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Abstract  

Molecular methods including metabarcoding and qPCR have shown promises for estimating 

species abundance by quantifying the concentration of genetic material in field samples. 

However, the relationship between specimen abundance and detectable concentrations of genetic 

material is often variable in practice. DNA mixture analysis represents an alternative approach to 

quantify specimen abundance based on the identity of unique alleles in a sample. The DNA 

mixture approach provides novel opportunities to inform ecology and conservation by estimating 

the absolute abundance of target taxa through molecular methods; yet, challenges with 

genotyping many highly variable markers in mixed-DNA samples have prevented its widespread 

use. To advance molecular approaches for abundance estimation we explored the utility of 

microhaplotypes for DNA mixture analysis by applying a 125-marker panel to 1,179 Chinook 

salmon (Oncorhynchus tshawytscha) smolts from the Sacramento-San Joaquin Delta. We 

assessed the accuracy of DNA mixture analysis through a combination of mock mixtures 

containing DNA from up to 20 smolts and a trophic ecological application enumerating smolts in 

predator diets. Mock DNA mixtures of up to 10 smolts could reliably be resolved using 

microhaplotypes and increasing the panel size would likely facilitate identification of more 

individuals. However, while analysis of predator gastrointestinal tract contents indicated DNA 

mixture analysis could discern the presence of multiple prey items, poor DNA quality prevented 

accurate genotyping and abundance estimation. Our results indicate that DNA mixture analysis 

can perform well with high-quality DNA, but methodological improvements in genotyping 

degraded DNA are necessary before this approach can be used on marginal quality samples. 
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Introduction 

Molecular tools can provide important insights on species abundance, which is critical for many 

ecological and conservation applications, such as understanding population dynamics 

(Bravington, Skaug, & Anderson, 2016; Roy et al., 2014), assessing dietary profiles (Shi, 

Hoareau, Reese, & Wasser, 2021), investigating community composition (Gehri, Larson, 

Gruenthal, Sard, & Shi, 2021), and biomonitoring (Darling & Blum, 2007). One popular 

ecological application is molecular diet analysis of fecal samples or stomach content samples to 

estimate the composition of prey species consumed by predators (King, Read, Traugott, & 

Symondson, 2008). The two primary methods used to conduct molecular diet analysis are 

quantitative polymerase chain reaction (qPCR) and metabarcoding (Deiner et al., 2017; Harper et 

al., 2018; Pompanon et al., 2012). qPCR is conducted by designing species-specific primers and 

tracking DNA amplification across PCR cycles, and metabarcoding is conducted by amplifying 

primers targeting certain taxa (e.g., vertebrates, fishes) and sequencing the targeted amplicons on 

a high-throughput sequencer (e.g., Illumina MiSeq). 

While the majority of molecular diet studies have focused on detecting presence/absence, there 

has been substantial interests in using these tools to estimate species abundance for conservation 

and management (Rourke et al., 2022). Past studies have demonstrated that both qPCR and 

metabarcoding can provide information on the amount of input DNA in a sample that can 

theoretically be used to estimate species abundance (Hänfling et al., 2016; Shelton et al., 2019). 

While there is often a positive correlation between qPCR or metabarcoding results and 
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abundance in laboratory setting, the correlation is often variable and can be weak in natural 

environments (Fonseca, 2018; Kelly, Shelton, & Gallego, 2019; Yates, Fraser, & Derry, 2019). 

qPCR can directly estimate the amount of species-specific target DNA present in a sample and 

therefore is not influenced by the mixture of species in a sample (Nathan, Simmons, Wegleitner, 

Jerde, & Mahon, 2014). Metabarcoding, on the other hand, produces read counts for each species 

present in each sample. Relative read abundance produced from a metabarcoding study is 

effective for determining the major taxa in an environment, but there is only a weak quantitative 

relationship between RRA and input DNA amount due to technical bias across species in the 

processes of sampling, library prep and sequencing (Harrison, Calder, Shuman, & Buerkle, 2021; 

Lamb et al., 2019). That being said, relative read abundance could still be informative if no other 

data about community composition exists (Deagle et al., 2018) and the incorporation of internal 

standards or “spike-in” into DNA pools can help ameliorate bias with this approach (Harrison et 

al., 2021; Thomas, Deagle, Eveson, Harsch, & Trites, 2015).  

Estimates of abundance using molecular tools are improving and will likely continue to improve 

in the future. However, even if researchers were able to calculate the input DNA amount from a 

given species in a given sample without bias, input DNA amount may not accurately reflect 

organismal abundance due to variation in animal size, shedding rates, digestion rates, and myriad 

other environmental factors (Barnes et al., 2014; Carreon-Martinez, Johnson, Ludsin, & Heath, 

2011; Levi et al., 2019; Stoeckle et al., 2017). An alternative approach is to estimate absolute 

abundance in a sample by leveraging within-species genetic variation to quantify the number of 

unique contributors in a mixed-DNA sample (Curran, Triggs, Buckleton, & Weir, 1999; Weir, 

Triggs, Stowell, Walsh, & Buckleton, 1997). A major advantage of this DNA mixtures approach 

over qPCR and metabarcoding is that abundance estimates are decoupled from DNA quantity. In 
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 6 

other words, as long as sufficient DNA from each individual is present in the sample and as long 

as individuals can be distinguished genetically, the absolute abundance estimate is insensitive to 

differences in the amount of DNA contributed by individual specimens (Sethi, Larson, 

Turnquist, & Isermann, 2019). This means that factors that influence input DNA quantities such 

as organism size, sloughing rate, and digestion rate do not influence estimates to the same degree 

as with qPCR and metabarcoding. The ability to count the number of organisms present in a 

mixed DNA sample opens up promising opportunities for count-based ecological inferences, 

including but not limited to estimating the number of individuals on an invasive species front 

from eDNA, estimating the absolute abundance of a low-population species of conservation 

concern from eDNA, or estimating the number of individuals of an endangered prey species 

consumed by invasive predators using diet samples (Sethi et al., 2019).  

The DNA mixtures approach, which was first utilized for criminal forensics, relies on identifying 

unique genetic variation at the individual level to infer the number of contributors to a mixed 

DNA sample (Bieber, Buckleton, Budowle, Butler, & Coble, 2016; Haned, Pène, Lobry, Dufour, 

& Pontier, 2011; Weir et al., 1997). An early ecological application of DNA mixture analysis 

involved genotyping five microsatellites and using a heuristic ‘allele counting’ approach to 

estimate the number of larval yellow perch (Perca flavescens) consumed by predators in river 

plumes (Carreon-Martinez, Wellband, Johnson, Ludsin, & Heath, 2014). While allele counting is 

conceptionally simple, this approach is not reliable beyond 3-individual mixtures (Dembinski, 

Sobieralski, & Picard, 2018). In comparison, the maximum likelihood-based approach can make 

explicit use of observed alleles present in a sample and their associated population allele 

frequencies to substantially improve accuracy of estimates (Haned, 2011; Haned et al., 2011; 

Perez, Mitchell, Ducasse, Tamariz, & Caragine, 2011). 
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Recently, Sethi et al. (2019) explored the utility of the likelihood approach for ecological and 

conservation applications and found that it was possible to accurately estimate the number of 

contributors in mixture samples containing up to 10 individuals using simulated data from SNP 

and microsatellite panels. Sethi et al. (2019) also constructed mock mixtures containing extracted 

DNA from 1-5 yellow perch and genotyped these mixtures with 14 microsatellite markers. 

Results from this analysis suggested that relatively accurate results could be obtained with a 

small panel but with a downward bias of ~1 individual on average. In the same study, Sethi et al. 

(2019) analyzed stomach samples from predators collected in the field, which likely to contain 

yellow perch, and demonstrated that multiple individuals could be identified; however, this 

experiment was a proof of concept demonstration given that the number of perch consumed was 

unknown. 

Andres, Sethi, Lodge, & Andrés (2021) further explored the utility and performance of the DNA 

mixtures approach by using it to estimate the number of contributors in eDNA samples. Using a 

panel of 28 microsatellites, Andres et al. (2021) were able to accurately estimate the number of 

contributors in mixtures of up to 10 individuals constructed with both tissue and eDNA samples 

(i.e., filtered water) in mesocosm experiments. However, as the mixtures approached 10 

individuals, bias of estimate increased to approximately 2-3 individuals and varied from positive 

to negative depending on the effect of allele frequency cutoffs on individual alleles. These results 

emphasize both the importance of rare alleles for accurately estimating the number of 

contributors and the difficulty associated with accurately detecting these rare alleles without 

introducing false positive alleles, which can upwardly bias estimates. While microsatellite 

markers contain many rare alleles, making them a logical choice for DNA mixtures applications, 

idiosyncrasies associated with microsatellite genotyping, such as PCR stutter and allelic dropout, 
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makes it challenging to accurately call rare alleles and differentiate them from artefacts (Andres 

et al., 2021). Single-nucleotide polymorphisms (SNPs) are much easier to genotype, but because 

they are generally biallelic, obtaining the genetic variation necessary to accurately identify 

mixtures containing large numbers of individuals is difficult. One potential solution is to employ 

a panel of microhaplotype markers as suggested by Andres et al. (2021). These markers leverage 

the inherent phase information in short-read DNA sequence data to derive multi-allelic 

microhaplotypes from multiple, proximate SNPs on the same read (Baetscher, Clemento, Ng, 

Anderson, & Garza, 2018). Importantly, they can be genotyped accurately without the issues 

associated with microsatellites and microhaplotypes contain low frequency alleles that are 

important for the accuracy of the DNA mixtures approach. 

Here, we build on the previous work by Andres et al. (2021) and Sethi et al. (2019), and apply 

the likelihood-based DNA mixture genotyping using a 125-locus microhaplotype panel. Our 

study was motivated by the need to inform conservation of imperiled salmon populations in the 

Sacramento-San Joaquin Delta (hereafter referred to as the Delta). Habitat changes and the 

introduction of non-native fish species has fundamentally altered the Delta ecosystem, and many 

native fishes including Chinook salmon (Oncorhynchus tshawytscha) have experienced 

significant declines for decades (Carlson & Satterthwaite, 2011; Munsch, Greene, Mantua, & 

Satterthwaite, 2022). One contributing factor to Chinook salmon declines may be predation by 

non-native fish species (Grossman, 2016). Previous studies using visual and genetic techniques 

have shown that non-native piscivores such as striped bass (Morone saxatilis), largemouth bass 

(Micropterus salmoides), and channel catfish (Ictalurus punctatus) consume Chinook salmon in 

the Delta (Brandl, Schreier, Conrad, May, & Baerwald, 2021; Michel, Smith, Demetras, Huff, & 

Hayes, 2018; Sabal, Hayes, Merz, & Setka, 2019). However, the impacts of this predation on 
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Chinook salmon populations have been difficult to quantify using conventional visual and 

molecular assessment of diet contents that generally lack information on the number of Chinook 

salmon consumed and the rate at which various prey items are digested. Our study aims to 

address these limitations by experimentally assessing the feasibility of the DNA mixtures 

approach for counting Chinook salmon smolts in predator diets. 

In this study, we first obtained haplotype frequencies by genotyping 1,179 Chinook fin-clip 

samples using a panel of 125 microhaplotype loci. Secondly, to test the microhaplotype panel on 

real amalgamations of DNA in a controlled setting, we estimated the number of contributors 

(hereafter referred to as NOC) in mock mixtures containing DNA extracts from 2-20 Chinook 

individuals. Lastly, to apply the optimized estimator in a more realistic setting, we explored the 

utility of DNA mixture analysis for diet analysis in a large controlled-feeding experiment by 

estimating the number of Chinook individuals found in the gastrointestinal (GI) tracts of two 

non-native predators in the Delta, largemouth bass (LMB) and channel catfish (CCF). Our results 

illustrate the utility of microhaplotype panels for DNA mixture analysis but also illuminate some 

challenges associated with applying this approach to degraded DNA samples - which are 

typically what researchers encountered in diet samples. 

Materials and Methods 

Curating a Catalog of Haplotypes and Estimating Their Frequencies 

Accurate haplotype frequency estimation is crucial for precise estimation of NOC using the 

DNA mixture approach (Andres et al., 2021; Sethi et al., 2019). Therefore, we aimed to genotype 

a large number of Chinook smolts from Mokelumne hatcher in CA (N=1,179) using Genotyping-
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in-Thousands by Sequencing (GT-seq; Campbell, Harmon, & Narum, 2015) and a panel of 125 

microhaplotype markers. This microhaplotype panel was developed for Chinook salmon in the 

Klamath and Sacramento river basins and has product sizes of 90 -143 bp (Thompson et al., 

2020). Because cross-amplification of predator DNA might interfere with NOC estimation of the 

prey, we also genotyped fin clip samples of LMB and channel CCF specimens collected for this 

study to examine the level of cross-amplification between predators and Chinook salmon. DNA 

was isolated from dried fin clip samples either with Qiagen DNeasy Blood and Tissue Kits or 

10% Chelex 100 solution containing 1% of Triton-X 100 and 1% Tween 20. One negative 

control was included on each 96-well extraction plate. GT-seq was conducted following the 

methods of Campbell et al. (2015) with modifications detailed in Bootsma et al. (2020) except 

that we used the original post-normalization double-sided SPRI bead size-selection protocol of 

0.5x to 1.2x (Campbell et al., 2015). Libraries were sequenced on the Illumina MiSeq platform 

using a single v2 300 cycle kit (2 x 150 bp paired end). An initial GT-seq test run on 377 

Chinook samples was conducted to evaluate the 125 microhaplotype markers and we removed 

any loci with over or under amplification from the panel.  

Demultiplexed reads (forward reads only) were processed with trimmomatic v0.39 (Bolger, 

Lohse, & Usadel, 2014) to remove adapter sequence using the following parameters: 

ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:15 MINLEN:50 and the adaptor sequences 

fasta file provided by trimmomatic, TruSeq-3-PE-2.fa. After trimming, forward reads were 

mapped to the reference file of consensus sequences of the 125 microhaplotype markers using 

bwa-mem v 0.7.17 with default settings (Li, 2013). On-target rate was calculated for each sample 

as the proportion of reads that aligned to amplicons in the microhaplotype panel. To assemble 

microhaplotypes and obtain their read depths in each individual, we used the R package 
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MICROHAPLOT (https://github.com/ngthomas/microhaplot). MICROHAPLOT uses the 

reference VCF file to obtain SNP positions for each locus and assemble SNPs into 

microhaplotypes, and then extracts microhaplotypes from SAM files (Baetscher et al., 2018).  

To obtain a reliable catalog of microhaplotypes and their frequencies from Chinook salmon 

tissue samples, we conducted the following filtering steps modified from (Baetscher et al., 2018): 

(1) we removed incomplete haplotypes, i.e., haplotypes with N or X, (2) we removed haplotypes 

with fewer than 20 reads at a locus and a read depth ratio of < 0.2 within an individual (read 

depth ratio is defined as the ratio between read depth of a haplotype at a locus and the read depth 

of the haplotype with the highest read depth), (3) we removed monomorphic loci, i.e. loci with 

only one haplotype present across all chinook samples, and (4) we removed loci with more than 

two haplotypes in any individuals. Genotypes were called from the remaining loci. An individual 

was called as a heterozygote if two haplotypes remained and a homozygote if only one haplotype 

remained. Finally, we used an iterative filtering approach to remove samples genotyped in < 80% 

of loci and remove loci genotyped in < 70% of samples. After the aforementioned filtering steps, 

haplotype frequency was calculated as the number of copies of a haplotype at a given locus, 

divided by the total number of copies present at that locus in the dataset. The large number of 

sampled specimens and associated haplotype frequencies are believed to be representative of 

population-level frequencies in the Delta. 

To check cross-amplification of the microhaplotype panel in the predator fish species, we 

extracted DNA from LMB (N=190) and CCF (N=94) fin-clip samples and genotyped these 

samples using GT-seq as described above. We used the same filtering criteria on predator 

samples, i.e., we removed haplotypes with fewer than 20 reads at a locus and a read depth ratio 
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of less than 0.2 within an individual and assessed the read coverage at the loci/haplotypes shared 

with Chinook salmon. To check for contamination, we conducted the same analysis on negative 

controls samples.  

Estimating NOC in Mock DNA Mixtures 

We constructed 285 mock DNA mixtures containing DNA from 2 to 20 Chinook (Table 1) 

smolts to assess the ability of the optimized microhaplotype panel (from above) to accurately 

estimate NOC across variable numbers of contributors. These mock DNA mixtures were made 

by pooling 2 µl of extracted DNA per individual and prepared in three replicates (Table 1). No 

two pools contained the same set of individuals. Genotyping was determined using GT-seq as 

described above, and we implemented the likelihood-based model described in (Andres et al., 

2021; Sethi et al., 2019) to estimate NOC in mock DNA mixtures.  

Distinguishing true alleles from technical artefacts is relatively simple for single-source diploid 

individuals, but this problem becomes more difficult in DNA mixture samples, which contain 

multiple individuals and thus many alleles appear at low frequencies (Andres et al., 2021). The 

parameter that needs to be tuned to ensure accurate detection of alleles present in DNA mixture 

samples is the read depth ratio. For individual tissue samples, we used a read depth ratio of 0.2. 

However, this value needs to be greatly reduced for DNA mixture analysis. We used a read depth 

ratio of 0.02 because mock DNA mixture samples included multiple individuals, which 

corresponds to multiple haplotypes per sample with variable read depths. Bias for mock DNA 

mixture samples was calculated as the estimated NOC - true NOC. 
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Genetic samples collected for some ecological applications, such as molecular diet analyses, tend 

to have lower DNA quantity and quality than tissue samples, which often results in locus 

dropout. Therefore, we attempted to assess how variation in locus dropout rate affects the NOC 

estimates by randomly subsampling 10% - 90% of 74 loci in the final panel for a total of nine 

levels with each level increasing 10%. At each level of locus dropout, we also assessed how 

NOC estimates were affected by different read depth ratio cutoffs (0.002, 0.02, 0.2). We 

conducted 50 trials for each combination of locus dropout rate and read depth ratio. 

Estimating NOC in the Feeding Trial 

Stomach contents and stool were collected from the preserved GI tract samples. We then 

combined stool and small pieces of each visible diet item into a 1.5 ml tube, and excess ethanol 
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We conducted a large feeding trial to understand how temperature and predator species influence 

digestion rates using diet analysis results obtained from visual identification, qPCR, 

metabarcoding, and the DNA mixtures approach. Additional details on the feeding trial and 

results from the visual, metabarcoding, and qPCR analyses are available in Dick et al. (in 

review). Briefly, two non-native predators in the Delta, LMB and CCF, were acclimated for two 

weeks at 15.5˚C or 18.5˚C prior to the initiation of the feeding trial. After the acclimation period, 

individual predators were force fed three fall run Chinook salmon smolts (average 6.4g per 

smolt). At regular intervals post-ingestion, a subset of 5-10 predators from each species by 

temperature treatment were euthanized. GI tracts were removed and preserved in 100% non-

denatured ethanol. The dissections began 6 hours post-ingestion (t=6) and continued every 12 

hours until t=96 hours, and then a final sample occurred at t=120 hours (5 days) resulting in a 

total of ten time points (Table 2). 
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was removed by centrifugation and pipetting followed by evaporation. DNA was extracted using 

a Macherey-Nagel Nucleospin 96 DNA Stool kit with three modifications: (1) we replaced bead-

induced lysis with enzymatic lysis, (2) we used a per-sample volume of 25 μL of proteinase-k 

and 850 μL of lysis buffer ST1, and (3) we incubated overnight at 56°C. See Dick et al. (in 

review) for detailed dissection methods. One negative control was included on each 96-well 

extraction plate. GT-seq genotyping and DNA mixture analysis was conducted in the same way 

as described above.  

In total, we dissected 277 GI tract content samples, including 173 samples from LMB and 104 

samples from CCF (Table 2). These samples were genotyped using the microhaplotype panel to 

determine the ability of the DNA mixtures method to accurately recover NOC as prey items were 

digested. We chose a read depth ratio of 0.02 for genotyping the stomach samples, which was 

informed by the results of the mock DNA mixture subsampling experiment and the relatively 

small number of Chinook smolts fed to each predator. We fit an exponential decay model, 𝑦𝑦 =

𝑎𝑎(1 − 𝑟𝑟)𝑥𝑥, with x=hour post-ingestion and y=mean NOC estimate to examine the loss rate of the 

number of detected Chinook salmon smolts in predator GI tract content samples over time across 

species and temperature. We estimated the initial amount (parameter ‘𝑎𝑎’) and rate of decay 

(parameter ‘𝑟𝑟’) in each decay model.  

Results 

Curating a Catalog of Haplotypes and Estimating Their Frequencies  

Initial GT-seq testing using 377 Chinook fin-clip samples showed that 11 out of 125 

microhaplotype loci had either over or under amplification based on the total number of on-target 
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reads across individuals (Figure S1). After removing these 11 loci, the final panel consisted of 

114 microhaplotype loci (Table S1). Primer sequence information of the 114 loci can be found in 

Data S5 in Thompson et al. (2020). GT-seq data using the final panel of 114 microhaplotype loci 

on 1,179 Chinook fin-clips yielded an average of 8,517 forward reads per sample (range = 1 - 

26,336 reads) and an average of 6,509 on-target reads per sample (range = 0 - 16,656). The 

median on-target rate of sequencing data was 80.21% (range = 0 - 98.5%), with only 11 samples 

having on-target rate less than 40% (Figure 1).  

After quality filtering on the extracted haplotypes, a total of 74 loci and 565 samples remained. 

Details of the number of loci and samples remaining after each filtering step can be found in 

Table S2. These 74 loci contained 252 unique haplotypes with a median of 3 haplotypes and a 

range of 2-7 haplotypes per locus (Figure S2). The curated catalog of 252 haplotypes had a wide 

range of haplotype frequencies, ranging from 0.001 to 0.997 with a median of 0.190 (Figure 2a). 

The majority of the 74 loci contained low-frequency haplotypes. Specifically, 54 loci (73%) had 

haplotypes with a frequency of less than 0.1, and 46 loci (62%) had haplotypes with a frequency 

less than 0.05.  

We applied the same haplotype filtering on 190 LMB and 94 CCF fin-clip samples. Four 

LMB/CCF samples were outliers in terms of total number of on-target reads (1,166 - 11,544 

reads; Figure S3). After filtering, these four samples still had nonnegligible amount of on-target 

reads remained (51 - 3,084 reads) whereas the rest of the LMB/CCF samples had zero or close to 

zero on-target reads after filtering. These four outlier samples shared 80 haplotypes across 58 

loci with Chinook. Our results suggest that these four samples were likely contaminated with 

Chinook salmon DNA, and thus we conclude that overall, there was no evidence of cross-
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amplification of our microhaplotype panel between two predator fish species (LMB and CCF) 

and Chinook salmon. In addition, there was no systematic contamination in our dataset as the 

number of on-target reads after filtering was zero across all negative control samples.  

Estimating NOC in Mock DNA Mixtures 

The 285 mock DNA mixture samples yielded an average of 9,001 forward reads per sample 

(range = 1 - 13,038 reads) and an average of 6,807 on-target reads per sample (range = 0 - 

9,603). Three samples were dropped due to failed library prep and sequencing run. For the 

remaining 282 samples, the median on-target rate was 76.24% (range = 64.52 - 82.51%; Figure 

1). All 74 microhaplotype loci were successfully genotyped in all 282 mock DNA mixture 

samples (Figure 3a). Using the curated catalog of haplotypes across the 74 microhaplotype loci 

described above along with their frequencies and a read depth ratio of 0.02, NOC estimates 

generally fell within ± 2 from the true NOC in mock DNA mixtures of up to 10 individuals with 

a mean bias of 0.2 ± 1.1 (Figure 2b). However, apparent negative bias emerged when true NOC 

was greater than 10, with a mean bias = -2 ± 2.1 for NOC=15 and mean bias = -5.7 ± 1.6 for 

NOC=20 (Figure 2b).   

To assess the effects of different levels of locus dropout on the NOC estimate, we subsampled 10 

- 90% of the above 74 microhaplotype loci, which corresponded to 7 to 67 loci for a total of nine 

levels with each level increasing 10%. Fewer number of loci genotyped corresponded to the 

higher levels of locus dropout. At each level of locus dropout, we compared three different read 

depth ratio cutoffs (0.002, 0.02, 0.2; Figure 4). At the read depth ratio of 0.02, higher locus 

dropout rate resulted in larger variance in NOC estimates with the largest variances observed 

when genotyping coverage was 20% of loci or less (≤15 loci retained) across all NOC scenarios 
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tested, although the effect was minimal when true NOC was 2 or 3 (Figure S4). In addition, with 

higher locus dropout rate, the estimate bias moved in the positive direction, especially when true 

NOC was less than 15. Interestingly, locus dropout rate only had a marginal effect on the mean 

estimate bias, which was within ± 2 from true NOC up to 15 individuals, suggesting moderate 

robustness in DNA mixture analysis to locus dropout type errors (Figure S4). Patterns of 

variance and mean estimate bias at the lowest read depth ratio (0.002) were similar to what was 

observed at the ratio of 0.02 (Figure 4), indicating such a low threshold of 0.002 was likely 

below the read ratio of all haplotypes within samples. In contrast, the highest read ratio of 0.2 

likely exceeded the read ratio of all but the dominant haplotypes (i.e. haplotypes with highest 

read depth) within samples, resulting in negative bias in NOC estimates (Figure 4 & Figure S4).  

Estimating NOC in the Feeding Trial 

In the feeding trial, we force fed LMB and CCF with three Delta Chinook salmon smolts at two 

different temperature conditions (15.5˚C and 18.5˚C). A total of 277 GI tract content samples 

(173 LMB samples and 104 CCF samples) yielded an average of 11,453 forward reads per 

sample (range = 0 - 111,528 reads) and an average of 2,230 on-target reads per sample (range = 

0 - 46,580). Compared to mock DNA mixture samples, these GI tract samples demonstrated a 

wide range of on-target rates across samples (0 - 87.82%) with the median of 14.66% (Figure 1). 

The wide range of on-target rates was associated with time post-ingestion (Figure 5a). 

Specifically, the on-target rate decreased over time in both species and dropped significantly 

after 72 hours at 15.5 ˚C and after 48 hours at 18.5 ˚C (Figure 5a). Six samples were removed 

due to extremely low on-target reads (≤ 2 reads). For the remaining 271 samples, number of 

successfully genotyped loci increased with the number of on-target reads (Figure 3b). When the 
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total on-target reads reached 429 reads or above (N=96), at least 90% of 74 loci (67 loci) were 

genotyped (Figure 3b). We further removed 89 samples with fewer than 20% of 74 loci 

genotyped (15 loci) because too few genotyped loci led to large variance in NOC estimate based 

on the subsampling experiment (Figure 4). Notably, these removed samples included all or most 

samples at 84 - 120 hours post-ingestion in CCF (Table S3). In general, we observed a 

downward trend in estimated NOC over time in both CCF and LMB (Figure 5b), and mean 

estimates of NOC were larger than one for up to 48-72 hours though with high variance (Table 

S3). Both LMB and CCF showed exponential decay patterns in NOC through time, presumably 

as Chinook salmon DNA was digested or evacuated from predator guts (Figure S5). The two 

predator species showed different patterns of decay (Figure S5 and Table S4). The initial amount 

at six hours (parameter ‘𝑎𝑎’) was slightly greater in CCF compared to LMB at either temperature. 

In addition, the rate of decay (parameter ‘𝑟𝑟’) was slightly faster for CCF compared to LMB at 

either temperature. Notably, higher temperature was associated with higher rate of decay in NOC 

estimates of Chinook salmon smolts over time post-ingestion for CCF whereas the temperature 

effect for LMB was weaker (Figure S5; Table S4).  

Discussion 

Our study provided strong evidence that the likelihood-based DNA mixture analysis paired with 

a sufficiently variable microhaplotype panel can be used to accurately quantify the number of 

contributors to mixed DNA samples containing up to ten individuals and possibly more. 

However, we faced substantial methodological challenges associated with highly degraded DNA 

when applying this method to GI tract content samples from piscivorous fish predators in a 

feeding trial. Our results reveal promises, but also potential pitfalls associated with the DNA 
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mixtures approach. Below we discuss the methodological advances achieved in this study, some 

important considerations and limitations of the study, and how to potentially address them in the 

future. 

The DNA mixture analysis paired with a microhaplotype panel: a promising approach for future 

studies 

The most significant advancement of our study is demonstrating the benefit of microhaplotype 

markers for DNA mixture analysis. The most recent study to conduct similar analyses by Andres 

et al. (2021) used microsatellite markers genotyped with high-throughput sequencing and faced 

significant difficulty calling low-frequency alleles. They recommended that future studies test 

microhaplotype markers to specifically address this issue with low-frequency alleles. We 

followed their advice and have confirmed that microhaplotype markers are well-suited for DNA 

mixture analysis. The most substantial reason for this high performance is their ability to reliably 

genotype low frequency alleles, which is critical for achieving accurate estimates of NOC.  

It is important to note that the panel we used was developed for genetic stock identification of 

West Coast Chinook salmon (Thompson et al., 2020) and was not designed to maximize the 

number of haplotypes at each locus within the Delta population, which would be the goal for 

optimizing the DNA mixtures analysis. In contrast, panels developed for parentage analysis or 

other applications often enrich for loci with a high number of alleles, and loci containing over ten 

alleles/haplotypes are common (Baetscher et al., 2018), compared to a maximum of seven 

haplotypes in our study. Our results demonstrated that an existing microhaplotype panel not 

necessarily designed for NOC estimation can still be effective for DNA mixture analysis. 

Fortunately, designing new panels specifically for DNA mixture applications is not overly 
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onerous, and the workflow for constructing these panels has been thoroughly described in 

previous papers (Baetscher et al., 2018; Bootsma et al., 2020).  

Designing larger panels containing a high number of loci with more haplotypes would likely 

facilitate accurate NOC estimates for mixtures containing more than the 10 individuals that we 

could reliably resolve with our current panel. Previous investigations into DNA mixtures suggest 

that the maximum number of individuals that can be resolved is a function of the number of low 

frequency alleles present in a dataset and the ability to accurately identify them. Andres et al. 

(2021) demonstrated that a microsatellite panel containing 28 loci and 253 total alleles could 

accurately estimate NOC in samples of up to 58 individuals in silico, but in practice this panel 

was limited to resolving mixtures of ~10 individuals due to issues with differentiating true rare 

alleles from artefacts. Identification of rare alleles was more straightforward with our 

microhaplotype panel, but we were still potentially limited by (1) the number of loci and the 

number of total alleles and (2) sequencing coverage. Future studies could explore increasing 

panel size and sequencing coverage to increase the number of rare alleles and the ability to 

reliably detect them. One related option would be to design multiple small panels that are easier 

to optimize and genotype then combine data from those panels to increase both the number of 

loci and coverage.   

Our resampling analysis of known mixtures suggested that the read ratio cutoff should be set as 

low as possible to facilitate identification of rare alleles without mischaracterizing true alleles as 

artefacts. Setting this value is a balance between biasing estimates upwards because artefact 

alleles are retained and biasing estimates downwards because true alleles are not detected, as 

discussed in Andres et al. (2021). Increasing sequencing coverage could allow better detection of 
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true alleles and facilitate the use of smaller read ratio cutoffs, but the utility of this approach 

should be tested on known mixtures due to diminishing returns associated with increasing 

sequencing coverage of finite PCR products (Rochette et al., 2022). One potential solution to this 

issue could be to conduct multiple PCR replicates for each sample and combine the products to 

reduce the stochastic effects of PCR (Miller, Joyce, & Waits, 2002), which could cause certain 

alleles to amplify more readily. 

Interestingly, our analysis of various levels of locus dropout rates revealed an unexpected 

relationship between the number of loci genotyped and the direction of bias in NOC estimates. 

As fewer loci were genotyped, the bias increased in the positive direction. Especially when the 

true NOC was fewer than 15, the NOC was overestimated. In simulated data, this trend occurs in 

the opposite direct (Sethi et al., 2019), indicating that the positive bias that we observed may be 

due to artefacts. Specifically, we hypothesize that the upward bias due to artefact alleles is 

reduced when additional loci are genotyped. The locus dropout subsampling results indicate that 

accurate mean estimates of NOC can be obtained with relatively few loci, but as the number of 

loci genotyped decreases, the variance in NOC estimates increases, and it becomes more 

important to ensure that rare alleles are called correctly and distinguished from artefacts. Our 

empirical data from the feeding trial suggests that, for degraded DNA samples, the percentage of 

loci that can be successfully genotyped is positively correlated with the number of on-target 

reads, meaning that if few loci are genotyped, the sequencing coverage for each locus is likely 

low, potentially leading to inaccurate identification of rare alleles. This is characteristic of poor-

quality input DNA, such as that obtained from diets and some environmental samples. We 

therefore urge caution when estimating NOC using genotype data when a large number of loci 

failed to genotype. However, our resampling simulations do suggest that a relatively small 
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number of loci can be effective for estimating NOC in mixtures with ≤10 contributors if rare 

alleles are accurately identified.  

One aspect of NOC estimation that we anticipated could be a problem was cross-amplification of 

microhaplotype loci in predator species. Cross-amplification could inflate the number of alleles 

at a given locus and upwardly bias NOC estimates. Therefore, a best practice is to verify that no 

cross-amplification between species occurs. Luckily, we found no evidence that loci included in 

our panel amplified in LMB and CCF suggesting that cross-amplification is likely to be minimal 

in distantly related taxa. However, cross amplification could become a problem if more closely 

related species are analyzed, such as in systems where multiple congeners are found. Certain 

microsatellite loci have been shown to amplify in a large number of salmonid species (Scribner, 

Gust, & Fields, 1996; Williamson, Cordes, & May, 2002), and microhaplotype loci developed 

for kelp rockfish (Sebastes atrovirens) amplify in many other Sebastes species (Baetscher, 

Nuetzel, & Garza, 2022). Fortunately, when loci cross-amplify, alleles are often species-specific 

and can be dealt with in downstream analyses. If alleles overlap among species, loci containing 

these alleles should be removed prior to analysis. While it is important to address cross-

amplification in DNA mixture studies where multiple species contribute to DNA samples, our 

study suggests that this issue should be relatively easy to resolve in most instances.  

The utility of the DNA mixtures approach is hindered by low quality DNA: some potential 

solutions and future research directions 

Our mock DNA mixtures demonstrated the feasibility of accurately resolving NOC from mixed-

DNA samples when DNA quality is high. However, resolving NOC in more degraded samples 

from the feeding trial proved difficult. Mean estimates of NOC were 2-3 (true NOC = 3) for up 
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to 48 - 72 hours post-ingestion. However, the variance in estimates, even in the early part of the 

trial, was generally high. These results indicate that the DNA mixtures approach we used can 

identify whether more than one individual was consumed by a predator. However, the accuracy 

of individual NOC estimates is likely to be low, limiting the practical resolution of the current 

approach. One potential way to increase accuracy could be to conduct multiple DNA extractions 

and/or PCR replicates and use the mean of the replicates as the NOC estimate (Alberdi et al., 

2019; Mata et al., 2019). Our subsampling experiment also showed that the mean NOC estimate 

among replicates tended to be accurate regardless of the number of loci genotyped. However, 

this does not address the fundamental problem of reduced performance of the microhaplotype 

panel on degraded samples.  

The percentage of on-target reads was already ~30% lower six hours post-ingestion than in tissue 

samples (~80% on-target in tissue samples vs ~50% on-target 6 hours into feeding trial). This 

value continued to descend over time, reaching ~10% at 72 hours and functionally zero after that. 

Interestingly, the trend in proportion of on-target reads across the feeding trial was very similar 

to the number of mtDNA metabarcoding reads across the same timespan (Dick et al. in review). 

Our data strongly suggest that DNA degradation as diet items become more digested is leading 

to lower proportions of on-target reads, which prevents accurate microhaplotype genotyping. 

One major advantage of the DNA mixtures approach, in theory, is that it should be robust to 

variation in DNA quantity. However, our data indicates that poor performance of the nuclear 

microhaplotype panel in degraded samples largely negated the advantage of the DNA mixtures 

approach compared to methods amplifying more abundant mtDNA such as qPCR and 

metabarcoding.  
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Some potential ways to improve in the future include (1) additional replication such as extraction 

and PCR replicates, which was discussed above, (2) additional sequencing coverage, which 

could potentially improve genotyping accuracy even when the percentage of on-target reads is 

low, and (3) laboratory protocols that enhance the performance of microhaplotype panels with 

degraded samples. Increasing sequencing coverage could improve results, especially in terms of 

confidently identifying rare alleles. Previous research has shown that increasing sequence depth 

increases the number of taxa recovered for eDNA samples (Shirazi, Meyer, & Shapiro, 2021), 

which is similar in concept to identifying rare alleles. However, while increased depth could 

improve results, it is likely that this is not a problem that researchers can “sequence their way out 

of” given the extremely poor performance of highly degraded samples. Instead, we suggest that 

future studies focus efforts on improving laboratory protocols for extracting and amplifying 

degraded DNA and incorporate best practices (Deagle, Eveson, & Jarman, 2006; Rohland, 

Glocke, Aximu-Petri, & Meyer, 2018) 

Two previous studies that have used the GT-seq approach to genotype DNA from fecal samples, 

although both studies targeted the predator not the prey (Burgess, Irvine, & Russello, 2022; 

Eriksson, Ruprecht, & Levi, 2020). Burgess et al. (2022) used a similar protocol to ours with two 

modifications: (1) primer pools were divided to reduce the number of primers in each multiplex 

and (2) DNA was quantified and normalized after PCR1 rather than normalized with SequalPrep 

plates after barcoding (PCR2). Eriksson et al. (2020) conducted an additional bead cleanup after 

PCR1 that both our study and Burgess et al. (2022) did not. Eriksson et al. (2020) also quantified 

and normalized after PCR1 rather than using normalization plates. It is important to note that the 

protocol we used was designed for high-throughput analysis of thousands of fish tissue samples 

for genetic stock identification and was not optimized for degraded DNA.  
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At minimum, we suggest that future studies conduct an additional bead cleanup and quantify and 

normalize after PCR1 rather than use normalization plates after PCR2, which are designed to 

reduce high concentrations of DNA to a uniform concentration but are not effective if DNA 

concentrations are already below the expected input threshold (250 ng/well). Additionally, we 

suggest that future studies use quantification results to pool samples of similar quantity and 

therefore likely similar quality, together to reduce high variation in read counts across samples. 

Finally, we suggest conducting iterative rounds of library preparation and sequencing to obtain 

usable data from as many samples as possible. In our experience, samples perform better in 

smaller batches, and this time-consuming iterative approach of analyzing small batches of poor-

quality samples may be the most feasible way to improve results barring sequencing for 

sequencing degraded samples. Our suggestions focus on analysis of degraded but high-quantity 

DNA samples from diet studies, but they may also be useful for eDNA studies with water 

samples, where DNA quantity is potentially more of an issue than quality (Harrison, Sunday, & 

Rogers, 2019). Quantifying the performance of different amplicon sequencing approaches with 

highly degraded and low-quantity DNA using controlled dilution and DNA shearing experiments 

would help advance the application of the DNA mixtures method for both eDNA and molecular 

diet studies. 

Conclusion 

As discussed at length in Andres et al. (2021) and Sethi et al. (2019), the DNA mixtures method 

could be leveraged to address a multitude of important topics related to conservation, 

management, and ecology of wild populations. However, developing methods to reliably 

estimate NOC in mixed-DNA samples with variable qualities and quantities has been difficult. 
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Our study demonstrated that accurate NOC estimates for samples containing up to 10 individuals 

can be obtained using a panel of ~100 microhaplotype loci genotyped with GT-seq chemistry, 

and that this approach is more effective for accurately identifying rare alleles compared to 

microsatellites. However, analysis of highly degraded samples from a feeding trial produced 

relatively poor results due to a low percentage of on-target reads. We suggest that future studies 

focus on improving laboratory protocols for GT-seq analysis with highly degraded and low-

quality samples. Substantial methodological improvements have made it feasible to implement 

the DNA mixtures method to for non-model organisms in ecological studies. However, some 

final technical barriers still exist. We expect that future studies will successfully address these 

barriers, facilitating the widespread use of the DNA mixtures method to address important 

questions in conservation and ecology. 
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Figures 

Figure 1 Comparison of on-target rates among Delta Chinook salmon smolt tissue samples 
(N=1,179), mock DNA mixture samples made up of Delta Chinook salmon smolts (N=283) and 
GI tract content samples from the feeding trial (N=277). On-target rate was calculated as the total 
number of on-target reads divided by the total number of reads. Median on-target rates are 
indicated with red vertical lines. 

763 

764 
765 
766 
767 
768 

769 
770 
771 
772 
773 
774 

775 
776 
777 
778 

779 
780 
781 
782 
783 

784 
785 
786 
787 
788 
789 
790 
791 

Figure 2 (a) Broad haplotype frequency distribution of the curated catalog of 252 unique 
haplotypes across 74 loci and 565 Delta Chinook salmon smolt samples after stringent filtering. 
(b) Bias in the estimated number of contributors using genotypes of the above curated catalog 
from various DNA mock mixture samples made up of Delta Chinook salmon smolts. Light gray 
points are individual mock DNA mixtures, and red points and lines are mean bias ±1 SD. A read 
depth ratio of 0.02 was used, below which haplotypes were removed.

Figure 3 Effects of total on-target reads on the number of loci successfully genotyped in (a) 
mock DNA mixture samples (N=282) and (b) GI tract samples from the feeding trial (N=271). A 
total of 89 GI tract samples (gray points) with fewer than 20% of 74 loci genotyped (15 loci) 
were removed from the downstream analyses. 

Figure 4 Bias in the estimated number of individuals contributing to mock DNA mixtures made 
up from Delta Chinook salmon smolt samples (range:  2- 20 individuals per mixture) with 
varying simulated genotyping rates (10 - 90% of 74 loci) and three read depth ratios (0.002, 0.02, 
0.2), below which haplotype sequence reads were removed. Lower genotyping rates 
corresponded to higher locus dropout rates. 

Figure 5 Changes in on-target rate (a) over time post-ingestion (up to 120 hours) in the GI tract 
content samples (N=277) of largemouth bass (LMB) and channel catfish (CCF) at two different 
feeding trial water temperatures (15.5˚C and 18.5˚C). We removed six samples due to their 
extremely low on-target reads (≤ 2 reads) and additional 89 samples due to fewer than 15 loci 
genotyped in these samples. We estimated number of contributors (NOC) in each remaining 
sample (N=182; b). In (b), light gray points are individual samples (N=184), and red points and 
red lines are mean estimate ±1 SD. A read depth ratio of 0.02 was used, below which haplotypes 
were removed. 
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Supplementary Figures 

Figure S1 Panel optimization based on the sum of on-target reads across 377 Chinook salmon 
smolt samples in the initial GT-seq testing. Microhaplotype loci were ordered by the sum of on-
target reads. A total of 11 microhaplotype loci were removed (gray points) due to either over 
amplification (>59,000 on-target reads) or under amplification (<7,000 on-target reads). Cutoffs 
were chosen based on the breakpoints of the distribution. The final GT-seq panel consisted of 
114 microhaplotype loci (red points; Table S1).  

Figure S2 Distribution of number of Delta Chinook salmon haplotypes per locus across 74 
microhaplotype loci after filtering. 

Figure S3 Distribution of total number of on-target reads across 190 largemouth bass samples 
and 94 channel catfish samples using the microhaplotype panel designed for Delta Chinook 
salmon. Four samples were outliers with 1,166 - 11,544 on-target reads and were on the right 
side of the red vertical line (x intercept = 1,100).  

Figure S4 Comparison of variance (top panel) and mean bias (bottom panel) of estimated 
number (NOC) of Chinook salmon smolts contributing to mock DNA mixtures (rang:  2- 20 
individuals) across varying simulated genotyping rates (10% to 90% of 74 loci) and three read 
depth ratios (0.002, 0.02, 0.2). Lower genotyping rates corresponded to higher locus dropout 
rates. 

Figure S5 Number of Chinook salmon smolts detected over time post-ingestion (up to 120 
hours) in the GI tracts of channel catfish (CCF) and largemouth bass (LMB) at two different 
feeding trial water temperatures (15.5˚C and 18.5˚C). Predators were each fed three smolt 
specimens. We fit with an exponential decay model (𝑦𝑦 = 𝑎𝑎(1− 𝑟𝑟)𝑥𝑥) with x=hour post-ingestion 
and y=mean NOC estimate calculated for each treatment group (species * temperature * time 
point). Mean NOC estimates can be found in Table S3.  
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Table 1. Number of samples used in the mock DNA mixture experiment 817 
 818 

# Inds Replicate 1 Replicate 2 Replicate 3 

2 8 8 8 

3 8 8 8 

5 16 16 16 

7 16 16 16 

9 16 16 16 

10 16 16 16 

15 8 8 8 

20 7 7 7 

 819 
  820 
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Table 2. Number of samples used in the feeding trial experiment 821 
 822 

Species CCF 
 

LMB 

Temperature 15.5 18.5 
 

15.5 18.5 

# Smolt 1 3 
 

1 3 

Hours 
post-

ingestion 

6 6 5 
 

9 9 

12 5 5 
 

9 9 

24 5 5 
 

9 9 

36 5 5 
 

8 9 

48 6 6 
 

8 10 

60 5 5 
 

9 9 

72 6 5 
 

8 10 

84 5 5 
 

9 9 

96 6 5 
 

8 8 

120 4 5 
 

5 9 

  823 
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824 

Figure 1. 825 

 826 



37 

827 

Figure 2. 828 

 829 
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 830 

Figure 3. 831 
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833 

Figure 4.834 
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835 

Figure 5. 836 

 837 
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Supplemental Table 1. List of microhaplotype loci (N=114) used in the final GT-seq panel 838 

839 

tag_id_2_206 
tag_id_716 
tag_id_2_40 
tag_id_2_1348 
tag_id_1733 
tag_id_1276 
tag_id_2_939 
tag_id_1554 
tag_id_2_1268 
tag_id_2_188 
tag_id_5617 
tag_id_278 
tag_id_4969 
tag_id_1363 
tag_id_2_661 
tag_id_2_1114 
tag_id_235 
tag_id_2_2222 
tag_id_2_1029 
tag_id_2_978 
tag_id_481 
tag_id_5686 
tag_id_2_911 
tag_id_2_859 
tag_id_744 
tag_id_3920 
tag_id_2_487 
tag_id_2_935 
tag_id_425 
tag_id_423 
tag_id_669 
tag_id_2_502 
tag_id_2_58 
tag_id_2_694 
tag_id_2_284 
tag_id_1243 
tag_id_757 
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tag_id_2_98 
tag_id_1872 
tag_id_3221 
tag_id_2_136 
tag_id_427 
tag_id_2_1382 
tag_id_773 
tag_id_2_1693 
tag_id_2_953 
tag_id_2_2973 
tag_id_2_234 
tag_id_2_1586 
tag_id_819 
tag_id_2_1539 
tag_id_1281 
tag_id_2_9 
tag_id_430 
tag_id_650 
tag_id_275 
tag_id_2_1158 
tag_id_1413 
tag_id_2_1579 
tag_id_32 
tag_id_1227 
tag_id_2_419 
tag_id_282 
tag_id_2_855 
tag_id_2_1016 
tag_id_5385 
tag_id_2_700 
tag_id_1629 
tag_id_2_2787 
tag_id_542 
tag_id_2_414 
tag_id_968 
tag_id_70 
tag_id_1692 
tag_id_2_705 
tag_id_251 
tag_id_2_3577 
tag_id_999 
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tag_id_787 
tag_id_2_3026 
tag_id_945 
tag_id_1551 
tag_id_2_3094 
tag_id_2_20 
tag_id_1126 
tag_id_1144 
tag_id_491 
tag_id_1079 
tag_id_2_251 
tag_id_1428 
tag_id_826 
tag_id_381 
tag_id_684 
tag_id_5720 
tag_id_2_311 
tag_id_2_123 
tag_id_2_749 
tag_id_2_633 
tag_id_1470 
tag_id_664 
tag_id_1191 
tag_id_2_332 
tag_id_2_3471 
tag_id_186 
tag_id_784 
tag_id_554 
tag_id_120 
tag_id_1030 
tag_id_2_321 
tag_id_2_3452 
tag_id_2_786 
tag_id_2_113 
tag_id_603 
tag_id_384 

 840 

  841 
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Supplemental Table 2. Quality filtering on microhaplotype loci and samples. 842 
 843 

 844 
  845 

Filtering steps Number of 
microhaplotype loci 

Number of 
samples 

Prior to filtering 114 1179 

Call haplotypes 114 1176 

Remove haplotypes with N or X 114 1176 

Remove haplotypes < 20 reads at a locus and a read depth ratio < 0.2 114 1152 

Remove monomorphic loci 110 1152 

Remove loci with more than 2 haplotypes in any individuals 96 1148 

Remove samples genotyped in fewer than 80 of remaining loci and remove loci 
genotyped in fewer than 70% of samples 74 565 
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Supplemental Table 3. Mean NOC estimate across replicates calculated for each treatment group (species*temperature*time point). 846 
 847 

Species 
 

Temperature 
 

Hours post-ingestion 

6 12 24 36 48 60 72 84 96 120 

CCF 
  

15.5 3.33 2.5 3 1.67 2 2.33 3.2 1 1 NA 

18.5 3.8 2 1.5 1.5 1.8 1 2.4 NA NA NA 

LMB 
  

15.5 2.33 1.88 2.71 1.67 2.71 2.14 1.33 2 1 1 

18.5 2 2.44 2.2 2.38 2.43 1.25 1.29 1.67 1.43 1.25 

 848 
Note:  89 samples got removed because fewer than 20% of 74 loci (15 loci) were genotyped in these samples. These removed samples 849 
included all or most samples at 84 - 120 hours post-ingestion in CCF.  850 
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Supplemental Table 4. Exponential decay function parameters (± standard errors) for different 851 
predator species at different temperatures. 852 
 853 

Species Temperature a (initial amount) r (rate of decay) 

CCF 
15.5 3.19 ± 0.549 0.008 ± 0.00382 

18.5 2.9 ± 0.747 0.011 ± 0.00766 

LMB 
15.5 2.55 ± 0.345 0.006 ± 0.00253 

18.5 2.47 ± 0.243 0.006 ± 0.00183 

  854 
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 855 

Supplemental Figure 1. 856 

  857 



 48 

 858 

Supplemental Figure 2. 859 

  860 
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861 

Supplemental Figure 3. 862 

 863 
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 864 

Supplemental Figure 4. 865 

  866 



51 

867 

Supplemental Figure 5. 868 
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