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ADDITION OF OROGRAPHY TO THE SEMI-IMPLICIT

VERSION OF THE SHUMAN-HOVERMALE MODEL

Kenneth A. Campana
National Meteorological Center, NWS, NOAA 

Washington, D.C. 20233

ABSTRACT. The semi-implicit version of the Shuman- 

Hovermale model now includes orography. The incor­

poration of mountains into the model was made with 

great difficulty and is documented in this report.

Care must be taken when splitting the pressure 

gradient term in the equations of motion into im­

plicit and explicit parts. The orographic effect 

on the pressure gradient term is exhibited in two 

ways—as the gradient of surface geopotential and 

as the gradient of surface pressure. These two 

effects must be calculated together as either im­

plicit or explicit parts in order that the long 

time step will not cause serious orographic-related 

truncation errors. Necessary changes to model 

equations are documented.

1. INTRODUCTION

The semi-implicit time integration scheme has been reported in the lit­

erature for several years and is used in a number of multilaver numerical 

weather prediction models around the globe. The implicit treatment



permits a long time step to be used in a forecast model because it time- 

averages terms in the equations which govern the fastest moving gravity 

waves.1 All other terms are treated in the normal exnlicit sense. The 

computation time savings resulting from the long time step make the semi- 

implicit technique particularly attractive for numerical models that are 

being used in an operational forecasting environment. Because a set of 

Helmholtz equations must be solved during each time step, the savings 

from the semi-implicit method is not so great as would be expected from 

the longer time step. However, computation time savings of four to one 

are reported for a six to one ratio of time step intervals in semi- 

implicit versus explicit runs (Kwizak and Robert, 1971).

A semi-implicit version of the Shuman-Hovermale 6-layer primitive equa­

tion model (6L PE) has been developed at the National Meteorological Center 

(NMC) by Gerrity et al. (1973), and early experimental results without 

orography have been published by Campana (1974). It is a simplified re­

search model patterned after the 6L PE, but uses none of its physical 

parameterizations and has twice its grid length. Tests that included 

orography were initially unsuccessful, and it was with great difficultv 

that mountains were incorporated into the model. The purpose of this re­

port is to document the solution to the mountain problem in the semi- 

implicit model. The first section will briefly describe the splitting of 

the equations into implicit and explicit parts. The next section will 

discuss the mountain problem and its solution. The final section will

Pressure gradient term in the equations of motion and divergence term in 
the continuity equation.
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present the model equations which must be adjusted to fit the above 

solution. The actual model is not discussed in great detail, so the 

reader is referred to Gerrity (1973) for all the particulars. In this 

report, the terminology used by Gerrity (1973) will be used where 

appropriate.

2. SEMI-IMPLICIT TRANSFORMATION

In order to more easily discuss the mountain problem in the next section, 

a brief description of the transformation of the equations of motion to 

semi—implicit time differencing is helpful. The equation of motion for the 

v component of the wind is used for this discussion:

3_ v + 9^ + a9p_ = _ £u _ u5v 
9t m 9y 9y m 9x

9v a 9v Friction, (1)
where

t = time,

u = horizontal wind component in the x-direction ,

v = horizontal wind component in the y-direction ,
•
a = vertical wind component in the a-direction, 

p = pressure, 

a = specific volume,

= geopotential,

f = Coriolis and map factor terms = f - v~ + u— ,9x 9y
m = map factor* and 

f = Coriolis force-

Note that, unlike other models at NMC, this one uses temperature and 

pressure as the thermodynamic variables.

3



First, eq. (1) is simplified by employing a linearization procedure. Each 

variable, X, is assumed to be composed of a basic state, X, varying only 

with a, and a deviation from this basic state, X',
X = X + X' . (2)

Implicit calculations are done only on the resulting linear terms. Basic 

state values for the thermodynamic variables are obtained from the U.S. 
Standard Atmosphere (1962) using "representative" cr-layer pressures. The 

basic state wind field is one of no motion (u = v = 0).
Taking the a|^- term in eq.(l) and defining

a = a + ex'*

and
p = p + p' with — = 0, since p is a function of 

9y

a only; one obtains
- &■' + o'iH'

ay 9y 3y (3)

In the semi-implicit treatment of eq, (1), terms on the left side are time- 

averaged (implicit calculation). Rewriting eq. (1) using the linearization
a a .process for all terms except r-1-, one obtains :dy

a v'. 86 „aP" ^ap'’ ‘lu' av^ „av^ o' av . . ...----+ + «—= - a -r1- - f— - u ~r— - v —---w— + Friction • (4)at m ay a3y 3y m 3x 3y m 3a

Note that the aterm is nonlinear and is calculated on the explicit
ay

(non-time averaged) side.

Letting superscripts t-1, t, and x+1 denote quantities evaluated explic­

itly at past, present, and future time levels, the following definitions
—2t axof the time average, X , and the time derivative, —, are useful when
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transforming eq. (4) to its semi-implicit counterpart,

x2t = h(xT+l + XT"!)
3X = XT+1 - XT~1 = X2t - XT~1 
9t 2At At

Implicit treatment of the left side of eq, (4) and dropping the primes from

all variables leaves the following:
—2t v
m + At

ii2t+ ^2t 
lay “ay

^ + At(....)T ,
m (5)

where (....)T represents all terms on the right side of eq-(4).

In the actual model equations, cr-layer pressure thicknesses, 3p/ao, are

used in the pressure gradient term, rather than pressure itself. Further,
—2tin order to close the system of equations, 4> is transformed into implicit

terms involving and a , and into other terms, R, calculated explicitly.
3o

Replacing ^2t by these terms in eq.(5), and using the actual model variables, 

one obtains:

-2t a X + 
m 9 y jlA.j (Sj + h jL Vi = ir "At

lh
3y

+ At<...\
k = vertical index,

(6)

3*kwhere and the matrices g^ j and hj^j all result from the transformation
-21of <f> (section 4 in Gerrity, 1973). By solving a set of Helmholtz equa­

ls3p2t T2t
tions, one obtains the three r—a and the four 3 a which are needed to
compute v2t from eq. (6).

The preceding general description of the semi-implicit transformation 

now allows one to proceed to a discussion of the orographic problem.
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3. OROGRAPHY

Semi-implicit model experiments without orography were quite successful 

using a time step of 1 hour. When mountains were introduced, however, 

erroneous orographic scale features developed over large mountain masses 

and were amplified with time. An example of this problem over the 

Rockies and Himalayas is shown in figure 1. Tests with lower mountain 

elevations only lessened the real difficulty. When the model was run in 

an entirely explicit mode (and thus a shorter time step) the problem dis­

appeared (fig. 2). Further tests with the semi-implicit version, using a 

time step as short as the explicit mode above, also yielded trouble-free 

forecasts. There appeared to be severe time truncation errors near oro­

graphy when using a long time step.

After a great deal of reflection and experimentation, the problem 

appeared to be related to the implicit/explicit splitting of the pressure 

gradient term2 in the tropospheric sigma domain. Recalling eq.(l), the 

pressure gradient near mountains is made up of two relatively large terms

having opposite signs fii 9y Through the semi-implicit trans­

formation on this equation, these terms are further broken into implicit 

and explicit parts. Close examination shows that these two parts also can 

be large terms of opposite sign in the vicinity of mountains. Since the 

basic state pressure, p, is not a function of (x,y) , gradients of pressure 

near orography remain in the deviation part, p'. Thus a good portion of

the large term near mountains remains on the implicit side of eq.(4)3y

2In the equations of motion.
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Figure 1.—Semi-implicit 500-mb heights (dekameters), time step = 3600 s, 11-hr 
forecast from 0000 GMT 24 August 1972. Contour interval 6 dekameters.
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. ~ 3p T —21m a . Later, however, the process of transforming <f> leaves the gradientay
of ground elevation on the explicit side of eq. (6) imbedded in the 

9Ri"5y term. Examination of the two parts of the pressure gradient term 

at a grid point near steep mountains shows they both are larger than anv 

other term in eq.(6). Table 1 displavs the size of these pressure—gradient 

parts and their sum in the lowest tropospheric layer of the model during a 

semi-implicit forecast (1-hour time step). The sum amplifies with time 

and the implicit part seems to cause most of the increase. In only 11 

forecast hours, negative model pressures appear over the mountains and 

produce a model failure.

Since the gradient of model ground height and the gradient of model sur­

face pressure are of opposite sign, the magnitude of both parts of the 

pressure-gradient term can be reduced by calculating both of them on the 

same side of the equation, either explicitly or implicitly, rather than 

separately. In order to disrupt the model formulated by Gerrity (1973) 

as little as possible, a redefinition of the pressure deviation, p', is 

made in the troposphere:
P' = P" + P' , (7)

where p' is a surface pressure at the top of the model mountains obtained 

from the U.S. Standard Atmosphere. All parts of eq^(7) are functions of
~ -8p"(x,y) and p' is time invariant. Now redefine the implicit term, cr^ , in 

eq. (4):

a IE' = ;9y 9y (8)

Moving the time invariant quantity to the explicit side of eq.(4)
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Table 1.—Implicit and explicit parts of pressure gradient term in

eq. (6) at one grid point (k = 6) (units in m/s)
—2texpressed as effect on v /m.

D

Forecast
hour

Pressure
gradient
(implicit)

Pressure
gradient
(explicit)

Total
pressure
gradient

1 + 14.5 - 13.2 + 1.3

2 + 14.7 - 13.2 + 1.5

3 + 14.8 - 13.1 + 1.7

4 + 14.9 - 13.2 + 1.7

5 + 15.0 - 13.1 + 1.9

6 + 15.0 - 13.1 + 1.9

7 + 15.2 - 13.0 + 2.2

8 + 15.4 - 13.0 + 2.4

9 + 15.8 - 12.9 + 2.9

10 + 16.3 - 12.7 + 3.6

11 + 16.9 - 12.6 + 4.3
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one obtains

i_ z'+ li + z iElI3t m 3y 3y
1e_ f ill 
3y m

^3v' ^3v"
u 3x v 3y

3v/ 
m 3cr

~ 3p'+ Friction - a 3y (9)

In essence, the tropospheric basic state pressure is adjusted to 

account for orography. Recalling that o-layer pressure thickness, 3a
is used rather than pressure, p, in the actual model, eq. (6) in the 

troposphere (k = 4,5,6,7) becomes:

-2t
vkm~ + L y g, .

3y 4“2
7T-r2t a 4 _2,3a)j + 3? lx hk,j aj-2t vk .= — - At--

m 3y

T-l 3R,

+ At(....)^ - At ak .3p'
3y (10)

Of course, in a like manner there is a , term in the u-equation of motion.

This redefinition of the deviation part of the pressure variable and its 

proper splitting into implicit and explicit parts removed the amplifying 

mountain features. Successful semi-implicit forecasts using an hour time 

step have been made beyond 48 hours. Examination of the two parts of the 

pressure gradient term at one grid point in table 2 shows them to be an 

order of magnitude smaller with the above modification than with the old 

formulation (table 1). The implicit part, which seemed responsible for the 

amplification, is now under control.

4. CHANGES TO MODEL EQUATIONS

This section documents changes to the actual semi-implicit model equations

that are necessary to remove the mountain problem. Gerrity (1973) denotes

sigma domain pressure thicknesses as ir, so eq-(7) becomes

it" = n" + p' for k = 3 (11)k k
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Table 2.—Implicit and explicit parts of pressure gradient term in 

eq. (10) at one grid point (k = 6) (units in m/s)
—2texpressed as effect on v /m.b

Forecast
hour

Pressure 
gradient 
(implicit)

Pressure
gradient
(explicit)

Total
pressure
gradient

1 - .7 + 1.1 + .4

2 - .8 + 1.1 + .3

3 - .8 + 1.1 + .3

4 - .7 + 1.1 + .4

5 - .6 + 1.2 4- . 6

6 - • 6 + 1.2 + , 6

7 - .6 + 1.2 4- . 6

8 - .7 + 1.1 + .4

9 - .7 + 1.1 + .4

10 - .7 + 1.1 + .4

11 - .7 + 1.1 + .4
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where k - 3 is the tropospheric sigma domain. Notice that (') refers to

basic state variables, that the primes on the deviation parts are dropped

(*3 - *3)* and that the P" notation for the standard atmosphere surface 
pi^ssure at the mountain tops xs retained• Changed model equations are

presented below, where equation numbers noted are those from Gerritv 
(1973):

1. Eq.(83) becomes:
-*t-1vk f TVfc = m - At [(a, - a,)V(a ttT+ ttt+ ttt) H—— k x v^ 

Klck321m k

+ vk * ^ vk + ®k + akak^ P”!

2. Eq*(116) becomes:

V-
„T-1 ft

x ~ A *7 * ->.x--- - At[(a - a )V(ir^+ tr^+ tt7) + — k x v,m 7 7 3 2 1 m k

+ v!7 • V v^ + - F + a V p' ] .

Changes must also be made to other equations that contain ir3:

3. Eq.(107) becomes:
= tt^_1 + At V *[(u3- pc)v^] - At V • [ (TT3- Pc)v^] - p'

4. Eq. (112) becomes:
T~ T x ~ ~G. = a, p - (a, - a, ) (ir - it ) - a p' . k kKc k k 3 3 k

5. Eq. (114) becomes:

\ ■ Vc- <v VIw3 *■ k("l+ b’ v ?k(V V1 akp

6. Eq.(125) becomes:

I7 = h «7PC - [(**+ * + *2- T3) (a7- S?)] V1

13



Changes also have to be made to the Helmholtz equations, since the

tropospheric pressure thickness, on the implicit side of the equations

has been changed to it'' through eq.(ll).

7. Eq.(236) becomes:
iT _ r T2t zr2t= { ^ (ir3- P-) ■2t —2t -2t —2t —2t, w1 , w2 , w3 , w4 }.
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