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1 Introduction 
Skill from operational numerical models continues to improve through investments in all aspects 
of the system. This includes increases in computing power, new observations, advanced data 
assimilation, and improved forecast models (Bauer et al. 2015; Simmons and Hollingsworth 
2002). Data assimilation is most typically applied to obtain the best estimate of the state of the 
Earth system for the purposes of supplying initial conditions for a forecast. Such applications 
must necessarily reflect a balance between the model and observed state. This is all to ensure 
that forecasts are skillful and not dominated by unstable computational modes from imbalances 
in the initial conditions. The majority of this document will focus on the history and current status 
of this application of data assimilation, as it makes up a large majority of the data assimilation 
activities at the Environmental Modeling Center (EMC). 

There is, however, a broad spectrum of applications of data assimilation within the context of 
Earth system modeling and prediction. Some examples of applications outside of traditional 
model initialization include “Analysis of Record” (AoR)1 and reanalysis. It is useful to draw a 
distinction between DA methods for the production of AoR applications and those used for initial 
conditions in support of Earth system prediction. While both approaches use the same Bayesian 
principles, their underlying configurations may differ significantly. However, the restrictions 
imposed by balance and initialization can be relaxed for applications where the analysis is only 
used for situational awareness and nowcasting, verification, or calibration (i.e., AoR). There is 
no forecast component, allowing for a closer fit to assimilated observations. At present, the Real 
Time and UnRestricted Mesoscale Analysis (RTMA/URMA; De Pondeca et al. 2011) suite of 
systems serves this exact purpose, providing a relatively close fit to observations to serve the 
purposes of a gridded situational awareness system as well as for verification and ultimately 
calibration purposes in NOAA’s National Blend of Models (Craven et al. 2020). Future advances 
to data assimilation algorithms must also be considered for their ability to facilitate the unique 
AoR application. 

NCEP has been involved in several significant reanalysis efforts over the years (Kalnay et al. 
1996, Kanamitsu et al. 2002, Mesinger et al. 2006, Saha et al. 2010, Hamill et al. 2021). 
Reanalysis efforts generally leverage the same data assimilation tools that are leveraged for the 
generation of initial conditions, but focus on retrospective periods with a frozen system to 
generate a complete, quasi-homogeneous dataset. There are generally two major drivers for the 
needs for reanalysis datasets: 1) climate monitoring and 2) generation of state-of-the-art initial 
conditions for the purposes of creating hindcasts for a particular modeling system. Reforecast 
datasets have been a huge advancement in the state of Earth system science, enabling 
exploration into aspects of the Earth systems that would otherwise not be possible. 

1The term “Analysis Of Record” (AoR) was established in 2004 during the Community Meeting on 
Real-Time and Retrospective Mesoscale Objective Analysis: An Analysis of Record Summit. It refers to 
“real-time and retrospective analyses at high spatial and temporal resolution in order to facilitate the 
creation of the NDFD forecasts as well as verify their accuracy”. Here NDFD refers to the NWS National 
Digital Forecast Database. 
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The remainder of the document is organized as follows. Section 2 provides a review and 
overview of the atmospheric assimilation systems with section 3 then describing the marine, 
land, composition, and coupled assimilation systems. Section 4 contains a comprehensive 
description of the use of observations in the various systems. This is followed by sections 5 and 
6 that briefly describe assimilation monitoring, observation impacts, and operational 
implementation procedures. Section 7 then provides a brief summary. 

2 Atmospheric Assimilation Systems 

Figure 1. Timeline of significant milestones in NCEP’s Operational Global and Regional Atmospheric Data 
Assimilation from 1991-2021. 

2.1 Unification of Atmospheric Assimilation with GSI 
The current NCEP Production Suite (NPS) is a complex set of disparate modeling systems to 
meet specific stakeholder needs. Following the recommendations of various advisory and 
review committees, NCEP is in the process of consolidating the production suite into a set of 
UFS-based applications (Unified Forecast System - Steering Committee and Writing Team 
2021). For context, it is important to describe the state of the DA components that are utilized 
for the current NPS systems and applications. All of the atmospheric prediction and analysis 
systems that have assimilation components (GFS/GDAS, CDAS, NAM, RAP, HRRR, HWRF, 
RTMA/URMA, WDAS) currently leverage variational-based solvers. 
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Variational-based assimilation has been fundamental for atmospheric DA at NCEP since the first 
3DVar implementation in the global model was performed with the Spectral Statistical 
Interpolation (SSI) analysis system (Derber et al. 1991; Parrish and Derber 1992). The ability to 
perform non-local analysis brought about a significant advancement in the utilization of 
observations by allowing for the direct assimilation of satellite radiances rather than retrievals 
and the use of variational bias correction (Derber and Wu 1998). Around the same time, the 
regional modeling system followed suit with the Eta framework which included a 3DVar 
implementation in the Eta Data Assimilation System in 1998 (Rogers at el. 1996). 

The Gridpoint Statistical Interpolation (GSI) variational data assimilation system was originally 
developed (Wu et al. 2002) as a part of a major effort to provide a software framework to unify 
global and regional data assimilation applications. The GSI was implemented as part of the 
NAM/NDAS and the 2DVar RTMA (including spatially-adaptive anisotropic static covariances) in 
2006 (De Pondeca et al. 2011). The GDAS/GFS followed suit in 2007 (Kleist et al. 2009a) after 
incorporation of the tangent linear normal mode constraint (Kleist et al. 2009b). Since then, the 
GSI has been deployed in the inaugural HWRF model in 2007 (Liu et al. 2006) and RAP system 
in 2012 (Benjamin et al. 2016). The GSI is a major accomplishment in the history of DA at 
NCEP; it underpins every major atmospheric prediction and analysis system in the NPS. The 
GSI development has clearly demonstrated the utility of having a simplified, unified framework 
to be leveraged across a broad swath of applications. The GSI was readily adaptable to a 
variety of modeling systems, and varying infrastructures, including the global spectral model, 
NEMS-based systems, FV3-based GFS, WRF, and more. Further, the GSI has been leveraged 
from other government partners, academia, and the private sector, in part through efforts to 
make the code available as a community code through the Developmental Testbed Center 
(DTC). 

2.2 Hybrid Ensemble-Variational Assimilation 

2.2.1 Use of ensembles 
Flow-dependent, ensemble-based error covariance estimates were enabled by the development 
of the extended control variable method in the GSI (Wang 2010), with an initial implementation 
of hybrid 3DEnVar in the GDAS in 2012 (Wang et al. 2013; Kleist and Ide 2015a), which was 
expanded to hybrid 4DEnVar in 2016 (Kleist and Ide 2015b). The ensemble perturbations are 
updated using an ensemble Kalman filter (EnKF) algorithm, initially with an ensemble square 
root filter (EnSRF; Whitaker and Hamill 2002) and more recently with a modulated space form of 
the local ensemble transform Kalman filter in the GDAS (LETKF; Hunt et al. 2007; Lei et al. 
2018). Importantly, the EnKF updates are GSI-based and leverage the same observation 
processing and operators, allowing for synergy and consistency between the perturbation 
update and the deterministic hybrid control analysis. Similar adaptations of ensemble-based 
covariances were implemented in both the NAM (Wu et al. 2017) and RAP (Hu et al. 2017) 
systems in 2014, first through the utilization of readily available GDAS EnKF-based members. 
An abbreviated timeline covering 30 years of significant milestones in atmospheric data 
assimilation may be found in Figure 1. 
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Ensemble representations of background error are now state-of-the-science and critical 
components of data assimilation schemes. However, ensemble forecasts have the potential to 
systematically underestimate the error variance due to unrepresented model errors and finite 
ensemble sizes, which over time can lead to filter divergence. There are many aspects of the 
system that can lead to errors, and there are various approaches to accounting and/or 
compensation for such errors (e.g. due to sampling, forward operators, model error, etc.). 
Covariance inflation can be performed as part of the ensemble analysis step, either on the prior 
or posterior covariances, and can increase the spread through an additive noise or using a 
multiplicative factor (Whitaker and Hamill 2012). 

Multi-physics, i.e. using different physics schemes and coefficients in different ensemble 
members, is an effective method to increase spread in ensemble forecasts from within a model. 
However, it requires significant resources to not only develop but maintain many different 
schemes as well as to understand those schemes’ interactions with other components of the 
physics suite. From a theoretical perspective, the ensemble error covariances derived from 
these members will be non-Gaussian, violating a primary assumption made in modern era data 
assimilation approaches. Stochastic physics parameterization is a way to increase spread 
through the model representation in a physically consistent way. Frequently used schemes such 
as Stochastically Perturbed Parameterization Tendencies (SPPT, Buizza et al. 1999) and 
Stochastic Kinetic Energy Backscatter (SKEB, Shutts 2005) modify the physics tendencies 
themselves using random pattern generators, increasing spread by representing unresolved 
subgrid scale processes. Additional fields to perturbed the states themselves have also proven 
beneficial, such as the scheme that has been used in the GDAS to perturb boundary layer 
humidity (Tompkins and Berner 2008). There are also recent advances toward stochastically 
perturbed parameters as well as building stochastic representations of the physics directly. 

The current global systems, the GFS/GDAS and the Global Ensemble Forecast System 
(GEFS), both utilize ensemble forecasting, with short range forecasts for the GFS providing flow 
dependent information for the background error estimation and long range ensemble forecasts 
of the GEFS providing information about the model uncertainty. These two ensemble systems 
were initially developed independently, utilizing two separate sets of ensemble members and 
ensemble initialization techniques. Over time, these systems have become more aligned, first 
with the GEFS choosing its ensemble subset from the EnKF ensemble members (Zhou et al. 
2016) and more recently with GEFSv12 (Zhou et al. 2022) adopting the same stochastic physics 
techniques as the GDAS (excluding the scheme that perturbs boundary layer specific humidity), 
though with different perturbation magnitudes and scales applied. While both applications rely 
on information from perturbations, spread growth in the first 6 hours of a forecast will have 
different characteristics than what is informative for a 30-day forecast. Recent implementations 
of the GEFS continue to make it more consistent with the GFS, however the implementations 
have not occurred concurrently, meaning that when the GFS is updated to a new resolution or 
new physics, the GEFS is not simultaneously updated and is no longer consistent. This 
discrepancy can create problems for both spread growth and balance. The planned 
UFS-MRW/S2S implementation hopes to bring the GFS and GEFS implementations into 
agreement, unifying the global data assimilation ensembles and global forecast ensembles 
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under one infrastructure. The goal is to have a system from which actual initial condition 
perturbations representative of the analysis uncertainties can be used directly in the ensemble 
prediction system. 

The GSI-based, hybrid EnVar systems have served NCEP for well over a decade and are 
state-of-the-art. This document focuses on providing an overview on the current status of all 
data assimilation applications. It is therefore focused primarily on applications that feature the 
GSI. However, future plans, which are covered in detail in a companion document, involve a 
complete transition to a new unified data assimilation framework known as the Joint Effort for 
Data assimilation Integration, or JEDI. JEDI is a multi-agency effort being coordinated by the 
Joint Center for Satellite Data Assimilation (JCSDA) and will be the mechanism by which all of 
EMC’s DA activities will be performed in the near future. 

2.2.2 Hybrid 4D Data Assimilation 
While never implemented operationally, NCEP has pursued the use of 4DVar for NWP in the 
past several decades. Applications of 4DVar required the development of linear versions of the 
dynamic model as well as its associated adjoint, to be used as part of the 4D solver. One such 
example was the development and utilization of a 4DVar scheme for use with the NMC Eta 
model (Zupanski et al. 2002a; Zupanski et al. 2002b). There were also developments at NASA’s 
Global Modeling and Assimilation Office in the late 2000s to extend GSI to enable 4DVar for use 
in the GEOS system (as mentioned in Trémolet 2008), at the same time tangent-linear and 
adjoint versions of the GEOS system were being developed. However, computational 
challenges, issues associated with these developments, and competing priorities prevented 
them from becoming operational at NCEP. 

While the implementation of traditional 4DVar was never implemented, the arrival of the hybrid 
EnVar era accommodated the exploration of novel innovations in the 4D framework. The 
incorporation of ensemble-based estimates of background error through the extended control 
variable in EnVar, and its natural extension to Hybrid 4DEnVar, has yielded significant 
improvements in the quality of analysis and subsequent forecasts. Hybrid 4DEnVar is a 
computationally efficient mechanism for introducing a time component to the solver without the 
need for linear and adjoint versions of the model within the solver. However, it is worth 
considering that there are a variety of hybrid assimilation algorithms that are available and have 
been pursued for use in numerical weather prediction. A thorough review of operational EnVar 
methods can be found in Bannister (2016). The primary hybrid 4D schemes are Hybrid 4DVar 
and Hybrid 4DEnVar. Like traditional 4DVar, hybrid 4DVar also requires the use of a linear 
model and associated adjoint within the solver while leveraging ensemble based 
representations of background error at the beginning of the assimilation window. This is in 
contrast with 4DEnVar which uses localized linear combinations of nonlinear forecasts 
throughout the window, rather than a dynamic (linear model and adjoint) model for the time 
evolution. 

The use of Hybrid 4DVar has been shown to be superior to Hybrid 4DEnVar in a few studies that 
performed direct comparisons. A particularly relevant set of studies for global NWP were 
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performed by the United Kingdom Meteorological Office (Lorenc et al. 2015; Lorenc and Jardak 
2018). In this pair of studies, it is demonstrated that while both methods are significantly 
superior to 3DVar and 3DEnVar, the results from trial runs show Hybrid 4DVar to be superior to 
Hybrid 4DEnVar. They attribute the difference to the lack of time evolution of the static 
component in hybrid 4DEnVar. They further demonstrate that 4DVar and 4DEnVar yield similar 
skill when using pure ensemble covariances. Similar findings were demonstrated with a regional 
modeling case study in Poterjoy and Zhang (2016). In that study, they hypothesized that the 
errors associated with linearization (4DVar) were less severe than errors introduced by 
performing four dimensional localization of the ensemble-based covariances (4DEnVar). While 
these studies are illustrative of the relative performance between hybrid systems with or without 
linear and adjoint models, they fail to (fully) take into account the computational cost associated 
with the relative algorithms. In addition to the need for developing and maintaining a linear 
model and associated adjoint to perform 4DVar, the computational cost associated with a single 
analysis can be an order of magnitude larger than the pure ensemble-based counterpart with 
reasonably sized ensembles (order 10-100). 

2.3 Balance and Initialization 
The need to deal with imbalances and generation of large amplitude oscillations resulting from 
assimilation is well documented in the literature. Within the past two decades, several 
mechanisms have been employed to ameliorate the impacts from such issues at NCEP. The 
GFS had been utilizing a full field digital filter (Huang and Lynch 1993) until the implementation 
of the assimilation component of GFSv15.1 (Kleist et al. 2018). One downside of such 
approaches is the fact that they are effectively variable independent temporal filters. In addition 
to undoing some of the work the analysis schemes have performed to fit the observations, they 
can be problematic in certain regimes. Somewhat related, latent-heat nudging has been 
combined with a digital filter to incorporate radar reflectivity-derived temperature tendencies as 
part of the RAP modeling system (Benjamin et al. 2016). A similar scheme has been utilized in 
the NAM data assimilation cycle (Gustafsson et al. 2018). This approach begins with a 
backward adiabatic filter step followed by a forward diabatic filter step where radar-derived 
tendencies replace those from model cloud parameterization(s). The combined effect is a 
balanced state with the bulk properties of observed convection represented in the initial 
conditions. 

Within the assimilation system, the tangent-linear normal mode constraint (Kleist et al. 2009b) 
was developed as part of the initial implementation of the GSI to replace the SSI for use in the 
GFS/GDAS. This scheme has an advantage over traditional normal mode initialization 
techniques that had been previously employed in that it is directly integrated into the 
assimilation solver, effectively modifying the control variable and effective background error in 
the variational solver. This scheme has remained operational for global applications of GSI 
since the original implementation, including expansions to include the use of ensembles in 
EnVar. The use of the TLNMC within the context of hybrid assimilation has been demonstrated 
to provide significant improvements to the quality of analysis and subsequent forecast skill 
through improved balance (Wang et al. 2013; Kleist and Ide 2015b; Whitaker et al. 2022). This 
may partially be attributable to overcoming deleterious impacts induced from localization as well 
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as focusing on fitting observations within the space of slower modes only. While a regional 
version of the TLNMC within GSI was developed, it has never been utilized operationally. 

Incremental analysis update (IAU, Bloom et al. 1996) is another approach that has been widely 
used for NWP and recently pursued by NCEP. With the implementation of GFSv16, the 
GDAS/GFS began utilizing 4D-IAU (Lorenc et al. 2015; Lei and Whitaker 2016). With access to 
4D analysis increments from the hybrid 4DEnVar solver, hourly increments are passed to the 
model through the IAU forcing. 

3 Marine, Land, Atmospheric Composition and Coupled Assimilation Systems 

3.1 GSI-based Near Sea Surface Temperature Analysis 
Unlike most NWP centers where a retrieved skin temperature field is used as the boundary 
condition for radiance assimilation, the sea surface temperature properties are analyzed through 
an additional control variable in the GSI-based atmospheric data assimilation system and are 
therefore more consistent with the atmospheric state. The control variable used is the 
“Foundation temperature”, which is defined as the ocean temperature at a depth below where 
evaporative and radiative cooling and (solar) diurnal radiative heating from the surface are 
significant. These effects are modeled as part of the forward operators and are functions of 
wind speed and solar zenith angle. 

Figure 2. An illustration of the assumed profile for near sea-surface temperature. In the daytime, with light 
winds there is a warming in the upper 1-2m, radiative and evaporative effects result in a cooling in the 
upper few millimeters. 
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The VIIRS and AVHRR radiometers are two of the main data types used to constrain the sea 
surface temperature (SST) in the GSI system. While infrared radiances, due to their global 
coverage, are a major driver of the NSST, any observation in the GSI with a sensitivity to the 
sea surface temperature helps to constrain the analysis. For each observation type, a 
characteristic depth is assumed within the forward operator. For infrared radiances this depth is 
0.015mm, for microwave it is approximately 1mm, while in situ conventional observations (ships, 
fixed buoys, drifting buoys, saildrones etc.) range from 0.5m - 5m. Details of the use of satellite 
radiances are discussed in section 5. 

The inclusion of NSST as part of the operational GDAS was implemented as part of the GFS 
upgrade that occurred in 2017. Although the GDAS has utilized hybrid EnVar since 2012 for the 
atmospheric variables, the NSST-component to the GSI system was implemented using 3DVar 
for the foundation temperature control variable and has remained that way since the initial 
implementation. As the atmospheric system is not yet coupled to a dynamic ocean model, the 
background foundation temperature is generated by assuming persistence from one cycle to the 
next. The NSST-based system has gone through various upgrades in the past several years to 
incorporate new datasets and calibrate background/observation errors. It has since begun 
providing boundary conditions for downstream models, replacing previously used products such 
as Reynolds/OI and RTG-SST. See Figure 2 for an illustration of the assumed profile for NSST 
in the GDAS. 

3.2 Component assimilation systems 

The current operational version of the Global Ocean Data Assimilation System (GODAS) 
originated from the global 3DVar system developed at the Geophysical Fluid Dynamics 
Laboratory (GFDL) (Derber and Rosati 1989, Behringer et al. 1998, Behringer 2007). The 
GODAS system was developed around MOM-based ocean modeling for use in climate 
monitoring and seasonal prediction, and was included as a component of CFSv1 (Saha et al. 
2006). The more recent CFSv2/CFSR/CDAS (Saha et al. 2010) included the use of MOMv4 and 
weakly coupled assimilation, with the atmospheric component being driven by a GSI-based 
3DVar system. Separately, the operational ocean prediction system, RTOFS, is currently a 
HYCOM-based modeling application with initialization coming from the US Navy Coupled Ocean 
Data Assimilation (NCODA) system. In 2013, EMC signed an Memorandum of Understanding 
(MOU) with the Naval Research Lab to port NCODA to NWS supercomputers, allowing for 
access to internally produced initial conditions rather than relying on an external data feed. The 
NCODA based 3DVar assimilation system was implemented as RTOFS-DA as part of 
RTOFSv2. Plans are already underway for unification of the assimilation systems to be MOM-
and JEDI-based. An initial effort has recently been completed under the auspices of the 
UFS-R2O project to complete a 40 year marine reanalysis (MOM6/CICE6 + JEDI-3DVar), the 
so-called interim Next-Generation GODAS (ng-godas) project, demonstrating the maturity and 
efficacy of such a path forward for future UFS-based applications (Kim et al. 2022). 

Land data assimilation has evolved to be a mix of directly inserted products and observationally 
forced land model integration. The North American Land Data Assimilation System (NLDAS) 
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and Global Land Data Assimilation System (GLDAS) are based on the Noah land surface 
model, leveraging the offline NASA/Land Information System (LIS) as a driver and means of 
integrating observed quantities such as precipitation to update soil moisture. The NLDAS has 
been leveraged for initialization of regional land components and North American drought 
monitoring, whereas the GLDAS was included as part of the CFSR/CFSv2 and GFSv16. At 
present, the RAP and HRRR are the only operational systems that employ a so-called 
moderately coupled land-snow-atmosphere assimilation approach (Benjamin et al. 2022). This 
method is a one-way coupling via a simple covariance model between the near-surface 
atmospheric analysis increment and underlying soil-snow state. Work is now underway to 
develop JEDI-based land assimilation capabilities, including state estimation of quantities like 
snow and soil moisture, for use in the future UFS-coupled applications that will leverage 
Noah-MP (and/or other updated land models). 

While many NWP centers currently perform operational analyses of global aerosol species, 
atmospheric composition DA in the NWS is still in its infancy. The GEFS-Aerosol component, in 
operations since fall 2020, incorporates fire emissions derived from satellite observations, but 
no direct assimilation of retrievals or radiances is performed in this system, the aerosol tracer 
values are merely carried between forecast cycles. Looking ahead, a coordinated effort is now 
underway between NWS and NOAA OAR labs to develop an initial capability to use JEDI to 
assimilate aerosol optical depth (AOD) retrievals into a global aerosol prediction system. While 
the focus of the existing composition DA work has been on global aerosols to support improved 
subseasonal to seasonal (S2S) prediction capabilities, there is a parallel effort towards 
improving the NWS’s regional air quality forecasting system. Less mature than the global AOD 
effort, work funded by Disaster Relief Appropriations is underway on the initial exploration of 
assimilation of AOD as well as nitrogen dioxide (NO2) retrievals and surface in-situ particulate 
matter (PM2.5) observations into an online coupled regional air quality prediction system as part 
of RRFS. 

4 Current Use of Observations 

Observations are a foundational component to all aspects of environmental modeling and 
prediction, especially DA. Our current data assimilation systems are mature and assimilate a 
variety of observations from a diverse range of instruments (Tables 1-15). Such observations 
include relatively standard platforms like rawinsondes, dropsondes, buoys, METAR, satellite 
radiances, and bending angles from Global Navigation Satellite System-Radio Occultation 
(GNSS-RO). However our systems also routinely use more unique datasets, such as NOAA P-3 
provided Doppler radar winds from intense tropical cyclones, crowd-sourced personal weather 
station observations, and synthetic observations derived from official tropical cyclone advisory 
centers. This section will summarize the current use of observation in operational data 
assimilation for each data type. 

4.1 Decoding and Observation Processing 

Environmental observations arrive for operational assimilation from many sources and 
mechanisms and in a variety of formats. Decoding, reformatting, and preprocessing the 
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observations are critical for successful assimilation. The existing set of codes that performs 
these tasks were developed over several decades. The current workflow involves the receipt of 
data from a variety of sources, where observations are ingested, gathered, and decoded into 
standard Binary Universal Form for the Representation of meteorological data (BUFR) files. 
These files are then run through utilities to create a database of continuously populated NCEP 
BUFR tanks. The tanks are then converted into BUFR dump files for various applications. The 
dump step includes temporal and geographic filtering, duplication-checking, and preliminary 
quality control (QC) of data depending on the application. The quality control done at this step is 
pre-screening in nature and generally based on known purge flags and reject lists. For some 
observation types, dump files are read in directly by the application, such as the assimilation or 
verification codes. However, additional processing and quality control occur to create the NCEP 
prepBUFR file for selected in situ observations. A schematic representation of the workflow 
involved is presented in Figure 3. 

Like other aspects of the system, the preprocessing software requires reengineering, 
modernization, and generalization for the future. Technical difficulties are already being incurred 
in the transition to full integration of BUFR-disseminated observations, new and updated 
formats, large volumes of new data, and other unanticipated changes in aspects of the global 
observing system. JEDI-based infrastructure is envisioned to be a focal point for an overhaul of 
many aspects of the preprocessing software. A project to scope out the use of JEDI-based tools 
to replace legacy preprocessing infrastructure is underway and discussed as part of the 10-year 
strategy for DA (Kleist et al. 2023). However, work has already begun in earnest to enable the 
use of observations in current and future JEDI-based systems by working toward refactoring 
legacy observation processing and ingest codes (see Appendix). 

Figure 3. Schematic representation of the operational ingest, decoding, and observation preprocessing 
process. 
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4.2 In-situ and anchor observations 
NCEP currently assimilates a variety of in situ observations such as radiosonde, aircraft, buoy, 
surface station, dropsonde, and many more (Example distribution in Figure 4), to constrain 
temperature, moisture, wind, surface pressure, and sea surface temperature analysis. These 
observations along with GNSS-RO data serve as anchor data to prevent analysis drift. The 
utilization of the in situ data has been enhanced with variational quality control (VarQC; Purser 
2018b). It is not a criterion for rejection; rather, it is a re-weighting of observations. With VarQC, 
it is possible to significantly loosen the gross check and accept outliers into the assimilation. 
Hence, every observation can contribute to the analysis, but those with large departures 
between the observed and the simulated measurement will be strongly down-weighted. This is 
achieved by reformulating the observation cost function such that the probability distribution 
function conforms to a predetermined shape, for example a Huber norm distribution which is 
currently used in our operational systems. The predetermined shape generally exhibits tails 
broader than those of the familiar Gaussian (e.g. the source of the downweighting of deviant 
observation that Bayesian theory implies). 

4.2.1 Surface observations 
A wide variety of surface observations are routinely assimilated everyday in NCEP’s operational 
prediction systems. These include land and sea-based platforms, university-sponsored 
mesonets, and even crowd-sourced observations from citizen scientists. These are currently 
largely only used in the regional modeling systems and analysis of record (e.g. Morris et al. 
2020), with a subset feeding directly into the GFS/GDAS. 

Over land, we assimilate observations from standard aviation routine weather report (METAR) 
platform2. In the global system, this is limited to surface pressure, but for regional applications 
other quantities are assimilated, including 2 m AGL temperature and moisture, 10 m AGL wind 
along with ceilometer observations of cloud ceiling sky cover as well as visibility. The latter cloud 
ceiling and visibility fields are especially important in aviation applications, and are either directly 
assimilated via control variable transformation (e.g. Yang et al. 2020) or diagnosed through 
cloud analysis techniques (Benjamin et al. 2021). Similar observations are also assimilated from 
university-sponsored networks, road weather information systems, remote automatic weather 
stations, as well as those provided from programs like the Citizen Weather Observers Program 
(CWOP). The latter represents a large, crowd-sourced data set of observations provided from 
the general public. Each network possesses unique error characteristics, and in the case of 
networks with limited to absent instrument and siting standards (crowd sourced), strict quality 
measures are enforced. Further, recent advances of renewable energy projects have led to the 
emergence of meteorological tall tower observations and anemometers mounted atop turbine 
nacelles, the latter of which have been used in experiments but not yet in operations (Wilczak et 
al. 2015). 

2 E.g., Automated Surface Observing System, Automated Weather Observing System and 
SYNOP 
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Surface-based marine observations are routinely assimilated and come from platforms such as 
moored and drifting buoys, the Coastal-Marine Automated Network (C-MAN), fixed (including 
tropical moored buoy arrays such as TAO) and drifting buoys, ships, gliders, Saildrones, and a 
fraction of Argo floats sampling the near surface. Observations include near-surface variables of 
temperature, moisture, and wind alongside observations of wave height, sea surface or near 
surface temperature, salinity and surface current. 

Figure 4. Spatial distribution for atmospheric observations for the 6-hour window centered at 00 UTC on 
April 15, 2015, including (a) surface, (b) rawinsonde, (c) atmospheric motion vectors (AMVs), (d) aircraft, 
(e) Velocity Azimuth Display (VAD) winds, lidar wind profilers, and pibal balloons, and (f ), and Advanced 
Scatterometer (ASCAT) derived surface wind speeds. Figure 5.2 from “Next Generation Earth System 
Prediction: Strategies for Subseasonal to Seasonal Forecasts (2016)”, DOI 10.17226/21873. 
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BUFR Type 000 Surface Data Land 

Subtype Mnemonic Description 
Original 
Format Restricted 

000 
100 

synopr Synoptic report from fixed land station 
manual & automatic 

WMO 
BUFR 

Yes 

001 
101 

synop 
Synoptic report from fixed land station 
manual & automatic 

WMO 
BUFR 

No 

002 
102 

synopm 
synopmb 

Synoptic report from a mobile land station 
manual & automatic 

WMO 
BUFR 

No 

007 metar Aerodrome routine meteorological report - METAR 
Aerodrome special meteorological report - SPECI WMO No 

010 shefcm Product from SHEF format SHEF No 

011 sheff Automation of Field Operations and Services (AFOS), 
mainly precipitation 

SHEF No 

015 N/A 
Snow reports: snow cover, depth/density and water 
equivalent BUFR No 

020 nacell Meteorological data collected from NACELLE (wind 
turbine) netCDF Yes 

Table 1. EMC operational data inventory for surface land data. 

4.2.3 Marine Observations 
The sub-surface in situ observing system consists of eXpendable Bathythermographs (XBTs), 
Conductivity Temperature Depth (CTD) sensors, tropical moored buoy arrays (TAO/TRITON, 
RAMA and PIRATA) for the observation of subsurface temperature, salinity, currents and 
biogeochemistry variables. Subsurface data from the Argo platform is also used for initializing 
marine applications including RTOFS. ARGO subsurface data is critical for operational RTOFS 
because of a general lack of any subsurface observations over large regions. Underwater 
gliders are also ingested at NCEP and are currently the the only source of high resolution in situ 
measurement able to resolve the ocean at the sub-mesoscales. 
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BUFR Type 001 Surface Data Sea 

Subtype Mnemonic Description Original Format Restricted 

001 
101 

ships Ship - manual & automatic 
WMO 
BUFR 

Yes 

013 
113 

shipsu Ship - manual & automatic 
WMO 
BUFR 

No 

002 
011 
102 

dbuoy 
buoysh 
dbuoyb 

Drifting Buoy 
WMO 
SHEF 
BUFR 

No 

003 
011 
103 

mbuoy 
buoysh 
mbuoyb 

Moored Buoy 
WMO 
SHEF 
BUFR 

No 

004 
010 
104 

lcman 
cmansh 
lcmanb 

Coastal-Marine Automated Network (C-MAN) 
CMAN 
SHEF 
BUFR 

No 

005 
008 
012 

tideg 
tidgcm 
tidgsh 

Tide Gauge 
CREX 
CMAN 
SHEF 

No 

007 cstgd U.S. Coast Guard reports Local ASCII No 

009 river USGS River/Stream data Local ASCII No 

014 River Forecast (RVF) data SHEF Yes 

021 Canadian Water Level Local ASCII No 

022 Canadian Water Gauge Local ASCII No 

120 Saildrone (uncrewed surface vehicles) BUFR No 

Table 2. EMC operational data inventory for surface marine data. 

4.2.4 Rawinsondes 
One of the most important in-situ observing systems for NWP is the global rawinsonde network. 
Rawinsondes are launched from the ground and carry an instrument package through the 
troposphere, providing vertical profiles of temperature, moisture, pressure and winds. 
Rawinsonde launches are a coordinated, worldwide effort that generally occur twice a day, 
everyday, producing profiles valid at 00 UTC and 12 UTC. Additional launches may occur at 
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times besides those mentioned if there is a situation that warrants more in-situ observations in 
the troposphere such as before anticipated severe weather outbreaks. While higher resolution 
(vertical and temporal) radiosonde information is now becoming available through direct 
transmission and dissemination directly in BUFR, the current infrastructure is largely reliant on 
the older Traditional Alphanumeric Form (TAC) disseminated information with a few exceptions. 
This is discussed in more detail in the 10-year strategy (Kleist et al. 2023). 

BUFR Type 0002 Vertical Soundings Upper air and Dropsondes 

Subtype Mnemonic Description Original Format Restricted 

001 
101 

raobf Rawinsonde from fixed land station 
WMO 
BUFR 

No 

002 
102 

raobm Rawinsonde from mobile land station 
WMO 
BUFR 

No 

003 
103 

raobs Rawinsonde from ship 
WMO 
BUFR 

No 

004 
104 

dropw Dropwindsonde 
WMO 
BUFR 

No 

005 
105 

pibal Pilot Balloon (PIBAL) wind observations from 
land, ship, and mobile stations 

WMO 
BUFR 

No 

020 towerr Wind Energy Tower (future) netCDF Yes 

021 towern Wind Energy Tower (future) netCDF No 

Table 3. EMC operational data inventory for vertical soundings: upper air and dropsondes. 

4.2.5 Reconnaissance-based 

4.2.5.1 Dropsondes 

Similar to rawinsondes, dropsondes provide tropospheric profiles of temperature, moisture, 
pressure, and wind but are released from aircraft, often as a part of a field reconnaissance 
mission. Observations are taken as the dropsonde descends toward the surface. The data are 
transmitted during descent and received at NCEP for assimilation. Dropsondes are deployed in 
a variety of weather regimes, and are most commonly employed over the ocean where 
positioning for a rawinsonde release by ship is inconvenient. Dropsondes are typically employed 
as a part of tropical storm reconnaissance efforts, but have been employed for rapidly 
developing mid-latitude cyclones, and to provide in-situ observations of atmospheric rivers (e.g. 
Wilson et al. 2021). These types of observations have been shown to provide a positive impact 
on GFS forecasts for tropical cyclones (Brennan et al. 2015) and atmospheric rivers (Lord et al. 
2023). 
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4.2.5.2 Aircraft mounted radar 

A special case of Doppler radar data comes from the NOAA P3 aircraft, which are outfitted with 
X-band radars on the tail portion of the aircraft, called tail Doppler radar (e.g., Jorgensen et al. 
1983). These radars collect observations of tropical cyclones (Gamache et al. 1995) and 
transmit the radial velocity data to NCEP for assimilation. NCEP has been receiving these 
observations since 2010, and they are used in the regional hurricane applications (e.g., Tong et 
al. 2018). 

4.2.5.3 Flight level aircraft reconnaissance data 

Reconnaissance aircraft are typically outfitted with instrumentation so that they may measure 
flight-level winds, temperature, and moisture. This data is then transmitted from the aircraft via 
the high-density observations bulletin (HDOB) directly to NCEP for assimilation. Such 
observations typically accompany reconnaissance missions involving NOAA P-3 and other 
research aircraft. In addition to flight-level observations, HDOB can also include near surface 
wind speed measurements from the Stepped Frequency Microwave Radiometer mounted on 
the reconnaissance aircraft. When available, these observations are used in operations in 
hurricane applications. For the GFS/GDAS, HDOB observations are assimilated via dump files 
(e.g. not via prepBUFR). 

BUFR Type 004 Single Level Upper-Air Data Reconnaissance 

Subtype Mnemonic Description Restricted 

005 recco Flight level reconnaissance aircraft data No 

015 hdob 
High density aircraft observations (HDOB) from 
reconnaissance aircraft data 

No 

070 tldplr P3 Aircraft Tail Doppler radar (TDR) radial wind 
No 

Table 4. EMC operational data inventory for reconnaissance aircraft data, including radial wind. 

4.2.6 Aircraft 

Aircraft observations are a major source of information in the NWP systems with significant 
geographic coverage (Figure 5). They provide in-situ flight level and, around airports, profile 
information on temperature, humidity, and wind fields. Data are provided through a number of 
sources: the Aircraft Meteorological DAta Relay (AMDAR) which was initiated by the WMO to 
relay existing measurements from aviation partners; Meteorological Data Collection and 
Reporting System (MDCRS) which is a similar system run by NOAA; and Tropospheric Airborne 
Meteorological Data Reporting (TAMDAR) which is a bespoke weather monitoring system run 
by FLYHT Aerospace Solutions. 

There are two main challenges with the use of aircraft observations. The first is that the aircraft 
observations are often biased with respect to nearby radiosonde measurements and the second 
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is that the large density of observations around airports (and elsewhere if the reporting 
frequency is high enough) can result in the analysis drawing too closely to the measurements 
(representativeness errors becoming the dominant term). 

Aircraft biases are corrected in the analysis with a variational bias correction scheme (Zhu et al., 
2015). Currently this is limited to temperature observations. The scheme uses three predictors: 
a constant term, the aircraft vertical velocity and the square of the vertical velocity. Coefficients 
for each of these predictors are assigned for each individual aircraft (based on tail number). A 
novel approach based on projecting the observations onto a Hilbert curve has been developed 
to address the issue of excessive clustering of observations (Purser 2018a). This is an efficient 
way to increase the observation error in high observation density areas, thereby down-weighting 
the impact without completely removing otherwise good data. This is currently applied in the 
operational GFS for wind observations only. 

An interesting opportunity to observe the impact of a loss of a significant amount of commercial 
aircraft data associated with travel restrictions and lockdowns in 2020 during the early stages of 
the COVID-19 pandemic. While it is well documented that aircraft-based observations do 
improve the quality of analysis and subsequent forecast, particularly for certain applications 
such as the Rapid Refresh model (James and Benjamin 2017) and for individual metrics like 
upper tropospheric winds, no obvious loss of skill was observed by international partners during 
the early days of the pandemic (Ingleby et al. 2021). This is one demonstration of the 
robustness of certain aspects of the global observing system, particularly for modern day 
numerical weather prediction. 

Figure 5. Log(number of aircraft observations in a 1º box) for all four GDAS cycles on January 21, 2022. 

State of DA at NOAA/NWS/NCEP/EMC 20 



-

NOAA’s National Weather Service State of Data Assimilation 

BUFR Type 004 Single Level Upper-Air Data Aircraft 

Subtype Mnemonic Description Restricted 

001 airep 
Manual AIREP (Aircraft Report) format data 
Automated Automatic Dependent Surveillance (ADS) aircraft No 

002 pirep Manual PIREP (Pilot Report) format aircraft data No 

003 amdar Automated AMDAR (Aircraft Meteorological Data Relay) system 
aircraft data 

Yes 

004 acars 

Automated MDCRS system aircraft data from ACARS managed 
by ARINC 
MDCRS = Meteorological Data Collection and Reporting 
ACARS = Aircraft Communications Addressing and Reporting System 
Aeronautical Radio, Inc. = ARINC 

Yes 

006 eadas European automated AMDAR aircraft (E-AMDAR) data Yes 

009 camdar Canadian automated AMDAR aircraft data Yes 

010 tmdara 
Automated TMDAR (Tropospheric Meteorological Data Relay) 
system data from Panasonic 

Yes 

011 kamdar Korean automated AMDAR aircraft data Yes 

103 amdarb Automated AMDAR aircraft data Yes 

Table 5. EMC operational data inventory for single-level upper air data (aircraft). 

4.3 Remotely sensed (non-satellite) 

4.3.1 Profiler (and LIDAR, vertically pointing radar etc.) 
Upward facing atmospheric profilers can provide different information depending on the design 
of the instrument and the wavelengths used. For example, fixed Doppler radars can provide 
vertical profiles of atmospheric winds and combined with a Radio Acoustic Sounding System 
(RASS), can also provide virtual temperature profiles. Depending on the size and type of the 
profiler, these observations can be limited to just the planetary boundary layer, or can stretch to 
as high as the lower stratosphere. In the visible spectrum, LIDAR can give information on 
lower-level moisture, temperature, aerosols, and derive the height of the boundary layer. 

4.3.2 Doppler Radar 
The NWS operates a network of S-band Doppler dual polarization weather radars across the 
U.S. and territories. This network constitutes the only observing system capable of providing 
high resolution spatiotemporal observations of deep convective storms, making it an especially 
valuable data set for convective-scale data assimilation. Both Doppler radial velocity and 
reflectivity are assimilated in NOAA’s regional systems. 
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BUFR Type 002 Vertical Soundings Profilers 

Subtype Mnemonic Description Restricted 

009 prflrp Profiler winds originating from PIBAL No 

011 prflrb 
Radar wind profiler from Multi-Agency Profiler (MAP) 
Sodar wind profiler - acoustic sounder (SODAR) winds 

No 

012 rass 
Temperature profiles from wind profiling radars with Radio 
Acoustic Sounding Systems (RASS) components 

No 

013 prflrj Japanese Meteorological Agency profiler winds No 

014 prflrh Other profiler winds No 

016 prflre European profiler winds No 

Table 6. EMC operational data inventory for vertical soundings from profilers: wind direction and speed 
from Radar and Sodar; temperatures from Radar with RASS). 

Quality control is a significant challenge with radar observations and includes deliasing, clutter 
removal algorithms, and mitigating impacts from biological contamination. Without bird migration 
detection and removal, observations can have significant bias during migratory seasons. Thus, 
for their effective use, Doppler radar observations must undergo strict quality control (Liu et al. 
2016). 

At present, the most common method employed in operations for radar reflectivity assimilation 
involves converting reflectivity to a latent heating rate (Benjamin et al. 2016). This latent heating 
rate is then applied during a short period of time in the model initialization process (e.g. 
nudging), and replaces the heating tendencies coming from the model’s microphysics scheme. 
This approach has the advantage of being inexpensive to apply, making it well-suited for 
applications with exceptionally low latency. The impact of this technique is relatively short lived, 
with improvements in forecasts lasting 6-12 hours as depicted in Figure 6. 

However, more recent work has shown that direct assimilation of radar reflectivity in a 3D 
Ensemble-Variational framework ultimately produces a superior forecast relative to nudging 
(Duda et al. 2019). Building on those results, direct assimilation (Wang and Wang 2017) was 
recently introduced into operations with the HRRRv4 data assimilation system, a first step 
toward replacing the older nudging approach in the operational suite. 

Radial wind assimilation was first attempted in real time as a part of a demonstration for the 
1996 Atlanta Olympics and was later introduced into NCEP operations with the Eta model. To 
date, assimilation of radial winds has led to mostly neutral impacts - likely owing to relatively 
coarse resolution of the modeling systems and challenging quality control. However, as 
spatiotemporal resolution continues to increase, and our data assimilation systems improve, 
such observations may have greater impact. Indeed a recent study has shown that radial wind 
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observations can have a positive impact when super-observation parameters appropriate for the 
convective-scale are used (e.g. Lippi et al. 2019). 

In addition to Doppler radial velocities, one may also derive Velocity Azimuth Display (VAD) wind 
profiles from a single radar. VAD winds provide wind information similar to that provided from a 
wind profiler. In data denial experiments by James and Benjamin (2017) they showed that VAD 
wind observations yielded generally positive forecast impact, except at times during which 
biological contamination was likely present (e.g. bird migration). VAD winds are used in both 
global and regional data assimilation systems. 

Figure 6. Fractions Skill Score shown for two experiments running without (black) and with (red) 
radar-derived latent heat nudging. The difference between the two is shown in the dotted line with bold 
confidence intervals indicating statistically significant differences at the 95% level. Figure is adapted from 
Gustafsson et al. (2018). 

BUFR Type 006 Radar Data Doppler Radar 

Subtype Mnemonic Description Restricted 

010 - 033 rd2wxx NEXRAD radial wind (Level II) - hourly No 

040 - 063 rd2rxx NEXRAD reflectivity (Level II) - hourly No 

080 - 103 rdcwxx Canadian radar radial wind - hourly Yes 

110 - 133 rdcrxx Canadian radar reflectivity - hourly Yes 

Table 7. EMC operational data inventory for Doppler radar: radial wind and reflectivity.. xx: start time 
(UTC) of the measurement (e.g., 01 represents the measurement from 0100 - 0159 UTC) 
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BUFR Type 002 Vertical Soundings Doppler Radar 

Subtype Mnemonic Description Restricted 

008 nxrdw 
NEXRAD Velocity Azimuth Display (VAD) winds decoded 
from radar coded message 

No 

017 nxrdw2 
NEXRAD Velocity Azimuth Display (VAD) winds generated 
from Level II decoder No 

018 
Other radar Velocity Azimuth Display (VAD) winds (e.g., 
from Europe, New Zealand) No 

Table 8. EMC operational data inventory for vertical soundings: Doppler radar-derived wind speed and 
direction. 

4.3.3 Lightning 

There are several ground based lightning detection networks, most maintained by commercial 
entities (e.g. Earth Networks’ Total Lightning Network or Vaisala’s National Lightning Detection 
Network). These consist of numerous distributed antennas that can measure the location, 
polarity, and intensity of lightning strikes (both intra-cloud and cloud-to-ground). In regional 
applications lightning data fills an important gap in the radar network by providing observations 
of deep convective storms in regions that are poorly sampled by conventional means, such 
offshore and in complex terrain (e.g., Rudlosky et al. 2020). In regional, high resolution data 
assimilation applications lightning flash density is converted into a proxy radar reflectivity which 
is then assimilated. 

4.4 Remotely sensed (satellite data) 

In current NCEP operational systems, satellite data assimilated are from three types of satellite 
systems: polar-orbiting (sun-synchronous; low earth orbit), geostationary and the global 
navigation satellite system (GNSS). The polar-orbiting satellites operate in three orbit types 
(early AM, mid-AM, and PM; Figure 7). The constellation of polar-orbiting satellites ensures that 
data from any region of the Earth are no more than 6 hours old. The 3-orbit backbone provides 
full global coverage in a 6-hour assimilation window (Figure 8) and significantly contributes to 
forecasting skills. One thing to note is that the microwave (MW) sounders on legacy POES 
satellites are still operationally assimilated even though they are operating beyond their planned 
mission life. They are still providing valuable data and positively impacting NWP model 
performance. The geostationary satellites from GOES, Meteosat, and Himawari programs are 
valuable for NWP applications because satellites in this orbit provide a constant view of the 
same surface area and the constellation of these satellites provides full global coverage up to 
latitudes of 60 degrees. Geostationary satellites send information about clouds, water vapor, 
and wind every few minutes. This near-constant stream of information serves as the basis for 
most weather monitoring and forecasting. The radio occultation measurement from GNSS is a 
satellite remote sensing technique that uses GNSS measurements received by low-Earth 
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orbiting satellites to profile the Earth’s atmosphere and ionosphere with high vertical resolution 
and global coverage. 

This section will discuss the current use of satellite data, including radiances from Infrared and 
MW sensors, satellite-derived winds, and radio occultation from GNSS in the NCEP global 
operational system. Tables 9-15 document the inventory of the remotely sensed data from three 
types of satellite systems and their usage in the NCEP operational global DA system, 
respectively. 

Figure 7. Equatorial crossing time of various polar-orbiting satellites that are currently operational. The 
orbits continue to drift, and the equator times shown are valid for mid-2018 (Source: Bormann et al., 2022, 
ECMWF). 

Figure 8. Spatial coverage for MW data in a 6-hour window. 
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4.4.1 Infrared Radiances 

Infrared radiometers used in NWP sample the spectrum between 3 and 15μm. This spectrum is 
divided into the following broad regions (see Figure 9): 

1. The 15μm CO2 ν2 absorption feature. This primarily provides information on the 
atmospheric temperature profile. The central feature of this band (the Q-branch) contains 
information on stratospheric and mesospheric temperatures. 

2. The 4.3μm CO2 ν2 absorption feature. This also provides information on the atmospheric 
temperature profile but, due to interference from solar radiation and difficulties modeling 
non local thermal equilibrium effects, this region has not thus far been used extensively 
in NWP. 

3. The 6.3μm H2O ν2 absorption feature. This is the primary source of water-vapor 
information in the spectrum. There is significant interference from CH4 absorption in the 
longwave half of this feature, so channel selection here needs to take this into account. 

4. The longwave window region. This comprises surface-sensitive channels plus absorption 
from the water vapor continuum that potentially provides information on low-level 
humidity. 

5. The 10μm O3 absorption feature which provides limited O3 profile information, including 
at night when UV ozone sensors cannot function. 

6. The shortwave window. This also provides surface information, but is affected by solar 
radiation and measurements are noisier for most infrared sounders. 

Figure 9. An example of a clear sky infrared spectrum from IASI with the main spectral features identified. 

State of DA at NOAA/NWS/NCEP/EMC 26 



NOAA’s National Weather Service State of Data Assimilation 

A number of trace gas features are also present in the spectrum including the aforementioned 
CH4, as well as CO, N2O, CCl4, CFCs, HNO3, NO2, OCS, NO and SO2. Infrared radiances are 
currently used in operational DA either from hyperspectral sounders in low-earth orbit or 
geostationary imagers with around a dozen channels. In both cases data volumes are such that 
thinning strategies (spectral and spatial thinning for the hyperspectral sounders and 
super-obbing for the imagers) are required to allow the data to be utilized. 
Currently, the hyperspectral sounders’ channels are selected to heavily favor the 15μm CO2 ν2 

band, which primarily provides information on the atmospheric temperature field, with channels 
also assimilated in the longwave window, ozone and water vapor bands. Only clear sky 
radiances are operationally assimilated at present, with cloud detection based on Eyre and 
Menzel (1989). Clear channels are assimilated, so high-peaking channels may be assimilated in 
cloudy regions if they are not sensitive to the levels with clouds. 

Most satellite instruments are assimilated assuming that the observation errors are spectrally 
independent, i.e. the observation error covariance matrix is diagonal (“observation error” here 
refers not just to the instrument error, but other sources in the O-B calculation including forward 
model error and representativeness error but excluding model error) . These observation errors 
are often inflated to account for the true, correlated nature of the observation errors thereby 
potentially under-weighting the data in the assimilation system. Spectrally correlated 
observation errors have been introduced to the GSI in recent years (e.g., Bathmann and 
Collard, 2021) for IASI and CrIS (see Figure 10 as example) which use error estimation 
procedures introduced by Desrosiers et al. (2005). Although the Desrosiers technique is 
considered a superior method for estimating observation errors, tuning is still required to ensure 
positive impact and to ensure the observations error covariance matrix is not ill-conditioned. 
The geostationary infrared imagers are assimilated via a clear sky radiance (CSR) product 
where a segment array of pixels (15x15 for ABI, 16x16 for SEVIRI And Himawari) are combined, 
retaining only the clear scenes. This reduces the very large data volumes from these satellites 
as well as reducing the effective noise. At present only water vapor channels are assimilated in 
this way. A summary of the infrared radiances that are assimilated into the GFS can be found in 
Tables 9 & 10. 

Figure 10. CrIS NOAA-20 error correlation matrix over sea (left) and observation errors for CrIS NOAA-20 
and S-NPP compared to original errors that do not account for correlations (right). Figures adapted from 
Bathmann and Collard (2021). 
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Instrument Platforms Type Channels Assimilated 

CrIS SNPP, JPSS-1, JPSS-2 LEO hyperspectral sounder 84 Channels 

IASI Metop-B,C LEO hyperspectral sounder 165 Channels 

SEVIRI Meteosat-8,11 Geostationary imager 5,6 (6.2 & 7.3μm) 

ABI GOES-16 Geostationary imager 8,10 (6.2 & 7.3μm) 

AHI Himawari-9 Geostationary imager 8,9,10 (6.2, 7.0 & 7.3μm) 

Table 9. Summary of infrared radiances assimilated in the Global Forecast System. 

Satellite Sensor Satellite Usage 

Microwave 
Polar-Orbiting 

AMSU-A Advanced Microwave Sounding Unit - A 

NOAA-15 
NOAA-18 
NOAA-19 
MetOp-B 
MetOp-C 
AQUA 

Radiance 
All-sky 

MHS Microwave Humidity Sounding 
MetOp-B 
MetOp-C 

Radiance 

ATMS Advanced Technology Microwave Sounder NOAA-20 
S-NPP 

Radiance 
All-sky 

SSMIS Special Sensor Microwave - Imager/Sounder 
DMSP-16 
DMSP-17 
DMSP-18 

Radiance 

Infrared 
Polar-Orbiting 

IASI Infrared Atmospheric Sounding Interferometer MetOp-B 
MetOp-C 

Radiance 

CrIS Cross-track Infrared Sounder NOAA-20 
S-NPP 

Radiance 

VIIRS Visible/Infrared Imager Radiometer suite 
NOAA-20 
S-NPP 

Radiance 

AVHRR/3 Advanced Very High Resolution Radiometer / 3 
MetOp-B 
MetOp-C 

Radiance 

Infrared 
Geostationary 

ABI Advanced Baseline Imager GOES-16 
GOES-18 

Radiance (Clear-sky 
Radiance Product) 

SEVIRI Spinning Enhanced Visible Infra-Red Imager 

MeteoSat-08 
MeteoSat-09 
MeteoSat-10 
MeteoSat-11 

Radiance (Clear-sky 
Radiance Product) 

AHI Advanced Himawari Imager Himawari-8 
Himawari-9 

Radiance (Clear-sky 
Radiance Product) 

Table 10. List of Radiance data used in NCEP operational global DA system. 
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4.4.2 Microwave Radiances 

4.4.2.1 Data Coverage 

Microwave measurements make a major contribution to the observing system, which are 
routinely assimilated into models to determine the initial conditions for the weather forecast. 
Operational microwave radiances in NCEP data assimilation systems are from a 3-orbit 
constellation (see Table 10; Figures 7 & 8) operated by POES, JPSS, EUMETSAT, and DMSP 
programs. These microwave observations have been the most impactful remote sensing 
observations in the numerical weather prediction models for the past two decades (Eyre et al. 
2021). 

4.4.2.2 Channels 

The current NCEP operational data assimilation system assimilates microwave-sounding 
channels ranging from 23 to 183 GHz, sensitive to the surface, temperature, moisture, and 
hydrometers with an all-sky approach treating clear and cloudy scenes together. The channel 
selection for the current microwave sounders is based on the absorption feature of oxygen in 
the 50-60 GHz region, which provides temperature information and water vapor in the 23 and 
183 GHz regions. Channels at 23.8, 31.4, and 165.5 GHz are used for inferring clouds, 
hydrometeors, and surface parameters. Among these operational MW sounders, the 
assimilation of the AMSU-A and ATMS radiances is under an all-sky framework, whereas MHS 
and SSMIS are still used under clear-sky conditions only. Figure 11 and Table 11 summarize 
the channel characteristics of these operational MW sensors. 

Figure 11. Channel center frequencies of ATMS, AMSU-A, MHS, and SSMIS overlaid on the absorption 
spectra of oxygen and water vapor in the atmosphere. 
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4.4.2.3 Forecast Impact 

The all-sky framework gives a wider observational coverage (Figure 12) and brings information 
on water vapor, temperature, and clouds from MW observations into the analysis, benefiting 
forecasts. The all-sky framework has removed a spurious low-level moisture bias caused by the 
earlier clear-sky framework and improved forecast scores (Zhu et al. 2016). The ensemble 
forecast sensitivity to observation impact (EFSOI) study performed at the time when the 
AMSU-A all-sky framework was operational indicated that the AMSU-A observation has a 
significant positive total impact per cycle to 24-hour forecast error reduction (Figure 13). The 
tropospheric channels are beneficial to forecast error reduction with the greatest impact from 
channel 6 (54.4.GHz) peaking at 300 hPa (see Figure 14, left panel). Statistically, most of the 
AMSU-A observations show benefits to 24-hour forecast error reduction except for some 
locations at higher latitudes associated with storm tracks (Figure 14). 

Table 11. List of MW sensors, platforms, and channel information used in the operational DA system. 
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Figure 12. Spatial distribution of the innovation with bias correction for AMSU-A data passed quality 
control under clear (left panel) and all-sky (right panel) conditions. 

Figure 13. Ensemble forecast sensitivity to observation impact: total (left panel) and per observation (right 
panel) impact by observation type. 
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Figure 14. Ensemble forecast sensitivity to observation impact: total impact per AMSU-A channel 
(middle), impact from AMSU-A channel 2 (right), and the weighting function for AMSU-A channel 6 (left). 

4.4.2.4 Pioneering All-sky Microwave Assimilation 

Before 2017, the operational systems assimilated MW radiances in clear-sky conditions. Data 
affected by thick clouds and precipitation were excluded before the assimilation, and the effect 
of thin clouds in the data was removed through variational bias correction. The development of 
the all-sky framework made the assimilation of cloud-affected, non-precipitating radiances from 
AMSU-A and ATMS possible (Zhu et al. 2016; Zhu et al. 2019). As a result, more data are 
assimilated in regions where active weather conditions occur (Figure 12). The GFS under a 
clear-sky framework has been known to overestimate the stratus clouds along the continental 
western coasts. The all-sky approach reduces the relative humidity analysis at 850 hPa and 
correspondingly increases the temperature analysis at the same level. 

The operational all-sky assimilation features are summarized in terms of the observation and 
analysis perspectives, respectively. 

All-sky approach - observation perspective: 

● Use both clear and non-precipitating cloud-affected AMSU-A and ATMS radiances over 
the ocean; clear-sky radiance only over non-ocean surfaces. 

● Include cloud liquid water and cloud ice (non-precipitating hydrometeors) in the 
observation operator over the ocean to calculate the simulated radiances and Jacobians. 

● Screen out observations containing precipitation. Various measurements of the 
scattering effect from precipitation hydrometeors are applied to identify data affected by 
precipitation. Figure 15 illustrates a complete ATMS quality control flowchart, including 
the precipitation screening based on the scattering effect. 

● Model observation errors as a function of symmetric cloud amount to ensure Gaussianity 
of the observation error as proposed by Geer and Bauer (2011); Geer et al. (2012). 
Compute the standard deviation of the first-guess departures as a function of the 
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averaged cloud amount estimated from observation and background, respectively 
(Figure 16) 

● Situation-dependent observation error inflation. Additional inflation is constructed 
empirically based on the assumption that the observation error has a dependency on the 
physical parameters that are sensitive to the observation operator. Similar to variational 
quality control, the purpose of the additional inflation is to ensure that radiances with 
large first-guess departures can still be used in the analysis with reduced weights while 
not shocking the system. The situation-dependent error inflation significantly improves 
wind forecast in the tropospheric winds for both hemispheres. 

● No bias correction based on cloud liquid water over the ocean (the simulated 
observations now include the effect of cloud). 

● Assume cloudy scenes are overcast. 

All-sky approach - analysis perspective: 

● The control variable is total cloud condensate ( CW: sum of cloud liquid water and cloud 
ice). 

● The splitting of total cloud condensate into cloud liquid water and ice is a function of air 
temperature. 

● Set the standard deviation of the static background error for CW to 5% of its first guess. 
The static error covariance does not provide the cross-covariances between CW and 
other control variables. Flow-dependent error covariances, including cross-covariances, 
are estimated from ensemble forecasts, which plays a more important role in the 
analysis. 

● Bias correction estimate uses data passed quality control with consistent cloud 
information in the observation and forecast. Samples with conflicting cloud information 
within the field of view, such as clear forecast versus cloudy observation, are not used to 
estimate bias correction. 

● The use of the cloud control variable allows the cloud information from radiances 
mapped to temperature and moisture fields and cloud fields directly. 

● Additional cloud analysis increments are generated from the projection of the radiance 
information onto the cloud fields through the background error variances for clouds and 
the background error cross-covariance. 

● No hydrometer increments for forecast initialization. 
● Use 4D-incremental Analysis Update (4D IAU, Lei and Whitaker 2016) to propagate 

increments in the assimilation window to reduce the spin-down issue commonly 
observed in the initialization for hydrometers. 
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Figure 15. Quality control procedure for ATMS radiance under all-sky conditions. 

Figure 16. Left panel: the standard deviation of the first-guess departure before (black) and after (red) 
quality control calculated from the experiment cycles between 1 to 15 Nov 2013 and the assigned 
symmetric observation error (K, blue) for AMSU-A NOAA-19 channel 1 with respect to the mean cloud 
amount (k gm-2). Right panel: the normalized (red) and unnormalized (blue) PDFs of the first-guess 
departure after quality control, and the Gaussian PDF (black). 
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4.4.2.5 Evolution of GDAS and MW data 

Figure 17 documents the evolution of GDAS and the use of MW data over the years. 

The contributions already made and in progress towards the success of all-sky MW radiance 
assimilation in GDAS are summarized as the following: 

● Improvement in the forecast model 
○ Resolution - higher horizontal and vertical resolution, and raised model top 
○ Representation of cloud and moisture processes 
○ Initialization technique 

● Advanced data assimilation techniques 
○ Flow-dependent background error covariance through the use of ensemble 
○ Representation of model uncertainties through stochastic physics 
○ Situation dependent observation error model 

● More accurate radiative transfer modeling 
○ Scattering by hydrometeors 
○ Subgrid variability or cloud and precipitation overlap 
○ Simulation under fractional cloud coverage 

One reason to assimilate cloud and precipitation-sensitive observations is simply to make better 
use of existing data. Current NCEP operational systems only assimilate radiances from selected 
MW sounders (ATMS and AMSU-A). No data from MW imagers sensitive to moisture and 
clouds are used. 

ECMWF (Duncan et al. 2021) recently performed observing system experiments (OSEs) to 
examine the addition of MW temperature and humidity sounders from a baseline with no MW 
sounder at all, showing the incremental benefit of adding sounders to the assimilation system 
(Figure 18). The addition of MW sounders causes a significant increase in NWP skill, and the 
impact is largest in the stratosphere but is visible for all parameters and levels analyzed. The 
largest impacts are obtained from the first sounders added. A further benefit is observed from 
additional sounders, and no saturation is evident in the maximal setup. 

The addition of MW imagers such as AMSR-2 and GMI is also beneficial to the forecast 
(Kazumori et al. 2016; Lean et al. 2017). In addition, pioneering work at ECMWF to extend the 
all-sky framework to include all-surface assimilation had been implemented for SSMIS on DMSP 
F-17, which has near-global utilization including ocean, sea-ice, and land including 
snow-covered land surfaces (Geer 2013; Baordo and Geer 2016). 

The pathway for developing MW radiance data for NCEP operational systems in the near-term 
is clear. The next step is to include MW radiances from existing imagers such as GMI, AMSR-2, 
and SSMIS. For the longer term, many new observations giving information on clouds and 
precipitation, such as the Ice Cloud Imager that observes selected frequencies between 183 
GHz and 664 GHz (sub-mm range), cloud lidar, and radar, will be available in the next two 
decades. The pathway to enhance the current all-sky framework, including the observation 
operator, is discussed in the 10-year data assimilation strategy document (Kleist et al. 2023). 
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Figure 17. Evolution of GDAS and the use of MW data over the years. 

Figure 18. 500 hPa geopotential height RMSE change relative to no sounders from day 1 to day 5 in two 
regions: Southern Hemisphere (left) and Northern Hemisphere (Right). From Duncan et al. 2021. 
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4.4.3 Satellite-derived winds 
Satellite wind observations are either in the form of derived motion winds (DMWs); retrievals 
from scatterometry measurements; or, most recently, doppler wind lidar. Most of these types of 
observations that are currently assimilated in the GSI at NCEP are DMVs - where atmospheric 
features (usually clouds, but clear sky winds are derived from tracking features in water vapor 
imagery) are tracked in successive images to infer the wind field. These are derived products 
that are supplied by the respective space agencies. 

Scatterometry winds are also derived products. Scatterometers are active remote sounding 
systems where the backscatter from a microwave radar pulse from the ocean surface at various 
azimuth angles is used to infer sea-state and hence the near surface wind field. 

The experimental Aeolus satellite from the Atmospheric Dynamics Mission contains a first ever 
space-based doppler wind lidar that provides line-of-sight wind information. While this is 
assimilated at some NWP centers, the expected short lifetime of this instrument and lack of a 
follow-on mission resulted in the decision to not assimilate these data operationally in the GSI. 
There was substantial development work completed within GSI and the observation operator is 
readily available (Apodaca et al. 2023; Marinescu et al. 2022). 

Satellite Sensor Satellite Usage 

Polar-Orbing 
NOAA 

AVHRR/3 Advanced Very High Resolution Radiometer / 3 

NOAA-15 
NOAA-18 
NOAA-19 
MetOp-B 
MetOp-C 

Wind derivation by tracking 
clouds and water vapor features 

VIIRS Visible/Infrared Imager Radiometer Suite 
NOAA-20 
NPP 

Wind derivation by tracking 
clouds and water vapor features 

MODIS 
Moderate-resolution Imaging 
Spectro-radiometer 

TERRA 
AQUA 

Wind derivation by tracking 
clouds and water vapor features 

ASCAT Advanced Scatterometer MetOp-B 
MetOp-C 

Sea surface wind vector 

ABI Advanced Baseline Imager GOES-16 
GOES-18 

Wind derivation by tracking 
clouds and water vapor features 

Geostationary SEVIRI Spinning Enhanced Visible Infra-Red Imager 

MeteoSat-08 
MeteoSat-09 
MeteoSat-10 
MeteoSat-11 

Wind derivation by tracking 
clouds and water vapor features 

AHI Advanced Himawari Imager Himawari-8 
Himawari-9 

Wind derivation by tracking 
clouds and water vapor features 

Table 12. List of satellite winds used in NCEP operational global DA system. 
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Observation Type 

Satellite/ 
Instrument 

Water 
Vapor 
Cloud 
Top 

Water 
Vapor 
Clear Air 
Deep 
Layer 

Shortwave 
Infrared 
Cloud Top 

Longwave 
Infrared 
Cloud Top 

Visible 
Cloud 
Top 

Scatterometer 

Geostationary: 

GOES-16/ABI ✓ ✓ ✓ 

GOES-17/ABI ✓ ✓ ✓ 

Himawari-8/AHI ✓ ✓ ✓ ✓ 

Meteosat-8/Seviri ✓ ✓ ✓ 

Meteosat-11/Seviri ✓ ✓ ✓ ✓ 

Polar: 

Terra/MODIS ✓ ✓ ✓ 

Aqua/MODIS ✓ ✓ ✓ 

NOAA-15/AVHRR ✓ 

NOAA-18/AVHRR ✓ 

NOAA-19/AVHRR ✓ 

Metop-B/AVHRR ✓ 

SNPP/VIIRS ✓ 

JPSS-1/VIIRS ✓ 

Metop-B/ASCAT ✓ 

Table 13. Use of satellite winds based on platform, sensor, and spectral type. 

4.4.4 Ozone 
Apart from the information contained in the infrared radiances, the ozone analysis is constrained 
through the use of retrievals from ultraviolet ozone sounders. Retrievals are assimilated from the 
S-NPP OMPS (both nadir profile and total column) as well as the total column product from OMI 
on EOS-Aura (this latter instrument was launched in 2004). The OMPS total column product 
from NOAA-20 has been assimilated since November 2022. 
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Additional instruments exist, in particular GOME-2 on Metops -A and -C, MLS on Aura and 
TROPOMI on Sentinel 5-P, and nadir-profiler and limb-profilers on NOAA-20 which are not 
assimilated due to inconsistencies between the products. 

Ozone retrievals are assimilated using a simple observation operator (effectively treating the 
retrieval as an ozone sonde and ignoring the finite vertical resolution of the product) and 
assuming that the observations are unbiased. Explicit treatment of the vertical resolution of the 
products through the use of averaging kernels in the observation operator, plus the introduction 
of bias correction could greatly improve the exploitation of these data sources. It is important to 
note that while the 3D ozone fields are updated throughout the global atmospheric model, the 
focus has been on improving the representation of stratospheric ozone for its impact on 
radiative forcing (and in turn satellite radiances) and not tropospheric ozone for near-surface air 
quality applications. 

Space Agency Sensor Satellite Usage 

NOAA 

POES 
Polar Operational 

Environmental Satellites 

SBUV/2 Solar Backscatter Ultraviolet /2 
NOAA-15 
NOAA-18 
NOAA-19 

Ozone profile 

NOAA 

OMPS-limb Ozone Mapping and Profiler Suite 
S-NPP 
Not on 
NOAA-20 

Stratospheric ozone 
profile 

JPSS 
Joint Polar Satellite System OMPS-nadir Ozone Mapping and Profiler Suite 

NOAA-20 
S-NPP 

Ozone profile 

NOAA-20 
S-NPP 

Total-column ozone 

EUMETSAT 

EPS 
EUMETAT Polar System 

GOME-2 Global Ozone Monitoring Experiment - 2 
MetOp-B 
MetOp-C 

Ozone profile and 
Total-column ozone 

NASA OMI Ozone Monitoring Instrument AURA Total-column ozone 

EOS 
Earth Observation System 

MLS Microwave Limb Sounder AURA 
Ozone profile and 
Total-column ozone 

Table 14. List of ozone data used in NCEP operational global DA system. 

4.4.5 GNSS-RO 
Another form of satellite retrievals are radio occultations (RO), derived through the use of Global 
Navigation Satellite System (GNSS) transmitters. These observations are often referred to as 
GNSS-RO or GPS-RO (named for the North American-centric Global Positioning System, which 
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is included within GNSS). When a GNSS radio wave signal moves through the atmosphere, the 
trajectory is refracted or bent by the varying densities of the air it passes through, this results in 
a small but measurable delay (microseconds) in the arrival time of the signal. The signal is 
intercepted by a receiver on board a low Earth orbit (LEO) satellite, from which the time delay of 
the original signal can inform the thermodynamic properties of the part of the atmosphere that it 
traversed (see Figure 19). These raw phase delay measurements can be processed through a 
number of levels that rely on progressively more a priori assumptions. These are bending angle 
profiles; refractivity profiles and ultimately geophysical profiles (temperature and humidity). Eyre 
(1994) discusses approaches for assimilating refractivity profiles and bending angles into an 
NWP system. 

The GSI has previously assimilated refractivity observations, but with the adoption of a new 
forward operator in 2012, NCEP’s Bending Angle Method (NBAM, Cucurull et al. 2013), NCEP 
transitioned to assimilating bending angles instead. 

Figure 19. Schematic of the geometry of a GPSRO profile observation. 

GNSS-RO observations provide extensive coverage of the atmosphere, with no impact from 
clouds or the underlying land surface. Apart from providing information on temperature and 
humidity, GNSS-RO observations can also serve as an anchor for the variational bias correction 
of other observations being that they are largely unbiased. The first demonstration mission was 
the GPS-Met mission launched in 1995. Today, one of the primary sources of currently 
assimilated GNSS-RO data is COSMIC-2, a joint US-Taiwan venture that consists of six LEO 
satellites, providing over 5,000 occultations per day, mostly concentrated in the tropics and 
subtropics. When first operationally assimilated, COSMIC-2 provided more occultations than all 
other missions combined. Observations from COSMIC-2 are also of high quality with a high 
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signal to noise ratio and deeper penetration into the troposphere compared to other RO 
observations (Shao et al. 2023). More recently, NESDIS and EUMETSAT are purchasing 
GNSS-RO observations from commercial vendors such as PlanetIQ and Spire Global (and 
previously GeoOptics) for operational assimilation as part of their Commercial Weather Data 
Programs. Other GNSS-RO platforms currently assimilated in operations include the MetOp 
constellation, TerraSar-X, TANDEM-X, and KOMPSAT-5 (see Table 15 and Figure 20). 

Figure 20. Global coverage of select GNSSRO observations assimilated into the GDAS for one day 
(January 21, 2022) colored by constellations (COSMIC-2: blue; Spire: red; Metop: green; KOMPSAT-5: 
orange). 

4.4.6 Ground-based GNSS & PWAT Retrievals 

The ground-based GNSS network represents a source of precipitable water retrievals that can 
be assimilated for atmospheric NWP (e.g. Wolfe and Gutman 2000). To generate these 
retrievals we leverage the measurable signal delays between GNSS satellites and 
ground-based receivers. These delays may be generally explained by a relatively stable 
hydrostatic delay alongside a more variable wet delay. The wet delay corresponds to 
atmospheric water vapor content, and with this knowledge we may then derive the precipitable 
water (e.g. Bevis et al. 1992). 

NOAA’s rapidly updated regional atmospheric prediction system assimilates approximately 700 
of these precipitable water retrievals per analysis. Data denial work by James and Benjamin 
(2017) has shown that these precipitable water observations have a small but positive impact on 
short term forecasts from NOAA’s Rapid Refresh (RAP) forecast system. 
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Future priorities are shifting toward the assimilation of the zenith total delay as opposed to the 
retrievals. Zenith total delay conveniently does not require co-located observations of surface 
pressure and thus allows for additional observations to be assimilated. An early example of 
assimilation of this type of observation into a variational assimilation system is reported in De 
Pondeca and Zou (2001). 

Space Agency 
Probram 

Sensor Satellite Usage 

EUMETSAT 

EPS 
EUMETSAT Polar System 

GRAS 
GNSS Receiver for Atmospheric 
Sounding 

MetOp-B 
MetOp-C 

Bending Angle 

NASA 

GRACE Follow-on 
Recovery and Climate 

Experiment 

Tri-G Triple GPS 
GRACE-FO 
(2 sats) Bending Angle 

KARI 

KOMPS 
Korea Multi-Purpose Satellite 

AOPOD 
Atmosphere Occultation and Precision 
Orbit Determination 

KOMPSAT-5 Bending Angle 

NSPO/NOAA/UCAR 

COSMIC 
Constellation Observing System 

for Meteorology and 

TGRS Tri-GNSS Radio Occultation System 
COSMIC-2 
(FormoSat) Bending Angle 

DLR (Germany) 
TerraSAR Tracking, Occlusion and Ranging 

TerraSAR-X Bending Angle 

TerraSAR TanDem-X Bending Angle 

MDE (Spain) 

SEOSAR/PAZ
Satellite Español de 

Observación SAR (PAZ) 

ROHPP 
Radio Occultations and Heavy 
Precipitation with PAZ 

SEOSAR/PAZ Bending Angle 

GeoOptic 

CICERO 
Community Initiative for 
Continuing Earth Radio 

Occultation 

CION CICERO Instrument for GPS-RO CICERO Bending Angle 

SPIRE 

Low Earth Multi-Use 
Receiver 

STRATRO STRATOS Lemur-2 Bending Angle 

Table 15. List of radio occultation data used in NCEP operational global DA system. 
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4.4.7 Radar altimetry 

Along with the remotely sensed observation in the MW and IR band that are sensitive to the 
ocean and sea-ice and are described previously, radar altimetry is an important source of 
information for the ocean and cryosphere. It is the primary source of information for ocean 
circulation, ocean thermal and haline content, ocean volume, sea-ice volume and significant 
wave height. Most of the altimeters currently operating are ingested and assimilated into marine 
systems, including CryoSat-2, Jason-3, Sentinel-3A, Sentinel-3B and Sentinel-6A Michael 
Freilich (Jason-CS). 

5 Assimilation Monitoring and Observation Impacts 

Given the tremendous volume of data that is processed and assimilated for any individual cycle, 
along with the complexity of modern data assimilation systems, regular monitoring and 
automated alerts are critical for detection of potential issues and assessing the need for 
intervention. While quality control plays an important role in catching data that should not be 
assimilated, there are many circumstances for which intervention is necessary to start rejecting 
entire classes of observations, e.g. for satellite channels/platforms going bad, etc. Further, it is 
important to regularly monitor things like data counts (see Figure 21), innovation statistics, etc. 
to observe the overall health of the system. NCEP currently has several automated tools to 
assist with monitoring and alerting to operational issues. The tools are designed to monitor 
aspects of the assimilated observations as well as things like the behavior of the solver (e.g. 
variational minimization). The current set of tools have been developed and accumulated over 
the years, and need to be reimagined through the lens of future needs and infrastructure. New 
capabilities that are being developed as part of the JEDI transition and acceptance process will 
be the foundation for a future, holistic approach to operational assimilation monitoring. 

In addition to internal monitoring of observation quality and assimilation performance, there is 
regular exchange of information across the international NWP community. This includes things 
like regular publication and sharing of reject lists, notifications when particular systems (such as 
individual satellites or channels) have issues or go bad, or anomalous performance of particular 
subsets of observations. There is also additional information produced and provided to the 
WMO Integrated Global Observing System (WIGOS) Data Quality Monitoring System 
(WDQMS). This is a relatively new system under the WMO with a growing set of observations 
being reported upon. 

The ability to assess and understand the impact of assimilation of observations for improving 
the analysis and reducing forecast error is another important element, not only for monitoring 
system performance, but informing how to optimize the system in a holistic manner. At present, 
there are two approaches that are currently taken to assess the impact of observations or 
analysis quality in operational systems at NCEP. The first approach is to perform Observing 
System Experiments (OSEs), also known as data addition or denial experiments. While 
straightforward to do and interpret, these are computationally expensive. A second approach, 
cross-validation, has been utilized to assess the quality of analysis in the RTMA/URMA by 
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withholding subsets of data through offline analysis or as part of the outer loop configuration. 
While both of these approaches are useful, there are new techniques available to add to the 
toolkit for assessing the assimilation of observations including Analysis/Forecast Sensitivity to 
Observations Impact (ASOI/FSOI), ensemble variance reduction methods (Harnisch et al. 
2013). The use of ASOI/FSOI, in particular, has become standard practice at many operational 
centers. Preliminary versions of GSI-based Ensemble FSOI (EFSOI) have already been 
developed and are being matured as an interim solution, while investment in JEDI-based FSOI 
is being pursued in parallel as part of the future capabilities. A concerted effort will be made to 
expand and build a monitoring toolkit that will be applied, and unified, for assimilation 
components across the spectrum of UFS-based systems. 

Figure 21. Total number of observations available to (red) and used by (gray) the GSI for each 
observation type for the GDAS analysis cycle valid March 20, 2023 12 UTC. Note the x-axis is on a 
logarithmic scale. 
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6 Current Implementation Procedure 

The process of implementing DA changes into NCEP operations involves several steps. 
Specific steps vary based on the nature of the changes to be implemented. For example, 
assimilating a new observation type involves more steps than updating the variational solver 
within the DA application. Figure 22 shows the typical implementation steps when adding a new 
observation type. Other changes to the DA system will usually skip steps 1-4a and, instead, 
begin with 4b. 

Figure 22. Flowchart depicting the iterative process by which new observations are implemented into an 
operational data assimilation system. 
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The steps for an observation upgrade are expanded upon below. 

1) Data acquisition and ingest 
For any observation to be assimilated, a reliable data stream must be set up to prepare 
the data for use in DA. Observations are typically provided in BUFR format - the WMO 
standard - but alternative methods may be acceptable for non-operational datasets. 
Timeliness, the time from data collection and transmission to ingest and preparation for 
use by DA, is a critical factor. Operational DA systems run with strict data cutoff 
windows. Late arriving data will not be assimilated in real-time. Such data, however, may 
still be of use for reanalysis or verification. 

2) Development of the observation operator 
Prior to deployment or launch, every instrument needs to be characterized and 
calibrated so that the observation operator (and its adjoint) and error model can be 
developed. The observation operator simulates observation values from model fields. 
For example, the Community Radiative Transfer Model (CRTM) simulates radiances 
from model predicted states. New satellite sensors require instrument spectral response 
functions in order for the CRTM to simulate the given data. 

3) Evaluate observations and observation operator 
Although the instrument behavior should be well-characterized before deployment, it is 
still necessary to evaluate the instrument’s performance within the context of the DA 
system. Comparison of observation operator simulated values with the observations 
inform quality control and bias correction decisions as well as evaluating the full error 
budget. These comparisons provide vital feedback on the quality of the observations, 
observation operator, and input model fields. 

4) Development of observation quality control, error tuning and/or other algorithm changes 
The evaluation of the instrument performance at the monitoring stage is combined with 
expert knowledge of the expected characteristics of the instrument and forward operator 
to design quality control, bias correction and observation error assignment strategies. 
The concern here is not just errors in the observations themselves, but also the ability to 
model them. For example, with radiance data it is usual to either remove observations 
that are affected by clouds or to inflate errors in those situations to reflect the fact that 
cloudy radiative transfer is more challenging than for clear sky. The error 
characterization needs to include all aspects, including instrumentation, forward model, 
and representativeness errors. 

DA development also includes improvements to DA infrastructure or algorithms (see 
sections 3 and 4). Other DA implementations address technical changes instead of 
focusing on infrastructure or science upgrades. Technical implementations include 
transition to new operational computing environments, updates to support software, 
changes in data format, etc. 
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5) Testing within a cycled analysis-forecast system 
The full data assimilation and forecast system must be cycled for a sufficiently long time 
to generate robust statistics documenting the impact of observation or algorithm changes 
on analysis and forecast performance. “Sufficient duration” refers not only to the length 
of a given continuously cycled test but also to tests over different seasons (e.g, 
meteorological winter and summer). 

Some analysis and forecast systems have extensive downstream dependencies (e.g., 
GFS). Changes to such systems require downstream applications to also be tested and 
evaluated in either cycled mode or for select time periods. 

The entire testing process requires considerable computational resources and staff 
commitment over an extended period. These resource demands, both staff and 
machine, often compete with other evaluations, computational constraints, and other 
projects. The availability of these resources is the biggest single factor in ensuring a 
timely implementation of a new observation or other DA changes. 

6) Verification and Evaluation 
Analysis and forecast performance from the cycled system is evaluated using a variety 
of objective metrics. These metrics compare output against assimilated and independent 
observations as well as cycled and independent model fields. Subjective evaluations 
(case studies, mean states, etc) are conducted by developers and/or customers. If DA 
changes impact downstream applications, output from the downstream systems also 
needs to be examined and evaluated. All verification, evaluations, and customer 
feedback is collected into summary reports for presentation to management. 

7) Implementation decision 
Verification feedback informs management’s decision to move forward with the proposed 
changes or identifies areas that require additional work. In the later case development 
returns to one of the previous steps. 

8) Implementation 
Pending management’s decision to move forward with the proposed changes, the 
package is prepared for operational implementation. DA implementations are often 
bundled with other changes. EMC staff work across branches to prepare tags, bundle 
components, prepare release notes, and ensure compliance with NCEP Central 
Operations (NCO) implementation standards. NWS notifications, with various time leads, 
must be published informing NWS and external customers of upcoming changes. Some 
of these notices may be disseminated earlier in the implementation process. 

NCO staff receive the full implementation package and perform infrastructure testing. 
Noted issues are returned to developers to be addressed and updates are passed back 
to NCO. Large implementation packages (e.g., GFS) often require NCO to run 
multi-week real-time parallels prior to implementation. Issues with the computational 
environment, critical weather days, instrument failures, or other unforeseen events can 
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delay, possibly derail, implementations. As such there can be a sizable time delay 
between delivery of implementation packages and the actual implementation. During this 
delay at least a portion of DA staff time is dedicated to monitoring the 
pre-implementation package and responding to issues as they arise. 

Implementing changes into operational NCEP DA systems is a multistep process involving a 
wide range of subject matter experts (internal, cross agency, and external collaborators) along 
with the consumption of considerable computational and storage resources. These realities 
expand implementation timelines. While consolidating NWS NWP systems reduces the number 
of systems to update, the increasing complexity of the remaining NWP systems requires 
detailed upgrade plans with well defined deliverables, clear decision points, and dedicated staff 
and computer resources. Research and development on cutting edge science involves a 
degree of uncertainty which must be accounted for in project plans. Balancing this with the 
incremental yet steady implementation of innovations presents challenges. This speaks to both 
the science and art of operational NWP. 

7 Summary 

This document presents an overview of the past and present operational data assimilation 
capabilities at NWS/NCEP. The data assimilation infrastructure has evolved over the years, 
including an initial foray into unification across applications and embracing of community 
development through the GSI. Similar to other centers, NCEP embraced variational data 
assimilation and expanded to the incorporation of ensembles for prescribing background error 
covariances. Separately, several developments have occurred to enable assimilation for 
non-atmospheric data assimilation systems such as the implementation of capabilities for the 
RTOFS system. A new era is being envisioned as developments are now underway to work 
toward further unification of infrastructure to enable coupled assimilation for UFS-based 
applications. This document also provided a thorough review of the utilization of the global 
observing system and outline of current implementation procedures. 

For decades, NCEP has been a world leader in operational NWP, pioneering advancements at 
global and regional scales, encompassing a whole suite of forecast applications that have data 
assimilation components. With that legacy in mind, a companion document (Kleist et al. 2023) 
has been created that will serve as a roadmap for the next decade of progress in data 
assimilation here at NCEP. Building off of the material presented here, with this 10 year strategy, 
NCEP will have the vision outlined to continue to be a world leader in DA and NWP. 
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Appendix A: Observation Processing Reengineering and IODA 

IODA is the Interface for Observational Data Access. It is the component of JEDI that ingests 
and processes observational data for use with other JEDI components. It provides the interfaces 
that bridge the external observation data to the components with JEDI that utilize those data, 
namely the Object Oriented Prediction System (OOPS) and the Unified Forward Operator 
(UFO). IODA is called extensively throughout the JEDI system wherever observation-space data 
is created, read, and written. As illustrated in Figure A1, IODA deals with generic observation 
information from the data provider (e.g., GTS Network) and those pre-processed by various 
NWP centers. IODA also serves as an engine to store and share information related to 
observations generated during the data assimilation process, such as simulated observations 
(H(x)), the first-guess departures (O-B), analysis-guess departures (O-A), quality control flags, 
derived variables, bias correction, and any desirable DA results for diagnostics. 

The data structure model in IODA is based on the HDF (Hierarchical Data Format) data model 
and consists of elements that allow the data to be organized in a similar fashion as a file system 
(e.g., files in a directory, directories in a directory). The IODA data structure model contains 
three primary classes: Group, Variables, and Attributes. These classes are combined to create a 
data structure model resembling a file system structure. The IODA group is analogous to a 
directory where a Group can contain another Group to form a hierarchical structure. More 
detailed information on the IODA data model can be found in the IODA section of the online 
JEDI documentation. 

The IODA architecture with its subsystems is illustrated in Figure A2. As described above, IODA 
data (middle layer) is based on the HDF data model and is organized like a computer file 
system. The top (storage) layer handles the conversion of various data sources and formats to 
the standard IODA data model. The result of the conversion can be stored either in memory or 
written to disk (currently supported file formats include HDF5/netCDF4 and ODB). The bottom 
layer is the client-facing API layer which handles variables related to observational data in terms 
of their functionalities. The client API layer and the data model provide a consistent, stable 
interface for the clients of IODA. 
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Another important aspect related to IODA data handling is to unify the data conventions (e.g., 
name, unit, data type) in JEDI. The IODA library is called extensively throughout the JEDI 
applications wherever observation space data is created, read, and written. It handles 
observations and data used in data assimilation in general. Besides standardizing the IODA 
data model, It is also necessary to unify data in terms of their names and units common to JEDI 
users and developers. For the purpose of unifying the IODA convention, a document with a 
series of tables was created to provide variable and attribute description, unit, data type, 
dimensions, and standardized names for all observations and data in the JEDI system. More 
details can be found in JEDI Data Conventions and Convention Tables from the JEDI 
Documentation. 

Incorporating JEDI components into the NCEP operational DA system requires re-engineering 
our current observation processing procedures to adapt the standardized IODA data model and 
unified data convention. The objectives of the re-engineering and related considerations are 
summarized as follows: 

● Develop a robust and user-friendly BUFR converter 

○ A C++ tool that converts BUFR data to IODA ObsGroup object (e.g., NetCDF or 
memory) is under development as part of the IODA engines in JEDI. 

○ The mapping between BUFR and IODA will retain the original physical meaning and 
unit of the BUFR mnemonic without variable transform. 

○ Generalize the method of retrieving data from BUFR in IODA. The current NCEP 
BUFR library prevents users from properly accessing BUFR messages encoded in 
delayed replication without special handling. Therefore a query utility has been 
developed in C++ in IODA to generalize the process with precision (Figure A3). 

○ The converter can handle various BUFR formats: prepBUFR, NCEP BUFR, and 
WMO BUFR. 

● Implement the quality control and variable transform procedures developed in the 
prepBUFR processing in JEDI UFO, where data filtering occurs (see Figure A4). 

○ Quality control procedures (Figure 3) designed to perform at prepBUFR processing 
for radiosonde (CQCBUFR), Radar wind profiler (PROFCQC), radar-derived winds 
from Velocity Azimuth Display (CQCVAD), aircraft (PREPACQC), and basic sanity 
checks for all data types (PREPDATA) are in JEDI UFO. 

○ The variable transform is necessary since the original observations can differ from 
those required by the DA system. For example, the wind observations are often 
wind speed and direction, whereas the DA system requires eastward and northward 
wind components for analysis. 

● The BUFR converter will be incorporated into IODA as the backend part of the IODA 
engines so that the JEDI can read and process BUFR directly. Currently, the BUFR 
converter is a stand-alone tool. 
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The BUFR converter is at its final stage of development. Most of the data types from BUFR 
dump and prepBUFR are under extensive testing. Each data type has a reference observation 
data set from GDAS for verification to ensure that the BUFR converter works correctly. 

Figure A1. High-level data flow through the IODA subsystem. Figure adapted from online JEDI 
Documentation. 

Figure A2. IODA structure and its internal structure of the IODA subsystem. 
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Figure A3. A schematic diagram describing the relationship between the NCEP BUFR library and IODA 
BUFR converter. 

Figure A4. Schematic representation of the revised l ingest, decoding, and observation preprocessing 
process (the revised part is in the green block). 
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Appendix B: Abbreviations, Acronyms, and Terminology 

2DVar Two-Dimensional Variational 
3DVar Three-Dimensional Variational 
3DEnVar Three-Dimensional Ensemble Variational 
4DVar Four-Dimensional Variational 
4DEnVar Four-Dimensional Ensemble Variational 
ABI Advanced Baseline Imager 
ADA Advanced Doubling and Adding Method 
AHI Advanced Himawari Imager 
AGL Above Ground Level 
AMDAR Aircraft Meteorological DAta Relay 
AMSR Advanced Microwave Scanning Radiometer 
AMSU-A Advanced Microwave Sounding Unit - A 
AMVs Atmospheric motion vectors 
AOD Aerosol Optical Depth 
AoR Analysis of Record 
ASCAT Advanced Scatterometer 
ASCII American Standard Code for Information Interchange 
ASOI Analysis Sensitivity to Observations Impact 
ATMS Advanced Technology Microwave Sounder 
AVHRR Advanced Very High Resolution Radiometer 
BUFR Binary Universal Form for the Representation of meteorological data 
C-MAN Coastal-Marine Automated Network 
CDAS Climate Data Assimilation System 
CFS Climate Forecast System 
CFSR Climate Forecast System Reanalysis 
CICE Los Alamos sea ice model 
CLWP Cloud liquid water path 
COSMIC Constellation Observing System for Meteorology, Ionosphere and Climate 
CPC Climate Prediction Center 
CrIS Cross-track Infrared Sounder 
CRTM Community Radiative Transfer Model 
CSR Clear sky radiance 
CTD Conductivity Temperature Depth 
CW Cloud water 
CWOP Citizen Weather Observer Program 
DA Data Assimilation 
DFI Digital Filter Initialization 
DMSP Defense Meteorological Satellite Program 
DMV(W)s Derived Motion Vectors (Winds) 
DTC Developmental Testbed Center 
ECMWF European Centre for Medium-Range Weather Forecasts 
EFSOI Ensemble Forecast Sensitivity to Observations Impact 
EMC Environmental Modeling Center 
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EnKF Ensemble Kalman Filter 
EnSRF Ensemble Square Root Filter 
EOS Earth Observing System 
EUMETSAT European Organization for the Exploitation of Meteorological Satellites 
FSOI Forecast Sensitivity to Observations Impact 
FV3 Finite-Volume Cubed-Sphere dynamical core 
GDAS Global Data Assimilation System 
GEFS Global Ensemble Forecast System 
GEOS Goddard Earth Observing System model 
GFDL Geophysical Fluid Dynamics Laboratory 
GFS Global Forecast System 
GLDAS Global Land Data Assimilation System 
GMI Global Precipitation Measurement Microwave Imager 
GNSS Global Navigation Satellite System 
GODAS Global Ocean Data Assimilation System 
GOES Geostationary Operational Environmental Satellites 
GOME Global Ozone Monitoring Experiment 
GPS Global Positioning System 
GSI Gridpoint Statistical Interpolation analysis system 
GTS Global Telecommunication System 
HAFS Hurricane Analysis and Forecast System 
HDF Hierarchical Data Format 
HDOB High-Density Observations Bulletin 
HRRR High Resolution Rapid Refresh 
HWRF Hurricane Weather Research and Forecasting model 
HYCOM HYbrid Coordinate Ocean Model 
IASI Infrared Atmospheric Sounding Interferometer 
IAU Incremental Analysis Update 
IODA Interface for Observational Data Access 
IR Infrared 
JCSDA Joint Center for Satellite Data Assimilation 
JEDI Joint Effort for Data assimilation Integration 
JPSS Joint Polar Satellite System 
LEO Low Earth Orbit 
LETKF Local Ensemble Transform Kalman Filter 
LIDAR Light Detection and Ranging 
LIS Land Information System 
MDCRS Meteorological Data Collection and Reporting System 
METAR aviation routine weather report 
MHS Microwave Humidity Sounding 
MLS Microwave Limb Sounder 
MODIS Moderate-resolution Imaging Spectro-radiometer 
MOM Modular Ocean Model 
MOU Memorandum of Understanding 
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MRW Medium-Range Weather 
MW Microwave 
NAM North American Mesoscale forecast system 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCO NCEP Central Operations 
NCODA US Navy Coupled Ocean Data Assimilation system 
NCEP National Centers for Environmental Prediction 
NDAS North American Data Assimilation System 
NDFD National Digital Forecast Database 
NEMS NOAA Environmental Modeling System 
NESDIS National Environmental Satellite, Data, and Information Service 
NEXRAD Next Generation Weather Radar 
NLDAS North American Land Data Assimilation System 
NOAA National Oceanic and Atmospheric Administration 
NPS NCEP Production Suite 
NSST Near Sea Surface Temperature 
NWP Numerical Weather Prediction 
NWS National Weather Service 
OAR NOAA Office of Oceanic and Atmospheric Research 
ODB ECMWF Observation DataBase 
OMF Observation Minus Forecast 
OMI Ozone Monitoring Instrument 
OMPS Ozone Mapping and Profiler Suite 
OOPS Object-Oriented Prediction System 
OSEs Observing System Experiments 
PDF Probability Density Function 
POES Polar Operational Environmental Satellites 
PWAT Precipitable water 
QC Quality Control 
R2O Research to Operations 
RADAR Radio Detection and Ranging 
RAP Rapid Refresh 
RASS Radio Acoustic Sounding System 
RO Radio Occultation 
RRFS Rapid Refresh Forecast System 
RTMA Real-Time Mesoscale Analysis 
RTOFS Real-Time Ocean Forecast System 
S2S Subseasonal-to-Seasonal 
SBUV Solar Backscatter Ultraviolet 
SDL Scale-dependent localization 
SEVIRI Spinning Enhanced Visible Infra-Red Imager 
SHEF Standard Hydrologic Exchange Format 
SKEB Stochastic Kinetic Energy Backscatter 
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SNPP Suomi National Polar-orbiting Partnership 
SPECI aviation special weather report 
SPPT Stochastically Perturbed Parameterization Tendencies 
SSI Spectral Statistical Interpolation analysis system 
SSMIS Special Sensor Microwave - Imager/Sounder 
SST Sea surface temperature 
SYNOP Surface synoptic observation 
TAC Traditional Alphanumeric Codes 
TAMDAR Tropospheric Airborne Meteorological Data Reporting 
TLNMC Tangent-linear Normal Model Constraint 
TROPOMI TROPOspheric Monitoring Instrument 
UCAR University Corporation for Atmospheric Research 
UFO Unified Forward Operator 
UFS Unified Forecast System 
URMA UnRestricted Mesoscale Analysis 
UTC Universal Coordinated Time 
UV Ultraviolet 
VAD Velocity Azimuth Display 
VarBC Variational Bias Correction 
VarQC Variational Quality Control 
VIIRS Visible/Infrared Imager Radiometer Suite 
WDAS Whole atmosphere Data Assimilation System 
WMO World Meteorological Organization 
WRF Weather Research and Forecasting model 
XBTs eXpendable Bathythermographs 
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