.40 for two reasons. First, although on the 
high end of standard thresholds, 0.40 performs well in com- 
parison to Kulldorff’s circular spatial scan statistic for iden- 
tifying the extent of the true underlying data clusters (Tango,
2008 ). Second, the spatial units of interest in epidemiology 
are most often geopolitical boundaries delineating meaning- 
ful differences in the underlying populations of interest. The 
10-min grid employed here, although customarily used in the 
region, does not have a meaningful interpretation in regard 

to the underlying data-generating process. As such, the 0.40 

threshold combated issues arising from the modifiable areal 
unit problem, in which the results of a study are dependent on 

the choice of spatial unit employed (Gehlke and Biehl, 1934 ; 
Openshaw, 1984 ; Wong, 2004 ). In this case, the relatively high 

αm 

helped ensure that slight permutations in the delineation 

of the test area would not unduly impact the results of the 
analysis. 

The significance of the test statistic was assessed through 

Monte Carlo simulations. This was done by drawing repli- 
cate samples using the population-level statistics under the 
null hypothesis. The analyis drew 9999 replicate data sets per 
species to assess statistical significance. For each replicate data 
set μ( Z ) observations from the population were randomly re- 
labeled as inside of zone Z and the number of positive views 
for the species of interest in the new subsample, n 

∗
Z 

, were cal- 
culated with the results then substituted into Equation ( 2 ) to 

calculate λ( Z 

∗). The null hypothesis was rejected at signifi- 
ance level α1 if the original likelihood ratio test statistic fell
ithin the α1 highest draws of λ( Z 

∗) calculated from the simu-
ations. The cluster window searched a maximum of 100 near-
st neighbours. These hundred 10-min squares represented an 

pper bound on the spatial footprint of a cluster, and clusters
ith smaller number of cells could be identified. The upper
ound was set at hundred 10-min squares as it heuristically
eems on the bounds of what would be useful in a manage-
ent context, and broadly speaking should circumscribe sim- 

lar recreational marine fishing opportunities. 

tep 2: cluster validation 

he clusters from step 1 identified areas in which the regula-
ions of an individual species were accessed more frequently 
han would be expected if uniformly distributed in space. Ulti-
ately, the aim is to use the Fish Rules data to make inferences

bout fishing locations. Therefore, in the second step, the re-
ationship between the clusters and an independent data set 
f species harvested at known fishing locations was assessed 

s described below. Of particular note is that the approach
mployed did not hinge on the equality of the Fish Rules and
ndependent fishing location data set distributions. Rather, the 
pproach tested whether the Fish Rules clusters could identify 
reas that represented elevated harvest rates in the indepen- 
ent data sets. If a species from the independent data set was
arvested more often inside a cluster than outside of a cluster,
t would link the regulation views to known hotspots of recre-
tional harvest for that species. This, in turn, would suggest
hat fishers are likely accessing the regulations either for fish
lready caught or expected fishing activity at a location, both
f which are useful in a management context. 
This linkage was investigated by testing whether the harvest 

ates of a species within the cluster were higher than outside of
he cluster. This question revolves around whether there was
 higher probability of harvesting a species inside the cluster
han outside of the cluster: i.e. the dominance of the distribu-
ion of harvest rates within the cluster. We therefore use a test
f first-order stochastic dominance to assess whether the rate 
f harvest for a species within the associated Fish Rules data
lusters was significantly higher than the rate of harvest out-
ide of the clusters. The Kolmogorov–Smirnov type test de- 
eloped by Barrett and Donald ( 2003 ) was used to test for
rst-order stochastic dominance of the rate of harvest of indi-
idual species within the clusters. Given the continuous cumu- 
ative distribution functions F and H over samples of random
ariable z from two different populations, first-order stochas- 
ic dominance of H over F is defined as H ( z ) ≤ F ( z ) ∀ z . This
eans that for any arbitrary cutoff along the common sup-
ort Z , the distribution function H has more probability mass
bove the cutoff than F . 

The test itself focused on the distance between the two dis-
ribution functions, d 

∗ = sup 

z ∈ Z 

[ H(z ) − F (z )] . Barrett and Don-

ld ( 2003 ) provide the following empirical analogy for this
est statistic: 

ˆ d = 

(
NM 

N + M 

)1 / 2 

sup 

z ∈ Z 

[ 
ˆ H N 

(z ) − ˆ F M 

(z ) 
] 
, (4) 

ith the corresponding empirical distributions ˆ H N 

= 

1 
N 

∑ N 

i =1 I (X i ≤ z ) and 

ˆ F M 

= 

1 
M 

∑ M 

j=1 I (Y j ≤ z ) of sample
izes M and N . The approach from Whang ( 2019 ) was
mplemented through the recentered bootstrap methodology 



4 G. DePiper et al. 

Figure 1. The location of the 26 wind lease areas anticipated to be developed within the Greater Atlantic Region, as they were defined in December 
2022. 
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n order to calculate p -values. The null hypothesis indicates
hat H � FSD 

F . This method of bootstrapping simulated the
istribution of the test statistic under the null hypothesis as
ollows. Define sample 1 as η = { X 1 , ···, X N 

} and sample 2 as
 = { Y 1 , ···, Y M 

}. Draw a sample with replacement of size N
rom η to calculate estimate ˆ H 

∗
N 

= 

1 
N 

∑ N 

i =1 I(X 

∗
i ≤ z ) , and of

ize M from ψ to calculate estimate ˆ F ∗M 

= 

1 
M 

∑ M 

j=1 I(Y 

∗
j ≤ z ) .

or first-order stochastic dominance, the test statistic can be
stimated as: 

ˆ d 

∗ = 

(
NM 

N + M 

)1 / 2 

sup 

z ∈ Z 

×
[ (

ˆ H 

∗
N 

(z ) − ˆ H N 

(z ) 
)

−
(

ˆ F ∗M 

(z ) − ˆ F M 

(z ) 
)] 

, 

(5) 

here z was approximated by a grid. The grid size was set to
he number of unique values in the pooled samples, and 

ˆ d 

∗ was
ecalculated using 9999 replicates to estimate the empirical
istribution of the test statistic under the null hypothesis. The
 -value is then the percentage of the bootstrap estimates of ˆ d 

∗

hat are greater than the original test statistic ˆ d as calculated in
quation ( 4 ). Being a single-tailed test, the null hypothesis was
ejected at significance level α2 if the bootstrapped p -value is
maller than α2 . 

tep 3: practical example of management utility 

s a practical example, the species clusters identified in step
 and validated in step 2 were compared against 26 wind
ease areas off the coast of the northeast United States where
ffshore wind development is slated to occur. Figure 1 maps
he location of all 26 wind lease areas within the region. The
xtent to which each wind lease area spatially overlapped a
pecies cluster can be used to assess likely private angler fish-
ng activities within the area. In a managerial context, this
ikelihood can be used to identify user groups likely to be im-
acted by offshore wind development and to understand dif-
erential impacts across these user groups. 

All analyses were conducted in the R programming envi-
onment (R Core Team, 2019 ). The flexible scan statistic em-
loyed the rflexscan package (Otani and Takahashi, 2021 ),
hile the first-order stochastic dominance test employed
ATLAB code published in Whang ( 2019 ), and ported to R

y the authors. All geospatial analysis was undertaken using
he sf package (Pebesma, 2018 ). 

ata 

he research undertaken employs two sets of data. The clus-
er analysis outlined in step 1 used anonymized information
athered from the Fish Rules smartphone application. Fish
ules captures location information in order to display rele-
ant recreational fishing regulations for marine waters within
he US Exclusive Economic Zone. The location is used to iden-
ify regulations, and can be either geolocated automatically
y the user’s computer or cell phone, or manually entered by
he user. Regulations can thus be accessed either on the water
r from land, and location can be manually sourced or ge-
located automatically. Fish Rules was designed explicitly to
llow recreational fishers that the ability to quickly identify
he species they had caught and the regulations to understand
hether that fish can be kept. However, in reality, potential
ses could include planning fishing trips or motivations with
ore tenuous linkages to actual or anticipated fishing activ-

ties, such as mere curiosity. The ambiguity around usage is
ne of the motivating factors for our research. The regula-
ions are species-specific, and include information such as sea-
on, bag limit, size limits, gear restrictions, and area closures
or both state and federal waters. The data cover Fish Rules
sage during the years 2020 and 2021. Of note is that these
ears fall squarely within the COVID-19 pandemic, which had
ocumented impacts on recreational fishing patterns (Midway
t al., 2021 ). Although data limitations did not offer an oppor-
unity to assess alternate years, it will be important for future
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work to understand the impact of the pandemic on the results 
presented. 

We focus on the Greater Atlantic Region, which extends 
from North Carolina in the south to the Canadian border in 

the north. NOAA’s Greater Atlantic Regional Fisheries Of- 
fice works collaboratively with state and other regional part- 
ners to administer federal fisheries resources in this region, and 

thus the region delineates an important recreational fisheries 
management unit. For the purpose of this research, we focus 
primarily on species with high federal reporting coverage, as 
this federal reporting is core to our validation approach em- 
ployed in step 2 of the analysis. The list of species assessed 

includes striped bass ( Morone saxatilis ), Atlantic cod ( Gadus 
morhua ), summer flounder ( Paralichthys dentatus ), haddock 

( Melanogrammus aeglefinus ), scup ( Stenotomus chrysops ),
red drum ( Sciaenops ocellatus ), black sea bass ( Centropristis 
striata ), tautog ( Tautoga onitis ), bluefish ( Pomatomus salta- 
trix ), windowpane flounder ( Scophthalmus aquosus ), winter 
flounder ( Pseudopleuronectes americanus ), yellowtail floun- 
der ( Limanda ferruginea ), and weakfish ( Cynoscion regalis ).
Although striped bass, weakfish, and red drum are not fed- 
erally managed species, we include them in the analysis due 
to their historic importance as target species for recreational 
anglers. The Fish Rules data include the latitude and longi- 
tude at which species-specific regulations were viewed within 

the app. The app also indicates whether the latitude and lon- 
gitude was derived from global positioning software within 

the phone or user-inputted location. For the purpose of this 
research, we did not differentiate between the two location 

attributions, as we are interested in understanding whether 
the location data credibly identifies fishing locations, regard- 
less of the input method. Broadly speaking, for management 
purposes, we are interested in both where individuals expect 
to fish for a species, a leading indicator for a trip and identifi- 
cation of expected catch, and where a species is encountered,
a realized catch. We are thus interested in the ability of the 
pooled data to credibly identify private recreational fishing 
locations for management purposes. As such, we only utilize 
data whose latitude and longitude fall within marine waters.
For summary purposes, we aggregate the number of times reg- 
ulations were accessed to the daily level by species ( Table 1 ). 

The second dataset utilized is party and charter recreational 
fishing vessel trip reports (VTRs). Federally permitted charter 
and party boats in the United States are required to submit 
these VTR logbooks to NOAA Fisheries, and the VTRs repre- 
sent the legal record of a fishing trip. Charter and party trips 
differ from private angler trips in that the choice of where 
and when to fish is made by a captain instead of the angler 
themselves, and the incentives between a captain and paying 
customers might differ. In addition, many charter and party 
boats are larger and more powerful than a standard private 
recreational vessel, allowing them to access areas that might 
be unavailable to the average fisher. The VTRs include the co- 
ordinates representing the majority of fishing effort on that 
trip, along with the number and type of species harvested on 

the trip. Although the VTR request numbers of fish harvested,
there is some measurement error in which pounds instead of 
numbers are sometimes recorded. However, this should not 
unduly impact our analysis, as the reporting would not sys- 
tematically differ across species. For our purposes, we esti- 
mate the daily harvest of each species, as a percentage of 
all species harvested that day. These harvest rates are then 

used in the cluster validation described in step 2 above. The 
ata are presented in Table 2 , in numbers of fish, for ease of
nterpretation. 

esults 

able 3 presents the results of the spatial scan statistic. Of note
s that the spatial scan statistic for two species tested (yellow-
ail flounder and weakfish) returned p -values that were larger
han any conventional level of significance, meaning no clus- 
ers exist for those species. In all, the flexible restricted like-
ihood spatial scan statistic identified 24 clusters across 11 

pecies. Maps of the location of each of these clusters can be
ound in Appendix 1 online . The total area of the clusters runs
rom just under 144 square km for red drum to just over 7100
quare km for summer flounder. 

Table 4 presents the results of the first-order stochastic 
ominance test for whether the Fish Rules clusters identify 
reas that represent elevated harvest rates in the independent 
ata sets of known fishing locations, when compared to fish-
ng locations outside of the clusters. Elevated harvest rates 
nside a cluster would link the regulation views to known
otspots of recreational harvest for that species and indi- 
ate that the Fish Rules clusters likely represent private recre-
tional fishing locations. In order to control for seasonal avail-
bility of species regionally, we test stochastic dominance for 
ays on which the species was harvested within the cluster.
hus, Table 4 presents the number of daily observations avail-
ble, and the test uses double that number of observations,
ne set of observations inside the cluster and one set of ob-
ervations outside of the cluster. We also follow the literature
nd define a significant spatial scan statistic if the correspond-
ng corrected p -value presented in Table 3 is < 0.05 (Tango,
008 ; Otani and Takahashi, 2021 ; French et al., 2022 ), and
nly those clusters are tested for first-order stochastic domi- 
ance. We process the daily harvest totals from 2020 to 2021
eparately, to account for interannual fluctuations in regula- 
ions, species distributions, and other drivers that can affect 
here and when recreational fishing occurs. Of interest is that,
sing α2 = 0.1, the rate of harvest for the species inside the
lusters first-order stochastically dominates the rate of harvest 
or the species outside the cluster for all species and years ex-
ept striped bass in 2020 ( p -value = 0.013), haddock in 2021
 p -value = 0.036), and bluefish in 2021 ( p -value = 0.099).
his means that for 17 of 20 species-year combinations tested,

here is a higher probability of harvesting the species inside the
luster than outside of the cluster. 

We present the proportion of each wind energy area that
verlaps a species cluster in Table 5 , with a visual example
f the analysis undertaken in Figure 2 . The mapped overlap
f species clusters with individual lease areas are presented 

n the Appendix 1 online . From Table 5, OCS-A 0486 and
CS-A 0512 wind energy areas overlap the most clusters, at
, followed by OCS-A 0487, OCS-A 0500, OCS-A 0534, and
CS-A 0549, which each overlap five clusters. 
Table 6 shows a complimentary analysis: the percentage of 

ach individual cluster that falls within the wind energy ar-
as. Seventeen wind lease areas overlap the four black sea
ass private recreational fishing clusters, which is the high- 
st number of overlaps for any one species. However, 44% of
autog cluster 2 (559 square km), 27% of haddock cluster 3
909 square km), and 21% of the Atlantic cod cluster 1 (1018
quare km) fall within offshore wind energy areas. More 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad154#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad154#supplementary-data
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Table 1. Descriptive statistics of daily view data generated by users on the Fish Rules application for the 13 species assessed within this research. 

Species name Total Average Median Max Min SD 

Black sea bass 747 2 .8 2 14 1 2 .33 
Striped bass 638 2 .9 1 20 1 3 .39 
Summer flounder 574 2 .7 2 15 1 2 .38 
Tautog 452 2 .4 2 13 1 1 .99 
Bluefish 386 2 .1 1 11 1 1 .74 
Atlantic cod 351 1 .9 1 8 1 1 .44 
Winter flounder 305 2 .1 1 10 1 1 .69 
Scup 249 1 .7 1 6 1 1 .07 
Red drum 211 1 .8 1 6 1 1 .22 
Haddock 207 1 .7 1 8 1 1 .22 
Weakfish 180 1 .6 1 5 1 0 .92 
Yellowtail flounder 156 1 .4 1 6 1 0 .83 
Windowpane flounder 139 1 .4 1 4 1 0 .74 

Table 2. Descriptive statistics of recreational harvest as reported by federally permitted party and charter vessels in VTRs. 

Species name Total Average Median Max Min SD 

Scup 1 552 596 3 346.10 3 126 14 937 0 2 448.14 
Black sea bass 899 505 1 694.00 1 590 8 357 0 1 417.93 
Haddock 455 347 975.00 848 4 274 1 710.70 
Bluefish 131 725 287.60 220 1 508 0 280.92 
Summer flounder 110 937 292.70 222 1 111 0 293.02 
Tautog 67 102 141.90 25 2 617 0 254.16 
Striped bass 33 764 69.00 53 389 0 63.18 
Atlantic cod 24 888 43.90 18 461 0 67.41 
Winter flounder 3 108 11.00 6 93 0 13.66 
Weakfish 888 5.60 3 39 0 7.17 
Windowpane flounder 288 6.10 0 48 0 10.15 
Red drum 126 1.40 0 12 0 2.47 
Yellowtail flounder 125 3.80 2 40 1 6.83 

Data are presented in daily numbers of fish harvested. 

Table 3. Flexible restricted likelihood spatial scan statistic significance lev- 
els and cluster area for species presenting significant results. 

Species name Corrected p -value Cluster area (km 

2 ) 

Bluefish 0 .0322 2316 .49 
Red drum 0 .0001 3571 .61 
Red drum 0 .0001 143 .78 
Scup 0 .0016 3434 .56 
Scup 0 .0026 4467 .60 
Atlantic cod 0 .0003 4933 .51 
Atlantic cod 0 .0003 2553 .29 
Atlantic cod 0 .0956 2709 .88 
Haddock 0 .0003 2786 .77 
Haddock 0 .0092 2606 .49 
Haddock 0 .0386 3355 .76 
Summer flounder 0 .0003 7134 .04 
Summer flounder 0 .0120 2908 .31 
Summer flounder 0 .0414 2863 .58 
Tautog 0 .0002 3554 .69 
Tautog 0 .0477 1257 .73 
Windowpane flounder 0 .0115 2953 .90 
Winter flounder 0 .0004 3851 .82 
Black sea bass 0 .0004 4087 .79 
Black sea bass 0 .0004 4938 .24 
Black sea bass 0 .0004 2862 .97 
Black sea bass 0 .0004 5797 .10 
Striped bass 0 .0002 2504 .76 
Striped bass 0 .0072 799 .85 

p -values corrected for multiple tests using the Holm–Bonferroni method. 
Note: Yellowtail flounder and weakfish were found to have no significant 
clusters in the data. 

Table 4. Tests for first-order stochastic dominance for species harvested 
inside vs. outside of their rele v ant clusters. 

Species name Year p -value Daily observations 

Striped bass 2020 0 .0125 111 
Striped bass 2021 0 .7468 145 
Cod 2020 0 .8566 146 
Cod 2021 0 .9290 140 
Summer flounder 2020 0 .9336 165 
Summer flounder 2021 0 .8252 183 
Haddock 2020 0 .5381 100 
Haddock 2021 0 .0359 100 
Scup 2020 0 .9018 178 
Scup 2021 0 .8951 220 
Red drum 2020 0 .7792 16 
Red drum 2021 0 .6923 9 
Black sea bass 2020 0 .9403 218 
Black sea bass 2021 0 .4979 256 
Tautog 2020 0 .8449 82 
Tautog 2021 0 .4942 112 
Bluefish 2020 0 .7671 72 
Bluefish 2021 0 .0990 55 
Winter flounder 2020 0 .9799 79 
Winter flounder 2021 0 .9898 115 

Variable tested is the ratio of species harvested vs. all species harvested daily. 
Failure to reject the null hypothesis indicates harvest rates within the cluster 
are higher than outside of the cluster. 
Note: Windowpane flounder could not be assessed due to a lack of charter 
and party trip data. 
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ranularly, roughly 22% of tautog cluster 2 falls within area
CS-A 0498 alone. This indicates that private angler trips for

autog, haddock, and cod are most exposed to impacts from
ffshore wind development. 

iscussion 

he analyses presented in this study indicate that Fish Rules
ata can be used to credibly identify areas that have a high
ikelihood of being private angler fishing locations. The clus- 
er analysis highlights that the data are not spatially uniform,
n that spatial clusters can be identified within marine wa-
ers. Eleven of the 13 species tested indicated spatial clusters.
ssessing the exact mechanism driving the lack of clustering 

or yellowtail flounder and weakfish is beyond the scope of
his manuscript. However, some hypotheses include a limited 

ecreational fishery for yellowtail and weakfish having been 

eld to a one fish per day bag limit since 2009; meaning en-
ounters of these two species are driven primarily by chance
nstead of angler intent, leading to a diffuse and relatively uni-
orm distribution of Fish Rules access for these species. 

Further, linking these clusters to known fishing locations 
rom charter and party trips, we show that the harvest rate of
he same species within the clusters first-order stochastically 
ominates the harvest outside of the clusters. This is true for
ll but three species/year combinations tested. The first-order 
tochastic dominance of the striped bass cluster in 2020 and
he haddock cluster in 2021 were rejected at the 0.05 level,
hough both failed to reject the null in the alternate year. In
ddition, the null hypothesis for the bluefish cluster was re-
ected at the 0.10 level in 2021, though the test failed to reject
he null in 2020 at any customary level employed. These re-
ults could suggest that the clusters are ephemeral, subject to
hanges in species distributions, management measures, and 

ther drivers that affect where, when, and what fishers are tar-
eting. The clusters themselves should therefore be assessed on 

n ongoing basis for continued validity. 
Our results indicate that the spatial location of recreational 

shing regulations viewed within Fish Rules corresponded to 

reas with abnormally high rates of harvest for the species in-
estigated. Although critical, this is only a first step in under-
tanding how the Fish Rules data can be used to inform ocean
se management. For example, it is unclear how representa- 
ive Fish Rules data are for the population fishing off of the
ortheast and Mid-Atlantic United States (Venturelli et al.,
017 ; Johnston et al., 2022 ), an issue that future research will
im to explore. Further, behavioural models of recreational 
emand are the gold standard in assessing the ramifications 
f changing ocean uses through revealed preferences (Bate- 
an and Kling, 2020 ; Lupi et al., 2020 ). Future research will

nvestigate how to use Fish Rules data in this capacity, if pos-
ible. 

Nevertheless, the research presented here can be used to 

dentify user groups who could be impacted by spatial man-
gement decisions, but for whom data have been largely un-
vailable. In the context of offshore wind development, we 
howcase how the spatial clusters for individual species can 

elp identify the type of private recreational fishing occurring,
nd thus user groups likely active, within wind lease areas. 

For example, Table 5 identifies six wind energy areas that
verlap five or more clusters: OCS-A 0486, OCS-A 0512,
CS-A 0487, OCS-A 0500, OCS-A 0534, and OCS-A 0549.
his suggests that the development of these particular wind 
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Figure 2. The overlap of black sea bass and red drum clusters with offshore wind lease area OCS-A 0483. 
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nergy areas is likely to impact recreational fishing for nu-
erous species. However, there is heterogeneity in how much

ny one wind energy area overlaps a species cluster. For exam-
le, OCS-A 0517 falls 100% within Atlantic cod and haddock
lusters, while < 4% of OCS-A 0521 falls within the black sea
ass clusters, the only species with which it overlaps. 
In addition, there are likely to be differential biological im-

acts of offshore wind development across species. Black sea
ass and cod prefer structured bottom habitat, and thus are

ikely to be drawn to wind energy areas, which can increase
atch rates for recreational fishers (Wilber et al., 2022 ). Con-
ersely, summer flounder prefer sand habitat, and although
xisting research suggests little impact to this species or its fish-
ry from wind energy development (Wilber et al., 2018 , 2022 ),
he scale of planned wind development is unprecedented and
ould lead to non-linear impacts on sand-dependent species. 

Beyond biological impacts, there are potential direct im-
acts to fishers due to the management of offshore wind farms.
or example, if these wind energy areas are managed as fish-
ry exclusion zones, from Table 6 it becomes clear that fish-
ng for tautog, Atlantic cod, and haddock are most highly ex-
osed to the current slate of offshore wind lease areas. This co-
ccurrence of haddock and Atlantic cod would be expected,
s they are managed jointly to account for the fact that they
re caught together recreationally (National Oceanic and At-
ospheric Administration, 2022 ). Although historically the
ajority of cod and haddock recreational catch occurred in

he Gulf of Maine, in 2020 and 2021 the possession limit was
ust one cod per individual and the season for cod was < 2
onths long, which effectively marginalized the recreational
shing for cod and haddock in the Gulf of Maine and explains
he clusters for these species in southern New England (Na-
ional Oceanic and Atmospheric Administration, 2020 ). This
uggests that recreational management measures can also play
n important role in a fishery’s exposure to offshore wind, and
nderlines the need for a holistic ecosystem-based approach to
he management of natural resources. However, it also high-
ights the need to reassess clusters on an ongoing basis to un-
erstand longer term impacts on private recreational fishing
rom wind farm development. Given that the analysis only
epresents two years of activity, it is impossible to say how
tatic private recreational fishing activity is spatially, which
ould have obvious ramifications on the impacts of offshore
ind development on this user group. However, the fact that

his question can be addressed by the approach as outlined
rovides a major step forward in the ability to assess poten-
ial impacts. 

In addition, the behavioural responses of recreational fish-
rs themselves have the potential to mitigate at least some of
he impacts associated with offshore wind development. This
s particularly true for species such as striped bass and winter
ounder that present little total exposure to offshore wind de-
elopment. However, tautog cluster 2 highlights the fact that
ffshore wind has at least the potential to displace a substan-
ial portion of the active fishing area for that species off the
oast of New Jersey. In addition, the offshore areas assessed
n this study are a subset of the total offshore wind develop-
ent anticipated for the region. Although other areas are at

arlier stages of planning and thus not ripe for analysis, this
act raises the prospect that cumulative effects across wind ar-
as could be substantial and much broader when a full assess-
ent is possible. The analyses presented herein thus generate
aseline information by which to contextualize any changes
n fishing behaviour, and begin to understand the realized im-
acts of offshore wind development on private recreational
shing. 
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From above, it is clear that the potential impacts of off-
hore wind to recreational fishing are species and lease area
pecific, and that cumulative effects are key to understanding 
he breadth of impacts accrued. What is more, the interaction
f fishery and offshore wind management decisions are real
nd should be considered when setting regulations for either.
he analysis presented here fills a current gap on offshore pri-
ate recreational fishing, and has clear implications for under- 
tanding differential impacts across user groups and assessing 
ll potential impacts of offshore wind development on human 

ctivities, as required by US law (Bureau of Ocean Manage-
ent, 2021a ,b ). The approach outlined here identifies likely
rivate recreational fishing activity, a fishing mode that has 
istorically lacked any data from which to assess even expo-
ure of management actions, in wind lease areas. 

onclusion 

he research presented here begins to fill a major gap in
he understanding of the temporal and spatial distribution of 
rivate recreational anglers’ effort in targeting and harvest- 

ng managed living marine resources (i.e. important fisheries 
pecies). The demand for ocean resources is growing, with the
otential for substantial disruption to historical activities and 

ser conflict (e.g. Jouffray et al., 2020 ). The first step in de-
eloping sound ocean use management is an understanding 
f where current activities are engaged. Given the cost and
ime of developing new data streams, the only realistic al-
ernative is to leverage existing data. In this study, we have
hown that Fish Rules data can credibly represent private 
ecreational fishing locations for multiple species landed off 
he Mid-Atlantic and Northeast coast of the United States. As
uch, this research contributes a novel, low-cost, non-invasive 
pproach to quantifying species-specific spatial and temporal 
atterns of private angler recreational use of marine resources.
Further, we use offshore wind lease areas in the same region

s a case study that highlights the utility of our approach in
 management context. The clusters identify likely important 
shing grounds for private anglers within wind lease areas, by
pecies, a critical step in scoping the universe of individuals
ikely to be impacted by wind energy development, as required
y US regulations (Bureau of Ocean Management, 2021a , b ).
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