

H
QC
851
U6
N5
no.62

NOAA Technical Memorandum NWS NMC-62

ADDITION OF OROGRAPHY TO THE SEMI-IMPLICIT
VERSION OF THE SHUMAN-HOVERMALE MODEL

National Meteorological Center
Washington, D. C.
April 1978

noaa

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

/ National Weather
Service

NOAA TECHNICAL MEMORANDUM

National Meteorological Center
National Weather Service, National Meteorological Center Series

The National Meteorological Center (NMC) of the National Weather Service (NWS) produces weather analyses and forecasts for the Northern Hemisphere. Areal coverage is being expanded to include the entire globe. The Center conducts research and development to improve the accuracy of forecasts, to provide information in the most useful form, and to present data as automatically as practicable.

NOAA Technical Memorandums in the NWS NMC series facilitate rapid dissemination of material of general interest which may be preliminary in nature and which may be published formally elsewhere at a later date. Publications 34 through 37 are in the former series, Weather Bureau Technical Notes (TN), National Meteorological Center Technical Memoranda; publications 38 through 48 are in the former series ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 49, publications are now part of the series, NOAA Technical Memorandums NWS.

Publications listed below are available from the National Technical Information Service (NTIS), U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22161. Prices vary for paper copies; \$3.00 microfiche. Order by accession number, when given, in parentheses.

Weather Bureau Technical Notes

TN 22 NMC 34 Tropospheric Heating and Cooling for Selected Days and Locations over the United States During Winter 1960 and Spring 1962. Philip F. Clapp and Francis J. Winninghoff, 1965. (PB-170-584)

TN 30 NMC 35 Saturation Thickness Tables for the Dry Adiabatic, Pseudo-adiabatic, and Standard Atmospheres. Jerrold A. LaRue and Russell J. Younkin, January 1966. (PB-169-382)

TN 37 NMC 36 Summary of Verification of Numerical Operational Tropical Cyclone Forecast Tracks for 1965. March 1966. (PB-170-410)

TN 40 NMC 37 Catalog of 5-Day Mean 700-mb. Height Anomaly Centers 1947-1963 and Suggested Applications. J. F. O'Connor, April 1966. (PB-170-376)

ESSA Technical Memoranda

WBTM NMC 38 A Summary of the First-Guess Fields Used for Operational Analyses. J. F. McDonell, February 1967. (AD-810-279)

WBTM NMC 39 Objective Numerical Prediction Out to Six Days Using the Primitive Equation Model--A Test Case. A. J. Wagner, May 1967. (PB-174-920)

WBTM NMC 40 A Snow Index. R. J. Younkin, June 1967. (PB-175-641)

WBTM NMC 41 Detailed Sounding Analysis and Computer Forecasts of the Lifted Index. John D. Stackpole, August 1967. (PB-175-928)

WBTM NMC 42 On Analysis and Initialization for the Primitive Forecast Equations. Takashi Nitta and John B. Hovermale, October 1967. (PB-176-510)

WBTM NMC 43 The Air Pollution Potential Forecast Program. John D. Stackpole, November 1967. (PB-176-949)

WBTM NMC 44 Northern Hemisphere Cloud Cover for Selected Late Fall Seasons Using TIROS Nephanalyses. Philip F. Clapp, December 1968. (PB-186-392)

WBTM NMC 45 On a Certain Type of Integration Error in Numerical Weather Prediction Models. Hans Okland, September 1969. (PB-187-795)

WBTM NMC 46 Noise Analysis of a Limited-Area Fine-Mesh Prediction Model. Joseph P. Gerrity, Jr., and Ronald D. McPherson, February 1970. (PB-191-188)

WBTM NMC 47 The National Air Pollution Potential Forecast Program. Edward Gross, May 1970. (PB-192-324)

WBTM NMC 48 Recent Studies of Computational Stability. Joseph P. Gerrity, Jr., and Ronald D. McPherson, May 1970. (PB-192-979)

(Continued on inside back cover)

H
DC
851
26N5
NO.62

NOAA Technical Memorandum NWS NMC-62

ADDITION OF OROGRAPHY TO THE SEMI-IMPLICIT
VERSION OF THE SHUMAN-HOVERMALE MODEL

Kenneth A. Campana

Kenneth A. Campana

National Meteorological Center
Washington, D. C.
April 1978

CENTRAL
LIBRARY

AUG 07 1978

N.O.A.A.
U. S. Dept. of Commerce

UNITED STATES
DEPARTMENT OF COMMERCE
Juanita M. Kreps, Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
Richard A. Frank, Administrator

National Weather
Service
George P. Cressman, Director

CONTENTS

Abstract	1
1. Introduction	1
2. Semi-implicit transformation	3
3. Orography	6
4. Changes to model equations	11
Acknowledgments	14
References	14

ADDITION OF OROGRAPHY TO THE SEMI-IMPLICIT
VERSION OF THE SHUMAN-HOVERMALE MODEL

Kenneth A. Campana
National Meteorological Center, NWS, NOAA
Washington, D.C. 20233

ABSTRACT. The semi-implicit version of the Shuman-Hovermale model now includes orography. The incorporation of mountains into the model was made with great difficulty and is documented in this report. Care must be taken when splitting the pressure gradient term in the equations of motion into implicit and explicit parts. The orographic effect on the pressure gradient term is exhibited in two ways--as the gradient of surface geopotential and as the gradient of surface pressure. These two effects must be calculated together as either implicit or explicit parts in order that the long time step will not cause serious orographic-related truncation errors. Necessary changes to model equations are documented.

1. INTRODUCTION

The semi-implicit time integration scheme has been reported in the literature for several years and is used in a number of multilayer numerical weather prediction models around the globe. The implicit treatment

permits a long time step to be used in a forecast model because it time-averages terms in the equations which govern the fastest moving gravity waves.¹ All other terms are treated in the normal explicit sense. The computation time savings resulting from the long time step make the semi-implicit technique particularly attractive for numerical models that are being used in an operational forecasting environment. Because a set of Helmholtz equations must be solved during each time step, the savings from the semi-implicit method is not so great as would be expected from the longer time step. However, computation time savings of four to one are reported for a six to one ratio of time step intervals in semi-implicit versus explicit runs (Kwizak and Robert, 1971).

A semi-implicit version of the Shuman-Hovermale 6-layer primitive equation model (6L PE) has been developed at the National Meteorological Center (NMC) by Gerrity et al. (1973), and early experimental results without orography have been published by Campana (1974). It is a simplified research model patterned after the 6L PE, but uses none of its physical parameterizations and has twice its grid length. Tests that included orography were initially unsuccessful, and it was with great difficulty that mountains were incorporated into the model. The purpose of this report is to document the solution to the mountain problem in the semi-implicit model. The first section will briefly describe the splitting of the equations into implicit and explicit parts. The next section will discuss the mountain problem and its solution. The final section will

¹Pressure gradient term in the equations of motion and divergence term in the continuity equation.

present the model equations which must be adjusted to fit the above solution. The actual model is not discussed in great detail, so the reader is referred to Gerrity (1973) for all the particulars. In this report, the terminology used by Gerrity (1973) will be used where appropriate.

2. SEMI-IMPLICIT TRANSFORMATION

In order to more easily discuss the mountain problem in the next section, a brief description of the transformation of the equations of motion to semi-implicit time differencing is helpful. The equation of motion for the v component of the wind is used for this discussion:

$$\frac{\partial}{\partial t} \frac{v}{m} + \frac{\partial \phi}{\partial y} + \alpha \frac{\partial p}{\partial y} = - \hat{f} \frac{u}{m} - u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - \frac{\dot{\sigma}}{m} \frac{\partial v}{\partial \sigma} + \text{Friction}, \quad (1)$$

where

t = time,

u = horizontal wind component in the x-direction,

v = horizontal wind component in the y-direction,

$\dot{\sigma}$ = vertical wind component in the σ -direction,

p = pressure,

α = specific volume,

ϕ = geopotential,

\hat{f} = Coriolis and map factor terms = $f - v \frac{\partial m}{\partial x} + u \frac{\partial m}{\partial y}$,

m = map factor, and

f = Coriolis force.

Note that, unlike other models at NMC, this one uses temperature and pressure as the thermodynamic variables.

First, eq.(1) is simplified by employing a linearization procedure. Each variable, X , is assumed to be composed of a basic state, \tilde{X} , varying only with σ , and a deviation from this basic state, X' ,

$$X = \tilde{X} + X'. \quad (2)$$

Implicit calculations are done only on the resulting linear terms. Basic state values for the thermodynamic variables are obtained from the U.S. Standard Atmosphere (1962) using "representative" σ -layer pressures. The basic state wind field is one of no motion ($\tilde{u} = \tilde{v} = 0$).

Taking the $\alpha \frac{\partial p}{\partial y}$ term in eq.(1) and defining

$$\alpha = \tilde{\alpha} + \alpha'$$

and

$$p = \tilde{p} + p' \text{ with } \frac{\partial \tilde{p}}{\partial y} = 0, \text{ since } \tilde{p} \text{ is a function of}$$

σ only; one obtains

$$\alpha \frac{\partial p}{\partial y} = \tilde{\alpha} \frac{\partial p'}{\partial y} + \alpha' \frac{\partial p'}{\partial y}. \quad (3)$$

In the semi-implicit treatment of eq.(1), terms on the left side are time-averaged (implicit calculation). Rewriting eq.(1) using the linearization process for all terms except $\frac{\partial \phi}{\partial y}$, one obtains :

$$\frac{\partial}{\partial t} \frac{v'}{m} + \frac{\partial \phi}{\partial y} + \tilde{\alpha} \frac{\partial p'}{\partial y} = - \alpha' \frac{\partial p'}{\partial y} - \hat{f} \frac{u'}{m} - u' \frac{\partial v'}{\partial x} - v' \frac{\partial v'}{\partial y} - \frac{\dot{\sigma}'}{m} \frac{\partial v'}{\partial \sigma} + \text{Friction}. \quad (4)$$

Note that the $\alpha' \frac{\partial p'}{\partial y}$ term is nonlinear and is calculated on the explicit (non-time averaged) side.

Letting superscripts $\tau-1$, τ , and $\tau+1$ denote quantities evaluated explicitly at past, present, and future time levels, the following definitions of the time average, $\bar{X}^{2\tau}$, and the time derivative, $\frac{\partial X}{\partial t}$, are useful when

transforming eq. (4) to its semi-implicit counterpart,

$$\bar{X}^{2t} = \frac{1}{2}(X^{t+1} + X^{t-1})$$

$$\frac{\partial X}{\partial t} = \frac{X^{t+1} - X^{t-1}}{2\Delta t} = \frac{\bar{X}^{2t} - X^{t-1}}{\Delta t} .$$

Implicit treatment of the left side of eq. (4) and dropping the primes from all variables leaves the following:

$$\frac{\bar{v}^{2t}}{m} + \Delta t \left(\frac{\partial \bar{\phi}^{2t}}{\partial y} + \tilde{\alpha} \frac{\partial \bar{p}^{2t}}{\partial y} \right) = \frac{v^{t-1}}{m} + \Delta t (\dots)^t , \quad (5)$$

where $(\dots)^t$ represents all terms on the right side of eq. (4).

In the actual model equations, σ -layer pressure thicknesses, $\partial p / \partial \sigma$, are used in the pressure gradient term, rather than pressure itself. Further, in order to close the system of equations, $\bar{\phi}^{2t}$ is transformed into implicit terms involving $\frac{\partial \bar{p}^{2t}}{\partial \sigma}$ and $\bar{\delta}^{2t}$, and into other terms, R , calculated explicitly.

Replacing $\bar{\phi}^{2t}$ by these terms in eq. (5), and using the actual model variables, one obtains:

$$\frac{\bar{v}^{2t}}{m} + \frac{\partial}{\partial y} \sum_{j=1}^3 g_{k,j} \left[\frac{\partial \bar{p}}{\partial \sigma} \right]_j^{2t} + \frac{\partial}{\partial y} \sum_{j=1}^4 \hat{h}_{k,j} \bar{\delta}_j^{2t} = \frac{v_k^{t-1}}{m} - \Delta t \frac{\partial R_k^t}{\partial y} + \Delta t (\dots)_k^t \quad (6)$$

k = vertical index,

where $\frac{\partial R_k^t}{\partial y}$ and the matrices $g_{k,j}$ and $\hat{h}_{k,j}$ all result from the transformation of $\bar{\phi}^{2t}$ (section 4 in Gerrity, 1973). By solving a set of Helmholtz equations, one obtains the three $\frac{\partial \bar{p}^{2t}}{\partial \sigma}$ and the four $\bar{\delta}^{2t}$ which are needed to compute \bar{v}^{2t} from eq. (6).

The preceding general description of the semi-implicit transformation now allows one to proceed to a discussion of the orographic problem.

3. OROGRAPHY

Semi-implicit model experiments without orography were quite successful using a time step of 1 hour. When mountains were introduced, however, erroneous orographic scale features developed over large mountain masses and were amplified with time. An example of this problem over the Rockies and Himalayas is shown in figure 1. Tests with lower mountain elevations only lessened the real difficulty. When the model was run in an entirely explicit mode (and thus a shorter time step) the problem disappeared (fig. 2). Further tests with the semi-implicit version, using a time step as short as the explicit mode above, also yielded trouble-free forecasts. There appeared to be severe time truncation errors near orography when using a long time step.

After a great deal of reflection and experimentation, the problem appeared to be related to the implicit/explicit splitting of the pressure gradient term² in the tropospheric sigma domain. Recalling eq.(1), the pressure gradient near mountains is made up of two relatively large terms having opposite signs $\left(\frac{\partial \phi}{\partial y}, \alpha \frac{\partial p}{\partial y}\right)$. Through the semi-implicit transformation on this equation, these terms are further broken into implicit and explicit parts. Close examination shows that these two parts also can be large terms of opposite sign in the vicinity of mountains. Since the basic state pressure, \tilde{p} , is not a function of (x, y) , gradients of pressure near orography remain in the deviation part, p' . Thus a good portion of the large $\alpha \frac{\partial p}{\partial y}$ term near mountains remains on the implicit side of eq.(4)

²In the equations of motion.

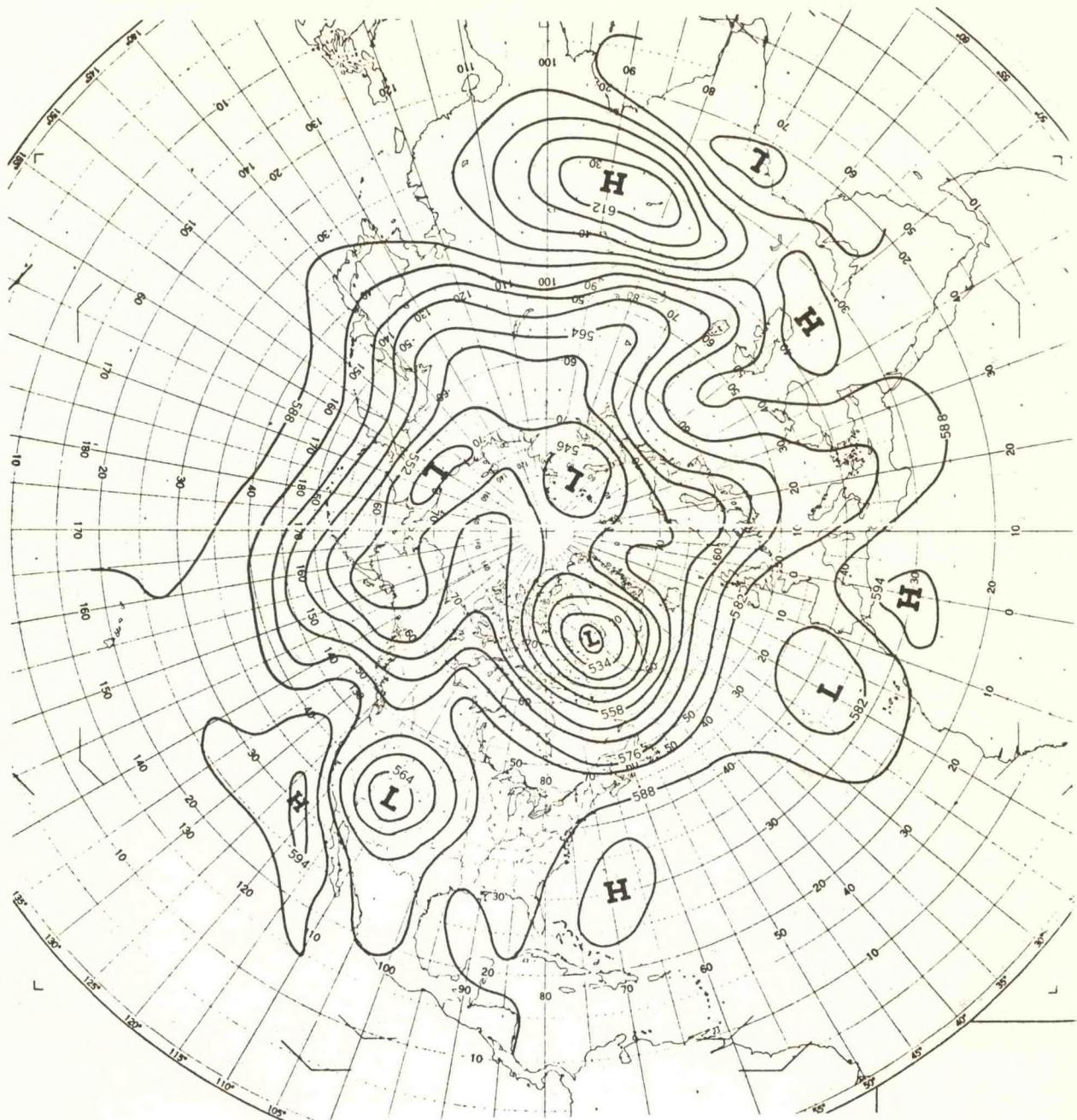


Figure 1.--Semi-implicit 500-mb heights (dekameters), time step = 3600 s, 11-hr forecast from 0000 GMT 24 August 1972. Contour interval 6 dekameters.

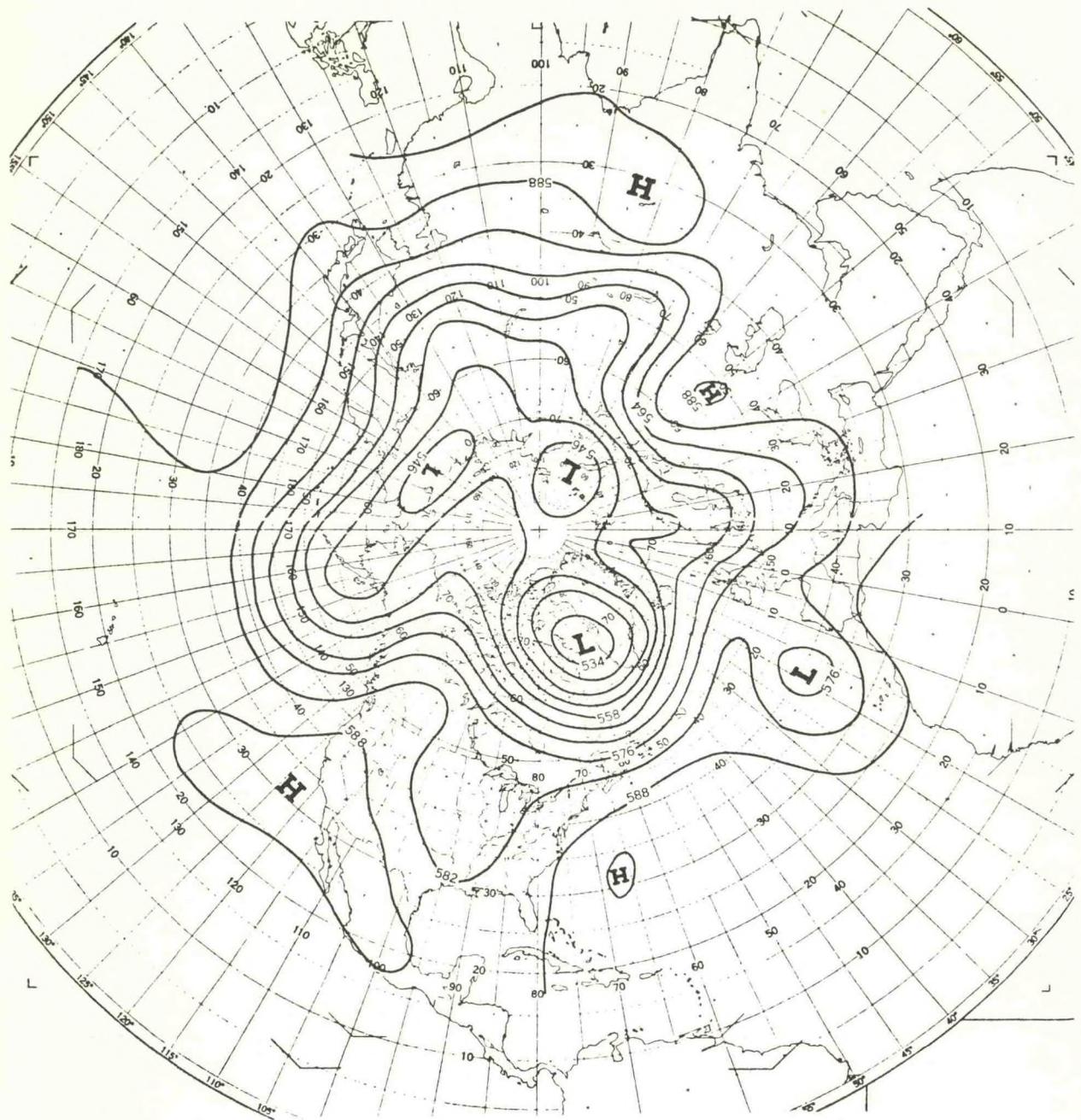


Figure 2.--Explicit 500-mb heights, time step = 600 s, 12-hr forecast from 0000 GMT 24 August 1972. Contour interval 6 dekameters.

in $\tilde{\alpha} \frac{\partial p'}{\partial y}$. Later, however, the process of transforming $\bar{\phi}^2 t$ leaves the gradient of ground elevation on the explicit side of eq. (6) imbedded in the $\frac{\partial R_k}{\partial y}$ term. Examination of the two parts of the pressure gradient term at a grid point near steep mountains shows they both are larger than any other term in eq.(6). Table 1 displays the size of these pressure-gradient parts and their sum in the lowest tropospheric layer of the model during a semi-implicit forecast (1-hour time step). The sum amplifies with time and the implicit part seems to cause most of the increase. In only 11 forecast hours, negative model pressures appear over the mountains and produce a model failure.

Since the gradient of model ground height and the gradient of model surface pressure are of opposite sign, the magnitude of both parts of the pressure-gradient term can be reduced by calculating both of them on the same side of the equation, either explicitly or implicitly, rather than separately. In order to disrupt the model formulated by Gerrity (1973) as little as possible, a redefinition of the pressure deviation, p' , is made in the troposphere:

$$p' = p'' + \tilde{p}', \quad (7)$$

where \tilde{p}' is a surface pressure at the top of the model mountains obtained from the U.S. Standard Atmosphere. All parts of eq.(7) are functions of (x,y) and \tilde{p}' is time invariant. Now redefine the implicit term, $\tilde{\alpha} \frac{\partial p'}{\partial y}$, in eq. (4):

$$\tilde{\alpha} \frac{\partial p'}{\partial y} = \tilde{\alpha} \frac{\partial p''}{\partial y} + \tilde{\alpha} \frac{\partial \tilde{p}'}{\partial y}. \quad (8)$$

Moving the time invariant quantity $\tilde{\alpha} \frac{\partial \tilde{p}'}{\partial y}$ to the explicit side of eq.(4)

Table 1.--Implicit and explicit parts of pressure gradient term in
 eq. (6) at one grid point ($k = 6$) (units in m/s)
 expressed as effect on \bar{v}_6^{2t}/m .

Forecast hour	Pressure gradient (implicit)	Pressure gradient (explicit)	Total pressure gradient
1	+ 14.5	- 13.2	+ 1.3
2	+ 14.7	- 13.2	+ 1.5
3	+ 14.8	- 13.1	+ 1.7
4	+ 14.9	- 13.2	+ 1.7
5	+ 15.0	- 13.1	+ 1.9
6	+ 15.0	- 13.1	+ 1.9
7	+ 15.2	- 13.0	+ 2.2
8	+ 15.4	- 13.0	+ 2.4
9	+ 15.8	- 12.9	+ 2.9
10	+ 16.3	- 12.7	+ 3.6
11	+ 16.9	- 12.6	+ 4.3

one obtains

$$\begin{aligned} \frac{\partial}{\partial t} \frac{v'}{m} + \frac{\partial \phi}{\partial y} + \tilde{\alpha} \frac{\partial p'}{\partial y} = & - \alpha' \frac{\partial p'}{\partial y} - \hat{f} \frac{u'}{m} - u' \frac{\partial v'}{\partial x} - v' \frac{\partial v'}{\partial y} \\ & - \frac{\dot{\sigma}'}{m} \frac{\partial v'}{\partial \sigma} + \text{Friction} - \tilde{\alpha} \frac{\partial p'}{\partial y}. \end{aligned} \quad (9)$$

In essence, the tropospheric basic state pressure is adjusted to account for orography. Recalling that σ -layer pressure thickness, $\frac{\partial p}{\partial \sigma}$, is used rather than pressure, p , in the actual model, eq. (6) in the troposphere ($k = 4, 5, 6, 7$) becomes:

$$\begin{aligned} \frac{v_k^{2t}}{m} + \frac{\partial}{\partial y} \sum_{j=1}^3 g_{k,j} \frac{(\frac{\partial p}{\partial \sigma})^{2t}_j}{\partial \sigma} + \frac{\partial}{\partial y} \sum_{j=1}^4 \hat{h}_{k,j} \frac{\dot{\sigma}_j^{2t}}{\partial \sigma} = & \frac{v_k^{t-1}}{m} - \Delta t \frac{\partial R_k^t}{\partial y} \\ & + \Delta t (\dots)_k^t - \Delta t \tilde{\alpha}_k \frac{\partial p'}{\partial y}. \end{aligned} \quad (10)$$

Of course, in a like manner there is a $\frac{\partial p'}{\partial x}$ term in the u -equation of motion.

This redefinition of the deviation part of the pressure variable and its proper splitting into implicit and explicit parts removed the amplifying mountain features. Successful semi-implicit forecasts using an hour time step have been made beyond 48 hours. Examination of the two parts of the pressure gradient term at one grid point in table 2 shows them to be an order of magnitude smaller with the above modification than with the old formulation (table 1). The implicit part, which seemed responsible for the amplification, is now under control.

4. CHANGES TO MODEL EQUATIONS

This section documents changes to the actual semi-implicit model equations that are necessary to remove the mountain problem. Gerrity (1973) denotes sigma domain pressure thicknesses as π , so eq. (7) becomes

$$\pi_k' = \pi_k^{t-1} + \tilde{p}' \quad \text{for } k = 3, \quad (11)$$

Table 2.--Implicit and explicit parts of pressure gradient term in
 eq. (10) at one grid point ($k = 6$) (units in m/s)
 expressed as effect on $\frac{-2t}{v_6^2}$ /m.

Forecast hour	Pressure gradient (implicit)	Pressure gradient (explicit)	Total pressure gradient
1	- .7	+ 1.1	+ .4
2	- .8	+ 1.1	+ .3
3	- .8	+ 1.1	+ .3
4	- .7	+ 1.1	+ .4
5	- .6	+ 1.2	+ .6
6	- .6	+ 1.2	+ .6
7	- .6	+ 1.2	+ .6
8	- .7	+ 1.1	+ .4
9	- .7	+ 1.1	+ .4
10	- .7	+ 1.1	+ .4
11	- .7	+ 1.1	+ .4

where $k = 3$ is the tropospheric sigma domain. Notice that $(\tilde{\ })$ refers to basic state variables, that the primes on the deviation parts are dropped ($\pi'_3 \equiv \pi_3$), and that the \tilde{p}' notation for the standard atmosphere surface pressure at the mountain tops is retained. Changed model equations are presented below, where equation numbers noted are those from Gerrity (1973):

1. Eq.(83) becomes:

$$\begin{aligned}\vec{v}_k^\tau &= \frac{\vec{v}_k^{\tau-1}}{m} - \Delta t [(\alpha_k^\tau - \tilde{\alpha}_k) \hat{\nabla} (\alpha_k \pi_3^\tau + \pi_2^\tau + \pi_1^\tau) + \frac{\hat{f}_k^\tau}{m} \vec{k} \times \vec{v}_k^\tau \\ &+ \vec{v}_k^\tau \cdot \hat{\nabla} \vec{v}_k^\tau + B_k^\tau + \tilde{\alpha}_k \sigma_k \hat{\nabla} \tilde{p}'] .\end{aligned}$$

2. Eq.(116) becomes:

$$\begin{aligned}\vec{v}_7^\tau &= \frac{\vec{v}_7^{\tau-1}}{m} - \Delta t [(\alpha_7^\tau - \tilde{\alpha}_7) \hat{\nabla} (\pi_3^\tau + \pi_2^\tau + \pi_1^\tau) + \frac{\hat{f}_7^\tau}{m} \vec{k} \times \vec{v}_k^\tau \\ &+ \vec{v}_7^\tau \cdot \hat{\nabla} \vec{v}_7^\tau + B_7^\tau - \vec{F} + \tilde{\alpha}_7 \hat{\nabla} \tilde{p}'] .\end{aligned}$$

Changes must also be made to other equations that contain π_3 :

3. Eq.(107) becomes:

$$p_T^\tau = \pi_3^{\tau-1} + \Delta t \nabla \cdot [(\tilde{\pi}_3 - p_c) \vec{v}_T^\tau] - \Delta t \nabla \cdot [(\pi_3^\tau - p_c) \vec{v}_T^\tau] - \tilde{p}' .$$

4. Eq.(112) becomes:

$$G_k^\tau = \tilde{\alpha}_k p_c - (\alpha_k^\tau - \tilde{\alpha}_k) (\pi_3^\tau - \tilde{\pi}_3) - \tilde{\alpha}_k \tilde{p}' .$$

5. Eq.(114) becomes:

$$I_k^\tau = \tilde{\alpha}_k p_c - (\alpha_k^\tau - \tilde{\alpha}_k) [\pi_3^\tau + \frac{1}{\sigma_k} (\pi_2^\tau + \pi_1^\tau) - \tilde{\pi}_3 - \frac{1}{\sigma_k} (\tilde{\pi}_2 + \tilde{\pi}_1)] - \tilde{\alpha}_k \tilde{p}' .$$

6. Eq.(125) becomes:

$$I_7^\tau = \frac{1}{2} \tilde{\alpha}_7 p_c - [(\pi_1^\tau + \pi_2^\tau + \pi_3^\tau - \tilde{\pi}_1 - \tilde{\pi}_2 - \tilde{\pi}_3) (\alpha_7^\tau - \tilde{\alpha}_7)] - \tilde{\alpha}_7 \tilde{p}' .$$

Changes also have to be made to the Helmholtz equations, since the tropospheric pressure thickness, π_3 , on the implicit side of the equations has been changed to π_3' through eq.(11).

7. Eq.(236) becomes:

$$P^T = \{ \overline{\pi_1^{2t}}, \overline{\pi_2^{2t}}, \overline{(\pi_3 - \tilde{p}')^{2t}}, \overline{w_1^{2t}}, \overline{w_2^{2t}}, \overline{w_3^{2t}}, \overline{w_4^{2t}} \}.$$

ACKNOWLEDGMENTS

The author wishes to thank Joseph Gerrity of the National Meteorological Center for his invaluable contributions during this "agonizing" research. Special thanks to Mary Daigle for typing the report and to Tom Krzenski for drafting the figures.

REFERENCES

Campana, K. A., 1974: "Status Report on a Semi-Implicit Version of the Shuman-Hovermale Model." NOAA Technical Memorandum NWS-NMC-54. U.S. Dept. of Commerce, Washington, D.C., 22 pp.

Gerrity, J. P., R. D. McPherson, and S. H. Scolnik, 1973: "A Semi-Implicit Version of the Shuman-Hovermale Model." NOAA Technical Memorandum NWS-NMC-53, U.S. Dept. of Commerce, Washington, D.C., 44 pp.

Kwizak, M., and A. J. Robert, 1971: "A Semi-Implicit Scheme for Grid Point Atmospheric Models of the Primitive Equations." Monthly Weather Review, 99, pp. 32-36.

(Continued from inside front cover)

NOAA Technical Memorandums

NWS NMC 49 A Study of Non-Linear Computational Instability for a Two-Dimensional Model. Paul D. Polger, February 1971. (COM-71-00246)

NWS NMC 50 Recent Research in Numerical Methods at the National Meteorological Center. Ronald D. McPherson, April 1971. (COM-71-00595)

NWS NMC 51 Updating Asynoptic Data for Use in Objective Analysis. Armand J. Desmarais, December 1972. (COM-73-10078)

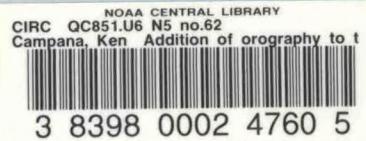
NWS NMC 52 Toward Developing a Quality Control System for Rawinsonde Reports. Frederick G. Finger and Arthur R. Thomas, February 1973. (COM-73-10673)

NWS NMC 53 A Semi-Implicit Version of the Shuman-Hovermale Model. Joseph P. Gerrity, Jr., Ronald D. McPherson, and Stephen Scolnik. July 1973. (COM-73-11323)

NWS NMC 54 Status Report on a Semi-Implicit Version of the Shuman-Hovermale Model. Kenneth Campana, March 1974. (COM-74-11096/AS)

NWS NMC 55 An Evaluation of the National Meteorological Center's Experimental Boundary Layer model. Paul D. Polger, December 1974. (COM-75-10267/AS)

NWS NMC 56 Theoretical and Experimental Comparison of Selected Time Integration Methods Applied to Four-Dimensional Data Assimilation. Ronald D. McPherson and Robert E. Kistler, April 1975. (COM-75-10882/AS)


NWS NMC 57 A Test of the Impact of NOAA-2 VTPR Soundings on Operational Analyses and Forecasts. William D. Bonner, Paul L. Lemar, Robert J. Van Haaren, Armand J. Desmarais, and Hugh M. O'Neil, February 1976. (PB-256-075)

NWS NMC 58 Operational-Type Analyses Derived Without Radiosonde Data from NIMBUS 5 and NOAA 2 Temperature Soundings. William D. Bonner, Robert van Haaren, and Christopher M. Hayden, March 1976. (PB-256-099)

NWS NMC 59 Decomposition of a Wind Field on the Sphere. Clifford H. Dey and John A. Brown, Jr. April 1976. (PB-265-422)

NWS NMC 60 The LFM Model 1976: A Documentation. Joseph P. Gerrity, Jr., December 1977.

NWS NMC 61 Semi-Implicit Higher Order Version of the Shuman-Hovermale Model. Kenneth A. Campana, April 1978.

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The six major line components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS — Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS — Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS — Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

ENVIRONMENTAL SCIENCE INFORMATION CENTER (D822)
ENVIRONMENTAL DATA SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE

6009 Executive Boulevard
Rockville, MD 20852

NOAA--S/T 78-179