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Abstract 

Indices of abundance based on fishery catch-per-unit-effort (CPUE) are important components of 

many stock assessments, particularly when fishery-independent surveys are unavailable. 

Standardizing CPUE to develop indices that better reflect the relative abundance requires the analyst 

to make numerous decisions, which are influenced by factors that include the biology of the study 

species, the structure of the fishery of interest, the nature of the available data, and the objectives of 

the analysis such as how standardized data will be used in a subsequent assessment model. 

Alternative choices can substantially change the index, and hence stock assessment outcomes and 

management decisions. To guide decisions, we provide advice on good practices in 16 areas, focusing 

on decision points: fishery definitions, exploring and preparing data, misreporting, data aggregation, 

density and catchability covariates, environmental variables, combining CPUE and survey data, 

analysis tools, spatial considerations, setting up and predicting from the model, uncertainty 

estimation, error distributions, model diagnostics, model selection, multispecies targeting, and using 

CPUE in stock assessments. Often the most influential outcome of exploring and analysing catch and 

effort data is that analysts better understand the population and the fishery, thereby improving the 

stock assessment. 

3 



1. Introduction 

Indices of abundance based on fishery catch-per-unit-effort (CPUE) are important components of 

many stock assessments for fish and other marine species, particularly when fishery-independent 

sources of information about population trends, such as research surveys, are unavailable (Maunder 

and Punt, 2004). This is the case, for example, in many fisheries for pelagic or lower value species 

where surveys are too costly or impractical (Bishop, 2006). In such situations, the main approach is to 

develop models that standardize fishery-dependent catch and effort data to produce an index of 

abundance (often simply referred to as the ‘index’) that better reflect the relative abundance by 

accounting for the other factors that influence catch rates (Maunder and Punt, 2004; Ye and Dennis, 

2009). This practice dates at least to Beverton and Holt (1957, Section 12). 

CPUE standardization requires the analyst to make numerous decisions. These decisions are 

influenced by factors that include the biology of the study species, the structure of the fishery of 

interest, the nature of the available data, and the objectives of the analysis (including how 

standardized data will be used in a subsequent assessment model). Alternative choices can change 

the indices and, consequently, the stock assessment outcomes and resulting advice to fishery 

managers. To guide decisions and choices, in this paper we provide advice on good practices in 16 

areas for analysts who develop indices of abundance for use in stock assessments (Table 1, Figure 1). 

For each of the 16 areas, we focus on decision points – occasions where analysts need to select an 

approach – particularly on instances where those choices can affect the resulting index. Analysts are 

encouraged to consider the proposed good practices and apply them where practical. It is important 

for the analyst to understand the implications of applying or not applying these practices and to be 

able to justify their decisions. 

We begin by considering the fishery definition in the stock assessment – i.e., for what stock 

component are we estimating CPUE? Next, we consider the available data, including issues 

associated with data preparation, quality, misreporting, resolution, and aggregation. We then discuss 

processes that can affect catch rates, such as variables associated with catchability versus density. 

We then move to aspects of the analysis itself, including the tools used, methods to identify fishing 

fleet targeting strategies, issues associated with space, setting up and predicting from the model, 

error distributions and uncertainty estimation, model diagnostics, and model selection. Finally, we 

consider approaches for employing CPUE in stock assessments, including the use of index fisheries, 

splitting the time series, selectivity changes, and catchability change. 

4 



The advice provided in this paper can be implemented using various software packages. However, 

given their free availability and widespread use, we primarily focus on examples using the R software 

environment and its associated libraries (R Core Team, 2022). 

2. Basic equations and definitions 

The relation between catch rates (CPUE) and stock abundance is based on the catch equation which, 

as a first order approximation, relates the number of fish in the catch, C, fishing effort, E, and the 

average fish population density, D, on the fishing grounds: 

where q is a fixed constant of proportionality known as the catchability coefficient and is related to 

the efficiency of the fishing gear (i.e., the proportion of the stock removed by one unit of effort). 

From this equation: 

where N is the number of fish on the fishing grounds (a three-dimensional volume, usually defined 

by the two-dimensional surface) and A is the spatial area of the fishing grounds. It follows that 

changes in CPUE are due either to changes in the stock density or to changes in the catchability 

coefficient. If the changes in q can be accounted for (‘filtered out’), then the remaining changes in 

CPUE can be related to those in stock density. This is the basic idea underlying what is known as the 

standardization of catch rates. 

The concept of abundance needs some elaboration, particularly in relation to the concept of 

availability. Following the definitions proposed by Marr (1951), true abundance is the absolute 

number of individuals in a population, availability is the degree (a percentage) to which a population 

is accessible to the efforts of a fishery, and apparent abundance is the abundance as affected by 

availability, or the absolute number of fish accessible to the fishery. The concept of availability can be 

further decomposed into two components: one that is directly under the influence of the fishing gear 

(i.e., the selectivity of the gear defined as the probability of capture of any fish dependent on 

individual traits such as size) and one which is influenced by factors other than the fishing gear (see 

below). 

From these definitions, if M represents the true abundance, N measures the apparent abundance, s 

measures the selectivity of the fishing gear, and a represents the other component of availability, 

then N = saM and substituting into the above equation gives: 
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𝑠𝑎𝑞𝑀 𝐶𝑃𝑈𝐸 = 𝐴 

From this equation, it is seen that the relationship between CPUE and the true abundance of fish 

within a given spatial region is influenced by both the selectivity (s) and other components of 

availability (a) of the fish to the fishing gear, and the efficiency of the fishing gear (q); thus, to 

adequately standardize CPUE, the analyst needs to understand what influences each of these factors. 

Note, in most of the fishery literature, the selectivity parameter combines the two parameters 

selectivity and availability as defined here (i.e., the distinction between the s and a terms is rarely 

made). Selectivity and availability often differ by factors such as age, size, sex, and stage and can be 

informed by the composition data based on these characteristics. To simplify the following 

descriptions and discussions, we simply refer to selectivity, availability, and composition data in the 

following without specifically referring to these characteristics. 

Availability will be influenced by the environmental conditions prevailing at the time of the fishing 

operation and/or behavioural attributes of the species being targeted. For example, oceanographic 

conditions may influence the vertical distribution of the habitats preferred by both pelagic and 

semi-demersal target species and, consequently, the overlap of these habitats with the fishing gear 

(Hinton and Nakano, 1996; Maunder et al., 2006; Monnahan et al., 2021). Behavioural characteristics 

of a species, such as diurnal vertical migrations, may also influence the vertical availability of fish to 

the gear (Abascal et al., 2010; He et al., 1997). Covariates describing environmental conditions that 

likely impact local availability to fishing gear are one type of ‘catchability covariate’. Alternatively, 

oceanography can also affect the local density, i.e., by causing fish to move outside of the fished area 

and these covariates are often referred to as habitat or ‘density’ covariates (O’Leary et al., 2020). The 

distinction between ‘catchability’ and ‘density’ covariates is discussed more thoroughly in Sections 

4.4 and 5.8. 

In addition to localized environmental conditions, catchability will be influenced by the types of 

fishing gear used and how they are deployed. The effectiveness of a given fishing gear (i.e., its ability 

to catch the available fish being targeted) will also depend upon a range of factors that are under the 

influence of the fisher. For example, the catch of broadbill swordfish (Xiphias gladius) increases with 

the use of light-sticks and squid bait on shallow sets deployed in the afternoon, while albacore tuna 

(Thunnus alalunga) prefer pilchard baits on deep sets deployed in the morning (Campbell, 2019; 

Campbell et al., 2017). Individual fishers will also strive to improve the effectiveness of the fishing 

operations to increase the catch rates, and the combined effects of learning and improving 

technology over time lead to a phenomenon commonly known as ‘effort creep.’ Towards this end, 

fishers will often ‘experiment’ with the way the fishing gear is deployed to maximize its effectiveness. 
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To understand this variability and allow analysts to standardize the resulting CPUE for these 

differences, it is important that the details of how the fishing gear is deployed are fully recorded in 

the vessel logbook. 

3. Fishery definitions 

A CPUE index in any stock assessment is associated with the part of a stock sampled by a specific 

fishery (termed a ‘fleet’ or sometimes ‘métier,’ defined here as a specific fleet deploying a specific 

fishing method). The assessment model defines the relationship between the index and the overall 

stock via the catch equation (catchability coefficient and the selectivity function in 

age/length/sex/stage structured assessment models), and for multi-region models, the spatial 

structure. 

Defining the fishery (and its representation as a fleet in the assessment model) is, therefore, a 

fundamental aspect of CPUE standardization, requiring a detour into the discussion of selectivity for 

structured assessment models. Most structured stock assessments make the separability 

assumption, i.e., that fishing mortality is the product of catchability, annual fishing effort, and 

selectivity (Quinn and Deriso, 1999). As shown above, selectivity is a combination of availability and 

contact selectivity, and many assessments assume that selectivity is constant through time, even 

though in practice it tends to vary over time (Sampson and Scott, 2012). Wrongly assuming constant 

selectivity can bias the assessment results (Hilborn and Walters, 1992; Martell and Stewart, 2014), 

although so can time-varying selectivity in the presence of unbalanced composition sampling, 

substantial data gaps, and/or model misspecification. These biases are driven in three main ways: (1) 

by affecting the proportion of the population abundance vulnerable to the fishery, which will affect 

model results via the fit to the CPUE; (2) by affecting removals from the population and, therefore, 

the population structure; and (3) by affecting the composition data, resulting in a mismatch between 

the observed and expected size/age/sex composition which can substantially affect results 

(particularly population scaling) via the composition likelihood. Joint modelling can be used to ensure 

that CPUE and composition data are set up consistently in the model (see below). 

To reduce these biases, fisheries should be defined in ways that minimize selectivity change through 

time. An important source of selectivity variation is changing spatial and seasonal distribution of 

fishing effort through time and its interaction with spatiotemporal variation in population structure 

and availability. 

The analyst should explore spatial and seasonal patterns in availability by size, age, and/or maturity 

to identify fishery definitions that will be robust to changing effort distribution. Tree-based methods 

can be used to identify optimal spatial arrangements for fisheries by exploring spatial variation in 
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composition and CPUE trends (Lennert-Cody et al., 2013). Similarly, generalized additive models 

(GAMs) can be employed to identify spatial, seasonal, and environmental patterns in length, 

maturity, and sex ratio which are then used to define fisheries for CPUE standardization (Devine et 

al., 2022; Hoyle et al., 2017). Care needs to be taken when the spatial definition does not include the 

whole population (see below). 

Such exploratory analyses are also an effective way to improve understanding of the biological 

structure of the stock and the fisheries. This understanding is often more important for assessment 

outcomes than changes in trends of the indices themselves. 

Gear selectivity can also change through time, the effect of which can be minimized by separating 

gear types with different selectivity into different fisheries. For example, a change from J-hooks to 

circle-hooks in the Australian longline fishery for broadbill swordfish resulted in fewer larger fish 

being caught (Campbell et al., 2019; Pilling and Brouwer, 2017). Managing selectivity variation with 

fishery definitions is a useful way to account for the major sources of selectivity variation and to 

predict catch and CPUE with plausible selectivity for strata with gaps in the composition data time 

series. However, the number of fishery definitions can be limited by the difficulty of managing them 

with the stock assessment package being used, and by the information available to distinguish them 

and to estimate selectivity. 

An alternative or complementary approach to account for selectivity variation is to jointly model the 

CPUE and composition data (Maunder et al., 2020) using a spatiotemporal model (STM) to create a 

joint index of relative abundance and stock composition. The approach augments the standardization 

with the observed composition data to generate two sets of predicted composition data: one to 

estimate the index fleet selectivity and the other to estimate the extraction fleet selectivity. The 

index composition data are spatially weighted by the predicted standardized abundance (the index), 

while the extraction fleet composition data are spatially weighted by the catch. The index fleet can 

be designed to have stable selectivity through time by accounting for spatial and seasonal covariate 

effects on availability, as well as catchability variation associated with vessels, equipment, and fishing 

technique. In contrast, extraction fleet selectivity will vary through time. Some constraints with the 

joint modelling approach are that STMs can be data hungry and computationally slow and that their 

implementation requires more expertise than traditional approaches to set up and run. These factors 

have tended to limit their application, but simplifications are available to reduce computational 

demands (e.g., don’t model the composition data but use the raw compositions). In addition, 

complexities such as spatial variation in covariate effects may be difficult to parameterize. This 

approach will be further discussed in Sections 5 and 6. 
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It is important to consider the spatial domain of the stock assessment: how this domain relates to 

the population domain of the species, how this domain can be subdivided into a hypothetical 

‘stock-wide sampling frame’ composed of spatial sampling units, and what portion of the sampling 

frame is informed by CPUE data for a given fleet. If the fleet samples only a small proportion of this 

stock-wide sampling frame, then there is likely to be substantial non-random variation through time 

in the proportion of the assessed stock available to that fleet. This variation in availability through 

time is represented as variation in catchability for a standardized index from the fleet if it is used to 

represent changes in stock-wide abundance or size/age/sex composition (Wilberg et al., 2009). 

The best approach to define fisheries and their associated CPUE will depend on the specifics of each 

stock assessment, the available data, and the analyst’s skills and time. Indices that represent a higher 

proportion of the stock are more likely to be representative (i.e., fewer processes could drive changes 

in availability that are confounded with density). However, there may be constraints that restrict the 

components that can be included in a representative index such as spatiotemporal patterns or 

covariate effects that are too complex to include in a single STM. It may be useful to combine the use 

of fishery definitions to account for large and stable effects on selectivity with STMs to account for 

remaining variation within each fishery. On the other hand, it may be better to combine multiple 

fisheries by calibrating them (with catchability and selectivity estimated) in an STM to try and span 

the spatial range of the stock. Such choices are a topic for ongoing research. 

4. Data issues 

4.1 Exploring and preparing data 

Before standardizing CPUE it is essential to thoroughly explore the catch and effort dataset, to 

develop understanding of the data, generate hypotheses, and inform the standardization strategies 

to consider. Understanding can be developed by graphically summarising the data (both the response 

variable and covariates), exploratory modelling (e.g., using random forest (RF) models), and by 

consulting with key stakeholders. There should be special focus on identifying changes in the 

distributions of covariates through space or time, as covariates that change are the most likely to 

affect the index (Bentley et al., 2012). This preliminary exploration will also allow the analyst to 

anticipate issues with model variables such as data entry errors, missing data, and outliers. 

Exploratory analyses should consider the sources of the data and the constraints imposed by data 

collection and storage methods through time. Logbooks and observer forms often change through 

time in ways that affect data quality, such as in the recording of spatial and temporal resolution, 

which covariates are reported, the precision and detail reported, species resolution, whether catches 
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are recorded in number or weight, whether a species is recorded, and reporting of sex and size. Data 

storage methods may also be influential. 

Graphical summaries can be undertaken in consecutive steps from low-to-high resolution. 

Aggregated summaries (e.g., histograms or density plots) of each variable across the full dataset 

provide an overall description of the response variable and potential covariates. These explorations 

should consider the proportions of zeroes (where relevant) and the range of the data prior to 

cleaning. Response variable summaries will inform the set of error distributions to consider 

(Campbell, 2015; Hoyle et al., 2014b); see also Section 5.4, including delta (hurdle) and mixture 

models (Langley, 2019). Aggregated summaries also help identify outliers and data entry errors (see 

below) and the need for possible data transformation. Examining individual values taken by 

continuous variables is often necessary to identify and remove outliers. 

Spatial and temporal trends in the catch data and candidate covariates should be described through, 

for instance, time-series of boxplots and maps of summary metrics (mean, median, upper and lower 

quantiles). Where possible, maps of the variable of interest should be disaggregated by temporal 

strata to help detect any spatiotemporal trends. Spatial GAMs can be useful for exploring patterns 

and identifying statistically meaningful trends (see Section 5.2). 

To help identify factors that may influence catch rates, relationships between nominal CPUE and 

candidate covariates should be explored. These data analyses will inform the type of modelling 

framework to use for continuous covariates, as not all model types allow non-linear relationships 

(see Section 5.1). Exploratory modelling using a flexible modelling framework such as RFs or boosted 

regression trees (BRTs) could also be undertaken to identify covariates explaining the highest 

proportion of the variability in the nominal CPUE and the potential shape of the relationship (e.g., 

linear or quadratic). 

Analysts should maximize the number of records available for the standardization to improve model 

performance and estimates of uncertainty. As such, the treatment of missing data in covariates 

needs careful consideration as most standardization methods can only include records that have 

values for all the model covariates (Forrestal et al., 2019). Analysts should tabulate missing values for 

each covariate and try to identify causes and correlates of missingness. Options for records with 

missing values include dropping the full record, dropping the covariate, inferring the value from 

other information (e.g., a missing fishing gear value may be inferred from the gear typically used by 

the fisher), or imputation (e.g., median values per vessel). Approaches for imputing values range 

from simple rule-based procedures (Walters, 2003) to more sophisticated geostatistical (Munoz et 

al., 2010; Thorson et al., 2015) and Bayesian algorithms (Shemla and McAllister, 2006). When 
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including a covariate with a high proportion of missing entries (>5-10%) that changes the 

standardized index, the analyst should confirm that the change is due to the covariate itself (e.g., by 

using influence plots) and not due to the removal of records where the covariate was missing. 

The identification of outliers and their treatment is a key step in preparing data for CPUE 

standardization. Model predictive performance is likely to be poorer in the lower and upper tails of 

covariates given insufficient data, and outlying values are more likely to be reporting errors. Common 

approaches include omitting values outside ranges that are either fixed or pre-determined based on 

quantiles. The analyst should also check whether outliers are true records of infrequent fishing 

behaviour (for instance) or data entry mistakes. 

Lastly, stakeholder engagement is an important, yet often overlooked, component of developing a 

CPUE standardization. It supports all the steps outlined above. Fishers, fishery observers, and even 

fish sellers can provide valuable insights to clarify potential data entry issues, confirm or invalidate 

data trends identified in exploratory analyses, advise on key covariates to include and their bounding 

values (e.g., net length, number of hooks per line), and explain motivations for changes in fishing 

behaviour (Tesfamichael et al., 2014). When detailed logbook data are available, fishers can also 

highlight the targeting and gear setting practices they consider will influence the catch rates of the 

species being targeted. Importantly, engagement can improve trust in the analysis as well as facilitate 

constructive dialogue when the final indices are considered for management. 

4.2 Misreporting and biases 

Misreporting catch of the species of interest is a consistent and sometimes major problem in many 

fisheries (Pitcher et al., 2002; Rudd and Branch, 2017), which can affect the data used in CPUE 

standardization. Indices are more prone to bias when rates of misreporting are higher or change 

through time. To understand the potential for bias, the analyst needs to become familiar with fishing 

industry dynamics and the data collection processes and to explore the data. It is useful to construct 

a timeline of changes (e.g., regulations, gear specifications, logbook forms, observer training, market 

conditions etc.) that may affect reporting for the species and fishery being evaluated. This can help to 

generate hypotheses to consider while modelling, particularly when a sharp change is observed 

between time periods. 

One cause of misreporting is errors in species identification, which is particularly important for 

bycatch species. Such errors can also affect target species in both commercial (e.g., Beerkircher et al., 

2009; Peatman et al., 2019; Webber and Starr, 2022) and recreational (Jones, 2004) fisheries. The 

ways species are reported can also vary. For example, sharks can be recorded either at the species 

11 



level or at a more generic grouping level. CPUE indices may need to be restricted to periods with 

reliable species identification (e.g., Noriega et al., 2011). 

Sampling bias can affect catch estimates based on estimates of species composition made by both 

fishers and observers. Examples include biases associated with grab sampling (Peatman et al., 2019), 

inconsistent reporting and possible layering in the catch (Webber and Starr, 2022), and the 

stratification used for statistical analysis (Duparc et al., 2020). 

Changes in misreporting can also be linked to administrative factors such as changes in logbooks, 

regulations, the introduction of e-monitoring, or observer training. Both under-reporting and 

over-reporting can result from attempts to avoid quota limits, such as when the harvest location is 

misreported (e.g., Hoyle et al., 2015b). Deliberate over-reporting can be linked to attempts to 

establish a catch history in anticipation of future quota allocation (Buck, 1995). Under-reporting can 

be a feature of a management system, such as when only the top N captured species are reported 

(e.g, New Zealand inshore trawl fisheries, Langley, 2019). 

Bycatch species are more likely to be under-reported when they are of little interest to the crew (due 

to their low commercial value), and rates may vary between vessels and change through time. For 

example, rates of shark bycatch reporting in Japanese southern bluefin tuna (Thunnus maccoyii) 

longline fisheries varied substantially between vessels and increased substantially in 2008 for reasons 

that remain unclear (Hoyle et al., 2017). When rates of misreporting vary between vessels, analysts 

can focus on vessels that report more reliably (Grüss et al., 2022). It should be noted that not all data 

may be needed to estimate a precise index. Limiting the analysis to reliable data that has less 

variability in catchability and selectivity will be adequate if they have sufficient spatial, temporal, and 

covariate coverage. 

Under-reporting can also occur due to discarding or high-grading, which can be based on size or 

relative commercial value (e.g., tuna discards in the Indian Ocean, Huang and Liu, 2010), or on 

prescribed conservation measures. The stage in the fishing process when discarding occurs can affect 

whether it is recorded as part of the catch. Analyses may need to be adjusted to account for changes 

in discard rates (e.g., Hoyle et al., 2019b). Changes in reporting procedures, such as the introduction 

of electronic monitoring, may also change the rates of reporting of discard species (Emery et al., 

2019). This is important if discards are included in the total catch used in CPUE analyses. Depredation 

of fishing sets by large marine predators (e.g., Peterson et al., 2014; Roche et al., 2007) can also 

result in under-reporting or zero-inflation of catch and may require additional modelling or 

adjustment of the data. 
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Misreporting is difficult to address but there are options in some circumstances. If available, analysts 

can compare catch rates between data types to identify groups of unreliable records, such as 

comparisons between observer data and logbook data (Hoyle et al., 2017), or between logbooks 

before and after the introduction of electronic monitoring (Emery et al., 2019). Since catch rates vary 

with covariates and targeting, predicting expected logbook catch rates based on models fitted to 

observer data is more reliable and powerful than simply comparing raw catch rates between datasets 

(Hoyle et al., 2017; Kai, 2019). 

4.3 Data aggregation 

Analysis of aggregated CPUE data may be required or convenient given the availability and quality of 

data. Due to privacy concerns, public domain fisheries data are often available only at aggregated 

spatial and temporal scales (Hinz et al., 2013). Aggregation may begin with the fishing logbook, e.g., 

with effort reported at the day or even the trip level. Data may also be aggregated across species due 

to identification problems or for convenience. Although analyses of aggregated data may be the only 

option when finer-scale data (e.g., set-by-set or species level data) are unavailable, their results 

should be treated with caution and critically evaluated given the issues raised in the following 

paragraphs. 

Indices derived from data aggregated spatially, temporally, or across species may not vary in 

proportion to the target stock (or complex). Covariates that affect catch rates at the set or vessel 

level (e.g., gear settings) or summarize the effects on catchability of multiple factors (e.g., vessel IDs) 

are often unavailable when CPUE data are aggregated to coarser spatial or temporal strata. This loss 

of information may limit the ability of CPUE standardization to correct for changes in catchability 

over time (e.g., effort creep: Kleiven et al., 2022; Palomares and Pauly, 2019). Aggregating data 

temporally and using a coarser temporal definition of effort (e.g., day, trip, quarter) than the 

higher-resolution effective unit of effort (e.g., fishing sets, pot throws, or hours searched) can change 

the relationship between CPUE and abundance (i.e., the covariate changes over a smaller temporal 

or spatial scale, often intentionally to improve catch rates, but these changes are not apparent in the 

aggregated data). For example, defining CPUE as catch per day could mask a population decline if 

search time within each day or the number of schools fished changes to maintain stability in catch 

magnitude (Ducharme-Barth et al., 2022; Hsu et al., 2022). Spatial and temporal aggregation of CPUE 

data may create a mismatch between the actual oceanographic conditions and the oceanographic 

covariate associated with the aggregated CPUE data. If oceanographic covariates are modelled as 

density covariates (see Section 4.4), this mis-match could lead to spurious estimated relationships 

between predicted density and the covariate and, if using STMs, could result in inappropriate spatial 

imputations of density (Ducharme-Barth et al., 2022). For example, fishers may move to find a 
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specific habitat type within a larger spatial stratum to increase catch rates of a certain species. If 

fishers target fish aggregations or areas of preferred fish habitat such as eddies or seamounts at a 

finer resolution than the spatial scale of the aggregated CPUE data, then localized, sequential 

depletion of aggregations could introduce hyperstability into the index (Cardinale et al., 2011; Sadovy 

and Domeier, 2005). Lastly, aggregating CPUE data across species is likely to exaggerate 

fishery-induced changes to the combined abundance, given that catchability varies across species 

(Kleiber and Maunder, 2008). Similarly, if productivity varies across the aggregated species, 

fishery-induced decline in abundance of the less productive species might be masked by the 

abundance trend of the more productive species (Dulvy et al., 2000). 

In addition to the risk of bias, analysing aggregated data poses statistical modelling challenges, such 

as applying an appropriate variance structure. Commonly used error structures (e.g., Lognormal and 

Poisson) for CPUE standardization models are generally robust to heteroscedastic data (e.g., 

non-constant variance assumption where, typically, the variance increases in proportion to the 

mean). However, this mean-variance relationship is inverted in aggregated data if areas of high catch 

rates also attract higher concentrations of effort, thus reducing the variance and violating 

distributional assumptions (e.g., Hoyle, 2021). Furthermore, spatially aggregating data makes it 

difficult for models to accurately represent the spatiotemporal correlation structure. For instance, in 

GAMs, where the spatial correlation is modelled implicitly by varying the degree of the spatial 

smoothing applied, aggregating data spreads the spatial and temporal extent of abundance hotspots, 

and generates less flexible spatial smooths (e.g., fewer degrees of freedom) which may further 

inappropriately ‘smear’ the hotspots when making spatial predictions. 

Perhaps most importantly, aggregating data can remove fine-scale information that allows analysts to 

understand fishing behaviour. The key process of data exploration is limited by loss of information 

about, for example, individual vessel behaviour, fine-scale fish and vessel distributions, and 

movement patterns. Analysis methods to identify targeting strategy based on species composition 

(see Section 5.3) may remain possible (e.g., Fu et al., 2016), but with less resolution and sensitivity 

than with operational data. 

Although they do not balance the concerns above, there can also be advantages associated with 

aggregating data before standardization, particularly for fisheries where pseudo-replication and serial 

autocorrelation are issues. For example, a vessel that obtains high CPUE along an oceanic front may 

continue to fish the front for as long as high catches persist, so that sets cannot be considered 

independent. Similar effects are known from sequential trawl hauls. It is often computationally 

challenging to apply the appropriate autocorrelation or random effect structure to address the 
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consequent violation of independence, especially for large datasets. Given the risks of bias due to 

aggregation on the one hand, and pseudo-replication on the other, aggregation by vessel, month, 

statistical cell and/or other factors may in some cases be the lesser of two evils. A further option is to 

subsample the data in a random or structured way to reduce pseudo-replication. Trade-offs can be 

explored through simulation, or by working with more computationally tractable subsets of the 

operational data. 

4.4 Density and catchability covariates 

Since Beverton and Holt (1957, Section 12), stock assessment scientists have standardized fishery 

CPUE to remove the confounding effects of vessel size and power. For example, Maunder and Punt 

(2004) state “Explanatory variables should, however, be considered in an analysis only if there is an a 

priori reason that they may influence catchability.” However, spatial ecologists do the exact opposite 

by including covariates and then conditioning upon their effect when predicting densities across 

space. To alleviate this confusion, Thorson (2019a) distinguishes between ‘catchability’ and ‘density’ 

covariates: both are included in a linear predictor to explain catch-and-effort data, but only density 

(and not catchability) covariates are conditioned upon when predicting densities across space. The 

index is constructed by aggregating predictions across a specified spatial and temporal domain such 

that the effect of catchability is removed from the index. 

Distinguishing between catchability and density covariates leads to the question: how does the 

analyst know whether a covariate affects density, catchability, or both? For example, species might 

migrate to maintain a desired daytime foraging temperature (Lehodey et al., 1997) such that local 

temperature predicts population densities. Simultaneously, temperature might affect digestion and 

metabolic rates, leading to a greater attraction towards a baited fishing hook (and hence a higher 

CPUE for a given density and soak duration). In this case, an argument could be made that 

temperature affects both catchability and density. To resolve these hypothesized mechanisms, an 

analyst could combine fishery CPUE with auxiliary information, e.g., by measuring behaviour directly 

using satellite and/or conventional tags. Similarly, analysts can make inferences about density, 

catchability, and availability via: 

1. Local depletion: In freshwater sampling, analysts can sample and remove individuals in 

multiple survey passes, using the decline and quantity of removals to identify catchability. 

Similarly, in sessile marine organisms, a decline in fishery CPUE over a short season can be 

compared with preceding fishery removals to estimate catchability. 
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2. Paired sampling: Similarly, bottom trawl data can be paired with vertically disaggregated 

acoustical backscatter to identify vertical distribution and infer availability to gear operating 

at a given vertical layer (Monnahan et al., 2021). 

3. Process studies: Finally, an analyst might use a small-scale experiment (e.g., 

temperature-dependent feeding experiments) to identify how temperature might affect bait 

attraction and then assume this relationship to ‘subtract out’ this effect. 

Regardless of the process, we recommend that analysts explicitly outline their rationale when 

specifying that a covariate affects density or catchability. In cases where the correct process is 

difficult to determine, analysts should explore the implications of excluding the covariate from the 

index and including it as either density or catchability. These alternative hypotheses can form the 

basis of alternative CPUE index scenarios considered in the stock assessment. 

4.5 Environmental variables 

As noted in Section 4.4, aspects of the aquatic environment, such as water temperature, surface 

chlorophyll-a concentration, oxygenation, and light at depth, affect both fish density and catchability. 

The task of CPUE standardization is to eliminate the effect of catchability variables so the analyst can 

employ CPUE data to infer differences in fish density across time and space. Given this estimate of 

density across time and space, the analyst can then sum density in each area to generate an 

abundance index for use in stock assessment, or average over years to get an estimate of habitat 

utilization for use in spatial management. 

Regardless of whether analysts specify a covariate as affecting either density or catchability, all 

covariates are used to inform model fit to observations. Treatment between the two types of 

covariates differs at the prediction stage. Catchability covariates are fixed at a base value when 

predicting density across space and time, thereby ‘filtering out’ variation associated with different 

values in the fitted data. By contrast, a density covariate has an assigned value at every location 

across a modelled spatial and temporal domain, and the analyst conditions upon these values when 

predicting densities. It should be noted that catchability covariates are only needed for catch events, 

while density covariates are needed for all temporal and spatial strata included in the index 

irrespective of whether there is catch. Including a variable that affects density as a catchability 

covariate can result in biased inference. For example, if recruitment decreases as the average 

temperature increases (e.g., due to climate change), including annual water temperature as a 

catchability covariate in an index-standardization model and subsequently using a constant value in 

the prediction will mask the true abundance decline over time. However, including average 

temperature as a density covariate (and using its value when predicting densities) can result in 
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improved estimates and forecasts (e.g., O’Leary et al., 2020). The converse is also true— wrongly 

attributing to density an effect that is linked to catchability will introduce bias. 

Several environmental variables are commonly used in CPUE models. Variables such as sea surface 

temperature, sea surface salinity, sea level height, chlorophyll-a concentration, and dissolved oxygen 

concentration have been found to be significant predictors of spatial distribution for some species 

(Campbell, 2015; Han et al., 2022; Liu et al., 2022; Tian et al., 2009), particularly for pelagics. Some 

environmental variables, such as moon phase, eddies, water turbidity, and cloud cover, may affect 

the availability and/or catchability of certain species and gear types. 

Environmental variables are often not recorded by fishers at the time of fishing, but rather obtained 

from other sources such as meteorological organisations. This is particularly true for density 

covariates, which must be available for all locations and time periods. Variables with a long time-lag 

(e.g., temperature in the months preceding the fishing event) should be used with caution in CPUE 

models. They may affect productivity during the period leading to fishing and therefore local density 

(a density covariate), but are often autocorrelated, where current values may affect catchability (a 

catchability covariate). Similarly, analysts sometimes use covariates that are derived from a large 

spatial area or obtained from satellite or regional ocean modelling systems (e.g., Phillips et al., 2014). 

In all cases, it is important to provide some ecological justification for (1) whether those variables are 

affecting density or catchability and (2) why those are better than using vessel-based measurements 

of environmental conditions, if available. The error in measuring the covariates may also need to be 

considered in the model, particularly if the error varies among spatiotemporal strata. 

Despite being important factors affecting fish distribution, many environmental variables are 

confounded with spatial and seasonal coordinates that are often employed as predictors in CPUE 

models. Hence, spatial-temporal effects can act as proxies for comprehensive dynamic 

environmental variables, especially if interactions between these effects are included to help account 

for temporal changes in environmental conditions at any spatial location. If the environmental 

conditions generally exhibit consistent spatial and temporal patterns, which is often the case, 

explicitly including these environmental variables may explain little additional variation. In the cases 

where using environmental variables does increase accuracy, their inclusion may also increase the 

annual coefficients of variation (CVs) compared to the models without the environmental variables, 

likely due to the added requirement of estimating a relatively imprecise relationship between catch 

rates and environmental variables (Forrestal et al., 2017; Forrestal et al., 2019). 

Goodyear (2016) explored relationships between environmental factors, three-dimensional variation 

in habitat, and longline CPUE in a case study for blue marlin (Makaira nigricans). Results of analysing 
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data generated from this model generally favoured the inclusion of environmental and habitat 

variables but were affected by the approaches taken by each analyst, particularly for variable 

categorization and model selection (Forrestal et al., 2017; Forrestal et al., 2019). 

Two research areas closely related to CPUE standardization are species distribution modelling (SDM) 

and habitat suitability modelling (HSM). Both SDM and HSM heavily use environmental variables to 

model fish distributions and their habitat preferences (Bosch et al., 2018; Lee and Terrell, 1988; 

Maunder et al., 2006; Pickens et al., 2021; Rowden et al., 2017; Zhang and Li, 2017). These studies 

involve similar data and modelling techniques to CPUE analyses. They also often consider a third 

spatial dimension, depth, which can be particularly important for some gears such as pelagic longline 

or for bottom-fish species. (see also Hinton, 1996); Hinton and Nakano (1996) developed a method 

to calculate indices of abundance for pelagic longline that match the spatiotemporal-vertical habitat 

with the longline gear and species habitat preference. This method was extended into a statistical 

framework by Maunder et al. (2006). 

4.6 Combining fishery and survey data 

In some jurisdictions, analysts produce a separate CPUE index for each fishery fleet or métier. This 

then results in a multitude of abundance indices, and equally weighting these indices implicitly 

results in the assessment model averaging them. To resolve and simplify this situation, Conn (2010) 

used a state-space model to combine multiple indices into a single ‘consensus’ index, an approach 

that has been refined using Dynamic Factor Analysis (DFA) (Peterson et al., 2017; Peterson et al., 

2021). However, DFA has several drawbacks, including that: (1) it must assign some implicit weight to 

each constituent index when combining them, and these constituent indices representing small or 

large areas are often given equal weight; and (2) residual variation in constituent indices is ignored, 

and the analyst must make some decision about which DFA index represents changes in the stock or 

is attributed to correlated variation in catchability. 

Given the difficulty of reconciling differences in multiple indices within an assessment, or 

pre-processing using DFA, analysts increasingly seek to include data from multiple fisheries and/or 

surveys during index standardization. Joint analysis expands data coverage spatially and temporally. It 

also ensures consistency of analytical methods, thereby removing a key source of differences 

between indices. This occurs, e.g., in combining nearshore and offshore survey data (Perretti and 

Thorson, 2019), combining multiple surveys to achieve a basin-scale index (Maureaud et al., 2021; 

Ono et al., 2018), or fleets from multiple nations to increase the spatial and temporal coverage of an 

index (Ducharme-Barth et al., 2020; Hoyle et al., 2019a; Hoyle et al., 2015b). Prior to joint analyses of 

data from multiple fleets, individual national datasets should be thoroughly explored (e.g., Hoyle et 
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al., 2015a; Hoyle and Okamoto, 2015; Hoyle et al., 2015c) to identify and eliminate sources of data 

conflict. Joint indices for Atlantic tropical tunas (Hoyle et al., 2019a; Hoyle et al., 2019c) were judged 

to have improved the resulting stock assessments (Anonymous, 2019; Walter et al., 2020) by 

reducing data conflicts, improving model diagnostics, and ensuring broad and consistent spatial and 

temporal coverage. 

However, there is less research regarding how to combine data from multiple fisheries and/or 

surveys. As one exception, Grüss and Thorson (2019) combined data from different surveys to 

generate an abundance index for Gulf of Mexico red snapper (Lutjanus campechanus). Notably, the 

authors first analysed each data source individually to confirm that any apparent conflict in the 

indices could be explained by differences in the spatial extent of each fleet. Rufener et al. (2021) 

combined fishery and survey data, after confirming minor apparent data conflict. 

Given these successes, we suspect that there will be ongoing efforts to combine CPUE from multiple 

fisheries and/or surveys. We recommend the following good practices: 

1. The analyst should standardize each dataset individually using broadly consistent 

methods and compare resulting density maps and abundance indices both visually and 

using goodness-of-fit criteria (e.g., Alglave et al., 2022; Rufener et al., 2021); 

2. Differences between dataset should be explained mechanistically where possible, such 

as by including covariates that can explain the differences in catchability. 

These recommendations arise from the expectation that data conflicts imply model misspecification 

(the “Law of Conflicting Data”, Maunder and Piner, 2017). The analyst should also consider that 

selectivity differences between surveys and fisheries may require simultaneously modelling the catch 

rate and length composition data to estimate differences in selectivity, in which case calibrating 

catchability and selectivity may require spatial overlap. 

5. Analysis 

5.1 Modeling framework 

As outlined in previous sections, the objective of CPUE standardization is to remove the effects of 

changes in fishing practice through time (i.e., changes to catchability) from observed catch rates such 

that the trend in standardized CPUE reflects the true relative abundance of the stock component 

selected by the fishery. In practice, this is accomplished by building a statistical model that predicts 

CPUE as a function of a set of variables thought to impact local abundance (density) or catchability. 

Recent standardizations mostly use generalized linear models (GLMs) or an expansion thereof, 
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implemented in the R Statistical Computing system (R Core Team, 2022); this section focuses on tools 

available within this framework. 

There are five key factors to consider when selecting a modelling framework which will limit the set 

of approaches available to the analysts: (1) the form of the relationship between CPUE and candidate 

explanatory variables; (2) the probability (error) distribution of the CPUE; (3) the type of correlation 

that might be present within the CPUE dataset; (4) whether CPUE will be jointly standardized with 

composition data; and (5) how results are processed to yield an overall index of abundance. Often, 

the analyst will have to prioritize one of these five factors, as different software packages do not 

always allow the implementation of all modelling structures jointly. There are also logistical 

considerations (e.g., computational power) for large datasets that may prevent the implementation 

of some features. 

A CPUE standardization will likely consider both categorical and continuous covariates. Vessel 

identity, bait type, and area are examples of categorical covariates; hooks-between-floats, net length, 

and sea surface temperature are examples of continuous covariates. Continuous covariates can 

sometimes be implemented as categorical, depending on the desired statistical treatment (e.g., 

Grüss et al., 2019). In the GLM framework and its relatives, categorical covariates are typically 

modelled as deviates from a ‘baseline’ intercept level. In a conventional GLM, categorical covariates 

are estimated as fixed effects, that is, there are no constraints on the value of the coefficient 

assigned to each level. This is the default treatment for a categorical covariate and will be available in 

most modelling frameworks. 

An alternative is to fit categorical covariates as random effects. In a mixed-effect (or hierarchical) 

framework (e.g., generalized linear mixed model (GLMM); generalized additive mixed model 

(GAMM)), categorical covariates can be fitted as fixed or random effects. With random effects, level 

coefficients are constrained to belong to a distribution (usually Gaussian) of the expected values of 

the coefficients (Thorson and Minto, 2015). This results in the ‘shrinkage’ of covariate levels towards 

an overall mean, with more shrinkage for values less informed by data, which are otherwise more 

likely to be extreme. Mixed effects are now available in an increasing number of R packages, 

including nlme, lme4, glmer, glmmTMB, and mgcv (see also Bolker, 2022), and are straightforward to 

implement in bespoke Template Model Builder (TMB) code (see below). 

Random effects have limited application for categorical covariates with too few levels to estimate the 

shape of the distribution, e.g., bait type. However, they can be useful for covariates with multiple (> 

12) levels that may be expected to belong to a common, normal distribution, such as a vessel effect. 

In these instances, some levels might have too few records to reliably estimate their model 
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coefficients as fixed effects. Poorly sampled levels are not an issue in a mixed-effect framework as 

they are shrunk towards the coefficients of better-informed levels. Nevertheless, fixed effect levels 

with very low record numbers often have minimal influence on the indices if retained and may be 

omitted if they cause model convergence problems. Note also that vessel effects will not be normally 

distributed if, for example, there are groups of vessels with similar catchability or if there are 

temporal trends in the catchability of vessels joining and leaving the fishery. In such cases, the 

analyst may add structure to the random effects model or may prefer to use fixed effects. Simulation 

testing is useful for selecting a strategy that provides a reliable index. 

A common strategy for vessels is to define a ‘core fleet’ comprised of vessels meeting an arbitrary set 

of activity thresholds (e.g., as a function of catch and/or time present in the fleet; (Kendrick and 

Bentley, 2011; McKenzie and Parsons, 2012). The core vessels are more likely to have characteristics, 

such as consistent targeting strategies and reporting behaviour, that indicate stable catchability. 

Treating vessel ID as a random effect can be an alternative to defining a core fleet since it avoids 

making arbitrary decisions about threshold rules for the core fleet and expands the number of 

records available to the analysis (Grüss et al., 2023a). Care should be taken when defining a ‘core 

fleet’ as more experienced operators may be able to maintain high catches even if abundance 

declines. 

The relationship between CPUE and continuous covariates can take a variety of shapes, including 

linear, saturating, and dome shaped. In most instances, the relationship can be assumed to be 

non-linear as a starting point, as linearity is a strong constraint. Non-linear relationships are best 

implemented via splines, which are a useful improvement over polynomials as they are not 

constrained in the shapes they can take. Polynomials have other undesirable properties such as the 

fit in one data range being affected by data in other parts of the range (Harrell, 2001; Magee, 1998). 

The splines library (e.g., via the ns function) allows GLMs to include splines with a user-specified 

number of knots, including in base-R packages such as stats::glm. 

A preferred alternative for fitting non-linear relationships is the R package mgcv which implements 

GAMs using penalized splines (Wood, 2017). With penalized splines, the analyst specifies a maximum 

of knots, and the algorithm attempts to maximize fit to the data while minimising spline ‘wiggliness.’ 

The inclusion of splines has improved the performance of CPUE standardization models by predicting 

more realistic relationships between CPUE and continuous covariates. However, care must still be 

taken to prevent overfitting or extrapolating far beyond the range of available data. If the splines are 

allowed to be too flexible, the CPUE standardization model could be capturing noise. In mgcv, the 

default optimization method GCV tends to overfit, and REML is recommended instead (Wood, 2017). 

21 



The relative penalty on ‘wiggliness’ can be controlled via the gamma parameter which scales the 

effective sample size. Even with data that are independent and identically distributed (i.i.d.), it is 

recommended to increase gamma to 1.4 from the default mgcv value of 1 when using method=GCV 

(Wood, 2017). The analyst can also elect to allow for fewer knots, e.g., for one-dimensional splines; 

three to four knots will be enough to realistically represent most relationships between CPUE and a 

continuous covariate (Grüss et al., 2019; Roberts et al., 2016). However, restricting the number of 

knots will worsen the fit to the data and may increase the number of covariates retained in the 

model. The mgcv package implements many other useful features, such as cyclic (a.k.a. periodic) 

regression splines (see `?mgcv::smooth.terms') which constrain the effects fitted to the minimum 

and maximum values of a continuous covariate to be equal. This is useful when (for example) time of 

day or month of year are included as continuous covariates. 

It is up to the analyst to select a probability distribution for the response variable (see Section 5.4). 

The choice of distributions depends firstly on whether the response variable is discrete (e.g., catch 

occurrence, catch in number of individuals) or continuous (e.g., catch in weight, the ratio of catch to 

a measure of effort). Common modelling frameworks (GLMs, GAMs) can now handle most standard 

error distributions, including the normal, log-normal, Gamma, binomial, Poisson, and negative 

binomial distribution models. For the Tweedie distribution (see Section 5.4), an additional R package 

(Tweedie: Dunn, 2017) may be needed, or it can be approximated using a Poisson-linked delta model 

(Thorson, 2018). The Weibull distribution, a positive continuous distribution that can handle 

overdispersion in the data, can be implemented in the R package survival (Therneau et al., 2022). The 

R package gamlss allows the analyst to fit a diverse set of error distributions (including zero-inflated 

applications of more common distributions and some that are less commonly available such as the 

beta distribution) and specify model structure explicitly for the different distribution parameters 

(Rigby and Stasinopoulos, 2005). Alternatively, the R package brms (see below) allows the analyst to 

specify custom distributions (e.g., Tremblay-Boyer and Neubauer, 2019). The choice of error 

distribution should be validated by inspecting residual diagnostics (See Section 5.6). 

Most statistical frameworks assume by default that residuals are i.i.d.. However, correlation between 

records in fisheries datasets arises from multiple sources. Spatial correlation can be handled 

implicitly by specifying a two-dimensional spline for longitude and latitude in a GAM, or explicitly in a 

geostatistical or spatiotemporal modelling framework by estimating the Matérn covariance function, 

for example, using the R packages VAST (Thorson, 2019a). The R-INLA package (Lindgren and Rue, 

2015) can also be used for other geostatistical or spatiotemporal modelling applications (e.g., 

Cosandey-Godin et al., 2015; Pinto et al., 2019; Zhou et al., 2019) and provides additional options to 

account for assumptions about spatial and/or temporal correlation. Correlation structure between 
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records belonging to the same strata (e.g., fishing trip, observer) can also be specified with 

generalized estimating equations (e.g., Coelho et al., 2020; Peatman and Nicol, 2021) using the R 

package geepack (Højsgaard et al., 2006). 

Model fitting can be implemented in a frequentist or Bayesian statistical framework using maximum 

likelihood estimation (MLE) or Markov Chain Monte Carlo (MCMC), respectively. Most GLM/GAM 

tools are implemented via MLE or some derivation thereof. TMB (library TMB: Kristensen et al., 2016) 

can be employed for large datasets as model fitting will be considerably faster due to automatic 

differentiation and Laplace approximation; but the analyst will have to specify the CPUE model 

manually (e.g., model matrix, likelihood function) in the C++ code embedded in TMB files, unless 

appropriate code is already available (e.g., VAST; Thorson, 2019a). An alternative is to fit CPUE in a 

Bayesian framework using MCMC with the R package brms (Bürkner, 2017). Key advantages of this 

approach include (1) the option to specify priors to inform or constrain effects, and (2) a more 

intuitive and better integrated estimate of index uncertainty. One downside is that model fitting will 

be slower, especially for large datasets with complicated covariate structures and may be less stable 

if some relationships are poorly informed by the available data. 

Machine learning methods such as artificial neural networks (Maunder and Hinton, 2006), support 

vector machines (Li et al., 2015), regression trees (Watters and Deriso, 2000), and RFs (Chambers and 

Hoyle, 2015; Li et al., 2015) have been used to model CPUE but relatively infrequently to date. They 

can achieve high predictive performance due to their flexibility, but results may be difficult to 

interpret, and they are prone to overfitting. 

5.2 Spatial considerations 

All fish populations and fisheries exhibit spatial structure to some extent. Nevertheless, the 

introduction of spatial considerations into CPUE standardization raises several issues. First comes the 

question of how exactly space should be considered in a model and whether a complex model (e.g., 

an STM) will necessarily perform better than a simpler model (e.g., a GAM). Second comes the 

question of how to factor in the existence of sub-stocks (i.e., stock components that are 

distinguished for management purposes and whose productivities may differ). 

Classically, CPUE standardization is performed using a GLM, which is very often a two-step, delta 

GLM to account for the presence of many zeros in the data (Lo et al., 1992; Stefansson, 1996). The 

simplest way to consider space in a GLM consists of dividing the study region into area strata and 

including the fixed effect of area stratum – a categorical covariate – in the GLM (e.g., Forrestal et al., 

2017). The inclusion of area strata in a model aims to account for spatial heterogeneity in stock 

density, and stock density is assumed to be homogeneous within each area stratum (Bishop, 
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2006);areas should be sufficiently small and numerous to accommodate strong spatial patterns in 

CPUE. A time + area model assumes that the temporal variability is the same in each area and only 

the means differ. We refer to this approach as the ‘GLM’ approach (Table 2). Often, the GLM 

employed for CPUE standardization includes a time-area interaction to account for potentially 

different temporal trends among area strata (e.g., Campbell, 2004; Carruthers et al., 2011; Nakano, 

1998). The resulting index should be calculated by weighting the effect for each area by the size of 

that area. However, different trends among areas (i.e., the year-area interaction is significant) may 

imply that a spatial stock assessment model is required. Alternatively, the time-area interaction can 

be integrated into a GLMM as a random effect (Chang, 2003; Maunder and Punt, 2004; Miyabe and 

Takeuchi, 2003), which treats it as a nuisance parameter; we refer to this approach as the ‘GLMMint’ 

approach. 

Even though the ‘GLM’ and ’GLMMint’ approaches represent (simple) ways to consider space in 

CPUE standardization, they come with the issue of defining the area strata, which can substantially 

affect model performance. Ideally, data are rich enough to define fine-scale spatial strata that do not 

constrain estimates. For example, tuna longline fishery CPUE analyses usually define spatial strata as 

5° cells (Anon, 2013). However, some degree of aggregation is often required and there are several 

approaches that can be used.. In the ‘ad hoc’ approach, area strata are the management areas 

employed in the study region or are based on environmental layers such as bottom depth contours 

(Forrestal et al., 2019; Huang et al., 2020; Huang et al., 2007). In the ‘binary recursive partitioning 

approach,’ an algorithm is used to divide the study region into several area strata in a sequential and 

recursive manner (Ichinokawa and Brodziak, 2010). Finally, in the ‘spatial clustering’ approach, a 

k-medoids algorithm is employed to partition a spatial grid covering the study region into several 

area strata based on the proximity and mean value of CPUE in each spatial grid cell (Ono et al., 

2015). Using a simulation experiment based on Pacific saury (Cololabis saira) data, Hsu et al. (2022) 

found that the GLMM relying on the ad hoc approach had the poorest performance and that the 

GLMMs relying on the spatial clustering approach had the best performance. Moreover, regarding 

the spatial clustering approach, Hsu et al. (2022) found that, under preferential sampling (a classical 

situation with CPUE data), assigning equal weights to spatial proximity and mean CPUE values in the 

k-medoids analysis was preferable to giving more weight to mean CPUE values. 

A more flexible approach than the ‘GLM’ and ’GLMMint’ approaches to considering space in CPUE 

standardization is the ‘spatial GAM’ approach, which consists of fitting a GAM including an 

interaction term between longitude and latitude (Braccini et al., 2021; Grüss et al., 2019; McKechnie 

et al., 2013). The spatial interaction term (e.g., a tensor product smooth) depicts spatial variation 

(long-term latent variation) at a broad scale (Denis et al., 2002; Grüss et al., 2021). The spatial GAM 
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approach can be extended to a ‘spatiotemporal GAM’ approach via the inclusion of an interaction 

term between longitude, latitude, and time, which represents spatiotemporal variation (latent 

variation that changes over time) at a broad scale (Hoyle, 2020; Zhou et al., 2019). By accounting for 

spatial and/or spatiotemporal variation at a broad scale, such GAMs can generate more stable 

predictions for spatial areas where data are sparse (Hoyle, 2020; McKechnie et al., 2013). Using a 

simulation experiment based on blue marlin data from the Atlantic Ocean, Grüss et al. (2019) found 

that spatial GAMs tended to outperform simpler CPUE standardization models. 

STMs constitute an even more flexible approach for CPUE standardization by depicting spatial and 

spatiotemporal variation at a very fine scale, thereby yielding very precise estimates (Anderson et 

al., 2022; Shelton et al., 2014; Thorson et al., 2015). Over the recent years, STMs implemented with 

R package VAST (Thorson, 2019a) have been increasingly employed to standardize CPUE data (e.g., 

Cao et al., 2017; Ducharme-Barth et al., 2022; Grüss et al., 2019; Kanamori et al., 2021; Xu et al., 

2019). Because STMs represent latent spatial and spatiotemporal variation at a very fine scale, the 

inclusion of habitat variables that are inherently spatial or spatiotemporal (e.g., sea surface 

temperature) in these models generally does not improve their predictive capabilities (e.g., Han et 

al., 2021; Hsu et al., 2022; Thorson, 2015). Using a simulation experiment based on skipjack tuna 

(Katsuwonus pelamis) data for the western and central Pacific, Ducharme-Barth et al. (2022) found 

that including local environmental covariates or regional oceanographic indices in STMs did not 

meaningfully improve model performance beyond what was achieved using spatiotemporal random 

effects, and even degraded model performance in some cases. However, we note that other STM 

case studies have suggested small but important improvements resulting from including density 

covariates (Thorson, 2019b). They may have the most influence when predicting into areas with 

poor sampling coverage. 

The simulation experiment conducted by Grüss et al. (2019) indicated that, overall, the STM 

approach implemented using VAST performed better than simpler approaches, including the spatial 

GAM approach. However, in some instances, the VAST and spatial GAM approaches performed 

similarly or the spatial GAM approach performed slightly better (Grüss et al., 2019). Spatiotemporal 

GAMs are often easier to apply for exploration and may have the flexibility to fit model structures 

that are unavailable in the VAST framework. Thus, we suggest that the analyst should not assume a 

priori that STMs will outperform the spatial or the spatiotemporal GAM approach, or even the 

GLMMint approach, in their case study. Instead, the analyst should ideally carry out a simulation 

experiment to better understand the capabilities of STMs in their case study under different 

scenarios. Such simulation experiments permit evaluation of the accuracy, error, and confidence 

interval coverage of STMs compared to simpler approaches. When operating models are not 

25 



available to generate simulated data, the fish abundances needed for the simulation experiment can 

be obtained by fitting an STM without any vessel effect or other catchability effects, as in Thorson et 

al. (2015) and Hsu et al. (2022). 

When the stock of interest is made of several sub-stocks, analysts may develop a separate CPUE 

standardization model for each one (McKenzie and Parsons, 2012). This approach is not necessarily 

warranted with STMs. Specifically, the fine-scale spatial areas occupied by each sub-stock can be 

identified in the STM input, and the STM can then compute an abundance index for each sub-stock 

(Grüss et al., 2023a; Thorson, 2022). Even in the presence of stock-structure, a single STM that 

appropriately weights composition data spatially by the estimated CPUE may be able to implicitly 

adjust for any spatial structure in the stock and the fishery (Maunder et al., 2020). However, further 

research is needed to explore this issue. 

If covariate effects or data availability vary spatially or through the time series, it may be difficult to 

develop a single STM that includes all influential covariate effects. It is important to include relevant 

covariate effects since models that fail to include them will often produce biased indices of 

abundance. In general, analysts should explore multiple modelling approaches to ensure that the 

resulting indices are consistent with the best available information about abundance trends. 

Interestingly, instead of being employed for standardizing CPUE, STMs can instead be used to 

identify stock structuring (Lindegren et al., 2022), investigate existing stock structure hypotheses 

(Grüss et al., 2023a), or evaluate the impacts of modifying sub-stock spatial boundaries. They can 

also be applied to estimate relative population scale across regions for use in multi-region stock 

assessments (Ducharme-Barth et al., 2020; Hoyle and Langley, 2020). Inclusion of density covariates 

when using an STM to develop relative population scale across regions (i.e., ‘regional scaling’) 

should be carefully considered given that they can influence predicted values in poorly sampled 

areas of the model domain (Ducharme-Barth et al., 2020). Given the influence of ‘regional scaling’ in 

multi-region, spatially explicit stock assessments, we recommend developing and exploring 

alternative CPUE index scenarios with different implied ‘regional scaling’. 

When choosing the sampling frame for the CPUE analysis, analysts must consider whether to include 

regions at the edge of the fishery that are fished infrequently. It may be uncertain whether these 

regions are unfished due to low CPUE or for unrelated reasons (e.g., they are too far from port). 

They may also be subject to spatial changes in stock distribution due to environmental events. 

Including such regions in the modelling frame will increase uncertainty, as the abundance in such 

regions will be inferred from limited information. One option is to limit the spatial domain to a ‘core’ 

fishery defined as those regions where most of the catch is taken, or that are fished for a majority of 
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the modelling period (Campbell, 2015; Grüss et al., 2023b; Xu and Lennert-Cody, 2022). For 

example, Campbell (2015) limited the spatial domain to those one-degree squares where the total 

catch of swordfish was greater than 500 fish over the period modelled, while Xu and Lennert-Cody 

(2022) defined a core fishing ground for skipjack for the floating object and unassociated fisheries in 

the eastern Pacific Ocean as all one-degree squares with at least 11 and 6 years of CPUE data 

between 2000-2021, respectively. Sensitivity of the resulting abundance index to different spatial 

domain definitions should be considered, as limiting the analysis only to a core region could mask 

hyperstability, or changes in the species’ range. 

Non-stationarity of the spatiotemporal correlation also needs to be considered. Rates of 

spatiotemporal correlation are unlikely to be constant either within habitat types or between them. 

However, approaches that allow nonstationary spatiotemporal correlation are rare, and it may be 

more practical to do separate analyses for different areas (i.e., habitat types) and subsequently 

compare the estimates of correlation structure to determine whether combining them with a 

stationary correlation structure is appropriate. If not, then the results of the separate analyses may 

need to be appropriately combined. 

With fishery-dependent data, there is a growing need to account for preferential sampling (the likely 

correlation between sampling location and abundance) which can bias indices that fail to account 

for it (Ducharme-Barth et al., 2022). Preferential sampling can be accommodated using joint models 

for sampling intensity and density (Alglave et al., 2022; Conn et al., 2017; Pennino et al., 2019; 

Rufener et al., 2021) which make the strong assumption that abundance should approach zero in 

un-sampled areas. Research is needed to develop approaches for modelling preferential sampling in 

a CPUE standardization framework either as an inhomogeneous Poisson process (Diggle et al., 2010) 

or using random-utility models to consider fisher sampling location due to economic or regulatory 

factors (Girardin et al., 2017). 

Finally, the spatial dynamics of a fishery may change significantly over time (for example, effort may 

contract spatially in response to economic or management factors while the stock may spatially 

contract in response to overfishing) and relative abundance indices based on catch and effort data 

can become biased unless consideration is given to such changes. Campbell (2016) developed a 

general framework for indices of stock abundance which uses alternative hypotheses to consider 

uncertainty about how to structure the analysis, particularly concerning the spatiotemporal 

dynamics of the fishery. 
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5.3 Multispecies targeting 

CPUE standardization aims to account for the non-random data generation process of targeted 

fishing operations, which typically seek to optimize their profits. This is further complicated in 

multispecies fisheries in which fishers can make discrete operational choices to increase the 

catchability of specific species or species complexes. Allocating targeted effort to one species over 

another can be related to the choice of fishing-ground, habitat-type, fishing-technique, or the way 

the gear is deployed (Palmer et al., 2009; Pelletier and Ferraris, 2000; Winker et al., 2013). In the 

best case, unaccounted variation in targeting only inflates the uncertainty in the index of 

abundance, but large short-term shifts or long-term trends in targeting can systematically change 

catchability and, therefore, severely bias abundance indices. The effects of variability in targeting on 

CPUE must be accounted for to estimate reliable abundance indices for multispecies fisheries. 

Targeting may include the choice to fish at the season and locations in which high catches of a 

sought-after target species are expected. Such target changes can be effectively accounted for with 

adequate STMs (Thorson et al., 2016b). However, other operational adjustments are non-spatial 

(e.g., bait type, fishing depth, gear deployment) or occur at much finer spatiotemporal levels (e.g., 

dynamic temperature gradients, time of day, or habitat features) than are reported. For example, 

many small-scale and recreational hook and line fisheries report spatial information at the coarse 

scale of a single location, whereas multiple fishing locations and fishing techniques may have been 

employed during the same trip. Information about targeting strategies may be unreported, or 

reported infrequently and inconsistently among skippers, locations, and time periods. In other 

words, the factors that might indicate the target/fishing strategy are latent variables. Consequently, 

finer scale variations in targeting are often unobservable and are hereafter referred to ‘fishing 

tactics’ (Okamura et al., 2017; Thorson et al., 2016b; Winker et al., 2013). The principal idea behind 

the various approaches employed to account for these latent changes in fishing tactics is to make 

use of the multispecies information contained in the catch and effort data. 

Subsetting approaches aim to select records where effort was likely allocated towards the species of 

interest (Hoyle et al., 2022; Stephens and MacCall, 2004). These include using catch proportions by 

species to determine a threshold for subsetting the data (Biseau, 1998; Helle et al., 2015; Klaer and 

Smith, 2012) to only include records from a core area or specific fishing season (Hoyle et al., 2022). 

However, such subsetting can be sensitive to the subjective choice of the threshold and associated 

with risks introducing hyperstability into the standardized index. For example, the effect of 

subsetting to non-zero catches can be illustrated via a delta-lognormal model in which the binomial 

distribution model is used to estimate the encounter probability, and the lognormal model is 

employed to estimate the scale of positive catch rates. For any situation in which the estimated 
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indices from both model components show a unidirectional trend, an index based on a subset of 

positive CPUE alone would be hyperstable relative to standardized CPUE from the delta-lognormal 

model. Unsurprisingly, simulation experiments yield biased abundance trends when zeros are 

excluded, with the exception of those species that are ubiquitous and occur in almost all (> 95%) of 

the CPUE records (Langley, 2019). This bias is likely increased if thresholds are set higher (e.g., 

30-50% of the catch weight) and most severe for less abundant species given that encounter 

probabilities below 30% become approximately proportional to abundance (Kerwath et al., 2019). 

Similarly, a species with declining abundance may contract towards its core area where CPUE may 

then remain hyperstable compared to the overall decline (Harley et al., 2001; Thorson et al., 2016c). 

Optimally, the target species would be known for a random subset of the data, and this could be 

used to determine the best model to predict targeting for the trips with unknown target. 

Stephens and MacCall (2004) applied a logistic regression of multispecies presence–absence 

information to subset trip records to locations (habitats) where the species under assessment was 

likely to be present but may not have been caught (‘true’ zeros) and locations where the species was 

unlikely to occur (‘false’ zeros). This approach therefore aims to retain ‘true’ zeros in the abundance 

trend. By design, this approach is most suitable for species that co-occur within multispecies 

assemblages, where the mere presence-absence of co-occurring species can provide a strong 

predictor of habitat suitability. Another approach is to identify ‘indicative’ vessels based on vessel 

characteristics and catch history of the species of interest (Helle et al., 2015; Punt et al., 2000). This 

approach requires a detailed understanding of the fleet and assumes that the indicative vessels 

employ consistent fishing tactics. The selection criteria for indicative vessels rely on a degree of 

subjectivity which may affect the CPUE indices (Helle et al., 2015). Using indicative vessels alone 

may be insufficient for CPUE standardization if vessels change targeting over time. For example, 

skipper behaviour may be more influential than the vessel effect (Palmer et al., 2009), but economic 

(e.g., fish price, market demands, fuel costs) or regulatory factors (e.g., quota limitations, area 

closures, or by-catch restrictions) may also lead to changes in targeting (Abbott et al., 2015). 

As an alternative to subsetting, several approaches have been proposed that use covariates to 

account for variations in fishing tactics. One approach is to use the catch rates of alternative target 

or bycatch species as covariates to correct for the effort directed away from the target species or 

species under consideration (Glazer and Butterworth, 2002; Su et al., 2008). Although the catch 

rates of alternative species do not hold direct information about the catch of the species of interest, 

the information in the predictor variables derived from these covariates is not entirely independent 

of the response CPUE and may have unpredictable impacts on the standardized CPUE trends. 

Another approach is to derive categorical covariates from ranked catch ratios of two species as an 
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indicator of targeting strategy. These catch ratios, which often include the species of interest, are 

then grouped by percentile frequency in descending order, either over the entire time series (e.g., 

Mejuto et al., 2009) or by year (e.g., Hiraoka et al., 2012). Each percentile group represents a factor 

level of the categorical variable. However, if the ratios are grouped over the entire time series, then 

there will inevitably be confounding effects between changes in abundance and the catch ratio 

grouping. If the abundance of the species of interest changes over time, the true trend abundance 

tends to be removed from the CPUE index, but if the other species changes, this can introduce a 

biased trend into the abundance index for the species of interest (Chang et al., 2011). Further, such 

bias is likely to be aggravated if individual CPUE records are aggregated. However, if the ratios are 

grouped by year, it can be demonstrated that the catch ratio covariate has no influence on the 

year-effect of interest and is, thus, completely ineffective for removing targeting-induced variation 

from the index of abundance (Hoyle et al., 2014b). 

If discrete fishing tactics result in distinctive species composition in the catch, one can employ 

clustering techniques to categorize multispecies CPUE records into groups with similar catch 

compositions (He et al., 1997). The identified clusters are assumed to represent fishing tactics which 

may be treated as categorical variables in the standardization model to adjust for differences in 

catchability associated with each cluster (He et al., 1997). This two-stage approach has been widely 

applied for tuna CPUE standardization of large pelagic long-line fisheries (Carvalho et al., 2010; 

Hoyle et al., 2022; Hoyle et al., 2015b). A related two-stage ordination approach is the ‘Direct 

Principal Component’ (DPC) procedure (Winker et al., 2013; Winker et al., 2014), which uses 

continuous principal component scores (PCS), derived from a Principal Component Analysis (PCA) of 

the catch composition data, as either linear or nonlinear predictor variables to adjust for the effect 

of variations in fishing tactics. The DPC method relaxes the assumption of fishing tactics being 

discrete and simulations indicated that the DPC can also perform adequately if CPUE records 

originated from mixtures of fishing tactics (Winker et al., 2014). Both ordination approaches can 

provide valuable insights into the targeting dynamics. For example, clusters or PCA species loadings 

can be visually explored at different spatiotemporal scales (e.g., seasons, area) or by individual 

vessels. However, several statistical caveats require careful consideration. If the species of interest 

represents a dominant component of a fishing tactic, it typically needs be included in the catch 

composition used to identify targeting, and the information contained in the resultant predictor 

variables composition is not entirely independent from the response in the standardization model 

and is, thus, not strictly orthogonal. Therefore, additional transformations (e.g., arcsine-square-root 

or fourth root) of the species composition data have been recommended (Campbell et al., 2017; He 

et al., 1997; Winker et al., 2014). Simulation testing has indicated that this confounding effect was 
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not a major concern for multispecies scenarios of moderate complexity (He et al., 1997; Winker et 

al., 2014). A drawback of this non-independence is that model selection criteria (e.g., AIC, Bayesian 

Information Criterion (BIC)) are unlikely to be appropriate since they select too many 

non-meaningful targeting signatures, leading to confounding and over-precision in the abundance 

trend (Winker et al., 2014). This makes it generally challenging to identify meaningful interactions 

between targeting effects and other covariates. Considering that several subjective decisions must 

be made (Campbell et al., 2017), the identified targeting signatures should be consistent with prior 

knowledge that distinct targeting practices exist. Otherwise, there is a risk of mistaking 

spatiotemporal abundance patterns for targeting, 

Recently, two approaches have been proposed to overcome the confounding effects of the 

approaches discussed above (Okamura et al., 2017; Thorson et al., 2016b). Both infer the latent 

fishing tactic from the residual structure. Okamura et al. (2017) proposed the two-stage ‘directed 

residual mixture’ (DRM) approach which entails first fitting a standardization model to each species 

with all covariates other than fishing tactics, then applying a Gaussian mixture model to estimate 

discrete latent factors for fishing tactics from the resulting mixing proportions of residuals. In the 

third stage, the estimated components are included as additional factorial covariates in a final 

standardization mode for the individual species. DRM provided an unbiased estimator for a 

deterministic proof-of-concept scenario under somewhat idealized conditions with two species and 

two fishing tactics for which previous approaches failed (Okamura et al., 2017). However, there is a 

lack of follow-up case studies on the efficiency of the DRM in the presence of zeros and 

over-dispersion, which are common features of real-world datasets. Moreover, the ‘spatial dynamic 

factor analysis’ (SDFA) (Thorson et al., 2016b), which is now embedded in the R package VAST, 

presents a statistically coherent method for simultaneously estimating spatial-temporal variation, 

random vessel effect, fishing tactics, and relative fish abundance for multispecies species within a 

single model where the latent fishing tactic effect is estimated from remaining unexplained residual 

correlations among the multispecies catch rates. Simulations demonstrated that SDFA performs well 

when targeting is linked to the spatial allocation of fishing effort. However, the fishing tactics model 

showed limited ability to correct for targeting effects in cases where spatial reporting was 

aggregated to a coarser resolution than the ‘true’ simulated dynamics or if spatial information was 

absent. This indicates that the SDFA will more likely perform well when the individual records are 

reported at sufficiently high spatial resolution that spatial allocation of fishing effort accounts for 

more variation in targeting than fine scale fishing tactics. Further research is needed to better 

understand the data requirements for SDFA and evaluate the impacts of missing covariates on 

DRM’s ability to account for fishing tactics. 
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5.4 Error distributions 

As described in the Maunder and Punt (2004; Sections 2.1, 3.1 – 3.3 & 4.3) review, it remains 

important to select an error distribution and a modelling approach that match the structure of the 

data. The analyst should first determine an appropriate class of error distribution for the data. An 

appropriate error structure is needed to accurately represent variance around the standardized 

index and to determine the trend (Dick, 2004) and scale (Thorson et al., 2021) of the standardized 

index. 

For discrete observations (e.g., catches recorded as counts), the Poisson distribution may be suitable 

if the variance is approximately equal to the mean although, in practice, this is rarely the case. If 

variance is larger than the mean, then the negative binomial distribution may be appropriate (Walsh 

and Brodziak, 2015), while the flexible Conway-Maxwell-Poisson distribution can account for either 

over- or under-dispersed data (Lynch et al., 2014). Additionally, if data are collected discretely, then 

effort can be included as an offset (Maunder and Punt, 2004), or the numerical catch can be 

converted to catch rate (e.g., number of fish caught per 1000 hooks), which can be modelled 

continuously. If the numbers of individuals caught per observation are large, then they can be 

approximated as continuous variables (Maunder and Punt, 2004). 

Continuous observations (e.g., catch per unit effort or catch recorded as biomass) are typically 

right-skewed; an appropriate distribution choice can be informed using Taylor’s power law (Taylor, 

1961), 𝑣𝑎𝑟 𝑌 αµ𝑝
𝑌
. If the variance is proportional to the square of the mean (𝑝 = 2), then the ( ) = 

lognormal or Gamma distribution may be appropriate and, if proportional to the cube of the mean ( 

𝑝 = 3), the data might be fitted using the inverse Gaussian distribution model (Dick, 2004). 

However, a recent study tested the different distribution models in STMs and found that the Gamma 

and Tweedie distributions provided the best performance for estimating index scale, followed by the 

lognormal, and the inverse Gaussian performed worst (Thorson et al., 2021). Alternative 

distributions may be distinguished using residual analysis, mean-variance plots, and Akaike’s 

Information Criterion (AIC) (Dick, 2004). 

When selecting the error distribution, the proportions of zero observations in the data should be 

scrutinized. If there are more zeros than predicted by the distribution, they may be dealt with using 

a mixture modelling approach. A discrete variable with excess zeros is typically fitted with a 

zero-inflated model which uses a separate likelihood component to account for the extra probability 

of a zero observation (Lambert, 1992; Minami et al., 2007; Walsh and Brodziak, 2015; Zuur et al., 

2012). Given a continuous response variable, excess zeros can be accommodated using a two-stage 

hurdle or delta modelling approach where catch-rate is modelled conditional on a positive 
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encounter (Lo et al., 1992). The Tweedie distribution can take the shape of several distributions in 

the exponential family depending on the value of p. When p is in the range (1 < 𝑝 < 2), then the 

Tweedie is equivalent to a compound Poisson-Gamma distribution which can simultaneously 

account for zero observations and positive catch (Shono, 2008a). Applying either a Poisson-link 

delta-gamma or Tweedie model structure may be a sensible default option (Thorson et al., 2021). 

In recent years, research has focused on more appropriately modelling and accounting for 

correlation in the data generation process. These approaches should be incorporated into routine 

CPUE standardization analyses where appropriate. ‘Poisson-link delta models’ represent a 

computationally efficient alternative to the compound Poisson-gamma distribution and can explicitly 

account for potential positive correlation between encounter rate and positive catch (Thorson, 

2018). 

Newly developed flexible modelling approaches (e.g., VAST; Thorson 2019) more readily model 

multivariate data within a CPUE standardization framework. Multivariate approaches can account 

for correlation between modelled categories such as species (Thorson and Barnett, 2017; Thorson et 

al., 2016a); or age/length/sex/stage categories (Kai et al., 2017; Maunder et al., 2020). Accounting 

for correlation between species can improve predictions of spatial density for rare species (Thorson 

and Barnett, 2017), and accounting for correlation across size classes can allow for size-class specific 

indices (Kai et al., 2017) or the standardization of composition data (Maunder et al., 2020; Thorson 

and Haltuch, 2019). 

5.5 Uncertainty estimation 

The uncertainty associated with the CPUE indices used in a stock assessment includes observation 

error associated with the estimated time effects in the index and process error associated with 

variation in catchability (the relationship between the time effect and abundance) (Francis et al., 

2003). 

Observation error in the temporal effects can be estimated as part of the model fitting process and 

constructing the index, as discussed in Section 5.8. Many GLM analyses estimate categorical time 

effects relative to the base time (e.g., the first year in the time series). These can be recalculated as 

canonical confidence intervals to associate uncertainty with all temporal effects (Francis 1999). 

Observation error for two-step delta or hurdle models can be estimated using parametric (Shono, 

2008b) or bootstrap (Ichinokawa and Takeuchi, 2012) methods, and subsequently applied within the 

predict-then-aggregate process. Alternatively, uncertainty can be characterised by draws from the 

posterior predictive distribution if the model is fitted in a Bayesian framework (e.g., using the R 

package brms; (Bürkner, 2017)). 
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However, standardization usually underestimates observation error in the temporal effects because it 

does not fully account for dependencies in the input data (Hoyle et al., 2014b). Dependencies occur 

among consecutive sets by a vessel and among sets by vessels from the same company which may 

communicate with one another. There is also overdispersion due to both aggregation of fish and the 

unavailability to the analyst of important factors affecting catch rates, such as local environmental 

factors that affect fish distribution. Some of this overdispersion can be accounted for by including 

random effects in the CPUE standardization model (Rufener et al., 2021; Thorson and Minto, 2015; 

Xu et al., 2019). Many sources of catchability variation are not amenable to standardization (Wilberg 

et al., 2009). As a result, uncertainty estimates from CPUE standardization models (observation error) 

are often seen as, at best, useful for suggesting relative uncertainty among year effects. They can 

also be useful as an estimate of the minimum uncertainty, and to determine relative uncertainty 

between indices. 

Process errors occur when the average catchability across the fleet varies between time intervals. 

Effectively, the relationship changes between the abundance index and the true abundance leading 

to more uncertainty in the abundance index than predicted by the observation error. This variability 

cannot be measured directly but can be estimated indirectly with stock assessment models (Francis 

et al., 2003). This variation is often estimated or assumed to be larger than the observation error in 

the time effects (Maunder and Punt, 2004), particularly for large industrial fisheries with low 

observation error due to high effort data sample sizes. 

5.6 Diagnostics 

Traditional model validation diagnostics such as residual analysis are important for determining if 

the analyst has specified the model correctly, treated zero observations appropriately, and selected 

the proper error distribution (i.e., the model assumptions are not violated). However, non-Gaussian 

error structures, mixture (e.g., delta or zero inflated) distributions, and/or mixed-effects frameworks 

commonly applied in contemporary CPUE standardization analyses complicate using traditional 

diagnostic approaches. One solution is to define residuals as probability-integral-transform (PIT) 

residuals (Warton et al., 2017). PIT-residuals are generated in a ‘model-free’ bootstrap by comparing 

observations to a distribution of predicted values for the given observation generated from the 

fitted model. Prior to calculating the PIT-residual, a simple check of the distribution of the 

observations against the distribution of the bootstrapped/predicted values (e.g., Parker et al., 2017) 

can be used to identify if the distributional assumptions are being met (e.g., are coverage levels 

similar?). R package DHARMa (Hartig, 2020) is useful for calculating PIT-residuals and has several 

tests for assessing if observations match the distributional assumptions of the model, outlier 

detection, identification of over- or under-dispersion, and zero-inflation. In a mixed effects 
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framework, if models are solved using the Laplace approximation to integrate across the random 

effects (e.g., TMB; Kristensen et al., 2016), the reduced Laplace approximation for strongly 

non-linear models may limit the utility of PIT-style residuals (Thygesen et al., 2017). Accuracy of the 

Laplace approximation can be determined by refitting the model to simulated data (Rufener et al., 

2021; Thygesen et al., 2017). Alternatively, residuals can be calculated using the posterior estimate 

from MCMC samples (Rufener et al., 2021) or by using one-step predictions (Thygesen et al., 2017). 

One-step prediction residuals are a useful tool for validating modelʻs fit to sequential data such as 

^ 
CPUE analyses, where an observation 𝑌 is compared to a prediction in time 𝑡,  𝑌 , conditioned on 

𝑡 𝑡|𝑡−1 

data up to 𝑡 − 1. 

In addition to model validation, diagnostics can be used to develop intuition on how the CPUE 

standardization model is transforming the nominal index. Step plots (sequentially plotting how the 

index changes with each additional covariate or model component) show incremental changes to 

the index (Bentley et al., 2012). However, if there are interactions between covariates, then their 

impact could be masked within a step plot. Influence and coefficient-distribution-influence (CDI; 

Bentley et al., 2012) plots are useful in combination with step plots. CDI plots quantify the relative 

influence of each covariate on the final fitted model by incorporating both the estimated coefficients 

for individual covariates and the sampling across covariate levels each year. Influence and CDI plots 

can be readily created for fixed effect GLMs using the influ package 

(https://github.com/trophia/influ) in R and Hsu et al. (2022) their application extended to STMs 

implemented with the R package VAST. Applied in a spatial or spatiotemporal modelling framework, 

a large annual influence value for the year-area interaction term could indicate a misspecification of 

the spatial structure that failed to account for a large shift in spatial sampling (Hsu et al., 2022). 

Counterfactual analyses (Hansell et al., 2022; Pearl, 2009) can also be employed to evaluate the 

impact of key structural assumptions (e.g., fitting a model with spatial random effects held at zero 

and comparing the resultant index with a model freely estimating spatial effects in order to identify 

their impact on the standardized index). 

Additional diagnostics can be applied to specifically interrogate STMs. Calculated residuals should be 

evaluated for temporal, spatial (i.e., Moran’s I test), and spatiotemporal patterns. In addition to 

being useful for evaluating model performance, cross-validation can be used to identify spatial 

outliers (Conn et al., 2018; Marshall and Spiegelhalter, 2003). Spatial and spatiotemporal random 

effects are often assumed to be normally distributed with mean-zero. The estimated random effects 

should be checked to ensure that they match the assumed distributions. Lastly, STMs can predict 

abundance (or density) into un-sampled areas. Predictions in un-sampled areas will be influenced by 
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adjacent observations given the modelled spatial/spatiotemporal covariance structure, and by any 

modelled relationships with density covariates. These predictions should be scrutinized for 

consistency with ‘common sense’ expectations of what abundance should be given understanding of 

the species biology and fishery dynamics. Departures from expectations may indicate the need to 

change how the model makes predictions into unfished areas, such as by applying a preferential 

sampling model or changing other aspects of the model structure to account for unfished areas 

caused by economic or regulatory factors (e.g., with the use of a random utility model). 

Hinton and Maunder (2004) propose an ‘omnibus test’ that simply compares the total likelihood 

from the stock assessment model for all data types combined and uses one index of abundance 

versus using an alternative index of abundance. This test measures which index of abundance is most 

consistent with the stock assessment model and the other data. We recommend further research 

regarding omnibus-tests when specifying CPUE standardization models. 

5.7 Model selection 

Model selection is an important part of the analysis process. Analysts often employ automated 

procedures such as stepwise forward or backward selection algorithms, although these can be 

problematic (Sribney, 1996; Wiegand, 2010). Throwing all covariates into an automated selection 

procedure is unlikely to identify the most appropriate model and neglects an opportunity to generate 

useful understanding. Henderson and Velleman (1981) noted that automated techniques often hide 

important features of the data from the analyst and provided the axiom that “the data analyst knows 

more than the computer.” Modelling data interactively can change understanding and lead to 

different inferences. 

The analyst should first consider the objective of their CPUE standardization. When generating an 

index rather than making inferences about the covariates themselves, the goal is to correct for 

covariate influence and avoid potential bias in the index (i.e., covariates that explain annual variation 

in abundance should not be used to explain catchability). The focus on prediction rather than 

estimation has implications for model selection, making AIC an appropriate tool if statistical 

assumptions are met (Aho et al., 2014; Akaike, 1973). CPUE analyses for understanding are also 

important for stock assessment but have different objectives and may use different analytical 

approaches. 

Model selection and inference based on information criteria are well-established with clear 

guidelines available (e.g., Burnham and Anderson, 2004). These include identifying plausible 

predictor variables and combinations thereof, evaluating model performance, and averaging across 
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plausible models. Evaluating model performance should include considering the goodness of fit of 

the selected models (Mac Nally et al., 2018). 

The analyst should determine whether a parameter is likely to affect CPUE, a priori, and whether it 

affects density or catchability. Starting with a set of plausible models saves analysis time and reduces 

the risk of overfitting (a.k.a. data dredging or p-hacking). 

Predictive cross-validation methods can be useful for selecting between models with different 

structures (e.g., Charsley et al., 2022; Maunder and Hinton, 2006; Shono, 2008a). They can be 

time-consuming but are very flexible and broadly applicable. 

Model selection based on likelihood is affected by lack of independence. Operational data usually 

represent a time series of fishing events by the same vessels, and there may be information sharing 

between vessels. The ‘intra-vessel’, ‘intra-trip’, or other correlation can be represented by treating 

that factor (e.g., vessel or trip) as a random effect. Such a treatment is appropriate to account for the 

reduction in effective sample size resulting from simple correlation in the observations. However, 

random effect distributional assumptions may be inaccurate given, for example, trends in fishing 

power or targeting through time. 

Operational datasets can have very high sample sizes, and that combined with lack of independence 

can make almost any variable statistically significant based on likelihood, even if it has negligible 

influence on the year effect. Since the goal is to obtain an index of abundance, including a covariate 

that neither explains much deviance nor influences the index of abundance is not usually a problem. 

However, alternative data selection criteria are often used to help develop models that are simple, 

manageable, and fast to compute. 

When the objective is accurate prediction for the year effect, a primary consideration for variable 

selection is influence. Influence is affected by a combination of the extent to which the covariate 

affects the response and the extent to which its value changes through time. For example, a variable 

that affects catch rates but is completely balanced (such as moon phase in many cases) may have no 

influence on the resulting abundance index. Such variables can be useful nonetheless if they improve 

precision and help estimate other effects. They are also useful for understanding the biology of the 

species and the nature of the fishery, an important benefit of modelling CPUE. 

One commonly employed criterion is the proportion of deviance explained by a variable (R2). This 

criterion is useful because it is related to influence and robust to lack of independence, but the 

appropriate threshold level will be case-dependent. For example, covariates will explain a higher 

proportion of residual variance when data are more aggregated, allowing the threshold to be set at a 
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higher level. However, conditional R2 (and consistent AIC) showed inconsistent model selection in the 

simulation experiment conducted by Hsu et al. (2022). 

Sometimes it is important to retain covariates that do not meet selection thresholds because it is 

clear a priori that they will affect CPUE. For example, catch rates almost always vary consistently 

between vessels, and the vessels in the fleet usually change through time. Analysts may, therefore, 

assume that catchability varies among vessels even if it does not reach the model selection threshold 

and should confirm that vessel ID is not influential before dropping it from a model. 

Some tools have internal automatic variable selection, such as the GAMs implemented with R 

package mgcv, which can automatically choose the degrees of freedom for a spline and can be 

configured to shrink effects to zero simultaneously without the need for a stepwise process (Marra 

and Wood, 2011). Model selection in R package mgcv is based on prediction error criteria or 

likelihood-based methods, with the likelihood-based methods less prone to local minima (Wood, 

2017). 

5.8 Assembling an index from a fitted model 

Previous reviews of CPUE standardization typically assumed that the index is constructed by first 

fitting a statistical model to available data (see Section 5.1) and then extracting a coefficient that 

represents the partial effect of year to use as the index; we call this the ‘year-effect as ’index’ 

method in the following. For example, Maunder and Punt (2004) state: “Most methods used to 

standardize catch and effort data estimate a year effect on which an index of abundance can be 

based.” However, the ‘year-effect as index’ method has many limitations. Most generally, treating the 

partial effect of year as the index does not include the effects of other covariates that vary among 

years. One interpretation of this practice is that all the other covariates are implicitly treated as 

‘catchability covariates’, and their effect is filtered out when treating the year effect as the 

abundance index. 

One special case of concern arises when including a year x area interaction as a predictor variable in 

the CPUE-standardization model. Maunder and Punt (2004) dealt with this topic in detail and 

outlined a few alternative treatments, including averaging across year x area estimates or fitting 

separate models to different areas. However, research since then has converged upon a generic 

approach which we here call the ‘predict-then-aggregate’ method for index construction (Walters, 

2003 provides a good foundation for the method). This approach is based on sampling theory and 

involves the following steps. 
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1. Explicitly define a sampling frame that ideally corresponds to the stock being assessed. Sampling 

units in the frame might be defined spatially (i.e., subdividing the stock range into a set of 

non-overlapping strata) or via other partitions (i.e., port). 

2. Predict CPUE that would have occurred for each sampling unit, conditioning upon values of 

density covariates that occur at each sampling unit and dropping the partial effect of catchability 

covariates (e.g., by setting them at a defined reference level). Note that predictions of CPUE into 

un-sampled sampling units should be carefully scrutinized and considered (see McKechnie et al., 

2013; Walters, 2003). For example, predictions may need to use one approach for areas that are 

un-sampled because low catch rates make fishing uneconomic and a different approach for areas 

where management measures exclude fishing effort. 

3. Aggregate across sampling units which can often be done by taking the area-weighted (i.e., the 

area of available habitat) sum of CPUE across these units. 

4. Calculate the variance of the aggregate, either using the delta method, quantiles from MCMC 

samples in a Bayesian model, nonparametric bootstrapping of the data, or other methods. We 

expect that these methods will generally give similar results (Magnusson et al., 2013), but 

emphasize that it is necessary to propagate information about covariance among predictions to 

correctly calculate the variance of the ‘predict-then-aggregate’ approach. 

For examples of this approach see Campbell (2004) and Campbell (2015). 

Area weighting should, where possible, use the area of available habitat in each spatial cell (Maunder 

and Punt, 2004), assuming that density is uniform within each cell. For pelagic fishery CPUE, 

approximate ocean areas are often determined from the area of grid cells at a latitude, after 

subtracting any land area. However, the habitat available to individual species in the pelagic ocean 

can vary seasonally, with environmental variables, and long-term with climate change (Goodyear, 

2016). Inclusion of oceanographic ‘density’ covariates in the standardization model and or applying a 

post-hoc environmental filter can be used to restrict index calculation to viable cells/spatial areas. 

Methods for determining these areas are an area of active research. Similarly, cells that are too large 

can cause bias when they include areas of both high and low density, with fishing concentrated in the 

high-density areas. Uncertainty about habitat areas is not often considered but can be included via 

alternative scenarios or Monte Carlo simulation. 

Habitat areas in benthic and reef fisheries are often difficult to determine, and uncertainty can be 

large. As a result, strata are sometimes weighted by catch (aggregated across the time series), as a 

proxy for relative area (e.g., Ralston, 1999). Catch weighting tends to introduce bias because fishing 

intensity always varies spatially. Higher effort usually occurring in areas with higher catch rates, but 
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some areas may be closed to fishing and others less fished because they are harder to access. Catch 

weighting is likely to give more weight to areas that are more heavily fished, so will tend to 

exaggerate depletion. 

When the index-standardization model does not include any interactions of year with other 

covariates, we expect that the ‘predict-then-aggregate’ method will provide the same index as the 

‘year-effect as index’ method (Campbell, 2015). However, when a density covariate interacts with the 

year effect (e.g., year x area), or the value of a density covariate varies through time (e.g., 

temperature), the predict-then-aggregate method is required. 

For a response variable that was transformed before fitting the model, predictions must be back 

transformed before aggregating. For two-stage approaches such as hurdle models, sampling unit 

predictions are obtained by combining predictions from both stages before aggregating. 

For a hurdle model with the binomial component fitted using a logit transformation, the reference 

levels of the catchability covariates affect the predicted annual probabilities of non-zero catch. This in 

turn affects the final index because the probability of non-zero catch is constrained by a maximum of 

1. When binomial predictions are back-transformed, index variability can be reduced depending on 

the reference level selected for the catchability covariates. To avoid bias in index trends and 

variability, analysts can adjust the mean of the index either via the choice of reference levels or 

preferably by adding a constant to the logit-scale predictions before back-transforming to the 

probability scale (Hoyle et al., 2022). In most situations, we recommend adjusting the scale so that 

the annual mean of the binomial component of the index equals the mean of the annual proportions 

of nonzero catch. The predicted probabilities of non-zero catch may themselves be used in some 

cases to indicate abundance after transforming (Hoyle et al., 2011). 

6. Using CPUE indices in stock assessments 

As discussed earlier, each CPUE index in a stock assessment is associated with a fleet. Section 3 

mentioned an approach described by Maunder et al. (2020) to jointly standardize CPUE and 

composition data and use the results to define two separate fleets in the model with different 

purposes. One fleet is associated with the CPUE index and is assigned composition data weighted by 

the spatial distribution of the CPUE (representing abundance) and (usually) time-invariant selectivity 

so that changes in these composition data represent changes in the composition of the underlying 

population. The other fleet (not associated with an index) is assigned composition data weighted by 

the time-varying spatial distribution of the catch so that time-varying selectivity can be employed to 

extract fish of the appropriate size/age composition. 
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Often two or more indices or other datasets provide information that is to some extent in conflict. 

The ‘law of conflicting data’ (Maunder and Piner, 2017) states that since data are facts, conflict 

between datasets implies model misspecification. If information from different sources is in conflict, 

the analyst should try to identify the cause and resolve it. If resolution is not possible, the analyst 

should create a set of alternative models that omit conflicting datasets; in each model the remaining 

datasets are well fitted (Francis, 2011; Schnute and Hilborn, 1993). When conflicts occur, there may 

be a need to weight the alternative hypotheses, which introduces some subjectivity. In general, 

information about population trends in CPUE should have priority over information in the 

composition data (Francis, 2011) because it is usually more reliable. 

It is a relatively common practice in some assessment cultures to split CPUE series by time into 

separate non-overlapping sections and to include each index in a separate fishery. Splitting can 

occur in response to changes in availability of species-specific catch data (e.g., North Pacific blue 

shark, ISC Shark Working Group, 2022), evidence of changing operational patterns that potentially 

change catchability or selectivity that can’t be included in the CPUE standardisation, or changes to 

logbooks such as the addition of new data fields (e.g., north Pacific striped marlin, ISC, 2019). 

However, splitting is often counterproductive and should be avoided where possible unless there is 

another reliable index of abundance to cover the gap (e.g., Hoyle et al., 2012; Hoyle, 2011). Splitting 

the time series can waste much of the abundance information in the CPUE data and often 

substantially changes model outcomes. At best, it increases uncertainty, but it can introduce 

considerable bias. This should only be the case if something in the model is misspecified (e.g., 

misspecification of growth and the associated fits to the length composition data which affect model 

scaling). However, in practice, assessment models always include some degree of misspecification, 

such as conflict across the time series between different periods of composition data. Without the 

stabilizing constraint through time provided by the continuous index, the model estimates 

abundance scale independently before and after the split by adjusting catchability. Splitting the time 

series therefore often results in abundance changes that reduce the internal data conflict but may 

be inconsistent with expectations about long-term catchability. At minimum, analysts should 

consider whether the implied catchability change at the split is consistent with expectations. 

There are usually better alternatives to splitting a CPUE series. If the split is due to data availability, 

analysts should strive to retain the same or similar catchability and selectivity for both indices since 

there is no evidence that either has changed. If the split is due to catchability changes linked to new 

technology, analysts should consider whether the changes estimated in the assessment are 

plausible. If a change that likely increased catchability has the opposite effect in the model, it is 

usually better not to split the series. If selectivity has changed with effort moving to a spatially or 
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seasonally different part of the stock, a better approach is to analyse the dataset as separate spatial 

or seasonal CPUE series that each take a consistent part of the stock so that the change in effort 

distribution does not affect either index. Alternatively, a joint model of composition and CPUE data 

(Maunder et al., 2020) can be used as described earlier in this section. 

Transitions such as these often involve alternative hypotheses about how the changes have affected 

catchability. Given this uncertainty, a useful approach for the analyst is, rather than splitting the 

index, to identify a set of plausible hypotheses about how catchability has changed and construct 

alternative indices based on these hypotheses (Campbell, 2016). This approach has more 

widespread value because analysts often end up with two or more alternative indices, each of which 

has support. Given the importance of CPUE indices for determining stock assessment outcomes and 

the many ways that estimated CPUE indices can diverge from the true abundance trend, it is 

important to consider the range of plausible options as alternative stock assessment scenarios, 

preferably within a model ensemble. 

Trends in catchability over time can bias CPUE indices, and can be of great importance for stock 

assessments. Increases in catch efficiency, or fishing power, have played a critical role in the history 

of fisheries (Scherrer and Galbraith, 2020; Squires and Vestergaard, 2013). Wilberg et al. (2009) 

describe causes of increased catchability such as changes in fishing practices and technology 

(Garrod, 1964). Technological creep can mask declines in abundance by increasing catchability 

(Kleiven et al., 2022); and it is observed in almost all analyses involving time series of fishing effort, 

particularly if the analyses exceed one decade in temporal coverage (Palomares and Pauly, 2019). 

For example, Squires (1992) found that the most important sources of technical progress in the 

Pacific coast trawl fishery were electronics, the application of scientific rather than craft principles to 

vessel and equipment design, and to harvesting methods. 

Estimates of mean rates of fishing power increases across fisheries are variable. Eigaard et al. (2014) 

estimated a mean rate of increase of 3.2% per year, while Palomares and Pauly (2019) reviewed 51 

estimates of about 2-4% per year and estimated an expected rate of 1.3% per year for studies that 

cover a 100-year period, although this is likely to be an underestimate (Scherrer and Galbraith, 

2020). 

One difficulty in estimating rates of fishing power change is obtaining the requisite data (Scherrer 

and Galbraith, 2020). A major component of fishing power is the ability to locate fish; though 

technology supports this in many ways, few are recorded for analysis. Examples include the 

installation of GPS systems, provision of increasingly informative environmental data from satellites 

and models, upgraded communication technology to share information between vessels and with 
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fishing companies, and scientific progress in understanding the factors that affect fish distribution, 

which may derive from public research or from fishers’ interrogation of their own stored catch and 

effort data. Catchability change associated with vessel turnover can be accounted for by including 

the vessel ID in the model (e.g., Hoyle and Okamoto, 2011), but datasets rarely indicate when a 

particular vessel installed a particular piece of technology or when the behaviour of a vessel, fishing 

company, or fleet adapted to use the available information more effectively. 

Where catchability increases are considered likely but estimates are unavailable, ignoring them will 

positively bias stock status estimates (e.g., Han et al., 2023; Ye and Dennis, 2009). Wilberg et al. 

(2009) recommend a default assumption that catchability varies over time and multiple methods of 

including time-varying catchability should be applied. To allow for uncertainty about fishing power, 

stock assessments (particularly for target species) should consider a range of reasonable scenarios 

regarding long-term catchability trends, from low to high but noting that 0% is rarely plausible. 

7. Concluding remarks 

CPUE standardization is an influential component of the stock assessment process, as well as a 

powerful tool for generating understanding of the stock and the fishery. Rather than a statistical 

exercise, it should be seen as a core part of the fisheries research program. As such, the initial 

analytical steps of exploring and characterising the dataset, including talking to fishers, are key. In 

parallel, the understanding developed during CPUE standardization can often motivate changes in 

the assessment model structure itself, a contribution often more influential for assessment outcomes 

than small changes in the CPUE indices themselves. 

An important development in the field of CPUE standardisation since Maunder and Punt (2004) has 

been the increase of STM applications to fisheries datasets. However, while STMs are attractive 

models with powerful features, they do not constitute the best option in all situations. They are also 

complicated to implement for new analysts because of the different statistical concepts involved. We 

recommend that simpler approaches be tried first to develop understanding before, if warranted, 

transitioning to more sophisticated ones (like STMs), if only to understand the influence of 

spatio-temporal structure on one’s catch-and-effort dataset. Of note, a course based on the VAST 

STM (Thorson, 2022; Thorson, 2019a) is available 

(https://github.com/James-Thorson/2018_FSH556), as are examples in the VAST Wiki 

(https://github.com/James-Thorson-NOAA/VAST). In addition, as STMs may be sensitive to model 

settings and choices, we encourage analysts to consult the growing literature (e.g., Commander et 

al., 2022; Dambly et al., 2023) describing potential analytic trade-offs. We also emphasize that 

simulation experiments represent valuable tools for testing and comparing CPUE standardization 
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modelling approaches, so that the analyst may select approaches to produce indices likely to be 

unbiased. Finally, the development of methods to explicitly model fisher location choice to improve 

predictions in un-sampled areas would constitute a promising extension to STMs. 

In Table 3, we reiterate the major recommendations introduced in the preceding sections. Analysts 

are encouraged to consider the good practices identified in the 16 areas covered in this review and to 

apply them where practical. Not all will be feasible to apply to every analysis, but it is important to 

understand the implications of not applying them. 

In Table 4 (based on ISC Albacore Working Group, 2016) we summarize information requirements for 

presenting the results of CPUE analyses. See also Hoyle et al. (2014a) and IOTC (2015). In Table 5 

(based on ISC Albacore Working Group, 2016), we list criteria that can be used to assess the 

strengths and weaknesses of candidate abundance indices. 

Finally, we raise a note of caution about the potential reliability of indices of abundance based on 

CPUE data. The relationship between CPUE indices and relative biomass or abundance can be 

proportional, but there are many scenarios in which this relationship changes or breaks down (Cooke 

and Beddington, 1984; Dunn et al., 2000; Harley et al., 2001; National Research Council, 2000; Ye and 

Dennis, 2009). Although there are no easy answers, the recommendations presented here will help 

analysts to obtain the best information available. 
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Tables 

Table 1: The 16 areas of good practices in catch-per-unit-effort (CPUE) standardization discussed in this paper. 

Section/subsection Area of good practices 
Section 3 Fishery definitions 
Subsection 4.1 Exploring and preparing data 
Subsection 4.2 Misreporting and biases 
Subsection 4.3 Data aggregation 
Subsection 4.4 Density and catchability covariates 
Subsection 4.5 Environmental variables 
Subsection 4.6 Combining fishery and survey data 
Subsection 5.1 Model fitting methods 
Subsection 5.2 Spatial considerations 
Subsection 5.3 Multispecies targeting 
Subsection 5.4 Error distributions 
Subsection 5.5 Uncertainty estimation 
Subsection 5.6 Model diagnostics 
Subsection 5.7 Model selection 
Subsection 5.8 Assembling an index from a fitted model 
Section 6 Using CPUE indices in stock assessments 
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Table 2: Overview of the catch-per-unit-effort (CPUE) standardization approaches with spatial considerations. 

Approach Overview R packages 
GLM Method using generalized linear models 

(GLMs) that integrate fixed year and area 
effects. 

stats::glm, mgcv, brms, TMB 

GLMMint Method using generalized linear mixed 
models (GLMMs) that integrate fixed year 
and area effects and a random year-area 
interaction term. 

TMB, brms, nlme, lme4, glmer, 
glmmTMB, mgcv 

Spatial GAM Method using generalized additive models 
(GAMs) that integrate an interaction term 
between longitude and latitude 
representing spatial variation (long-term 
latent variation) at a broad spatial scale. 

mgcv, brms, TMB 

Spatiotemporal 
GAM 

Method using GAMs that integrate an 
interaction term between longitude, 
latitude and year representing 
spatiotemporal variation (latent variation 
that changes over time) at a broad spatial 
scale, in addition or in lieu of an interaction 
term between longitude and latitude. 

mgcv, brms, TMB 

STM Method using models that account for 
both spatial and spatiotemporal variation 
at fine spatial scale. 

TMB, R-INLA, VAST, sdmTMB 
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Table 3: Summary of good practices in catch-per-unit-effort (CPUE) standardization. 

1. Indices of abundance are often the most influential part of an assessment—invest 
accordingly. 

Data 
2. Defining fleets is key. Definitions depend on stock and fishery structure, the type of CPUE 

analysis (time + space versus spatiotemporal model (STM)), and the assessment approach 
(biomass dynamic versus age/size-structured, conventional versus index fishery). 

a. Explore and understand data (catch, effort, CPUE, sizes, ages, maturity, gear types, 
logbook types, vessel turnover, misreporting, etc.). Plot everything. 

b. Talk to fishers and other stakeholders. 

3. Structural changes based on understanding the system can be very important for the 
assessment, whereas many other issues just cause small changes in the index trends. 

4. Revisit data exploration when updating indices. Do not simply ‘turn the handle’. 

5. Identify likely covariates before you start modelling. Avoid data dredging. 

6. Differentiate between catchability and density variables. 

7. Always include the variables that affect catchability – this is usually more important than 
the type of model you use. Think about potential for bias due to missing variables. 

8. Consider targeting and target change through time and how to address it. Understand the 
fleet well enough to know what the targeting strategies might be. 

Analysis 
9. Generalized additive models (GAMs) and STMs are better than generalized linear models 

(GLMs). GAMs are best for exploration. STMs can be better for the final model(s). Each has 
unique capabilities. 

10. Model the whole stock if you can do so without dropping important covariates or 
relationships due to data gaps or difficult spatial interactions. 

11. Test your model by simulation. 

12. Build multiple models using different approaches to develop your understanding of how 
the models are working and to consider alternative hypotheses. Start simple. 

13. Use influence plots to understand how the variables and their values affect the indices. 

14. Construct the index via the “predict-then-aggregate” approach rather than the previous 
practice of treating the partial effect of year as the index. 

Assessment 
15. Use the index fishery approach if you can. 

16. Assume effort creep. There are catchability changes that your model has not captured. 
Catchability increases are almost inevitable in the long term. 

17. Do not blindly split indices and assume the model will scale them correctly – this is 
unlikely and dangerous. 
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18. Do not include several conflicting indices in an assessment at the same time. Do include 
alternative indices as alternative assessment scenarios. 
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Table 4: Information requirements to support the acceptance of abundance indices. Adapted from ALBWG (2013). 

Fishery description Describe fishery including catch, effort, size composition of catch, 
nominal CPUE by area, season, history of fishery development and 
changes. 

Analysis description Describe data selection, CPUE standardization model, and CPUE 
estimates. Include any data filtering, outlier removal. 

Statistical Results Provide model diagnostics and goodness-of-fit criteria relative to 
alternative model configurations; tables, etc. 

Nominal/Standardized Comparison plot of nominal and standardized indices. 
Diagnostic plots QQ, residuals, etc. 
Point estimate & variability Characterize uncertainty in estimates of standardized CPUE; SE or 

CV of standardized CPUE (generated or assumed). 
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Table 5: Criteria for evaluating the strengths and weaknesses of candidate abundance indices. Adapted from ALBWG (2013). 

Criterion Description 
Spatial distribution Proportion of stock covered by fishery; latitude and longitude 
Size/age range Distribution of size or ages in catch 
Fishing ground map Show area of operations for each fishery by season/decade 
Relative contribution Proportion of total catch in the fishery 
Temporal coverage Time period of data collection 
Temporal consistency Change in spatial location of fishing grounds over temporal 

period, e.g., decadal changes/seasonal changes 
Temporal consistency in size 
composition 

Decadal and seasonal changes in size of fish captured 

Statistical soundness Standardization method, diagnostic plots, and CPUE variability 
provided 

Targeting Primary target, by-catch species 
Drivers of catchability change Time series of external factors affecting catchability (e.g., 

management practices, fishing technology, targeting changes) 
Socio-economic factors Time series of price, demand, technological changes (e.g., 

freezers), etc. 
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Figure 1: Flow chart summarizing the stages of an analysis of catch per unit effort data. 
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