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The development of offshore wind energy in the United States necessitates a sound understanding of trade-offs across ocean uses. Location data
on private recreational fishing have been a glaring gap in understanding how society uses marine resources, despite its economic importance.
In this study, we use a novel data set to start to fill that knowledge gap. We employ a flexible restricted likelihood spatial scan statistic on data
from Fish Rules, a smartphone application, which provides georeferenced species-level regulations, to understand whether species-level data of
user queries are clustered spatially. Originally developed for epidemiological studies of disease clusters, the flexible scan statistic employed in
this study uses a Bernoulli likelihood ratio test to assess the size, number, and significance of clusters in presence/absence data for recreational
species. We use a second data set of known fishing locations to validate that the clusters identify private recreational fishing activity. We then
discuss the analysis in the context of wind lease areas in the region, highlighting its value in supporting management decision-making. The
results suggest that Fish Rules data identify areas with a high likelihood of being private angler fishing locations and can assess differential

impacts of offshore wind development on private recreational fishing activities.
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Introduction

Spatial management is a key strategy employed in marine re-
source management and encapsulates a wide range of regula-
tions and restrictions on human activities. In fisheries, spatial
management includes fully protected conservation areas, gear-
restricted areas, and seasonal management such as spawning
closures and dynamic protected species closures (e.g. Sciber-
ras ef al. 2013). Spatial management of resources is also wo-
ven throughout the concepts of marine spatial planning and
ecosystem-based management (e.g. Arkema et al., 2006; Ehler,
2021).

Offshore wind energy development is an issue that high-
lights the need for spatially explicit analyses to support man-
agement decision-making. In the United States, offshore wind
development is managed by the Bureau of Ocean Energy and
Management under the Energy Policy Act of 2005 (Public Law
109-58—8 August 2005). Proposed offshore wind projects
must undertake a review of the affected environment under
the National Environmental Policy Act, including both poten-
tial positive and negative economic and social effects of the
project (85 FR 43363 § 1502.16). These environmental im-
pact statements are meant to assess all potentially affected hu-
man activities, including the likely impacts on commercial and
recreational fisheries (Bureau of Ocean Management, 2021a,
b). Thus, a legal imperative joins the appeal for sound science
in holistically understanding the impacts and trade-offs asso-
ciated with offshore wind energy development.

All of this necessitates an understanding of where human
activities occur in the ocean. Substantial resources have been
expended in developing data streams and research aimed at
understanding the spatial patterns of commercial fishing, from
vessel logbooks and human observers to vessel monitoring
systems and automatic identification system data (e.g. Hut-
ton et al., 2004; Scott-Denton et al., 2011; Muench et al.,
2017; James et al., 2018; Scheld et al., 2022). Much less in-
vestment has been made in understanding where recreational
fishers fish (National Research Council, 2006; McCluskey and
Lewison, 2008; The National Academies of Sciences, Engi-
neering, and Medicine, 2017). Some US regions require log-
books comparable to commercial fisheries for for-hire and
large “party” recreational vessels [e.g. Joint Omnibus Elec-
tronic Vessel Trip Reporting Framework Adjustment, 85 Fed.
Reg. 71575 (10 November 2020) (to be codified at 50 CFR
648)]. However, the fishing activity from these sectors is of-
ten dwarfed by private angler activity, for which the major-
ity of data are collected through surveys that tend to record
only generic fishing locations such as inshore vs. offshore (Na-
tional Research Council, 2006; The National Academies of
Sciences, Engineering, and Medicine, 2017; Arlinghaus et al.,
2019). This is despite the fact that recreational harvest is
larger than commercial harvest in some fisheries (Arlinghaus
et al., 2019; Johnston et al., 2022). In addition, recreational
fishing can be important to regional and national economies
(Fishery and Aquaculture Economics and Policy Division,
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2012; National Marine Fisheries Service, 2022; World Bank,
2012). In the United States, it is estimated that a total of
188 million marine recreational fishing trips were taken in
2019, generating over $89 billion in sales (National Marine
Fisheries Service, 2022) highlighting the importance of this
sector in the marine economy, and the need to understand
where recreational fishing is occurring in the context of other
planned ocean uses such as wind energy development. Imped-
iments to assessing likely impacts on the private recreational
fishery develop the potential to overlook a substantial com-
ponent of the trade-off implicit in the decision of where, and
whether, offshore wind development should occur.

An obvious challenge in understanding the activities of pri-
vate anglers is the cost and complexity of such an endeavour
(National Research Council, 2006; The National Academies
of Sciences, Engineering, and Medicine, 2017). However, there
are a growing number of data sources that were explicitly de-
veloped for other purposes that may be used to better under-
stand recreational fishing activities. These include data from
satellites (Keramidas et al., 2018) and applications for phones
and computers (Carter et al., 2015; Jiorle et al., 2016; Ven-
turelli et al., 2017; Kellogg, 2020; Johnston et al., 2022).
However, because they are data sets of opportunity, these ap-
proaches necessitate verification to ensure the data are ap-
propriate for the envisioned alternate use (Venturelli et al.,
2017; Keramidas et al., 2018; Johnston et al., 2022). In ad-
dition, it is unlikely that a single application will provide all
the information necessary to effectively manage recreational
fisheries, meaning all available data should be leveraged for
management purposes. The value that can be generated from
such multi-model and multiple data set analysis is well known
(Burnham and Anderson, 2004; Bareinboim and Pearl, 2016).

In this study, we use a novel dataset to begin to understand
the spatial distribution of private recreational fishing along the
northeast coast of the US. Fish Rules is a smartphone appli-
cation that uses georeferenced location data to present recre-
ational anglers with the relevant fishing regulations as of the
date the app is accessed (https://fishrulesapp.com). We employ
a flexible spatial scan statistic to search for clusters where indi-
vidual species’ regulation data have been accessed within por-
tions of the Atlantic Ocean off the coast of the Northeast and
Mid-Atlantic United States. To assess whether these clusters
have any meaningful linkage to actual fishing activity, we test
the cluster’s ability to explain recreational charter and party
boat fishing locations. The research adds to the existing lit-
erature on private angler activity in the marine environment
by presenting a novel manner by which to verify the utility of
data designed for a purpose other than management of recre-
ational fishing. The data represent the most detailed location
information on private recreational fishing activity currently
available, underlying the potential importance in both man-
agement and science applications. We showcase the method’s
management utility by assessing the overlap between species
clusters that are identified and offshore wind energy lease ar-
eas and discuss implications in terms of species-specific recre-
ational fishing impacts.

Methods

Step 1: cluster identification

The aim of this research was to assess whether the distribution
of points (latitude, longitude) representing anonymous an-
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glers accessing species-specific regulations were spatially uni-
form or whether the points were clustered in space. Follow-
ing Kulldorff (1997), a Bernoulli likelihood ratio test, com-
monly known as a spatial scan statistic, was employed to as-
sess the significance of potential clusters in the binary pres-
ence/absence data generated by Fish Rules users. A scan statis-
tic was utilized, as opposed to kriging or kernel density esti-
mation, because of the interest in whether identified clusters
are significantly different from the surrounding locations, in
terms of species-specific information. In this context, presence
meant a view of the Fish Rules application was associated with
the species of interest, while absence meant that the view was
associated with some other species. The Bernoulli likelihood
function was specified as

L(Z, p.q)
=p"(1— p)#(z)—'ﬂz q" "z (1 — q)#(G)—#(Z)—(Vlc—nz) .

(1)

In this specification, G represented the study region, Z rep-
resented the spatial zone in (or equivalently the subset of
points for) which the cluster was assessed for significance,
p was the probability of a species’ regulations being viewed
within zone Z, g was the probability of that species’ regula-
tions being accessed outside of zone Z, u(G) was the total
number of records within the study region, u(Z) was the total
number of records within the test zone, ng was the total num-
ber of a specific species’ records within the study region, and
nz was the total number of a specific species’ records within
the test zone. The null hypothesis was that p = g, while the
alternative hypothesis was p > g, i.e. a species’ regulation was
proportionally accessed more often within test zone Z than
outside of it. Operationally, zone Z was chosen to maximize
the likelihood function, and multiple non-overlapping Z win-
dows can be theoretically identified that meet a threshold of
statistical significance chosen.

For each candidate test zone Z, commonly described as a
window, a likelihood ratio test statistic was calculated as fol-
lows:
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1, otherwise.
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Although the most common search window employed is
circular, this research employed a flexibly shaped search win-
dow with a restricted likelihood function as defined by Tango
(2008). The flexible search window has been shown to out-
perform circular windows when faced with clusters departing
substantially from a circular pattern (Tango and Takahashi,
2005; Otani and Takahashi, 2021). Given that recreational
fishing generally tends to occur within 3 nautical miles of the
coast and follow the contour of the shoreline, there was some
expectation that not all potential clusters would be circular.
In addition, the restricted likelihood flexible scan statistic has
been shown to perform well against a broad swath of alter-
nate methods, including the circular, elliptic, upper level set,
flexibly shaped, dynamic minimum spanning tree, early stop-
ping dynamic minimum spanning tree, double connection,
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maximum linkage, and fast subset scan statistics (French et al.,
2022).

The restriction on the likelihood function is a filter on the
subset of observations to be formally tested for clustering. The
aim of the filter was twofold. First, and most importantly, it
filtered low-probability areas from being considered within a
cluster, as traditional spatial scan statistics tend to overesti-
mate the size of clusters (Tango, 2008). Second, the filtering
had the effect of considerably speeding up the algorithm when
compared to the original flexibly shaped scan statistic as the
search space increases exponentially with the number of ob-
servations included in the search window (French et al., 2022).

The filter itself was implemented by only including high-
probability groups of observations in the likelihood function
comparison, as assessed using a one-tailed test of significance.
Following Tango (2008), suppose that the study region was
subsetted into M mutually exclusive spatial regions. For our
purposes, the subsetting was implemented by aggregating the
point data to a 10-min square grid, as is common in the re-
gion (e.g. Murawski et al., 2005). The restricted likelihood
then only assesses zone Z if all m individual regions in Z have
an individual probability of significance less than some cutoff
value @,,,. Mathematically, the restriction is defined as follows:

[T1m<an) =] I(Pr(Nm > iy + 1IN,y ~ Bin (u (m)., §))

meZ meZ
+%P7 (N = 14 |Nyyy ~ Bin (. (m) , §)) < am>.

(3)

In Equation (3), g represented the probability of success
under the null hypothesis, and the product of the indicator
function I(-) was zero if at least one of the m € Z present a
mid p-value > «,, and 1 otherwise. The filter was applied by
multiplying this product by the likelihood function defined in
Equation (1). The mid p-value was used to correct for the dis-
continuous nature of the Binomial distribution. This research
employed a,, = 0.40 for two reasons. First, although on the
high end of standard thresholds, 0.40 performs well in com-
parison to Kulldorff’s circular spatial scan statistic for iden-
tifying the extent of the true underlying data clusters (Tango,
2008). Second, the spatial units of interest in epidemiology
are most often geopolitical boundaries delineating meaning-
ful differences in the underlying populations of interest. The
10-min grid employed here, although customarily used in the
region, does not have a meaningful interpretation in regard
to the underlying data-generating process. As such, the 0.40
threshold combated issues arising from the modifiable areal
unit problem, in which the results of a study are dependent on
the choice of spatial unit employed (Gehlke and Biehl, 1934;
Openshaw, 1984; Wong, 2004). In this case, the relatively high
a,, helped ensure that slight permutations in the delineation
of the test area would not unduly impact the results of the
analysis.

The significance of the test statistic was assessed through
Monte Carlo simulations. This was done by drawing repli-
cate samples using the population-level statistics under the
null hypothesis. The analyis drew 9999 replicate data sets per
species to assess statistical significance. For each replicate data
set u(Z) observations from the population were randomly re-
labeled as inside of zone Z and the number of positive views
for the species of interest in the new subsample, 7%, were cal-
culated with the results then substituted into Equation (2) to
calculate A(Z*). The null hypothesis was rejected at signifi-

cance level ay if the original likelihood ratio test statistic fell
within the « highest draws of 1(Z*) calculated from the simu-
lations. The cluster window searched a maximum of 100 near-
est neighbours. These hundred 10-min squares represented an
upper bound on the spatial footprint of a cluster, and clusters
with smaller number of cells could be identified. The upper
bound was set at hundred 10-min squares as it heuristically
seems on the bounds of what would be useful in a manage-
ment context, and broadly speaking should circumscribe sim-
ilar recreational marine fishing opportunities.

Step 2: cluster validation

The clusters from step 1 identified areas in which the regula-
tions of an individual species were accessed more frequently
than would be expected if uniformly distributed in space. Ulti-
mately, the aim is to use the Fish Rules data to make inferences
about fishing locations. Therefore, in the second step, the re-
lationship between the clusters and an independent data set
of species harvested at known fishing locations was assessed
as described below. Of particular note is that the approach
employed did not hinge on the equality of the Fish Rules and
independent fishing location data set distributions. Rather, the
approach tested whether the Fish Rules clusters could identify
areas that represented elevated harvest rates in the indepen-
dent data sets. If a species from the independent data set was
harvested more often inside a cluster than outside of a cluster,
it would link the regulation views to known hotspots of recre-
ational harvest for that species. This, in turn, would suggest
that fishers are likely accessing the regulations either for fish
already caught or expected fishing activity at a location, both
of which are useful in a management context.

This linkage was investigated by testing whether the harvest
rates of a species within the cluster were higher than outside of
the cluster. This question revolves around whether there was
a higher probability of harvesting a species inside the cluster
than outside of the cluster: i.e. the dominance of the distribu-
tion of harvest rates within the cluster. We therefore use a test
of first-order stochastic dominance to assess whether the rate
of harvest for a species within the associated Fish Rules data
clusters was significantly higher than the rate of harvest out-
side of the clusters. The Kolmogorov-Smirnov type test de-
veloped by Barrett and Donald (2003) was used to test for
first-order stochastic dominance of the rate of harvest of indi-
vidual species within the clusters. Given the continuous cumu-
lative distribution functions F and H over samples of random
variable z from two different populations, first-order stochas-
tic dominance of H over F is defined as H(z) < F(z) V z. This
means that for any arbitrary cutoff along the common sup-
port Z, the distribution function H has more probability mass
above the cutoff than F.

The test itself focused on the distance between the two dis-

tribution functions, d* = sup[H(z) — F(z)]. Barrett and Don-
zeZ

ald (2003) provide the following empirical analogy for this
test statistic:

. NM 12 R R
i=(ya) selive-fw]. @

with the corresponding empirical distributions Hy =
% Zfi] I(X; <z) and By = % Z]/Vi] I(Y; <z) of sample
sizes M and N. The approach from Whang (2019) was
implemented through the recentered bootstrap methodology
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Figure 1. The location of the 26 wind lease areas anticipated to be developed within the Greater Atlantic Region, as they were defined in December

2022.

in order to calculate p-values. The null hypothesis indicates
that H ?_; rspF. This method of bootstrapping simulated the
distribution of the test statistic under the null hypothesis as
follows. Define sample 1 as n = {X1, ---, X} and sample 2 as
¥ = {Yq, -, Yy}. Draw a sample with replacement of size N
from 7 to calculate estimate H}, = % Zfil I(XF < z), and of
size M from v to calculate estimate F}; = ﬁ Z],M:l I(Y? <z).
For first-order stochastic dominance, the test statistic can be
estimated as:

. NM \"
d* = su
<N n M) P

x [ (Hn(2) = An@) = (Fil2) - Fu(@)].

where z was approximated by a grid. The grid size was set to
the number of unique values in the pooled samples, and d* was
recalculated using 9999 replicates to estimate the empirical
distribution of the test statistic under the null hypothesis. The
p-value is then the percentage of the bootstrap estimates of d*
that are greater than the original test statistic d as calculated in
Equation (4). Being a single-tailed test, the null hypothesis was
rejected at significance level a5 if the bootstrapped p-value is
smaller than «5.

Step 3: practical example of management utility

As a practical example, the species clusters identified in step
1 and validated in step 2 were compared against 26 wind
lease areas off the coast of the northeast United States where
offshore wind development is slated to occur. Figure 1 maps
the location of all 26 wind lease areas within the region. The
extent to which each wind lease area spatially overlapped a
species cluster can be used to assess likely private angler fish-
ing activities within the area. In a managerial context, this
likelihood can be used to identify user groups likely to be im-

pacted by offshore wind development and to understand dif-
ferential impacts across these user groups.

All analyses were conducted in the R programming envi-
ronment (R Core Team, 2019). The flexible scan statistic em-
ployed the rflexscan package (Otani and Takahashi, 2021),
while the first-order stochastic dominance test employed
MATLAB code published in Whang (2019), and ported to R
by the authors. All geospatial analysis was undertaken using
the sf package (Pebesma, 2018).

Data

The research undertaken employs two sets of data. The clus-
ter analysis outlined in step 1 used anonymized information
gathered from the Fish Rules smartphone application. Fish
Rules captures location information in order to display rele-
vant recreational fishing regulations for marine waters within
the US Exclusive Economic Zone. The location is used to iden-
tify regulations, and can be either geolocated automatically
by the user’s computer or cell phone, or manually entered by
the user. Regulations can thus be accessed either on the water
or from land, and location can be manually sourced or ge-
olocated automatically. Fish Rules was designed explicitly to
allow recreational fishers that the ability to quickly identify
the species they had caught and the regulations to understand
whether that fish can be kept. However, in reality, potential
uses could include planning fishing trips or motivations with
more tenuous linkages to actual or anticipated fishing activ-
ities, such as mere curiosity. The ambiguity around usage is
one of the motivating factors for our research. The regula-
tions are species-specific, and include information such as sea-
son, bag limit, size limits, gear restrictions, and area closures
for both state and federal waters. The data cover Fish Rules
usage during the years 2020 and 2021. Of note is that these
years fall squarely within the COVID-19 pandemic, which had
documented impacts on recreational fishing patterns (Midway
etal.,2021). Although data limitations did not offer an oppor-
tunity to assess alternate years, it will be important for future
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work to understand the impact of the pandemic on the results
presented.

We focus on the Greater Atlantic Region, which extends
from North Carolina in the south to the Canadian border in
the north. NOAA’s Greater Atlantic Regional Fisheries Of-
fice works collaboratively with state and other regional part-
ners to administer federal fisheries resources in this region, and
thus the region delineates an important recreational fisheries
management unit. For the purpose of this research, we focus
primarily on species with high federal reporting coverage, as
this federal reporting is core to our validation approach em-
ployed in step 2 of the analysis. The list of species assessed
includes striped bass (Morone saxatilis), Atlantic cod (Gadus
morbua), summer flounder (Paralichthys dentatus), haddock
(Melanogrammus aeglefinus), scup (Stenotomus chrysops),
red drum (Sciaenops ocellatus), black sea bass (Centropristis
striata), tautog (Tautoga onitis), bluefish (Pomatomus salta-
trix), windowpane flounder (Scophthalmus aquosus), winter
flounder (Pseudopleuronectes americanus), yellowtail floun-
der (Limanda ferruginea), and weakfish (Cynoscion regalis).
Although striped bass, weakfish, and red drum are not fed-
erally managed species, we include them in the analysis due
to their historic importance as target species for recreational
anglers. The Fish Rules data include the latitude and longi-
tude at which species-specific regulations were viewed within
the app. The app also indicates whether the latitude and lon-
gitude was derived from global positioning software within
the phone or user-inputted location. For the purpose of this
research, we did not differentiate between the two location
attributions, as we are interested in understanding whether
the location data credibly identifies fishing locations, regard-
less of the input method. Broadly speaking, for management
purposes, we are interested in both where individuals expect
to fish for a species, a leading indicator for a trip and identifi-
cation of expected catch, and where a species is encountered,
a realized catch. We are thus interested in the ability of the
pooled data to credibly identify private recreational fishing
locations for management purposes. As such, we only utilize
data whose latitude and longitude fall within marine waters.
For summary purposes, we aggregate the number of times reg-
ulations were accessed to the daily level by species (Table 1).

The second dataset utilized is party and charter recreational
fishing vessel trip reports (VIRs). Federally permitted charter
and party boats in the United States are required to submit
these VTR logbooks to NOAA Fisheries, and the VTRs repre-
sent the legal record of a fishing trip. Charter and party trips
differ from private angler trips in that the choice of where
and when to fish is made by a captain instead of the angler
themselves, and the incentives between a captain and paying
customers might differ. In addition, many charter and party
boats are larger and more powerful than a standard private
recreational vessel, allowing them to access areas that might
be unavailable to the average fisher. The VTRs include the co-
ordinates representing the majority of fishing effort on that
trip, along with the number and type of species harvested on
the trip. Although the VTR request numbers of fish harvested,
there is some measurement error in which pounds instead of
numbers are sometimes recorded. However, this should not
unduly impact our analysis, as the reporting would not sys-
tematically differ across species. For our purposes, we esti-
mate the daily harvest of each species, as a percentage of
all species harvested that day. These harvest rates are then
used in the cluster validation described in step 2 above. The

data are presented in Table 2, in numbers of fish, for ease of
interpretation.

Results

Table 3 presents the results of the spatial scan statistic. Of note
is that the spatial scan statistic for two species tested (yellow-
tail flounder and weakfish) returned p-values that were larger
than any conventional level of significance, meaning no clus-
ters exist for those species. In all, the flexible restricted like-
lihood spatial scan statistic identified 24 clusters across 11
species. Maps of the location of each of these clusters can be
found in Appendix 1 online. The total area of the clusters runs
from just under 144 square km for red drum to just over 7100
square km for summer flounder.

Table 4 presents the results of the first-order stochastic
dominance test for whether the Fish Rules clusters identify
areas that represent elevated harvest rates in the independent
data sets of known fishing locations, when compared to fish-
ing locations outside of the clusters. Elevated harvest rates
inside a cluster would link the regulation views to known
hotspots of recreational harvest for that species and indi-
cate that the Fish Rules clusters likely represent private recre-
ational fishing locations. In order to control for seasonal avail-
ability of species regionally, we test stochastic dominance for
days on which the species was harvested within the cluster.
Thus, Table 4 presents the number of daily observations avail-
able, and the test uses double that number of observations,
one set of observations inside the cluster and one set of ob-
servations outside of the cluster. We also follow the literature
and define a significant spatial scan statistic if the correspond-
ing corrected p-value presented in Table 3 is <0.05 (Tango,
2008; Otani and Takahashi, 2021; French et al., 2022), and
only those clusters are tested for first-order stochastic domi-
nance. We process the daily harvest totals from 2020 to 2021
separately, to account for interannual fluctuations in regula-
tions, species distributions, and other drivers that can affect
where and when recreational fishing occurs. Of interest is that,
using oy = 0.1, the rate of harvest for the species inside the
clusters first-order stochastically dominates the rate of harvest
for the species outside the cluster for all species and years ex-
cept striped bass in 2020 (p-value = 0.013), haddock in 2021
(p-value = 0.036), and bluefish in 2021 (p-value = 0.099).
This means that for 17 of 20 species-year combinations tested,
there is a higher probability of harvesting the species inside the
cluster than outside of the cluster.

We present the proportion of each wind energy area that
overlaps a species cluster in Table 5, with a visual example
of the analysis undertaken in Figure 2. The mapped overlap
of species clusters with individual lease areas are presented
in the Appendix 1 online. From Table 5, OCS-A 0486 and
OCS-A 0512 wind energy areas overlap the most clusters, at
6, followed by OCS-A 0487, OCS-A 0500, OCS-A 0534, and
OCS-A 0549, which each overlap five clusters.

Table 6 shows a complimentary analysis: the percentage of
each individual cluster that falls within the wind energy ar-
eas. Seventeen wind lease areas overlap the four black sea
bass private recreational fishing clusters, which is the high-
est number of overlaps for any one species. However, 44% of
tautog cluster 2 (559 square km), 27% of haddock cluster 3
(909 square km), and 21% of the Atlantic cod cluster 1 (1018
square km) fall within offshore wind energy areas. More
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Table 1. Descriptive statistics of daily view data generated by users on the Fish Rules application for the 13 species assessed within this research.

Species name Total Average Median Max Min SD
Black sea bass 747 2.8 2 14 1 2.33
Striped bass 638 2.9 1 20 1 3.39
Summer flounder 574 2.7 2 15 1 2.38
Tautog 452 2.4 2 13 1 1.99
Bluefish 386 2.1 1 11 1 1.74
Atlantic cod 351 1.9 1 8 1 1.44
Winter flounder 305 2.1 1 10 1 1.69
Scup 249 1.7 1 6 1 1.07
Red drum 211 1.8 1 6 1 1.22
Haddock 207 1.7 1 8 1 1.22
Weakfish 180 1.6 1 5 1 0.92
Yellowtail flounder 156 1.4 1 6 1 0.83
Windowpane flounder 139 1.4 1 4 1 0.74

Table 2. Descriptive statistics of recreational harvest as reported by federally permitted party and charter vessels in VTRs.

Species name Total Average Median Max Min SD
Scup 1552596 3346.10 3126 14937 0 2448.14
Black sea bass 899505 1694.00 1590 8357 0 1417.93
Haddock 455347 975.00 848 4274 1 710.70
Bluefish 13172§ 287.60 220 1508 0 280.92
Summer flounder 110937 292.70 222 1111 0 293.02
Tautog 67102 141.90 25 2617 0 254.16
Striped bass 33764 69.00 53 389 0 63.18
Atlantic cod 24888 43.90 18 461 0 67.41
Winter flounder 3108 11.00 6 93 0 13.66
Weakfish 888 5.60 3 39 0 7.17
Windowpane flounder 288 6.10 0 48 0 10.15
Red drum 126 1.40 0 12 0 2.47
Yellowtail flounder 125 3.80 2 40 1 6.83

Data are presented in daily numbers of fish harvested.

Table 3. Flexible restricted likelihood spatial scan statistic significance lev- Table 4. Tests for first-order stochastic dominance for species harvested
els and cluster area for species presenting significant results. inside vs. outside of their relevant clusters.
Species name Corrected p-value  Cluster area (km?) Species name Year p-value Daily observations
Bluefish 0.0322 2316.49 Striped bass 2020 0.0125 111
Red drum 0.0001 3571.61 Striped bass 2021 0.7468 145
Red drum 0.0001 143.78 Cod 2020 0.8566 146
Scup 0.0016 3434.56 Cod 2021 0.9290 140
Scup 0.0026 4467.60 Summer flounder 2020 0.9336 165
Atlantic cod 0.0003 4933.51 Summer flounder 2021 0.8252 183
Atlantic cod 0.0003 2553.29 Haddock 2020 0.5381 100
Atlantic cod 0.0956 2709.88 Haddock 2021 0.0359 100
Haddock 0.0003 2786.77 Scup 2020 0.9018 178
Haddock 0.0092 2606.49 Scup 2021 0.8951 220
Haddock 0.0386 3355.76 Red drum 2020 0.7792 16
Summer flounder 0.0003 7134.04 Red drum 2021 0.6923 9
Summer flounder 0.0120 2908.31 Black sea bass 2020 0.9403 218
Summer flounder 0.0414 2863.58 Black sea bass 2021 0.4979 256
Tautog 0.0002 3554.69 Tautog 2020 0.8449 82
Tautog 0.0477 1257.73 Tautog 2021 0.4942 112
Windowpane flounder 0.0115 2953.90 Bluefish 2020 0.7671 72
Winter flounder 0.0004 3851.82 Bluefish 2021 0.0990 55
Black sea bass 0.0004 4087.79 Winter flounder 2020 0.9799 79
Black sea bass 0.0004 4938.24 Winter flounder 2021 0.9898 115
E}aci sea llzass 0.0004 2862.97 Variable tested is the ratio of species harvested vs. all species harvested daily.
ack sea bass 0.0004 5797.10 Failure to reject the null hypothesis indicates harvest rates within the clust
3 ypothesis indicates harvest rates within the cluster
Striped bass 0.0002 2504.76 are higher than outside of the cluster.
Striped bass 0.0072 799.85 Note: Windowpane flounder could not be assessed due to a lack of charter

and party trip data.
p-values corrected for multiple tests using the Holm—Bonferroni method. party tp

Note: Yellowtail flounder and weakfish were found to have no significant
clusters in the data.
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Table 5. Percentage of each wind energy area overlapping a species cluster, with nonzero quantities in bold.

Winter

Summer

Black sea

Windowpane

flounder flounder

Haddock Red drum Scup Striped bass flounder Tautog

Bluefish

bass

Atlantic cod

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

22.07

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
31.37

0.00
0.00

23.10

61.73

0.00
0.00

0.

0.00

0.
34.17

0.00
55.06

0.00
0.00
68.84
71.16

45.13 45.39

0.00
0.00
43.87
82.46
0.00
0.00
0.00
0.00
51.59
51.95
0.00

100.00

OCS-A 0482

0.00
1.14
0.00
56.84

00

0.00
0.00
0.00
11.85

47.78

OCS-A 0483

00

0.00

23.10

OCS-A 0486

17.54

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.21
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00 11.30

0.00
93.65

17.37
53.31

OCS-A 0487

0.00
0.00
88.42
13.26

19.38

0.00
0.

0.00
0.00
0.00
0.00
51.37

OCS-A 0490

0.00
82.26
15.59

00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
45.07

14.76
23.78

OCS-A 0497
OCS-A 0498

1.38
74.46

0.00
0.00
0.00
0.00
0.00

0.

13.26

0.22
63.63
10.01

OCS-A 0499

impact on private recreational fishing

0.22
51.95
31.08

0.00
0.00
31.29

OCS-A 0500

0.00
0.00
0.00
0.00
0.00
0.00
68.07
33.72

0.00
0.00

100.00

OCS-A 0501

OCS-A 0512

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.51

0.00
0.00
0.00
0.00
0.00
0.00

24.56

0.00
99.63

0.00
0.00
0.00
0.00
0.00
0.00
0.00

47.45

00

0.00

44.70
35.45

OCS-A 0517

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.53
0.00
0.00

0.00
0.79
0.00
0.00
0.71
0.00
0.00

OCS-A 0519

0.79
0.00
28.66

0.00
0.00
0.00
0.00
0.00
0.00

OCS-A 0520

3.88
61.60

OCS-A 0521

OCS-A 0532

0.18
0.00
9.26

0.78
0.00
34.76

OCS-A 0534

0.00
0.00

OCS-A 0539

8.74

OCS-A 0549

A high percentage overlap indicates high probability that the wind lease area falls within important private vessel recreational fishing areas for the species identified.

Note: One red drum cluster, one Atlantic cod cluster, one striped bass, and two haddock clusters did not overlap with any wind area.

granularly, roughly 22% of tautog cluster 2 falls within area
OCS-A 0498 alone. This indicates that private angler trips for
tautog, haddock, and cod are most exposed to impacts from
offshore wind development.

Discussion

The analyses presented in this study indicate that Fish Rules
data can be used to credibly identify areas that have a high
likelihood of being private angler fishing locations. The clus-
ter analysis highlights that the data are not spatially uniform,
in that spatial clusters can be identified within marine wa-
ters. Eleven of the 13 species tested indicated spatial clusters.
Assessing the exact mechanism driving the lack of clustering
for yellowtail flounder and weakfish is beyond the scope of
this manuscript. However, some hypotheses include a limited
recreational fishery for yellowtail and weakfish having been
held to a one fish per day bag limit since 2009; meaning en-
counters of these two species are driven primarily by chance
instead of angler intent, leading to a diffuse and relatively uni-
form distribution of Fish Rules access for these species.

Further, linking these clusters to known fishing locations
from charter and party trips, we show that the harvest rate of
the same species within the clusters first-order stochastically
dominates the harvest outside of the clusters. This is true for
all but three species/year combinations tested. The first-order
stochastic dominance of the striped bass cluster in 2020 and
the haddock cluster in 2021 were rejected at the 0.05 level,
though both failed to reject the null in the alternate year. In
addition, the null hypothesis for the bluefish cluster was re-
jected at the 0.10 level in 2021, though the test failed to reject
the null in 2020 at any customary level employed. These re-
sults could suggest that the clusters are ephemeral, subject to
changes in species distributions, management measures, and
other drivers that affect where, when, and what fishers are tar-
geting. The clusters themselves should therefore be assessed on
an ongoing basis for continued validity.

Our results indicate that the spatial location of recreational
fishing regulations viewed within Fish Rules corresponded to
areas with abnormally high rates of harvest for the species in-
vestigated. Although critical, this is only a first step in under-
standing how the Fish Rules data can be used to inform ocean
use management. For example, it is unclear how representa-
tive Fish Rules data are for the population fishing off of the
Northeast and Mid-Atlantic United States (Venturelli et al.,
2017; Johnston et al., 2022), an issue that future research will
aim to explore. Further, behavioural models of recreational
demand are the gold standard in assessing the ramifications
of changing ocean uses through revealed preferences (Bate-
man and Kling, 2020; Lupi et al., 2020). Future research will
investigate how to use Fish Rules data in this capacity, if pos-
sible.

Nevertheless, the research presented here can be used to
identify user groups who could be impacted by spatial man-
agement decisions, but for whom data have been largely un-
available. In the context of offshore wind development, we
showcase how the spatial clusters for individual species can
help identify the type of private recreational fishing occurring,
and thus user groups likely active, within wind lease areas.

For example, Table 5 identifies six wind energy areas that
overlap five or more clusters: OCS-A 0486, OCS-A 0512,
OCS-A 0487, OCS-A 0500, OCS-A 0534, and OCS-A 0549.
This suggests that the development of these particular wind
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Figure 2. The overlap of black sea bass and red drum clusters with offshore wind lease area OCS-A 0483.

energy areas is likely to impact recreational fishing for nu-
merous species. However, there is heterogeneity in how much
any one wind energy area overlaps a species cluster. For exam-
ple, OCS-A 0517 falls 100% within Atlantic cod and haddock
clusters, while < 4% of OCS-A 0521 falls within the black sea
bass clusters, the only species with which it overlaps.

In addition, there are likely to be differential biological im-
pacts of offshore wind development across species. Black sea
bass and cod prefer structured bottom habitat, and thus are
likely to be drawn to wind energy areas, which can increase
catch rates for recreational fishers (Wilber ez al., 2022). Con-
versely, summer flounder prefer sand habitat, and although
existing research suggests little impact to this species or its fish-
ery from wind energy development (Wilber ez al.,2018,2022),
the scale of planned wind development is unprecedented and
could lead to non-linear impacts on sand-dependent species.

Beyond biological impacts, there are potential direct im-
pacts to fishers due to the management of offshore wind farms.
For example, if these wind energy areas are managed as fish-
ery exclusion zones, from Table 6 it becomes clear that fish-
ing for tautog, Atlantic cod, and haddock are most highly ex-
posed to the current slate of offshore wind lease areas. This co-
occurrence of haddock and Atlantic cod would be expected,
as they are managed jointly to account for the fact that they
are caught together recreationally (National Oceanic and At-
mospheric Administration, 2022). Although historically the
majority of cod and haddock recreational catch occurred in
the Gulf of Maine, in 2020 and 2021 the possession limit was
just one cod per individual and the season for cod was < 2
months long, which effectively marginalized the recreational
fishing for cod and haddock in the Gulf of Maine and explains
the clusters for these species in southern New England (Na-
tional Oceanic and Atmospheric Administration, 2020). This

suggests that recreational management measures can also play
an important role in a fishery’s exposure to offshore wind, and
underlines the need for a holistic ecosystem-based approach to
the management of natural resources. However, it also high-
lights the need to reassess clusters on an ongoing basis to un-
derstand longer term impacts on private recreational fishing
from wind farm development. Given that the analysis only
represents two years of activity, it is impossible to say how
static private recreational fishing activity is spatially, which
would have obvious ramifications on the impacts of offshore
wind development on this user group. However, the fact that
this question can be addressed by the approach as outlined
provides a major step forward in the ability to assess poten-
tial impacts.

In addition, the behavioural responses of recreational fish-
ers themselves have the potential to mitigate at least some of
the impacts associated with offshore wind development. This
is particularly true for species such as striped bass and winter
flounder that present little total exposure to offshore wind de-
velopment. However, tautog cluster 2 highlights the fact that
offshore wind has at least the potential to displace a substan-
tial portion of the active fishing area for that species off the
coast of New Jersey. In addition, the offshore areas assessed
in this study are a subset of the total offshore wind develop-
ment anticipated for the region. Although other areas are at
earlier stages of planning and thus not ripe for analysis, this
fact raises the prospect that cumulative effects across wind ar-
eas could be substantial and much broader when a full assess-
ment is possible. The analyses presented herein thus generate
baseline information by which to contextualize any changes
in fishing behaviour, and begin to understand the realized im-
pacts of offshore wind development on private recreational
fishing.
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Table 6. Percentage of each species cluster overlapping a wind energy area.

Summer  Summer

Flounder

Summer

Windowpane Winter

Flounder

Flounder

Striped

Red
drum 1

Bluefish Haddock

Black sea Black sea Black sea Black sea

Atlantic

flounder 1

Tautog 2 flounder 1

Tautog 1

Scup 2 bass 1

Scup 1

bass 1 bass 2 bass 3 bass 4

cod 1

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.84
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.04

0.00
0.00
0.00
0.00
0.00
0.00

0.

0.00
0.00
0.00
0.00
0.00
0.00
21.50

0.00
0.00
2.20
2.20
0.00
0.00
0.00
0.00
3.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.90
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.49
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.00
0.04
4.72
0.00
0.00
0.00
0.14
0.00
0.00
0.02
0.00
0.00

2.46
0.00
0.00
0.00
2.57
0.00
3.53
0.90
0.00
0.00
0.00
0.00
1.49
0.00
0.00
1.38
0.00
0.00
0.43

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.09
6.89
0.00
0.00
2.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.49

0.00
0.00
3.37
1.46
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
7.04
0.00
0.00
0.00
0.29
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
6.96
9.44
0.00
0.00
0.00
0.00
8.97
0.00
0.00
1.65
0.00
0.00
0.00
0.00
0.07
0.00
0.00

5.56
0.00
0.00
0.00
1.65
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.07
0.00
0.00
0.00
0.00
0.00
0.00

0.00
3.77
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

4.47
0.00
0.00
0.00
6.01
0.00
2.54
1.92
0.00
0.00
0.00
0.00
1.66
0.00
0.00
7.40
0.00
0.00
0.00

0.00
0.00
1.59
1.57
0.00
0.00
0.00
0.00
0.03
3.41
0.00
0.00
0.00
3.74
0.41
0.00
0.06
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.79
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.79

0.00
0.00
3.02
7.44
0.00
0.00
0.00
0.00
6.13
2.78

OCS-A 0482

OCS-A 0483

OCS-A 0486

OCS-A 0487

OCS-A 0490

OCS-A 0497
OCS-A 0498

00

0.00
0.00
0.00
3.41
0.00
0.00
0.00
0.00
0.00
0.00
4.24
0.97

4.36
0.00
0.00
0.00
0.00
0.00
0.00
0.00
18.62

OCS-A 0499

OCS-A 0500

OCS-A 0501

0.00
1.12
0.00
0.08
0.00
0.00
0.06
0.00
0.00

OCS-A 0512

OCS-A 0517

OCS-A 0519

OCS-A 0520

OCS-A 0521

OCS-A 0532

0.00
0.00
0.00

OCS-A 0534

OCS-A 0539

OCS-A 0549

A high percentage overlap indicates higher exposure of important private vessel recreational fishing areas for the species identified to wind energy development impacts.

Note: One red drum cluster, one Atlantic cod cluster, one striped bass, and two haddock clusters did not overlap with any wind area.

From above, it is clear that the potential impacts of off-
shore wind to recreational fishing are species and lease area
specific, and that cumulative effects are key to understanding
the breadth of impacts accrued. What is more, the interaction
of fishery and offshore wind management decisions are real
and should be considered when setting regulations for either.
The analysis presented here fills a current gap on offshore pri-
vate recreational fishing, and has clear implications for under-
standing differential impacts across user groups and assessing
all potential impacts of offshore wind development on human
activities, as required by US law (Bureau of Ocean Manage-
ment, 2021a,b). The approach outlined here identifies likely
private recreational fishing activity, a fishing mode that has
historically lacked any data from which to assess even expo-
sure of management actions, in wind lease areas.

Conclusion

The research presented here begins to fill a major gap in
the understanding of the temporal and spatial distribution of
private recreational anglers’ effort in targeting and harvest-
ing managed living marine resources (i.e. important fisheries
species). The demand for ocean resources is growing, with the
potential for substantial disruption to historical activities and
user conflict (e.g. Jouffray ef al., 2020). The first step in de-
veloping sound ocean use management is an understanding
of where current activities are engaged. Given the cost and
time of developing new data streams, the only realistic al-
ternative is to leverage existing data. In this study, we have
shown that Fish Rules data can credibly represent private
recreational fishing locations for multiple species landed off
the Mid-Atlantic and Northeast coast of the United States. As
such, this research contributes a novel, low-cost, non-invasive
approach to quantifying species-specific spatial and temporal
patterns of private angler recreational use of marine resources.

Further, we use offshore wind lease areas in the same region
as a case study that highlights the utility of our approach in
a management context. The clusters identify likely important
fishing grounds for private anglers within wind lease areas, by
species, a critical step in scoping the universe of individuals
likely to be impacted by wind energy development, as required
by US regulations (Bureau of Ocean Management, 2021a, b).
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