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Abstract 

To improve the quality of wind and wave forecasts post-processing algorithms are developed to bias-

correct the variables of interest using machine learning models trained with buoy data. Two types of deep 

neural networks are developed and studied to improve the accuracy of ERA5 hourly data of 10-m wind 

speed (wspd) and significant wave height (swh) at two locations with distinct metocean conditions. The 

algorithms are the multilayer perceptron (MLP) and the long short-term memory (LSTM) neural 

networks. The latter is built based on a range of previous time steps included in the input, evaluating the 

optimal value. Several metrics such as bias, scatter index, root mean square error and correlation 

coefficient are used to evaluate model performances. After extensive examination and experimentation 

regarding feature selection, filtering windows, and model architecture, the results show better 

improvements for swh than wspd, and that LSTM outperforms MLP significantly. The original 

correlation coefficients between ERA5 and observations for swh have been improved and the ERA5 

RMSE has been reduced with the LSTM post-processing model. 

Keywords: neural networks, long short-term memory, wind and wave modeling, reanalysis, feature 

selection, bias correction. 

1. Introduction 

Accurate wind and wave information is fundamental for many activities, including coastal 

safety, marine transportation and alerts of extreme events. In terms of in-situ observations, buoys 

are considered to provide the most precise measurements and present a pivotal source of 
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information (e.g., Menéndez et al. 2008, Gemmrich et al. 2011); however, the data is limited to 

discrete locations, normally close to coasts, and they often have various gaps or limited duration. 

The progress in numerical modelling has notably supplemented the various sources of wind and 

wave data with an improved spatial and temporal resolution, through the reanalysis projects. 

Reanalyses incorporate observations from a wide range of platforms while implementing the 

same numerical model and data assimilation technique for consistency – becoming an important 

and reliable source of metocean data for ocean engineering applications.  

Data assimilation in numerical weather prediction models has had an important role in 

improving the accuracy of the predictions. In general, two main approaches have been applied in 

data assimilation, the sequential methods and the variational approaches. Both methods start 

from a background field that has been predicted by the model, which is compared with 

observations to determine the error, which becomes the correction to be imposed on the 

predicted values to improve them. 

In sequential schemes, the background condition at the forecast time step is corrected by the 

observations at that time instant and is used as initial conditions for the next forecast step. The 

variational methods recognise that the errors in predictions that occur before and after the time 

instant under consideration are important to improve the background field and thus they use 

observations more spread in time than sequential methods. Thus, variational methods are more 

relevant for reanalyses, while sequential methods are generally used in forecast situations. 

Representative sequential schemes are the optimal interpolation (Lionello et al. 1992; Rusu 

and Guedes Soares, 2015), and the successive interpolation method (Breivik and Reistad, 1994; 

Rusu and Guedes Soares, 2014), which have been applied in global and regional studies. 
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There are approaches based on the Kalman filter, which also use present and past information 

for data assimilation (Voorrips et al. 1999). They have been extended to different forms, 

including the ensemble Kalman Filter (Evensen 2013). They have been applied as a 

postprocessing approach to the forecasted significant wave height (Galanis et al. 2009) or to the 

significant wave height and mean period (Almeida et al. 2016). 

James at al. (2018) and Feng (2020) have used machine learning models of multilayer 

feedforward perceptron (MLP) with supervised training as surrogate models for predictions of 

SWAN assuming steady-state conditions. This allowed very quick predictions of surf conditions 

based on offshore wave forecasts.  

The use of NNs for environmental analysis and forecasts has promptly escalated over recent 

years. Artificial neural network (ANN) models are being applied to significant wave height 

prediction. For example, Deo and Sridhar Naidu (1998) proposed a feedforward network to 

predict sea wave height in real-time. Compared with the autoregressive models (e.g. Guedes 

Soares and Cunha 2000), their method demonstrated a more general, flexible, and adaptable 

capability. While Krasnopolsky and Schiller (2003) used forward and inverse NN models in 

remote sensing, this same general approach was used by Wahle et al. (2015) to assimilate data 

into WAM model predictions. They used ANNs to emulate the wave model and its inverse by 

correcting the wind fields in one step and the initial conditions in the next step. Combinations of 

the used ensemble Kalman filter together with an ANN wind-wave model can also be found 

(Zaman et al. 2010). 

Londhe et al (2016) have used ANNs to model the error between wave forecasts and buoy 

measurements in four locations and the used the model to correct forecasts in real time, 

improving thus the forecasts at the buoy locations. Four ANN models were proposed by Elbisy 
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and Elbisy (2021) namely, the multilayer perceptron neural network (MPNN), cascade 

correlation neural network (CCNN), radial basis function neural network (RBFNN), and general 

regression neural network (GRNN). The overall performance of the RBFNN was found to be 

more accurate than those of the other models, and the CCNN model exhibits the worst predictive 

capabilities. A multilayer feed-forward neural network with the error backpropagation algorithm 

was adopted by Zheng et al. (2022). Oo and Zhang (2022) have used a ANN to model the error 

of predictions by MIKE 21 and then was coupled back with the model to improve its prediction 

skill.  

Mandal and Prabaharan (2006) used a recurrent neural network (RNN) for significant wave 

height prediction and found that the correlation coefficient of the RNN output is higher than that 

of the feedforward network. Pirhooshyaran and Snyder, (2020) have used RNN together with 

other techniques to model wave forecasts by WW3 and extrapolate them. 

One of the time-recurrent neural networks, proposed by Hochreiter and Schmidhuber (1997), 

is the Long Short-Term Memory (LSTM) network, which can choose to remember or forget 

long-term information through a forget gate. Even though LSTMs are well suited for time series 

analysis the use of LSTM was introduced by Fan et al., (2020), to predict the significant wave 

height at several locations and its results are compared with those of ANN, being one of the first 

papers to conduct such study. Other studies that used LSTM  trained with buoy data are Ni and 

Ma (2020) 

Wei (2021) also used buoy data to forecast significant wave height various hours ahead and 

discussed how to choose the training set for LSTM modelling. Ang et al (2022) have also used 

LSTM trained by long term hindcast data produced by WW3. 
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LSTM models have also been used to model time series of wave heights instead of longterm 

series of significant wave height. Kagemoto (2020) used LSTM to forecast wave trains, 

generating reasonably accurate forecasts, while Ma et al (2022) addressed the prediction of short-

crested wave fields. 

Convolutional LSTM networks trained with  historical sea surface wind and wave have been 

applied to data from South and East China Seas by Zhou et al. (2021) and Bai et al (2022) and to 

a dataset of North West Pacific by Gao et al (2023). Other applications of convolutional neural 

networks (CNN) were made by Jing et al (2022) and Huang et al (2022). 

Although NNs became very popular, most of the forecast studies have been aimed at 

applying NN models directly to predict wave heights and surface winds as target variables. 

Campos et al. (2019) proposed an alternative methodology using a hybrid model, joining the 

numerical wave model with NNs. The numerical model predicts the variables of interest while 

the target of the NN is to predict the residue (i.e., the difference between the measurement and 

the model), which is recombined to provide an accurate estimation of wave heights and surface 

winds. The experiment was concentrated on the Brazilian coast and delivered successful results. 

Still, only forecasts have been evaluated in such a framework, and the present study is an 

extension of this methodology by applying it to hindcasts. 

By optimally combining observations and models, reanalysis is an excellent substitute for 

when measurements are not available, supporting consistent “maps without gaps”. The metocean 

data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 

reanalyses, evaluated and discussed by Stopa and Cheung (2014) and Campos and Guedes 

Soares (2016), is an example of a publicly available and widely used global dataset.  
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The ECMWF ERA5 reanalysis, which has upgraded performance compared to its 

corresponding predecessor ERA-I reanalysis, represents an important data source for the ocean 

modelling community (Hersbach et al., 2020). The constantly irregular coverage and resolution 

of observations used in the assimilation may still represent a source of non-physical variations 

that require attention in the modelling of ocean wave climate, as well as the increased 

uncertainties under extreme conditions (Stopa and Cheung, 2014). The shortcomings still present 

in ERA5 estimations, specifically for significant wave height and 10-m wind speed, are 

evaluated and adjusted in this study by incorporating deep neural networks (DNNs) in the 

estimation process trained with National Data Buoy Center (NDBC) buoys data. 

Given the above, the present paper is focused on developing hybrid models composed of 

ERA5 reanalysis estimations and DNN models, in an attempt to improve the hindcast estimates 

even further. The main goal is to reduce both the systematic and scatter errors of significant 

wave height and surface winds estimates in the North Atlantic Ocean by developing different NN 

models. The structure of this study starts with the description and analysis of the data in section 

2, to create the best feature space to train the models that are introduced in section 3, also 

including all the experiments and optimal structures, culminating in the final results, discussed 

using four error metrics. Section 4 presents the conclusions, challenges and suggestions for the 

next steps. 

2. Data description 

The observations used for the present study consist of global quality-controlled buoy 

measurements from the NOAA’s National Data Buoy Center (NDBC). Certain events can make 

buoys fail, such as storms (Rao and Mandal, 2005), maintenance periods, and navigation 

accidents, among others., leading to data gaps and thus discontinuities in the buoy's time series, 
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lasting from the causing event until the buoy is repaired. Selecting a relatively large period with 

the least amount of gaps and missing data is a fundamental step since one of the algorithms of 

interest, LSTM, retains useful information about previous data in the sequence to help with the 

processing of new data.  

After quality control, the selected period corresponds to three years from 2014 to 2016, from 

NDBC buoys 41040 (14.540 N 53.329 W) and 41048 (31.831 N 69.573 W) in the North Atlantic 

Ocean with water depths of 5159 and 5394 meters, respectively. The exact locations can be seen 

in Figure 1. The selection of these two buoys derives not only from the lowest number of gaps 

among stations but also the fact that metocean conditions are distinct, which enables better 

generalization of the conclusions. 

 

Figure 1 - Location of the two NDBC buoys selected for this study. 

The initial data set contains information about 36 variables estimated by ERA5, which uses a 

temporal resolution of 3 hours and a spatial resolution of 31km. A few adjustments are made to 

generate the input data space by applying the following variable transformations:  
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𝑠𝑖𝑛𝑡 = 𝑠𝑖𝑛 (
2𝜋

365
𝑡𝑖𝑚𝑒) , 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠 (

2𝜋

365
𝑡𝑖𝑚𝑒) (1) 

𝑢𝑑 = 𝑠𝑖𝑛 (
2𝜋

180
𝑑) ,        𝑣𝑑 = 𝑐𝑜𝑠 (

2𝜋

180
𝑑) (2) 

𝑤𝑠𝑝𝑑 = √𝑢2 + 𝑣2 (3) 

 

The sine and cosine of time, introduced in Eq. 1, allow the inclusion of annual cycles and 

seasonal effects in the mapping. The directional variables are replaced by their corresponding 

sine and cosine as well, introduced in Eq. 2, where 𝑑 is the direction. Hence, the direction angles 

can be properly used by the machine learning model, avoiding errors for example when a 

direction of -180 comes after 179 or 0 after 360. The wind components 𝑢 and 𝑣 at 10 meters are 

converted to wind speed, according to Eq. 3. The log function is applied to significant wave 

height following the work of Campos et al. (2019), where it is stated that it has been confirmed 

that such transformation boosts results considering the more homogeneous distribution of values. 

The final dataset is composed of 43 features containing information about the two buoy 

locations for the period 2014-2016. The buoy measurements of swh and wspd are subtracted 

from the corresponding ERA5 estimates, yielding the estimated residues, which are the target 

variables of the NN models. The definition (Def.) of each feature and corresponding abbreviation 

(Abb.) are presented in Table 1. Before feeding data into the NNs, the features must be analysed, 

selecting the optimal set with minimum complexity, i.e., transforming data from a high-

dimensional space into a low-dimensional space without losing the important information. Such 

analysis is handled in the following subsection. The first two years of data, 2014 and 2015, are 

used for training and the whole year of 2016 is used as a test set. 

As previously mentioned, the two buoy locations are chosen not only due to their lower 

number of gaps in the time series but also because of the distinct ocean conditions, more 



for publication in Ocean Engineering 

9 

specifically, of the variables of interest, swh and wspd. Such contrast can be visualized in 

Figure 2, where the time series of the two buoys are overlapped for each variable. The time-

series variability is much higher in buoy 41048, as well as the maximum peak values. 

Table 1 - Definition (Def.) and abbreviation (Abb.) of the study variables, composed by 43 features and 2 targets. 

Def. Abb. Def. Abb. 

Significant wave height of first swell partition swh1 Mean wave period of first swell partition mwp1 

Significant wave height of second swell 

partition 

swh2 Mean wave period of second swell 

partition 

mwp2 

Significant wave height of third swell 

partition 

swh3 Mean wave period of third swell 

partition 

mwp3 

U-Component of wind u850 V-Component of wind v850 

Mean sea level pressure msl Air temperature atmp 

2 meter dewpoint temperature dewp Period corresponding to maximum 

individual wave height 

tmax 

Maximum individual wave height hmax Mean 0 crossing wave period m0wp 

Wave spectral directional width wdw Wave spectral directional width for wind 

waves 

dwww 

Wave spectral directional width for swell dwps Peak period pp1d 

Mean wave period mwp Significant height of wind waves shww 

Mean period of wind waves mpww Significant height of total swell shts 

Mean period of total swell mpts Instantaneous 10 metre wind gust i10fg 

Sea surface temperature sst 10 meter wind gust since previous post-

processing 

10fg 

Geopotential height hgt Julian days cosine cost 

Julian days sine sint U-Component of mean wave direction umwd 

V-Component of mean wave direction vmwd U-Component of mean wave direction of 

first swell partition 

umwd1 

V-Component of mean wave direction of 

first swell partition 

vmwd1 U-Component of mean wave direction of 

second swell partition 

umwd2 

V-Component of mean wave direction of 

second swell partition 

vmwd2 U-Component of mean wave direction of 

third swell partition 

umwd3 

V-Component of mean wave direction of 

third swell partition 

vmwd3 U-Component of mean direction of wind 

waves 

umdww 

V-Component of mean direction of wind 

waves 

vmdww U-Component of mean direction of total 

swell 

umdts 

V-Component of mean direction of total 

swell 

vmdts Logarithm of significant

 wave height 

Lswh 

Wind speed wspd   

Residue of swh (target) e_swh Residue of wspd (target) e_wsp 
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Figure 2 - Time series of significant wave height (top) and wind speed (bottom) for the period 2014-2016. The plots in blue 

represent the measurements of buoy 41040 and the plots in red represent the measurements of buoy 41048. 

As the estimated residues are the core of this study, a total of four metrics are introduced to 

deepen the understanding of the data. The selection is based on the study of Mentaschi et al. 

(2013) and following the assessment works in Campos et al. (2019, 2020). The error metrics are: 

∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)

𝑁𝐵𝑖𝑎𝑠 =  
∑𝑛 (4) 

𝑖=1 𝑦𝑖

∑𝑛 [(𝑥𝑖 − 𝑥) − (𝑦𝑖 − 𝑦̅)]2
𝑖=1𝑆𝐼 = √  (5) 

∑𝑛 2
𝑖=1 𝑦𝑖

∑𝑛 (𝑥𝑖 − 𝑦𝑖)2
𝑖=1𝑁𝑅𝑀𝑆𝐸 = √  (6) 

∑𝑛
=1 𝑦 2

𝑖 𝑖

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥)

𝐶𝐶 =  (7) 
√∑𝑛 (𝑦𝑖 − 𝑦̅)2 ∑𝑛

𝑖=1 𝑖=1(𝑥 − 𝑥)2
𝑖

 

 

The normalized bias (NBias), measures the systematic error; the scatter index (SI) measures 

the scatter error; the normalized root mean square error (NRMSE) combines the systematic and 

̅

̅

̅
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scatter components, and the correlation coefficient (CC) evaluates the signal trends comparing 

model and observation. Therefore, Eqs. 4 to 7 describe the metrics selected, where 𝑥 is the model 

data, 𝑦 is the measurement, and the overbar indicated the arithmetic mean. The normalized non-

dimensional metrics (NBias, SI and NRMSE) can be interpreted as ratios, or percentage errors 

divided by 100. 

Note that ERA5 estimates are generally accurate on average, as shown in section 3. Thus, 

boosting estimates is a challenge that, if accomplished, can recreate a time series of winds and 

waves with high accuracy, which are especially important when measurements are unavailable. 

2.1 Feature selection 

One of the main steps in machine learning is feature selection and extraction, two ways of 

dimensionality reduction. The common weakness of machine learning algorithms is the so-called 

dimensionality curse, which makes models inefficient or even useless when solving large-scale 

problems, as explained in Domingos (2012). Hence, simplifying, achieving scalability, low 

computational complexity, and efficient performance have become a priority in modelling 

(Langley et al., 1994; Blum and Langley, 1997). 

Feature selection is the process of discarding irrelevant and redundant data (Zhao et al., 

2010), thus obtaining a representative subset that, ideally, gathers an identical amount of 

information as the original dataset and enhances learning efficiency. Most of the time, raw data 

has many noninformative features, and poor-quality input produces poor-quality output. 

Different feature selection strategies broadly fall into three categories: filter, wrapper, and 

embedded algorithms. Filter models rely on the general characteristics of data, evaluating 

features without involving any learning algorithm. Wrapper requires a predetermined learning 

algorithm and uses its performance as an evaluation criterion to select features. Algorithms with 
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embedded models perform feature selection and training of the model in parallel. The pros and 

cons of these models can be summarized as follows. 

Filter methods are faster, and independent of the learning model while avoiding overfitting. 

Independence is an advantage since the choice of the learning model is not restricted but comes 

with the disadvantage of not interacting with it. Wrapper methods are simple, they interact with 

the learning model, and usually give the best performances, although they are prone to 

overfitting and are computationally intensive. Embedded methods lie in between the other two 

regarding performance and computational complexity. An advantage over filters is the 

interaction with the learning model, and an advantage over wrappers is the complexity and being 

less prone to overfitting (Li et al., 2017). 

Feature extraction is the process of combining the original variables into new features, 

reducing the sources required to describe a large set of data without losing important 

information. Principal Components Analysis (PCA; Holland, 2008), is one of the most 

recognized statistical tools for feature extraction, defined as an orthogonal linear transformation. 

It is sensitive to scaling, and in multivariate cases, implementation requires data to be 

standardized so that all variables have a mean of 0 and a standard deviation of 1. This 

multivariate technique analyses a dataset with the goal of extracting the important information, 

representing it as a set of new orthogonal variables called principal components, each explaining 

the maximum amount of data’s variance in decreasing order. In other words, the first principal 

component is the direction that maximizes the variance of the projected data, the second greatest 

variance lies in the second principal component, and so on. The transformed space has the same 

dimension as the original space. However, some of the higher order principal components are 

expected to be discarded, depending on the percentage of total variance intended to be kept. 
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Common thresholds for dimensionality reduction are 90%, 95% or even 99%. The purpose of 

dimensionality reduction is not only the decreased complexity in processing high-dimensional 

datasets and the removal of non-informative data but also when variables are noisy. PCA can 

have the effect of concentrating much of the signals into the first principal components, while the 

latter principal components may be dictated by noise, and thus can be discarded without much 

loss (Sophian et al., 2003; Skittides and Früh, 2014; Segreto et al., 2014). 

In this research, both feature and time spaces are highly dimensional, thus four feature 

selection methods are investigated. The correlation and multicollinearity between variables is the 

first step to feature selection (filter method). Multicollinearity is a very strong linear correlation 

between two or more features, which leads to unstable models of excessive complexity. Variance 

inflation factor (VIF), (Katrutsa and Strijov 2017), is widely applied to detect such relationships. 

For each j-th feature, VIFj is calculated as 1/(1 − Rj2), where Rj2 is the coefficient of 

determination, and ranges from 1 upwards (1 if orthogonal). There is no formal VIF value for 

determining the presence of multicollinearity, although Paul (2006) stated that practical 

experience demonstrates that a value exceeding 5 or 10, is indicative of high multicollinearity 

between the present independent variable and the others. After setting the desired threshold, 

variables should be dropped iteratively, starting with the one with the greatest VIF value until all 

are below that threshold. In this study, it was decided to adopt the more conservative threshold, 

equal to 5. 

A slight adaptation of the VIF method is designed here, where Lswh, wspd, cost, and sint are 

specified in the algorithm not to be eliminated during the dropout process; the first two because 

they are known to be fundamental in the prediction of the target variables, while the latter is 

intentionally added to the feature space so that the learning process has access to the time of the 



for publication in Ocean Engineering 

14 

year. Therefore, even if one of these variables has the maximum score at some step, which 

happens, it would be ignored and the next largest value would be chosen. After applying VIF, 

15/16 out of the 43 variables are eliminated in buoy location 41040/41048, having then a reduced 

variable space, although still with cardinality 28/27. The eliminated variables due to 

multicollinearity are tmax, hmax, mwp, 10fg, shww, msl, shts, mpww, i10fg, umdts, m0wp, 

swh1, sst, vmwd and mpts in buoy 41040, and tmax, hgt, hmax, i10fg, shts, mwp, shww, sst, 

10fg, atmp, mpww, m0wp, mpts, umwd, vmwd and swh1 in buoy 41048 (description of each 

variable in Table 1). At the end of the procedure, the variables that are specified not to be 

eliminated still have acceptable VIF values, with a few exceeding the more conservative 

threshold yet still inferior to the threshold most research papers consider, a value of 10. The 

maximum value is for sint in buoy 41040, with VIF equal to 7.37. 

In Ebrahimi-Khusfi et al. (2021), a combination of different modelling and feature selection 

methods was adopted to identify the best approach for predicting the number of dusty days 

around the desert wetlands. It was observed that by only removing the problematic collinearity 

effects without performing any further feature selection, most models employed could 

successfully predict this climatic variable with high accuracy. The work in Jörges et al. (2021) 

concerns the prediction of nearshore significant wave height (swh) based on LSTM neural 

networks, a similar environment to the one presented in this paper. The method chosen for 

feature selection was based on the Pearson correlation coefficient (r) between features and target, 

where features with r>0.3 to swh were selected. However, this selection does not consider non-

linear influences and in the present environment, none of every single feature is significantly 

correlated to the target variables. Thus, such an approach is not included here. 



for publication in Ocean Engineering 

15 

As the second step to feature selection, a wrapper method is thought to be a convenient 

approach. Initially, the popular Recursive Feature Elimination (RFE; Guyon et al., 2002) was 

applied due to its easy configurable nature and robust performance. It is a type of backward 

selection method that works on a feature ranking system. The main shortcoming is the problem 

of computational time consumption, verified in exploratory assessments. RFE gives a final 

ranking for the attributes and the most suitable features are selected based on a threshold. Such 

an approach led to a reduced dataset yet still with high cardinality. So, another approach is 

considered to drastically reduce the input space, Sequential Forward Selection (SFS). Instead of 

having all the features and recursively eliminating one by one, this algorithm starts with a null 

model and fits the model with each feature one at a time. The process is repeated until the 

desired number of features is included.  

Random Forest Regressor (RF) algorithm (Callens et al. 2020) was the chosen base model, a 

meta estimator that fits several classifying decision trees on various sub-samples of the dataset 

and uses averaging to improve the predictive accuracy and control over-fitting. Another 

advantage of this choice is the fact that RFs can handle nonlinear parameters efficiently (Campos 

et al. 2021). To significantly limit the input space, the threshold is set to six features only. A RF 

with 50 decision trees and a minimum of 10 samples required to be at a leaf node, to reduce 

complexity, is fit to SFS and the whole process is executed 10 times to account for the stochastic 

nature of the algorithm. The resulting optimal features passed through some additional 

adjustments as it involves a stochastic element and some variables are fundamental, for instance, 

Lswh and wspd. This adjustment also follows the suggestions of previous studies. Therefore, 

additional testing is conducted and ultimately the final input sets are listed in Table 2. In buoy 
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41040 the dimension of the input is even inferior to the established threshold as it delivered even 

better results. 

Table 2 - Optimal feature space after two feature selection steps. 

Buoy Features 

41040 Lswh, v850, vmwd3, wspd 

41048 Lswh, u850, dwww, vmwd2, vmdww, wspd 

It should be noted that since the ranking criterion of wrappers is computed with information 

about a single feature, there is no effect on correlation. Thus, having these two feature selection 

steps is favourable. 

After this selection of features and removal of redundancies, PCA is included in the process 

of feature selection/reduction and employed as a third and last step of dimensionality reduction 

to compress a bit more and possibly filter noise. Yet this is only employed in buoy 41048, 

reducing the feature space to five components, as with only four features in buoy 41040, 95% of 

the total variance includes four components, not reducing the feature space any further. 

3. Deep Learning Models for Multi-Output Regression and Evaluation 

Neural networks (NNs) are being broadly utilized in multiple complex and challenging 

subjects in engineering and science, as they have a remarkable ability to model the non-linear 

relationships between inputs and outputs (Gurney, 2018). Deep learning models are built with 

deeper architectures in neural networks. The term “deep” refers to the use of multiple layers in 

the network.  Two types of NNs are chosen for this study, Multilayer Perceptron (MLP) and 

Long Short-Term Memory (LSTM), formally described in the following respective subsections. 

There are challenges to face when training NNs. Apart from data selection and proper 

scaling, one of the difficulties is a large number of hyperparameters one has to deal with when 
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designing the architecture of the model. These could be the learning rate, the activation function, 

weight of regularization technique, optimizer, weight initialization, etc. There is no universal 

“best choice” that is consistently good across different problem types, network architectures, 

activation functions, and data sets, as optimization is problem-dependent. Neural networks can 

be very sensitive to the initialization strategy that is used. Therefore, it is important to find ways 

to better organize the hyperparameter tuning process, as proper tuning requires many 

experiments and runs. 

Python 3 is the software of choice for all experiments, specifically the keras library for the 

deep learning models. To address the hyperparameter problem, it was decided to use Talos, a 

python package for solving complex neural network models and determining the right 

combination of the parameters. The method works as an exhaustive search approach with a 

chosen parameter grid. There is the option to downsample the grid search by running only a 

fraction of the total combinations, which is very useful when the parameter space is too big. The 

best model can be found by running the code one time, instead of running the code after each 

change of a single parameter - saving time and making it easier to find the best combinations 

with the lowest loss values. 

3.1 Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP; Rumelhart et al., 1985), is considered the most common and 

most widely used type of NNs that can properly model complex relations (Hornik et al., 1989). 

Three (or more) types of fully connected layers constitute its structure: the input layer, where the 

model inputs are initiated; the output layer, where the results of the trained model are achieved; 

and the hidden layers, which are intermediate layers and can be zero, one or more. The 

connections between them are based on a weight update structure, i.e., values are altered through 
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model training until a stable framework with decision capacity is built (Martínez-Comesaña et 

al., 2021). 

Having input dataset 𝑋: 𝑋1, … , 𝑋𝑛0  and assuming that the neurons in each of the 𝐿 layers are 

respectively 𝑛0, 𝑛1, … , 𝑛𝐿+1 , the inputs of the first hidden layer have the shape presented by: 

𝑛0

𝑖𝑛 = ∑ 𝑤𝑗𝑛 𝑥𝑗 + 𝑏𝑛 (8) 

𝑗=1

where 𝑤𝑗𝑛 represents the weight value connecting the jth input neuron to the nth neuron in the 

first hidden layer and bn is the bias of the nth neuron in the first hidden layer. Feeding 𝑖𝑛 into an 

activation function, the outputs of the first hidden layer follows: 

𝑜𝑛 = 𝑓1(𝑖𝑛) (9) 

The same process is repeated for the other hidden layers, with 𝑓𝑘(. ) being the activation 

function of layer 𝑘, and at last, the inputs and outputs of the neurons in the output layer are 

obtained as exposed below for the nth neuron:  

𝑛0

𝑖𝑛 = ∑ 𝑤𝑗𝑛 𝑜𝑗 + 𝑏𝑛 (10) 

𝑗=1

𝑜𝑛 = 𝑖𝑛 (11) 

The optimization of the weights is based on backpropagation training using a gradient 

descent algorithm. At each iteration, the Loss function is calculated with the mean square error. 

The workflow adopted as follows: (i) Analysis of different hyperparameter ranges and values on 

model accuracy; (ii) Establishment of the environment for Talos, that is, the specific ranges and 

values of each hyperparameter and structure of the network; (iii) Reasoning of state-of-the-art 
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results and exploration of a range of windows to filter the target variables, using the defined 

architectures; and (iv) Further adjustments to the network, for instance, a more detailed analysis 

of the number of neurons, culminating in optimal architectures. 

Since NNs are prone to overfitting and problem-specific, it is necessary to have some idea of 

where the hyperparameters fall and how to structure the model to set adequate ranges to be 

tested. As the input data was transformed using PCA in buoy 41048, the scaling technique 

adopted was standardization, obligatorily. For the output, standardization and normalization 

transformations were tested, and the optimal strategy was found for the standardization of inputs 

and normalization of outputs. 

After setting the hyperparameter ranges, which were rather meticulous, and including early 

stopping in the structure as the regularization method to avoid overfitting, the optimization 

process took about two days of computation. However, further testing showed that the model has 

the potential to improve results with a different regularization method. Initially, only early 

stopping was considered, which is the simplest form of regularization to avoid overfitting. It 

stops the training when the performance measure of choice stops improving, with the option to 

set a “patience” that delays the stopping by a specified number of epochs after no improvement. 

At first, strict patience of two epochs was set. It was concluded that such a method was too strict 

and other options would be beneficial. Thus, dropout was added to the model. 

During training, dropout randomly ignores or “drop out” some number of layer outputs 

temporarily, making the layer look-like and be treated-like a layer with a different number of 

nodes and connectivity to the prior layer. In effect, each update to a layer during training is 

performed with a different “view” of the configured layer (Srivastava et al., 2014). A visual 
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example of the consequences of adding dropout to the network is presented in Figure 3. It has to 

be mentioned that without any regularization, overfitting would be guaranteed. 

 

Figure 3 - Dropout effect. The left network is a standard, fully connected network. The right shows an example of the same 

network after applying dropout. 

Finally, the structure and ranges of hyperparameters are defined: the activation function; the 

number of hidden layers and dropout regularization were fixed to single values, and the 

established ranges of the other hyperparameters are specified in Table 3. SGD is short for 

Stochastic Gradient Descend and the hyperparameters momentum and Nesterov are only fixed 

when combined with SGD. Kernel initializer defines the way to set the initial random weights of 

layers. The chosen activation is the popular ReLU, which is a common choice as it is both simple 

to implement and effective at overcoming the limitations of other previously popular activation 

functions, such as Sigmoid and Tanh. The dropout rate can be specified to each hidden layer as 

the probability of setting an input to the layer to zero, and it was verified that a value of 0.25|0.2 

was sufficient. Early stopping was also applied but with a patience of 30|10 in buoy 

41040|41048, preventing the model from training excessively as well as overfitting. This also 

allows the maximum number of epochs to be very large, without needing to tune. Less tolerance 

in the network for buoy 41048 derives from the increase in sensitivity. Achieving good enough 

results with the simplest model possible is a goal, so the models have only two hidden layers, 

and it is not only one because a larger network is indispensable as dropout will probabilistically 
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reduce the capacity of the network. Moreover, greater depth does improve generalization for the 

majority of tasks (Goodfellow et al., 2016). The shape of the NN was also defined upfront to be 

“brick”, so both hidden layers have the same number of neurons. 

The defined range of the number of neurons, in Table 3, is actually to obtain sub-optimal 

results, as this is a very important hyperparameter and setting an extensive range to run in Talos 

would exponentially increase complexity. The construction of the sub-optimal architectures was 

accomplished by interpreting the table of results, this is, loss and validation loss of each 

combination of parameters. Having such structures, the next step follows. 

Table 3 - Hyperparameters, searched ranges, and resulting optimum values for MLP-NN 

architecture. 

Hyperparameter Range 

Number of neurons [ 5, 15, 50, 100, 200, 500] 

Batch size 

Optimizer 

[ 1, 32, 64] 

[ Adam, SGD] 

Kernel initializer [ Glorot uniform, Glorot normal, Orthogonal, He normal] 

Learning rate [ 10−3, 10−2, 10−1] 

Momentum [ 0.99, 0.9, 0.5] 

Nesterov [ True, False] 

 

A problem initially found with the residues of swh and wspd is the excess of noise and 

outliers, which can expand the risk of overfitting (Krasnopolsky, 2014). This is a major difficulty 

for the optimization procedure used by the NN. Proper filtering of the time series can alleviate 

this problem. Figure 4 shows the residue of swh (e_swh, blue curve), where the level of noise 

and high-frequency fluctuations can be visualized, as well as an example of the filtered signal 

using a moving average of 24 hours (black curve). 
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Figure 4 - Time series of the residue of swh (blue) and the filtered signal using a moving average of 24h (black). 

As can be seen, a simple low-pass moving average filter can remove a great part of high-

frequency oscillation that is mostly associated with random noise. However, it is not known a 

priori the size of the moving window that better optimizes the model. Therefore, NNs were built 

with the established sub-optimal architecture and trained on non-filtered - for reference - and 

filtered output variables with filtering windows of magnitudes 1, 3, 6, 12, 24 and 48h; each one 

trained five times to also evaluate the consistency of results. In total, 35 NNs were trained and 

analysed according to the evaluation metrics (Eqs. 4-7) on the adjusted signals. Such a strategy 

can be visualized in Figure 5 for buoy 41040, where the five results for each window are 

displayed as well as the mean value for each metric calculated. The optimal strategy for e_swh 

was found with a filtering window of 12h|1h in buoy 41040|41048, which becomes the new 

target of the NNs. Regarding e_wspd, in buoy 41040 no magnitude delivered better results than 

the original time series and, for buoy 41048, the best window size is 3h.  
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Figure 5 - Results of the Multi-output Neural Networks in buoy 41040 using the filtered signals as targets. The plots share the 

same x axis, which is the magnitude of the moving window. The magnitudes tested are 1, 3, 6, 12, 24 and 48h. Each horizontal 

set of plots exhibit the results of each variable, swh (top) and wspd (bottom) using the metrics NBias, SI, NRMSE and CC, from 

left to right, according to Eqs. 4-7. 

As previously discussed, further adjustments to the architecture regarding the number of 

neurons were necessary. Having a multi-output model might mean that the general best approach 

is not the best for each target, and a trade-off is potentially beneficial. Therefore, analysing the 

prediction results individually is necessary. A total of 100 NNs were trained with the 

hyperparameters selected in the previous step and only varying the number of neurons: ranging 

from 5 to 305 with a step of 15, for 5 seeds to account for the randomness. Figure 6 shows the 

five results in buoy 41040 for each number of neuron as well as the mean value for each metric 

calculated. The optimal strategy for e_swh is different than for e_wspd, where for the first it 

corresponds to a value of 35 neurons per layer and for the second, 230. Considering that 

predicting e_wspd is more demanding, this trade-off was employed and thus 230 is the final 

optimal number of neurons per layer. Moreover, the predictions of e_swh do not decrease 

significantly when increasing the number of neurons. As for the results in buoy 41048, the 

optimal number of neurons for e_swh and e_wspd is 230 and 245, respectively, and the same 
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trade-off was employed although the disparity between the number of neurons is much less 

decisive. The optimal architectures are summarized in Table 4, where it can be seen that optimal 

networks are very similar for both buoys. 

 
Figure 6 - Results of the Multi-output Neural Networks in buoy 41040 for different neurons. The plots share the same x axis, 

which is the number of neurons in a range from 5 to 305 with a step of 15. Each pair of vertical plots exhibit the results of each 

variable, swh (top) and wspd (bottom), using the metrics NBias, SI, NRMSE and CC, from left to right, according to Eqs. 4-7. 

For the final result, the optimal model was run for 10 different seeds as means to account for 

randomness. After transforming the prediction results to the original scale and calculating the 

adjusted time series of the two variables of interest (difference between ERA5 estimates and 

predicted residues), the final averaged results are presented in Table 5, along with all other 

implementations and the initial reanalysis, as a means to examine the contrasts and compare 

them. Despite the efforts, the adjusted estimates with MLP presented a small improvement. 

Nonetheless, this is still a successful outcome since the reanalysis is already very accurate. 

Besides the bulk metrics, the next figures show additional benefits of using the MLP for post-

processing. 

To visually interpret the impact of adjustments, Figure 7 outlines part of 2016 curves of both 

targets in buoy 41040: measurement, era5 estimates, and adjusted estimates. The curves of swh 
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show evident improvements in most parts, whereas other parts are just very similar to the non-

adjusted, while others, as expected, are slightly worse. One of the difficulties of reanalysis data is 

reproducing small-scale wave conditions. In this case, the MLP post-processing significantly 

improved the performance below 1.5 meters. As for the curves of wspd, the improvements are 

not so evident since the oscillations of the time series are more frequent and extreme. Still, 

NRMSE decreased from 0.1138 to 0.1084. The improvements in buoy 41048 were slightly 

greater. 

 

A 

B 

Figure 7 - Comparison between buoy measurements, ERA5 estimates, and adjusted estimates with the optimal MLP in buoy 

41040. The two plots illustrate the time series of swh (a) and wpsd (b), zoomed to the test set’s month that includes higher peaks. 

3.2  Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM), proposed by Hochreiter and Schmidhuber (1997), is a 

type of recurrent neural network (RNN) used in the field of deep learning that allows the network 

to retain long-term dependencies at a given time from previous time steps. RNNs were designed 

specifically for the inclusion of feedback connections, unlike standard feedforward NNs. 
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However, long-term dependencies can make the network untrainable due to the vanishing 

gradient problem. LSTMs were developed precisely to solve that problem. 

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. 

The cell remembers values over arbitrary time intervals and the three gates regulate the flow of 

information into and out of the cell. Figure 8 illustrates the diagram of a LSTM cell at the time 

step t. The description of the symbols and the network equations are: 

• f - Forget Gate, responsible for removing information from the cell state. 

• 𝐶̅ - Candidate layer, contains all possible candidate values that could be added to the cell 

state. 

• I - Input Gate, responsible for the addition of information to the cell state. 

• O - Output Gate, decides what the next hidden state should be. 

• H - Hidden state, contains information on immediately previous events. 

• C - Cell state, long term memory of the model. 

• W and U - Weight vectors of each gate. 

 

Inputs to the LSTM cell at any step are 𝑋𝑡, 𝐻𝑡−1 and 𝐶𝑡−1. Outputs of the LSTM cell are 𝐻𝑡 

and 𝐶𝑡. 

 

Figure 8 - Information flow in an LSTM block at time step t. The symbols * and + refer to element-wise multiplication and 

element-wise addition, respectively.  
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The three gates are the way to let information through. Each contains a sigmoid activation, 

which outputs numbers between 0 and 1. A result of 0 causes values to be “forgotten”, while a 

result of 1 means that the values are “kept”. This way the network learns which information is or 

isn’t important. The default activation function for the candidate layer is tanh, which helps 

regulate the values flowing through the network, by squishing values to always be between -1 

and 1. The formal network equations are given below. 

𝑓𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓 + 𝑏𝑓) (12) 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡 ∗ 𝑈𝑐 + 𝐻𝑡−1 ∗ 𝑊𝑐 + 𝑏𝑐) (13) 

𝐼𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖 + 𝑏𝑖) (14) 

𝑂𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜 + 𝑏𝑜) (15) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ 𝐶𝑡 (16) 

𝐻𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (17) 

 

These networks are well suited to make predictions based on time series data since there can 

be lags of unknown duration between important events. Maintaining temporality in the data is 

important for the network to learn patterns from the correct sequence of events. Therefore, the 

data should not be shuffled. 

The input to every layer must be three-dimensional: number of samples, time steps, and 

features. Time steps are the chosen number of past events to learn from. Accordingly, the dataset 

must be prepared and transformed before feeding it to the NN. For further explanation, let’s 

consider an input space 𝑋 containing 𝑛 features and an output space y with one variable to be 

predicted. The desired number of time steps is m. One sample of input will be [𝑋1(𝑡 − 1), …, 

𝑋𝑛(𝑡 − 1), … , 𝑋1(𝑡 − 𝑚), … , 𝑋𝑛(𝑡 − 𝑚)] and the target will be 𝑦(𝑡 + 𝑝), 𝑝 being the number of 
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time steps that represent a further out in the future prediction. Setting 𝑝 = 0 means that the 

predictions are for the next step. The standard approach includes the target variable from 

previous time steps in the input space, for instance in univariate time series forecasting. A python 

function was built to address the reshaping of data where the number of previous and future time 

steps is chosen by the user. 

Regarding the scaling of data, standardization was applied to both datasets as preliminary 

tests confirmed their suitability. As the output variables are included in the input space, these 

variables must be also standardized. Note that in MLP the output space was not standardized but 

normalized. Focusing on the same hyperparameters as for the MLP model, the sub-optimal 

choices are presented in Table 4 for both buoy locations. Because LSTMs are very complex and 

time-consuming Talos was not employed, which did not affect much as preliminary tests proved 

the efficiency of the models in sub-optimal environments. As the transformation of data is a 

necessary step before training the model, the arbitrary decision of selecting one previous time 

step served as core to the selection of hyperparameters, detailed below. 

The search for a suitable filtering strategy was not as meticulous as with MLPs since, as 

previously mentioned, LSTMs are more complex and time-consuming. After experimentation, it 

was considered sufficient to apply a filter of magnitude 1h to the time series of e_swh and no 

filter to e_wspd for buoy 41040, and the exact opposite for the data from 41048. 

Concerning the number of neurons, the approach employed for MLP algorithm was also 

employed for LSTM. Therefore, 100 LSTMs were trained with the hyperparameters chosen 

before, only varying the number of neurons, in a range from 5 to 305 and a step of 15, for 5 seeds 

to account for the randomness. Figure 9 shows the five results for each neuron as well as the 

average of each metric, for the data from buoy 41040. The opposite situation from before is 
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encountered as the optimal approach for e_swh contains much more neurons than for e_wspd, 

200 and 80. Even though the prediction accuracy of wspd increases significantly with the present 

approach, it is still lower than of swh so the chosen number of neurons is 80 for the final 

architecture of LSTM. Besides, the curve of results in e_swh (Figure 9) does not suffer 

significant variations when increasing the number of neurons. In relation to buoy 41048, 

preliminary tests indicated the need for a larger range of neurons to test, so it was extended to 

505. The optimal approach consists of 395 neurons and 65 for e_swh and e wspd, respectively. 

When expanding to additional time steps it was concluded that adding a fraction of the base 

number of neurons to the total number of neurons was beneficial in buoy 41040. Such an 

approach in buoy 41048 did not stimulate results so the number of neurons is constant for all 

datasets. 

 

Figure 9 - Results of the Multi-output LSTM in buoy 41040 for different neurons. The plots share the same x axis, which is the 

number of neurons in a range from 5 to 305 with a step of 15. Each pair of vertical plots exhibit the results of each variable, swh 

(top) and wspd (bottom) using the metrics NBias, SI, NRMSE and CC, from left to right, according to Eqs. 1-4. 

Regarding the regularization, it is not advisable to add dropouts to recurrent connections as 

LSTMs work well for long terms. However, an important feature about them is the lack of ability 

to “memorize” multiple characteristics simultaneously. The logic of dropout lies in adding noise 
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to the neurons in order not to be dependent on any specific neuron. But by adding dropout to 

recurrent connections, there is a chance of forgetting something that should not be excluded. In 

Zaremba et al. (2014) and Gal and Ghahramani (2016) it is exposed that applying dropout only 

to the nonrecurrent connections alone results in improved performance and successfully reduces 

overfitting. This was confirmed in the present study, and dropout was only optimized in the non-

recurrent connections. The data from buoy 41040 is prone to overfitting in this environment, 

worsening as time steps are added to the input space. To adjust this situation, a base dropout rate 

of 0.2 was found to be suitable and a percentage corresponding to the number of time steps was 

added. For the same reason, patience was set to decrease as the time steps (feature space) 

increased, forcing the model to stop earlier. As for the data from buoy 41048, dropout was set to 

zero as the model generalizes well without overfitting. Patience was set to increase in accordance 

with the increase of dimension in feature space as it was verified that the model convergence 

requires more epochs. The weight initializers were set to the default values in Keras, Python. 

Table 4 – Summary of the final architectures of both neural network models, MLP and LSTM, for both 
buoy IDs, 41040 and 41048. The structure of LSTM models is defined in the function of x, the number 
of previous time steps. 

Model Neurons HL LR Momentum Patience Dropout WI 

MLP 230 245 2 2 10−2 10−2 0.90 0.90 30 10 0.25 0 ort ort 

LSTM [80(1+(x/10))]  65 1 1 10−2 10−2 0.95 0.90 30-x 20+x 0.2+x/100 0 def def 

After defining the general architectures, datasets including 1, 2, 3, 4, 5, 10 and 20 prior time 

steps were constructed. This is an interesting and important aspect to investigate. LSTMs were 

trained five times for each dataset, with different seeds, using the architectures summarized in 

Table 4. Results are displayed in Figure 10 for buoy 41040. It is evident that the efficiency of the 

model reaches a maximum between three- and five-time steps and from there it decreases, 
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denoting that there is no advantage in having a highly complex model. In fact, more than five 

days prior to the event negatively influences optimization, especially for e_wspd. A similar, yet 

inverted, situation is encountered for buoy 41048, as the excessive increase of time steps in input 

negatively affects more e_swh. Even though the two locations have distinct conditions, the 

efficiency of LSTM models is analogous in terms of the number of time steps. These results 

allow for the generalized conclusion that more than five days prior to an event should not be 

included as predictors.  

 
Figure 10 - Results of the Multi-output LSTM with different previous time steps for buoy 41040. The plots share the same x 

axis, which is the number of time steps. Each pair of vertical plots exhibit the results of each variable, swh (top) and wspd 

(bottom) using the metrics NBias, SI, NRMSE and CC, from left to right, according to Eqs. 4, 5, 6, 7. 

Figure 11 depicts the best achievement, which is a LSTM with three prior time steps for buoy 

41048. The month of February was selected for visualization as it is part of the test set with 

higher peaks. These curves, in the same manner as the curves in Figure 7 for MLP, overlap three 

time series: measurements, ERA5 estimates, and adjusted estimates. The model demonstrated the 

capability of predicting the residues very accurately to the point where the adjusted time series 

are very similar to the measurements, with minor differences. Thus, as the adjustments are 
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significantly improved, adopting such a strategy to the estimates could allow for similar error 

levels as observations – especially important when they are missing. As it can be seen in the 

boxplots of Figure 11, the residue data has many outliers, both the initial and the adjusted data. 

This indicates that extreme events with poor performance in the numerical models also show a 

worse performance with the NNs. One explanation for this deficiency in simulating large peaks 

(outliers) is that the infrequency of occurrence causes the training data for detecting outliers to be 

unavailable (Reunanen et al., 2020). 

           

A 

B 

C D 

Figure 11 - Before and after results of the optimal LSTM for buoy 41048, having 3 time steps. The first two subfigures illustrate 

the curves of swh (a) and wpsd (b), zoomed to specific months of 2016 where peaks occurred. The two latter, (c) and (d), are the 

respective boxplots of the whole test set period, comparing the distribution of the residues before and after adjustments.  
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Table 5 - Error metrics of swh and wspd in 2016 for the reanalysis (ERA5) and the adjusted 
reanalysis using different NN architectures. 

    41040 | 41048   

Model Var. NBias SI NRMSE CC 

Reanalysis 
swh 0.001 0.019 0.081 0.117 0.081 0.118 0.953 0.974 

wspd 0.031 0.028 0.110 0.150 0.114 0.152 0.921 0.947 

MLP 
swh -0.002 0.023 0.077 0.111 0.077 0.113 0.955 0.974 

wspd 0.016 0.010 0.107 0.145 0.108 0.146 0.922 0.948 

LSTM swh -0.002 0.009 0.055 0.071 0.055 0.072 0.977 0.989 

(1 step) wspd -0.010 -0.001 0.098 0.129 0.098 0.129 0.935 0.959 

LSTM swh -0.001 0.009 0.054 0.069 0.054 0.070 0.978 0.990 

(2 steps) wspd -0.011 -0.001 0.097 0.128 0.098 0.128 0.936 0.960 

LSTM swh -0.001 0.008 0.054 0.069 0.054 0.070 0.978 0.990 

(3 steps) wspd -0.012 -0.002 0.098 0.126 0.098 0.126 0.936 0.961 

LSTM swh -0.001 0.009 0.054 0.069 0.054 0.070 0.978 0.990 

(4 steps) wspd -0.013 -0.001 0.098 0.126 0.098 0.126 0.935 0.961 

LSTM swh -0.002 0.009 0.054 0.070 0.054 0.007 0.978 0.990 

(5 steps) wspd -0.013 0.000 0.098 0.126 0.099 0.126 0.935 0.961 

LSTM swh -0.004 0.008 0.054 0.071 0.054 0.071 0.978 0.990 

(10 steps) wspd -0.011 0.003 0.098 0.126 0.099 0.126 0.935 0.961 

LSTM swh -0.004 0.009 0.054 0.072 0.054 0.072 0.978 0.989 

(20 steps) wspd -0.005 0.005 0.099 0.126 0.099 0.126 0.934 0.961 

4. Conclusions 

A large set of experiments is conducted to develop deep neural network-based models 

(DNN) to post-process and bias-correct ERA5 wind and wave data, using reliable buoy 

measurements in two locations of the North Atlantic Ocean presenting distinct metocean 

conditions. The main goal is to investigate two types of deep learning models able to emulate 

nonlinear data and effectively outperform the ERA5 reanalysis. Such types are MLP and LSTM 

models, where the output variables are the residues of significant wave height (swh) and wind 

speed (wspd), i.e., the difference between the reanalysis and the observations. A careful study 
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covering what environmental variables to include in the feature space is handled, as means to 

create datasets with a balance between efficiency and complexity and understand dependencies. 

As expected, due to the memory feature of the nodes, LSTM models outperform MLP, even 

with suboptimal architectures. The best overall LSTM configuration is found to have five time 

steps and three time steps in input space, for buoys 41040 and 41048, respectively. It is shown 

that minimizing the residues of swh is more successful than of wspd, with the correlation 

coefficient between the adjusted values and the measurements of swh reaching 0.99, whereas the 

original ERA5 is 0.97. Additionally, the ERA5 RMSE of 8% and 12% for swh has been reduced 

to 5% and 7%, for buoys 41040 and 41048, respectively, with the LSTM post-processing model. 

The effects of such successful corrections are illustrated in Figure 11, which confirms the 

effectiveness of the presented models to reduce the systematic and scatter errors of the 

reanalysis. 
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