{"Bibliographic":{"Title":"Atlas of tropical sea surface temperature and surface winds /","Authors":"","Publication date":"1989","Publisher":""},"Administrative":{"Date created":"08-20-2023","Language":"English","Rights":"CC 0","Size":"0000186243"},"Pages":["1046\nis\nno.8\nNOAA\n8\nTropical\nAtlas\nTemperature\nSurface\nSea\nSurface\nWinds\nand\nJune Silver Spring, Md.\n1989\nSeries\nLIBRARY\n1989\n3\nCOMMERCE\nU.S.\nAdministration\nNational\nNational","G1046\nC846\nNOAA ATLAS No. 8\nAtlas of Tropical\nATMOSPHERIC\nAND\nNOAA\nSea Surface Temperature\nand Surface Winds\nDEPARTMENT OF\nMichael S. Halpert, C.F. Ropelewski\nClimate Analysis Center\nNational Meteorological Center\nNational Weather Service\nSilver Spring, MD.\nJune 1989\nLIBRARY\nJUL 2 1 1989\nU.S. DEPARTMENT OF COMMERCE\nN.O.A.A.\nRobert Mosbacher, Secretary\nUS Dept of Commerce\nNational Oceanic and Atmospheric Administration\nWilliam E. Evans, Under Secretary\nNational Weather Service\nDr. Elbert W. Friday, Jr., Assistant Administrator","TABLE OF CONTENTS\nABSTRACT\n1\nINTRODUCTION\n1\nDATA AND ANALYSIS\n3\nDISCUSSION\n4\n1. SST Means and Variances\n4\n2. Surface Wind Means and Variances\n5\n3. E1 Niño/Southern Oscillation Composites\n6\n4. Equatorial Time-Longitude Cross Sections\n7\n5. Harmonic Analysis\n7\nAPPENDIX A\n10\nAPPENDIX B\n11\nREFERENCES\n12\nFIGURES\n14\nCOPIES MAY BE OBTAINED FROM:\nClimate Analysis Center\nW/NMC52\n5200 Auth Road\nWashington, D. C. 20233","Atlas of Tropical Sea Surface Temperatures and Surface Winds\nAbstract\nAn atlas of sea surface temperatures (SSTs) and surface winds over the\nglobal tropical oceans based on the Comprehensive Ocean Atmosphere Data\nSet (COADS) is presented. The emphasis of the atlas is the evolution\nof the annual cycle and variations about it. Mean sea surface\ntemperature, zonal and meridional wind means, standard deviations,\ndifferences from the annual mean and differences from the zonal mean\nare presented for the period 1950-1979, along with the vector wind\nmeans and differences from the annual mean. Time-longitude cross\nsections from 1950-1987 are shown for the mean, anomaly and difference\nfrom the annual mean for the zonal wind, meridional wind and SST. Mean\nand anomalous ENSO composites for the vector wind and SST based on the\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976 are presented. The\nfirst and second harmonic of the SST, the zonal wind and meridional\nwind are also shown. The first and second harmonic of the 200 mb zonal\nwind and the outgoing longwave radiation (OLR) are included in order to\ngive an indication of the circulation throughout the tropical\ntroposphere.\nINTRODUCTION\nThis atlas contains descriptions of the annual cycle of sea surface\ntemperatures (SSTs) and surface winds over the global tropical oceans from\n30°N to 30°S. It differs from other recent similar efforts--Sadler et al.\n(1987), Wright (1988), Shea (1986) and Levitus (1982) in that its\nemphasis is on the progression of the annual cycle and variations about the\nannual cycle. Also included are composite analyses for the principal E1\nNiño/Southern Oscillation (ENSO) episodes occurring during the period 1950\nto 1979. The intent of this atlas is to provide a more complete description\nof the annual cycle in the tropical ocean basins. None of the individual\nsets of analyses presented here are unique. However, taken as a whole, the\natlas provides an integrated description of tropical variability in the\ncontext of global ocean-atmosphere interactions. The various analyses,\ndescribed below, were selected to emphasize different aspects of annual\nvariability.\nThe atlas contains standard climatological fields: the 1950-1979 mean\nand interannual standard deviation, by month, for the sea surface\ntemperature (SST), zonal and meridional wind components and mean vector wind\nmaps (derived from the wind components) In addition, analyses are\npresented depicting mean monthly differences from the annual mean for the\nSST, vector wind and wind components, as well as monthly means with the\nzonal mean removed (asymmetric component) for the SST and the wind\ncomponents. These representations of the annual cycle, along with maps of\nthe annual means, provide a different perspective from which to examine the\ncharacteristic variability in the tropical belt. The annual and semi-annual\n1","cycles for the SST and the wind components are also shown as the first and\nsecond harmonics of the 12 monthly 30-year means, following the analysis of\nHorel (1982) The relative magnitudes of the semi-annual and annual cycles\nare also given for each of the variables of interest.\nIn order to get a better indication of the atmospheric circulation\nthrough the depth of the tropical troposphere, the first and second\nharmonics of the 200 mb zonal wind are also shown. Finally, the annual and\nsemi-annual cycles of the outgoing longwave radiation (OLR) are included as\nindications of convective activity and diabatic forcing (Richards and Arkin,\n1981) in the tropics and also to depict the relationship of their annual\ncycle to the SST and winds.\nIn addition to the mean fields and harmonic analysis, equatorial time-\nlongitude cross sections for the period 1950-1987 are presented for the SST\nand wind components. A unique feature of this atlas is the presentation of\nthree sets of time-longitude cross sections. These are based on 1) the\nobserved monthly mean fields, 2) anomalies from the 1950-1979 period monthly\nmeans, and 3) monthly deviations from the 1950-1979 annual mean. Cross\nsections depicting the mean annual cycle are also presented for comparison.\nMean and anomalous composites of the vector wind and SST for ENSO events\nbeginning two seasons before until two seasons after the episode are also\nshown.\nThe data used to compute the fields presented in this atlas come from\nthe Comprehensive Ocean-Atmosphere Data Set (COADS) (Slutz et al., 1985).\nOther atlases have been published based on this extensive data set (Sadler\net al. 1987; Wright, 1988). Depending on their purpose, atlases can be\nprepared in a number of different ways. Sadler's atlas was based on data\nfrom the 1900-1979 period and used a subjective analysis to present monthly\nfields for sea level pressure, wind, wind stress and SST. The subjective\nanalysis enabled them to use other available information (coastal effects,\npersistent patterns, etc.) to produce a climatology that includes small-\nscale features. In the analysis presented here, the interest is focused\nmore towards large-scale climate anomalies consistent with other Climate\nAnalysis Center (CAC) climate diagnostics.\nRamage (1987) points out that the COADS wind data has larger mean\nscalar winds during the 1950-1979 period than for the earlier 1900-1939\nperiod. This trend is probably due to changes in measurement techniques.\nBecause of this trend and other possible inaccuracies, as well as the\nlimited amount of data available before 1950, this atlas is based on only\nthe 1950-1979 period. The monthly fields presented here are computer\ngenerated from the monthly data on a 2° latitude by 2° longitude grid.\nA\nmodified Cressman (1959) interpolation scheme was used to fill in areas\nwhere data are missing.\nThis atlas is designed to be a practical reference for use in\nconjunction with other CAC climate monitoring products and tools. A\nmultiplicity of techniques were utilized for the analysis and display of the\nannual cycle and ENSO composites to facilitate the usefulness of the atlas\nand to stimulate and support climate diagnostics research and real-time\nclimate monitoring.\n2","DATA AND ANALYSIS\nThe COADS is one of the largest and most complete data sets of marine\ndata available today. The first release consisted of global ship reports\nfrom 1854-1979. Release 2 extends the data set until 1987. Initially about\n100 million observations, the first release of COADS was reduced to about 72\nmillion reports after the elimination of duplicate entries. These were\nsummarized into 2° latitude by 2° longitude squares. Data used to prepare\nthis atlas came from the COADS monthly summary trimmed file, which was\nformed by eliminating observations that were more than 3.5 standard\ndeviations away from the mean. More detail about the processing of the\nCOADS can be obtained in Slutz et al. (1985) and Woodruff et al. (1987).\nAlthough there are a tremendous number of observations (over 72\nmillion) in the original data set, large areas of the ocean basins contain\nvery little data. Several regions of the southern Indian ocean, the South\nAtlantic, and large areas of the equatorial Pacific have less than 20 years\nof data, except along the principal shipping routes. More detail about the\ndistribution and amount of data may be found in Appendix A. To produce\nrepresentative field analyses, given the uneven distribution of data, the\nfollowing procedures were followed:\n1.\nA preliminary 30-year climatology for each surface variable (SST,\nzonal wind and meridional wind) was computed using all available data\nfor the 1950-1979 period with an interpolation scheme (Cressman, 1959)\nto create completely filled 2° latitude by 2° longitude fields.\n2.\nIndividual monthly fields were then formed using the same\ninterpolation scheme, except individual values were screened against\nthe mean fields to eliminate outliers. Details concerning the various\ntests used to screen the data and an indication of the amount of data\neliminated can be found in Appendix B.\n3. A nonlinear filter based on medians, which was developed by Tukey\n(see Rabiner et al., 1975), was applied spatially to the monthly\nfields. The algorithm may be found in Reynolds (1989). This filter\nobjectively eliminates extreme values instead of smoothing the extreme\nvalues over large areas.\n4.\nThe monthly fields were then smoothed with a two-dimensional\nbinomial 1-2-1 filter.\n5. After formation of the smoothed monthly fields for the period\n1950-1979, the climatology was recomputed by averaging the 30 years of\nmonthly fields.\nAfter recomputation of the monthly climatology, anomaly fields for the\n30 years of data were formed and stored. The standard deviations for the\nSST and the wind components were then computed from the variance of the\nmonthly anomaly fields. The monthly mean vector wind was constructed from\nthe monthly mean wind components. The annual means of all variables were\ncomputed by averaging the monthly means.\nIn addition to the traditional charts depicting the means and standard\ndeviations, a number of supplemental analyses are displayed. These include\n3","a harmonic analysis, in which the phase and amplitude for the annual cycle\n(12-month harmonic) is presented using the technique shown in Hsu and\nWallace (1976) Equatorial time-longitude cross sections for the wind\ncomponents and SST are also presented. These were computed by averaging\nthe\nindividual monthly data fields in the latitude band from 5°S to 5°N in 5°\nlongitude segments. The cross sections of the equatorial annual cycles were\nprepared similarly, except the base period mean was used. Finally, the\neight season ENSO composites were computed by averaging data for the\nfollowing seven ENSO episodes: 1951, 1953, 1957, 1965, 1969, 1972, and\n1976.\nThe OLR data used in the harmonic analyses are derived from AVHRR\nwindow channel radiances. A description of the data processing may be found\nin Gruber and Winston (1978). OLR means and variances can be found in the\nAtlas of Outgoing Longwave Radiation Derived from NOAA Satellite Data\n(Janowiak et al., 1985). The 200 mb zonal winds are derived from the NMC\noperational analysis. Details about the different analyses used through\nFebruary 1979 can be found in Arkin (1982) Other details through 1982 can\nbe found in Kistler and Parrish (1982). Means and variances for the 200 mb\nzonal wind can be found in the Atlas of the Tropical and Subtropical\nCirculation Derived from National Meteorological Center Operational Analyses\n(Arkin et al. , 1986).\nDISCUSSION\nThe purpose of this discussion is not to present a detailed description\nof all of the figures shown in this atlas, but rather to serve as a quick\nreference to some of the major features of the annual cycle.\n1. SST Means and Variances\nFigures 2a through 17a show the monthly and seasonal mean SST and\nfigures 2b through 17b show the monthly and seasonal SST standard\ndeviations. In the equatorial regions, SSTs show a relatively small annual\nrange, except in the coastal upwelling regions of the tropical eastern\nPacific and Atlantic Oceans. In the eastern South Pacific region,\ntemperatures reach their maximum in March along the South American coast,\nthen fall rapidly. A tongue of relatively cold water develops and extends\nwestward along the equator from this region. This westward extension of\ncooler water also provides greater variability in the SST as far west as the\ndate line. The occurrences of the E1 Niño (7 out of 30 years) also\nincreases the variability in this region. In the eastern equatorial\nAtlantic, SSTs reach their maximum in April and May. Away from the equator,\nthe annual cycle of SSTs is dominated by the solar annual cycle, with\nmaximum temperatures occurring one or two months after the summer solstice.\nWhile the annual range of SST increases poleward, the interannual\nvariability, as expressed in the standard deviation charts, remains largest\nin equatorial regions.\nSome aspects of the annual SST cycle can be seen more easily through\nexamination of the mean monthly differences from the annual mean (Figs. 2c-\n13c). In the subtropics, the Northern Hemisphere SSTs vary by as much as 5\nor 6 degrees from the annual mean, with the largest differences occurring in\n4","the Gulf of Mexico and in the western Pacific. These differences are\ngreatest around February and August, indicative of the lagged response to\nsolar heating in the SSTs. The Southern Hemisphere subtropical SSTs follow\na similar pattern, although the magnitudes of the differences are somewhat\nless. The equatorial regions tend to follow the Southern Hemisphere\nseasons, but the maximum amplitude of the annual cycle is lagged even more\nwith respect to the solar cycle, with relative maxima in March and minima in\nSeptember. The extremes in the annual cycle of equatorial SST, thus, tend\nto occur near the high-latitude transition seasons. The areas of upwelling\nalong the west coast of South America and Africa show up as the only areas\nalong the equator with an amplitude in the annual cycle greater than 2°C.\n2.\nSurface Wind Means and Variances\nFigures 19a-34a and 36a-51a show the monthly and seasonal mean zonal\nand meridional wind components, while Figs. 19b-34b and 36b-51b show their\nstandard deviations. The mean monthly and seasonal vector winds are found\nin Figs. 53a-64a and 65-68. The Southwest Monsoon circulation over India\nand Indochina is evident, with a complete reversal of the wind from the\nwinter season to the summer season. The annual cycle in both the zonal and\nmeridional wind components is greatest in the eastern Indian Ocean, where\nthe Somali Jet reaches a maximum in the northern summer. The shift in the\nmean position of the Intertropical Convergence Zone (ITCZ) and its strength\nis depicted by the position of the implied convergence in the meridional\ncomponent over the eastern Pacific and Atlantic Oceans. This can also be\nseen in Figs. 19c-30c and 36c-47c, which show the monthly differences from\nthe annual mean for the zonal and meridional winds.\nThe near equatorial zonal winds are characterized by mean easterlies\nthroughout the Atlantic and Pacific basins for the months of June through\nOctober. Mean zonal winds remain near zero throughout the year in the\nIndian Ocean, with the exception of the Somali Jet region discussed above.\nWeak equatorial westerlies appear in the Indonesian and New Guinea region in\nNovember and extend as far as 160°E in December and January. A lobe of\nzonal westerlies extends to the east-southeast, south of the equator, during\nthis period.\nThe mean meridional wind pattern shows cross-equatorial flow from the\nSouthern to the Northern Hemisphere over all of the Atlantic basin, with the\nexception of the extreme western region, and for the eastern Pacific for\neach month of the year, Figs. 36a-47a. This is a reflection of the\npreferred positions of the ITCZs north of the equator. Only the western\nPacific shows any tendency for mean meridional flow in the opposite sense\nover the equatorial regions, and then only during the months of December\nthrough April. Monthly mean deviations from the annual mean, Figs. 36c-47c,\nclearly illustrate the large amplitudes of the meridional wind annual cycle\nin the Atlantic Ocean and eastern Pacific. Both regions show relative\nnortherlies, with respect to the annual mean, in the first half of the\ncalendar year and relative southerlies during the second half of the year.\nIn the Arabian Sea region, relative northerlies from October through April\nare present to balance the intense southerly flow associated with the June\nthrough September monsoon.\n5","The annual mean vector wind, Fig. 52, is characterized by easterlies\nthroughout the analysis domain, except for the Indian Ocean, north of the\nequator where the summer monsoon dominates the annual mean. Significant\nmean meridional wind components are reflected in the vector winds in the\neastern sections of the ocean basins. In the Pacific, the mean axis of the\ntransition from northeast to southeast trade winds lies north of the equator\nfrom Central America to 160° W. West of this longitude, the annual mean\ntrades decrease in magnitude and become almost completely zonal.\nSeveral features of the surface vector wind annual cycle are\nillustrated in the monthly vector wind differences from the annual vector\nwind, Figs. 53b-64b. This series of charts illustrates the relative\nimportance of the meridional winds compared to the zonal winds in equatorial\nregions. One of the most striking features is the January through May (July\nto October) evolution of relative northerlies (southerlies) north of the\nequator in the Atlantic and the eastern Pacific basins. As the ITCZs move\nfrom their southernmost position in the late Northern Hemisphere winter and\nearly spring, the vector wind differences in these regions indicate a\nstronger northerly component than the annual mean. In the late Northern\nHemisphere summer or fall, when the convergence zone reaches its\nnorthernmost position, the meridional wind differences show a southerly\nmaximum. The largest magnitudes of these vector differences from the annual\nmean wind occur in the transition months of March and September and\nrepresent an oceanic monsoonal circulation.\nThe Indian and southern Asian monsoon circulation is illustrated by the\nrelative southwesterly flow during the months of May through September and\nthe relative northeast winds from October to March. The complete reversal\nof the relative vector wind over most of the region illustrates the\nmonsoonal character of the circulation throughout the equatorial tropical\noceans. The well known Indian and Asian monsoons can be understood in terms\nof direct thermal circulations arising from the ceanic-continental\ntemperature differences. An examination of the annual cycle of SST, also\nexpressed as deviations from the annual mean, suggests that the monsoonal\ncharacter of the east Pacific and equatorial Atlantic winds may also be\ninterpreted in terms of direct thermal circulations consistent with\ntheoretical arguments of Lindzen and Nigam, (1987). The evolution of the\nannual cycle through an examination of the monthly mean SST and wind charts\nwhere the zonal means have been removed is shown in Figs. 2d-13d, 19d-30d,\nand 36d-47d. The monthly means presented in this way, as asymmetrical\ncomponents, also suggest a direct thermal circulation of the winds near the\nSouth Pacific Convergence Zone (SPCZ).\nE1 Niño/Southern Oscillation Composites\n3.\nSea surface temperatures and anomalies for an eight season ENSO cycle\nare presented in Figs. 69a-76a and 69b-76b. The seven ENSO years used to\ncompute the composites, listed above, are from Rasmusson and Carpenter\n(1982). The anomaly composites show general agreement with other published\nwork, although the magnitudes of the anomalies in the Pacific are slightly\nsmaller. This is probably due to the ways the original data were filtered\nand smoothed. ENSO composites for the mean vector wind and anomaly (Figs.\n77a-84a and 77b-84b) show the equatorial Pacific westerly anomalies\nbeginning in the March (0) to May (0) season, reaching a maximum in the\n6","December (0) to February (+1) season, and then quickly dying out SO that by\nthe June (+1) to August (+1) season, the westerly anomalies have\ndisappeared. Over the eastern Indian Ocean, strong westerly anomalies\nappear in the September (-1) to November (-1) season, lasting for just that\nseason. This feature is indicative of a stronger than normal monsoon\ncirculation. One year later, anomalies in that same region become easterly,\nlasting through the December (0) to February (+1) season.\nEquatorial Time-Longitude Cross Sections\n4.\nTime-longitude cross sections of SST and zonal and meridional wind\ncomponents provide yet another way to examine the annual cycle in equatorial\nregions (Figs. 85-150). The relatively large amplitude of the SST annual\ncycle in the equatorial eastern Pacific and Atlantic Oceans, with a range of\n3°C to 4°C, compared to the Indian Ocean and western Pacific Ocean, with a\nrange of near 1°C, is clearly illustrated in Fig. 85. The time-longitude\ncross section of the zonal wind component (Fig. 107) shows the largest\nannual cycle in the western Pacific and Indian Oceans, with relatively small\namplitudes elsewhere an annual cycle amplitude pattern which is, in many\nways, opposite to that observed in the SST. The meridional wind component\ncross section (Fig. 129) illustrates the annual cycle of cross equatorial\nflow as a function of longitude. The Indian Ocean, western Pacific, and\nwestern Atlantic equatorial regions experience northerly (southerly) flow in\nNorthern Hemisphere winter (summer), while the meridional component remains\nsoutherly over the rest of the Atlantic and Pacific Ocean basins throughout\nthe year.\nTime-longitude cross sections of equatorial SST and winds are among the\nstandard analysis tools used for the study of interannual variability and\nENSO evolution. We present equatorial cross sections of SST and zonal and\nmeridional wind components from 1950-1987 for the mean (Figs. 86-92, 108-\n114, and 130-136) and anomalies (Figs. 93-99, 115-121, and 137-143). Cross\nsections of the monthly differences from the annual mean (Figs. 100-106,\n122-128, and 144-150) emphasize the annual cycle and, thus, provide a\ncomplementary analysis to the other cross sections. Each of the analyses is\nuseful in describing the evolution of the major swings in the Southern\nOscillation, including the 9 major ENSO episodes which occurred during the\n1950 to 1987 period. Of particular interest in the monthly differences from\nthe annual mean cross sections is the suggestion that the ENSO episodes\n(1951, 1953, 1957, 1965, 1969, 1972, 1976/7, 1982/3, 1986/7) are associated\nwith a slight enhancement of the amplitudes in the annual cycle, while the\nhigh Southern Oscillation Index years: 1950, 1955, 1956, 1964, 1970, 1973,\n1971, and 1975, (Ropelewski and Jones, 1987), show relatively low amplitudes\nin the annual cycle of SST and winds along the equator.\n5.\nHarmonic Analysis\nHarmonic vector diagrams, Figs. 154-158, are yet another way to\nexamine the annual cycle of SST and winds. The first harmonic of the annual\ncycle of SST, Fig. 154a, shows the clear tendency for the higher latitude\nSST maxima to occur during the summer seasons in each hemisphere. Near the\nequator, the maxima tend to occur during March or April (a transition season\nin both hemispheres), particularly in the eastern ocean basins. The\n7","amplitude of the annual cycle of SST is virtually zero in the central and\nwestern equatorial Pacific, as well as being relatively small in the western\nequatorial Atlantic and all of the equatorial Indian Ocean.\nThe first harmonics of the annual cycle of the surface wind components,\nFigs. 155a and 156a, show interesting similarities and differences. The\nfirst harmonics of both wind components have large amplitudes in the Indian\nOcean north of the equator, a region with a very small annual cycle in SST\n(Fig. 154a) In the southern Indian Ocean, the first harmonics of the zonal\nand meridional surface wind components are six months out of phase with each\nother. The zonal winds are strongest in the southern summer, with maxima\naround February, while the meridional winds have maxima in August to\nSeptember. The equatorial zonal surface winds generally have relatively\nsmall amplitudes in the annual cycle, while the meridional surface winds in\nthe Atlantic and eastern Pacific north of the equator show strong maxima in\nnorthern summer to fall. For the 200 mb level, only the harmonics for the\nzonal wind are presented, Fig. 157a and 157b. The general pattern of the\nannual cycle amplitudes tends to resemble that of the SST more closely than\neither of the surface wind components. The amplitudes of the annual\nharmonic increase poleward from south of the equator in each ocean basin.\nThere appears to be little or no annual cycle of zonal 200 mb winds in the\ncentral and western equatorial Pacific.\nThe first harmonic of the OLR (Fig. 158a) can be thought of as\nrepresenting the annual cycle of convective precipitation in the tropics.\nSince lower values of OLR are associated with convective precipitation, the\nplotting convention for these harmonic vectors is reversed; the phase of the\nvectors represents the season with minimum OLR values. The largest\namplitudes of the OLR annual cycle occur over the continental areas. Over\nthe oceans, the largest amplitudes of the OLR annual cycle tend to occur\nnear and east of the mean position of the SPCZ. The SPCZ-related maximum in\nthe amplitude of the annual cycle is roughly coincident with the maximum in\nSST over that region of the Pacific. This area also shows a relative\nmaximum in the amplitude of both the zonal and meridional surface wind\nannual cycles. The OLR minima occur roughly during the same season as\nrelative minima (maxima) in the surface meridional (zonal) winds. The\nrelative maxima in the OLR annual cycle amplitudes occur slightly south of\nthe axis of minimum 200 mb annual harmonic zonal wind amplitude.\nThe second harmonics of the annual cycle for these variables, in\ngeneral, show much smaller amplitudes than the first harmonics, Figs 154b-\n158b. For SST the amplitudes of the semi-annual harmonics are very small\nalmost everywhere. Only the Arabian Sea area shows significant i-annual\nvariability. The relative amplitude of the semi-annual surface zonal wind\ncomponent is a significant fraction of the annual cycle amplitude over large\nareas of the analysis domain (Fig. 154b) but for the most part, these\nregions have relatively small amplitudes in both the annual and semi-annual\ncomponents. Areas of the western North Pacific and the Arabian Sea, however,\nshow semi-annual surface zonal wind variability in the 1 ms to 2 ms range.\nThe surface meridional wind component (Fig. 156b) shows very little amplitude\nin the semi-annual components, except in the Arabian Sea and just north of the\nequator in the eastern Pacific. The plot of the 200 mb zonal wind semi-annual\ncomponent shows large areas of the western equatorial Pacific and southern\nIndian Ocean with relatively large amplitudes (Fig. 157b). However, these are\nregions of relatively weak 200 mb flow, e.g., Arkin et al (1986). There\n8","appears to be no easily perceived relationship between the OLR second harmonic\n(Fig. 158b) and the second harmonics in the wind fields or SST. Unlike the\nfirst harmonic, the largest values of the second OLR harmonic tend to occur\nover the oceans, particularly in the western Pacific north of the equator\nand\nthe eastern Pacific south of the equator. The OLR second harmonic is also\nrelatively large in portions of the north Atlantic and Indian Oceans.\nACKNOWLEDGMENTS\nThe authors wish to thank John Kopman for his help in preparing the\nlarge volume of figures and Kathy Stevenson for her help in preparing the\ntext. Dick Reynolds was most helpful in devising the filtering techniques,\nand he and Tony Barnston provided useful comments about the text. The\nauthors also wish to thank Mary Jo Nath and Bram Oort for providing the\n1950-1979 data and Steven Worley for providing the 980-1987 data. We also\nowe a debt of gratitude to Gene Rasmusson for suggesting several of the\nanalyses and for providing the initial encouragement to produce this atlas.\n9","APPENDIX A\nDATA QUANTITY AND DISTRIBUTION\nDespite the very large number of total observations available in the\nCOADS, large areas of the Southern Hemisphere oceans have very little data\navailable throughout the decade of the 1950s. Figure A1 shows which grid\nsquares had any SST data during any January of the 1950s, Fig. A2 shows\nthose squares that had data for more than half of the years, and Fig. A3\nshows where data was available for all ten Januaries in the decade. It is\nevident that although most squares had some data during this decade, only\nthe primary ship tracks and areas of the north Atlantic and Indian Oceans\nhad complete data.\nThe total number of observations increased dramatically from the 1950s\nto the 1970s. During the 1950s, the number of observations ranged from\nabout 20,000 per month in the early part of the decade to about 50,000 by\nthe end of the decade. By the late 1960s, over 90,000 observations per\nmonth were available during some months. There were somewhat less data\nduring the 1970s, with most months having between 55,000 and 70,000\nobservations per month. Figure A4 shows which grid squares had data for\nmore than five of the Januaries during the 1970s, while Fig. A5 shows which\ngrid squares had data for all ten years. Even during the 1970s, large parts\nof the Southern Hemisphere and of the Pacific Ocean did not have complete\ncoverage. Small areas of the central Pacific near the date line and off the\ncoast of South America had data for less than half of the years. Figure\nA6\nshows those locations where data were available for at least 10 Januaries\nduring the 30-year period, Fig. A7 where data were available for at least 20,\nand Fig. A8 where data were available for all 30 Januaries. While most areas\nhad data for more than 10 years, large holes develop in the coverage of the\nPacific when looking at areas with greater than 20 years of data. The data\ncoverage is similar for other months and also for the zonal and meridional\nwind components.\n10","APPENDIX B\nDATA SCREENING PROCEDURES\nThe data used to produce the smoothed SST and wind fields were screened\nin order to filter out bad data. An SST data value for a grid square was\nrejected if it failed any of the following tests (values used for 1980-1987\nare in parenthesis)\nThe absolute value of the anomaly is greater than 5°C (8°C).\n1.\nThe absolute value of the anomaly is greater than 3.5°C (6°C) and\n2.\nthe number of observations is 2.\nThe absolute value of the anomaly is greater than 2.5°C (4°C) and\n3.\nthe number of observations is 1.\nThe number of observations is 1, and there are no observations in\n4.\nany of the four neighboring boxes to the north, south, east, or west.\nThe magnitude of the difference between the gridded 2° anomaly\n5.\nvalue and the nearest grid point in a separate analysis of the\nanomaly field on a 4° grid was greater than 2°C.\nThe following tests were used for the wind data (the same tests were used\nfor all 38 years) :\nThe absolute value of the anomaly is greater than 20 m/s.\n1.\nThe absolute value of the anomaly is greater than 15 m/s and\n2.\nthe number of observations is 2.\nThe absolute value of the anomaly is greater than 10 m/s and\n3.\nthe number of observations is 1.\nThe number of observations is 1, and there are no observations in\n4.\nany of the four neighboring boxes to the north, south, east, or west.\nThe magnitude of the difference between the gridded 2° anomaly\n5.\nvalue and the nearest grid point in a separate analysis of the anomaly\nfield on a 4° grid was greater than 4 m/s.\nThese data screening techniques were used mainly to filter out\nmisplaced points or data that is clearly incorrect. Generally less than one\npercent of the data were eliminated by the above screening techniques. The\n2° grid comparison to the 4° grid was the test that removed about 90% of the\ndata which were eliminated. The other tests generally eliminated less than\n50 observations per month.\n11","REFERENCES\nArkin, P. A., 1982: The relationship between interannual variability in the\n200 mb tropical wind field and the Southern Oscillation. Mon. Wea.\nRev., 110, 1393-1404.\n, V. E. Kousky, J. E. Janowiak, and E. A. O'Lenic, 1986: Atlas\nof the Tropical and Subtropical Circulation Derived from National\nMeteorological Center Operational Analyses. NOAA Atlas No. 7, U. S.\nDepartment of Commerce, National Oceanic and Atmospheric Administration,\nNational Weather Service, Silver Spring, MD, 59 pp.\nCressman, G. P., 1959: An operational objective analysis system. Mon. Wea.\nRev., 87, 367-374.\nGruber, A. and A. F. Krueger, 1984: The status of the NOAA outgoing longwave\nradiation data set. Bull. Amer. Meteor. Soc. 65, 958-962.\nHorel, J. D., 1982: On the Annual Cycle of the Tropical Atmosphere and\nOcean. Mon. Wea. Rev., 110, 1863-1878.\nHsu, C. F. and J. M. Wallace, 1976: The global distribution of the annual\nand semiannual cycles in precipitation. Mon. Wea. Rev., 104, 1093-1101.\nJanowiak, J. E., A. F. Krueger, P. A. Arkin, and A. Gruber, 1985: Atlas of\nOutgoing Longwave Radiation Derived from NOAA Satellite Data. NOAA Atlas\nNo. 6, U. S. Department of Commerce, National Oceanic and Atmospheric\nAdministration, National Weather Service, Silver Spring, MD, 44 pp.\nKistler, R. E. and D. F. Parrish, 1982: Evolution of the NMC Data\nAssimilation System: September 1978-January 1982. Mon. Wea. Rev., 110,\n1335-1346.\nLevitus, S., 1982: Climatological Atlas of the World Ocean. NOAA\nProfessional Paper No. 13, U. S. Government Printing Office, 173 pp.\nLindzen, R. S. and S. Nigam, 1987: On the role of sea surface temperature\ngradients in forcing low-level winds and convergence in the tropics.\nJ. Atmos. Sci. 44, 2418-2436.\nRabiner, L. R., M. R. Sambar and C. E. Schmidt, 1975: Applications of\nnonlinear smoothing algorithm to speech processing. IEEE Trans. on\nAcoust. Speech Signal Process, ASSP-23, 552-557.\nRamage, C. S., 1987: Secular changes in reported surface wind speeds over the\nocean. J. Climat. Appl. Meteor., 26, 525-528.\nRasmusson, E. M. and T. H. Carpenter, 1982: Variations in tropical sea\nsurface temperature and surface wind fields associated with the Southern\nOscillation/ET Niño. Mon. Wea. Rev., 111, 517-528.\nReynolds, R. W., 1989: A real-time global sea surface temperature analysis.\nJ. of Clim., 1, 75-86.\n12","Richards, F., , and P. Arkin, 1981: On the relationship between satellite-\nobserved cloud cover and precipitation. Mon. Wea. Rev., , 109, 1081-1093.\nRopelewski, C. F. and P. D. Jones, 1987: An extension of the Tahiti-Darwin\nSouthern Oscillation Index. Mon. Wea. Rev., 115, 2161-2165.\nSadler, J. C. , M. A. Lander, A. M. Hori, and L. K. Oda, 1987: Tropical\nMarine Climatic Atlas, Volume I: Indian and Atlantic Ocean. Department\nof Meteorology, University of Hawaii, Report No. UHMET 87-01, 51 pp.\nSadler, J. C. M. A. Lander, A. M. Hori, and L. K. Oda, 1987: Tropical\nMarine Climatic Atlas, Volume II: Pacific Ocean. Department of\nMeteorology, University of Hawaii, Report No. UHMET 87-02, 27 pp.\nSlutz, R. J., S. J. Lubker, J. D. Hiscox, S. D. Woodruff, R. L. Jenne, D. H.\nJoseph, P. M. Steurer and J. D. Elms. 1985: COADS, Comprehensive Ocean-\nAtmosphere Data Set, Release 1. Climate Research Program, Environmental\nResearch Laboratory, Boulder, CO, 262 pp.\nWright, P., , 1988: An Atlas based on the \"COADS\" data set: Fields of mean\nwind, cloudiness and humidity at the surface of the global ocean. Max-\nPlanck-Institute for Meteorology, Hamburg, Federal Republic of Germany,\nReport 14.\nWoodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A\nComprehensive Ocean-Atmosphere Data Set. Bull. Amer. Met. Soc., 68,\n1239-1250.\n13","30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n25\n20\nB\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n20\n25\n2.0\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nAnnual SST mean for the period 1950-1979. The contour interval is 1.0°C.\n25\n20\n5\n25\n20\n5\n20\nDashed contours are 27°C and 29°C.\n25\n2\n20%\n5\nFigure 1.\n2 25\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n-20\n20\n25\nB\nB\n20\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n00\nJanuary SST standard deviation for the period 1950-1979. The contour interval\n20\n5\n0.3\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n5\n0\n0\nJanuary SST mean for the period 1950-1979. The contour interval is 1°c.\n20\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n40W\n0.5\n25\n4 0E 60E 80E 100E 120E 140E 160E 180 1601 W 14 OW 120W 100W 80W 60W\n5\n20\n1s\n5\n5\n5\n20\n2\n25\n0\n20\n25\n1.0\n0\nis .25°C. Dashed contours are .75°C and 1.25°c.\n0.5\n0..5.\n0 5 0 5\n1.0\nde\n0.5\n4.0\nDashed contours are 27°C and 29°C.\n5\n0\n0.5\n0.5\n0\n25\n5\nof\nYES\n2\n2\nC\n25\n5\nSO:\n25\n5\n1\n25\n0\n25\n0 5\n0.\na\nFigure 2b.\nFigure 2a.\n25\n25\n0.509\n40E\n40E\n10N\n00\n10S\n20S\n30S\n30N\n20N\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n1\n7\n5\nB\n1\n2\n2\n-2\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nT\n0-1\n3\n2\n2\nFigure 2c. January SST expressed as the difference from the annual mean for the period\n5\n0\n5\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\nFigure 2d. January SST expressed as the difference from the zonal mean for the period\n0\nizz\n2\n1950-1979. The contour interval is 1°C. Negative values are dashed.\nR\n1\n2\n5\n4\n32\n12\n3\n5\ny\n6\n6\nlang\n&\n2\n-2\n40 3\n0\n1\n2\n0\n0\n2\n0\n3\n0\n2\nby\n2\n2\n0\n1\n3\n2\nQ.\nvalues are dashed.\n2\n2\n-\nN\n5\n2\n3\n1\nOX\n2\n,2\n1\n2\n-1\n3\n0\nx\n2\nn\n3\n1\n3\n1\n2\n(2\n40E\n2\n1\n2\n.P\n2\n2\n0\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20\n90.5\n25\n5\n20\nB\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n1 6 OW 14 OW 12 OW 100W 80W 60W 40W 20W 00\nFebruary SST standard deviation for the period 1950-1979. The contour interval\n0.5\n0.\n0\n1\n25\n0\nFigure 3a. February SST mean for the period 1950-1979. The contour interval is 1°c.\n0 $\n&\n20\n0.5\n1.0\n20\n0.5\n25\n1.0\n-\n20\n10\nS\nO25\n0\n25\n0 5\n0.5\n25\n20\no\n25-25\nis .25°C. Dashed contours are 75°C and 1.25°C.\n0.5\n-\n0,5\n0.5\nDashed contours are 27°C and 29°C.\n60E 80E 100E 120E 1 40E 160E 180\nM\nM\n0.5\n0.5\n0.5\n25\n0\n5\na\n0.\n0.5\n0.5\n00 5\n2\n2\n155\nn\n25\n20\n25\n8\n0\n5\n5\n25\n25\n01\n5\n0\n0\n25\n0\nD\n25\n25\n0.\nFigure 3b.\n0\n40E\n40E\n1015\n0.5\n'\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n7\n4\n0\n-2\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n3\n11\n2\n3\nFebruary SST expressed as the difference from the annual mean for the period\n3\n1\n4\n5\n0\nFebruary SST expressed as the difference from the zonal mean for the period\n160W 140W 120W 100W 80W 60W 40W 20W\n20W\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\n1\n40W\n1\n3\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n3\nor\n2\n3\n31\n3\n10\n60W\n5+ 5\n&\n532\n4 .0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\nI\n52\n148\nP\n-2\n00\n3\n0\n3\n2\n0 -1-3\n3 -2\n0\n0\n0\n0\n-4\n180\n0\n160E\n1\n140E\nQ\nvalues are dashed.\n2)\n2\n120E\nN\nV\n1\n0\n-2\n100E\n2\n-2\n-1\n80E\n3-3\n2\n0\n3\n60E\n3\nFigure 3d.\nFigure 3c.\n1\n40E\n40E\n2\n21%\n30N\n30S\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20\n$0.5\n0.\nB\n20\nB\n5\n4 OE 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n5\nFigure 4b. March SST standard deviation for the period 1950-1979. The contour interval\n0\n25\n20W\n0\nMarch SST mean for the period 1950-1979. The contour interval is 1°c.\n40W\n0.5\n60W\n1\n0.5\n1.0\n20\n20\n0.5\n1.0\n.0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n25\n20\n1200\nO\n0\n20\n0\n25\n0\n0.5\n0.5\nis 25°C. Dashed contours are 75°C and 1.25°c.\n12\n5\n0 5\n0.\nb\n5\n0.5\n0.5\nDashed contours are 27°C and 29°C.\n0 5\nin\nM\n0.5\n25\n5\n5\n15\n85\n26\n0\n0\n5\n0.5\n25\n0.5\n25\nFigure 4a.\n25\n4 40E\n0\n0.2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30S\n20E\n20E\n20E\n20E\n7\n2\n2\nB\nB\n0\n2\n-2\n00\n60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2\n1\n0-\n3\nQ\n4\n6\n-2\n3\n5\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n1\n1950-1979. The contour interval is 1°C. The dark line is zero. Negative\nMarch SST expressed as the difference from the annual mean for the period\nFigure 4d. March SST expressed as the difference from the zonal mean for the period\n-\n3\n1\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n3\nx\n36\n1\n5\n22\n2\n-1 -3-5\nour 1\ny\ny\n3\n3\n2\n-5\n22\nA\n2\n2\n0\n0 1 -3\n2\n-3\n0\n4\nIn\n0\n23\nvalues are dashed.\n2\nTo\n5\n(7)\n0\n2\n24\nN\n-1\n2\n31\n2\n3\n-1\n1\n1\n-\n1\n0\nFigure 4c.\n1\n62\n2\n40E\n40E\n2'\n30N\n20S\n30S\n20N\n10N\n00\n10S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n10.5\n20\n20\nB\n0 !\nB\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 5b. April SST standard deviation for the period 1950-1979. The contour interval\n25\n20\n20W\n0.15\n0.5\n0.5\nFigure 5a. April SST mean for the period 1950-1979. The contour interval is 1°c.\n40W\n0.5\n20\n0.\n25\n60W\n1:0\n20\n1.0\n40E 60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W\n5\ny\n4\n5\n5\n0\n2'0\"\nOR\n25\n0.5\nis .25°c. Dashed contours are . 75°C and 1.25°C.\nD\n0.5\n0 5\n05\n0.5\nT\n0.5\nDashed contours are 27°C and 29°C.\n5\nin\n0.5\n0.5\n25\n5\n0 5\nA\n0\nQ7.\n2\n2\n0\nN\n$\nby\nA\n20\n5\n5\n25\nT\n0\n5\n5\n0\n0\n40E\n25\n0.5\n10S\n20S\n30S\n30N\n20N\n10N\n00\n20S\n30S\n30N\n20N\n10N\n00\n10S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n7\n2\nB\n1\nB\n1\n-2\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n4\nF2\n6\n6\n3\n2\n-2\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\nApril SST expressed as the difference from the annual mean for the period\nFigure 5d. April SST expressed as the difference from the zonal mean for the period\n2\n8\n2\n0\n1950-1979. The contour interval is 1°c. Negative values are dashed.\n-1\n1\n0\n1\n3\n-3.\n6\n1\n&\n2\n8\n6\nY\nY\n3\n3\n1\n2\n0\n1 -3\n2\nQ\n0\n3\n2\n1\ninto\nvalues are dashed.\nS 2\no\n-1\n-1\n8\n1\n0\nFigure 5c.\n1\n(2\n40E\n2\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20\nv\nBLS\nB\n0.:\n20\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2.5\n0\n5\n.0.15\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 6b. May SST standard deviation for the period 1950-1979. The contour interval\n20\n0\n0. 5\n2\nFigure 6a. May SST mean for the period 1950-1979. The contour interval is 1°c.\n0\n1\n1.0\n20\n5\n5\na\n0\n20\n2\n0.5\n1.0\no\n-\n0.5\n5\nis .25°C. Dashed contours are 75°C and 1.25°c.\nof\n0 5\n0\n0\n0\n20\n0,5\n0\n0.4\nDashed contours are 27°C and 29°C.\nMl\n0.5\n26\n5\n5\nA\n20\n2\n2\nof\n2\n5\n2\nX\n0\n0,\n0\n0. $10.5\n0 5\n5\n5.\n10.55\n0\n2 25\n40E\n0.5\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n10N\n10S\n20S\n30S\n20N\n00","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n8\n4\n-2-5\n0\n40E 60E 80E 100E 120E 140E 16 0 E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n3\no-1\n6\n6\n3\n0\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n1950-1979. The contour interval is 1°C. The dark line is zero. Negative\n0\nMay SST expressed as the difference from the annual mean for the period\n0\nMay SST expressed as the difference from the zonal mean for the period\n40W\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n1\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n6-6\n32\n8\n-16\n-1\n3\n-2\n0\n-2-4\n0\n0\n0\n2\n0\nM\nQ\nno\nvalues are dashed.\n-2:\nN\n10\n416\n8\n-1\n3\n3\n0\nFigure 6d.\nFigure 6c.\na\n1\nT\n4 .0E\na\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 1 00E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n0\n0.5\n25\nB\nB\n015\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0.50.5\n0.5\n20\n0\n20\n5\n5\nFigure 7b. June SST standard deviation for the period 1950-1979. The contour interval\n0.5\n0\nJune SST mean for the period 1950-1979. The contour interval is 1°c.\n0.5\n5\n2\n0\n25\n9.0\n20\ny\n5\n0\n0\n0\n0.5\n20\no\n0.5\n0\nDashed contours are . 75°C and 1.25°c.\n20\n0.5\n5\nb\n0\n5\n0.\nDashed contours are 27°C and 29°C.\nM\n5\n0.5\n0\n01\nas\n2\n2\nNO\n5\na\n5\n2\n0.\n01\n200\no\n20\n0\nC.\n05\n.25°\nTO\nis\n0.5\n20\nFigure 7a.\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n2\n7\n3\n2\nB\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n-1'\n4\n6\n4\n20W\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\n0 1 2\nJune SST expressed as the difference from the annual mean for the period\nFigure 7d. June SST expressed as the difference from the zonal mean for the period\n-1 -1\n40W\n1950-1979. The contour interval is 1°c. Negative values are dashed.\n1\n1\n-14%\n0\n0\n60W\n1\n2\n6\n-/1\n8\n3\n80W\n4\n0- 11 - 2 -5\nY\no\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n-1\n1 3-5\n0\n0-\n0\n1\nM\nIn\n-1\n1\n'0\n2\nvalues are dashed.\n>2\n5\n22\n5\n- 10\n1\n0 -1\nFigure 7c.\n1\n1'\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n15\n20\n$0.5\n15\n25\nB\nB\n2.5\n0.\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n5\n0.5\na\n25\nof\nFigure 8b. July SST standard deviation for the period 1950-1979. The contour interval\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n0\n20\n0.5\nFigure 8a. July SST mean for the period 1950-1979. The contour interval is 1°c.\n25\n215\n0.5\n20\n20\nAll\n0.5\n15\n1.0\n.\n0.5\n0\n15\n0\n20\n0\nis 25°C. Dashed contours are . 75°C and 1.25°C.\n5\n20\n20\n0.5\nDashed contours are 27°C and 29°C.\n25\nM\nM\n0.5 0.5\n20\n0.5\nI\nO\n25\n2\n2\n25\n0 5-0-5\n0.\n0.1\n20\no\nS\n0\n0\nI\n5\n0\n0 5\n3001\n25\n20\n5\n2524\n(0\n0\n0.\n10S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n3\n7\nv\n3\n2\nB\n2\n-2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 201 W 00\n525\n-2\n6 -1\n5\n1\n2\n-3\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\nJuly SST expressed as the difference from the annual mean for the period\nFigure 8d. July SST expressed as the difference from the zonal mean for the period\n2\n1\n2\n0\n1950-1979. The contour interval is 1°c. Negative values are dashed.\n3\nand\n1\n-30\n-16\n0\n3\n2\n2\n6\nno\n1\n3\n8\nA\n0-11 -2 -5\n3\nit\n5\n2\n0 1 - 3 5\nI\n1\n0\n0-\n2\n3\n-2 -2'-'2\n0-00\nM\nin\n0\n-2\n0\n2\n-\nvalues are dashed.\n2\n2\n-1\n2\n10\n- 1\n-2\n1\n0\n<0\nFigure 8c.\n1\n1\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","20S\n30S\n30N\n20N\n10N\n00\n10S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20\n15\n0.50.\n15\n25\nB\n0.50.5\n25 25\n00\n00\n00\nAugust SST standard deviation for the period 1950-1979. The contour interval\n0.5\n25\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n20W\nAugust SST mean for the period 1950-1979. The contour interval is 1°C.\n25\n40W\n40W\n25\n0.5\nno\n20\n0\n60W\n80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W\n15\n05\n1.0\n80W\n0\n15\n5\n0\n100W\n0.5.0.5\n1.0\n0.5\nis .25°c. Dashed contours are . 75°C and 1.25°C.\n120W\n0\n05\n20\n20\n140W\n160W\n25\n0.5\nDashed contours are 27°C and 29°C.\n180\n0.5 e 5\nIn\nIn\n0.5\n5\n0.5\n40E 60E 80E 100E 120E 140E 160E\n0\n05\n20\n0.7.53\n0\n25\n0.5\n5\n0.5\n0\n2\n2\n5\n-\nN\n80\n0.\n0.5\n50\n0.5\nn\nQ\n00\n0 5\n0\n60E\n05\n30\n28\n0-5\nFigure 9b.\nFigure 9a.\n5\n20\n0\n0\n40E\n25\n40E\n0.5\n0.\n30S\n30S\n10S\n20S\n30N\n20N\n10N\n00\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n3\n5\n8\n3-2\n-2\n8\n-2 5\nB\n2\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n-3\n5\n-1\n.2\n1\n20W\n20W\nAugust SST expressed as the difference from the annual mean for the period\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\nAugust SST expressed as the difference from the zonal mean for the period\n0-1\n3\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W\n40W\n1\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n-2\n-2\n-3\n0\n4\n60W\n2\n6\n2\n2\n80W\ngo\n1\n2-5\n0\n2\n8\n-2\n40E 60E 80E 1 100E 120E 140E 160E 180 160W 140W 120W 100W\n6\n1 - 3 5 7\n2\n3\n3\n0\n0\n0\n4\n3\n0\nIn\n5\n3\n2\n2\nvalues are dashed.\n1)\n2\n3\n27\n10\n-2\na No\n-1\n-2\n0\n0\nFigure 9c.\nFigure 9d.\n21\n2\n40E\n2\n4\n10\n22\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n5\n20\n15\n0.5\n125\nB\n0.\n28\nFigure 10b. September SST standard deviation for the period 1950-1979. The contour interval\n0.5\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n25\n0.5\n2/5\n20W\nFigure 10a. September SST mean for the period 1950-1979. The contour interval is 1°c.\n25\n40W\n25\n20\n0.5\n28\nMY\n20\n60W\n15\n4-0 R 5\n15\n80W\n20\nlie\n0.5 0.5\n100W\nQ.5\n140W 120W\nis .25°c. Dashed contours are 75° 0 C and 1.25°C.\nI\n20\n0.5\n25\n160W\nDashed contours are 27°C and 29°C.\n80E 100E 120E 140E 160E 180\n0.5-0.5\nM\n0.5\n0\n0.5\n0.5\n20\n25\n0.5\nO\n2\n2\nT\n80\n0.5\n5\n10\n0\n0\n-\n0.5\n0.5\n60E\n30\n0 :\n30\n0.5\n5\n20\n0\nOCS\n40E\n40E\n0.5\n8:\n-\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n4\n3\n3\n7\n2\n2\n2\nB\n-\n2\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nSeptember SST expressed as the difference from the annual mean for the period\nFigure 10d. September SST expressed as the difference from the zonal mean for the period\n5\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\n6\n3\n0\n40W\n1950-1979. The contour interval is 1°c. Negative values are dashed.\n1\n-2\n-2\n1\nOP\n60W\n2\n7\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 12 OW 100W 80W\n-5\n2\n010\n2\n8\n-2\nM\n0\n-1\n-2\n0\n2 4-6\n3\n0-\nof\n0\n0\n4\n0\n3\n2:\n5 5\n2\nYOU\nyou\n126\nvalues are dashed.\n2\n2\n1\n10\n-2\n-1\n0\nFigure 10c.\n2\n1\n-2\n23\n40E\n40E\n-2-2\na\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n5\n25\n5\n0.\n0\n0.5\n15\nB\nD\nB\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 1 40W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 11b. October SST standard deviation for the period 1950-1979. The contour interval\n0.5\n25\n0.5\n0\nFigure 11a. October SST mean for the period 1950-1979. The contour interval is 1°C.\n20\n25\n25\n25\n13\n15\n15\n0.5\n20\n0\n20\n1 0\nis .25°C. Dashed contours are 75°C and 1.25°C.\n20\n5\n0\n20\n0.5\nDashed contours are 27°C and 29°C.\n20\nM\n20\n25\n5\n0\n0,5\n5\n2\n2\n0.5\n005\nN\n80\n2\n5\n0.\no\n0\n0\n0\n60E\n5\n0\n20\n0.\n0\n40E\n05\n0\n0.5\n28\n0.5\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n3\n1\n7\n1\nB\n-2\n1\n40E 60E 80E 100E 120E 140E 160E 180 16 OW 14 OW 120W 100W 80W 60W 40 W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n1 0 - 1 2\n4\n2\n2\nFigure 11c. October SST expressed as the difference from the annual mean for the period\nFigure 11d. October SST expressed as the difference from the zonal mean for the period\n3\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\n1\n1\nB\n-2\n0\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n0.0\n1\n6\n2\n2\n9\n6\n5\n2\n.\n2\n1\n-2\n(\n0\n2\n1\n-1 3-5\n1\n0\neo 0\n0\n3\nin\nIn\n3\n1\n2\n2\n3\n4.\n37\nvalues are dashed.\n2\nN\nN\nis\n3\no\n-10\n-2\n2 1 0 - 1\n141\n- 2\nI\n1.\nat\n2\na\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 14 OE 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n25\n0.5\n20\nB\nB\nFigure 12b. November SST standard deviation for the period 1950-1979. The contour interval\n00\n0\n0.5\n0.5\n0.50.5\nads\n-20\n25\nLl\n20\n20W\nFigure 12a. November SST mean for the period 1950-1979. The contour interval is 1°C.\n0\n40W\nD\n25\n0.8\n60W\n1\n80W\n20\n0.55\nO\n0\no\n160W 140W 120W 100W\n25\n20\n5\n0.5\nI\nX00\nis .25°C. Dashed contours are . 75°C and 1.25°C.\n1.0\n0\n20\n0. 5\n0 5\n0.5\nDashed contours are 27°C and 29°C.\n60E 80E 100E 120E 140E 160E 180\n0.5\n0. 50\n0.5\n25\n0.\n05 5\n2)\n0\n0.15\n0.5\na\n20\n40.9\n0\n20\n50\n0.5\n.0\n05\n0.5\n40E\n0.5\n25\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n7\n1\n3\n-1\n4 0 E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n-2\n4\nFigure 12c. November SST expressed as the difference from the annual mean for the period\n-5\n2\nFigure 12d. November SST expressed as the difference from the zonal mean for the period\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n1950-1979. The contour interval is 1°c. The dark line is zero. Negative\n54\n0\n0\n1950-1979. The contour interval is 1°c. Negative values are dashed.\n1\n1\n5\n8\n-1 -1 -1\n2\n3\no\n1\n70\n3\n-2\n0\n-1\n-2-4\nj\n0\n0\n0\n2\n1\nvalues are dashed.\nN\n1\n0\n-1\n-1\n0\n1\n2\n3\n2\n22\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n4 .0E 60E 80E 1 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W 20W 00 20E\n20E\n25\n20\nB\nB\n015\n20\nFigure 13b. December SST standard deviation for the period 1950-1979. The contour interval\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2.5\n0.5\n5\n0.5\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20\n20\nFigure 13a. December SST mean for the period 1950-1979. The contour interval is 1°c.\n0\n2/\n0.5\n20\n0.5\n20\n5\n20\nY\n5\n5\n0\n20\nis .25°C. Dashed contours are .75°C and 1.25°C.\n1.0\n1 0\n0.5\n0 5 0 5\n1.0\n20\n0\n+\nDashed contours are 27°C and 29°C.\n0.5\nin\n0, 5 0,1 5\n25\nA\n$\n2\n7)\n5\n2\nD\n25\n20.59\n0\n9\n25\n0\n25\n0.5\n0\n0.5\n0.\n.0E\n4\n28\n0.5\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n7\n3\nB\n-2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n4 0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n-TO\n-1-3\nDecember SST expressed as the difference from the annual mean for the period\n4\n4\nFigure 13d. December SST expressed as the difference from the zonal mean for the period\n1950-1979. The contour interval is 1°C. The dark line is zero. Negative\n0\n0\n1950-1979. The contour interval is 1°C. Negative values are dashed.\n1\n1\noa\n5\n2\n1\nY\n6\n3.-5\n92\n&\n=\n6-1\n=1\n2\nMD\n0\n1\n0\nD\n0\n2\n1\n1\n2\n2\nvalues are dashed.\n1 3)\n4\nN\n3\nor\n1\nIS\n-\n2\n1\n1\n0\n1\nFigure 13c.\nL\n3\n2\n1\n1\n30N\n10S\n20S\n30S\n20N\n10N\n00\n30N\n30S\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n30N\n20N\n10N\n00\n10S\n20S\n30S\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n5\n0.5\n20\n0.\n20\n905\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n0.5\n0.5\n2.5\n0.5\n5\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n00\nFigure 14b. MAM SST standard deviation for the period 1950-1979. The contour interval\n:0\n20\n5\nFigure 14a. MAM SST mean for the period 1950-1979. The contour interval is 1°c.\no\n25\n0\n20\n1.0\n20\n0.5\n0\n25\n5\n0.50\n20\n0\n0.5\n5\nis .25°c. Dashed contours are 75°C and 1.25°C.\n0.5\n0\n0.5\n0. 5\nDashed contours are 27°C and 29°C.\nin\n25\n0.5\n0\nYOUR\n0\n$ 80.5\nD\n0.\n5\nS\n25\n2\n0.\n0\n5\n0.9\n0\n25\n0\n05\n0\n0.50.5\n0\n0.5\n25\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n0.5\n15\n0.50.5\n20\n15\n125\nB\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n26\n20\n25\n0.5\n0.51\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n5.\nFigure 15b. JJA SST standard deviation for the period 1950-1979. The contour interval\n20\n0\n0. 5\n5\n40W\n25\n25\nFigure 15a. JJA SST mean for the period 1950-1979. The contour interval is 1°C.\n20\n20\nNY\n60W\n1\n0.5\n15\n.\n0.5\n1.0\n80W\n0\n^\n0.5\n0\n140W 120W 100W\nto\n20\n0.\nis .25°C. Dashed contours are . 75°C and 1.25°c.\n0 5\n20\n20\n160W\n0\nDashed contours are 27°C and 29°C.\n20\n05\n80E 100E 120E 140E 160E 180\n0.5\nIn\n25\n20\n25\n.5\n0.500 15\n2\n52\nN\n20\n05\n0.5\nO\n0\n0.5\n60E\n30\n20\n30\n0 5\n25\n0.5\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n15\n20\n5\n15\nB\nB\n0\n0.\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n5\n0\n25\n0.5\nFigure 16b. SON SST standard deviation for the period 1950-1979. The contour interval\n20\n0.5\nFigure 16a. SON SST mean for the period 1950-1979. The contour interval is 1°c.\n25\n25\n0.5\n15\n0.5\n20\n4. 0\n20\n5\nis .25°C. Dashed contours are . 75°C and 1.25°C.\n0.5\n20\no\n20\n0.5\nDashed contours are 27°C and 29°C.\n20\n0,5\n0.5\nM\n25\n0.5\nv\n5\n2\n-\n3)\n2\n2\ny\n25\n20\no\n0.5 0.5\n0\n005\n0\n0 5\n0.5\n20\n40E\n25\n3CN\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n0.5\n05\n20\n25\n20\n5\nB\n0\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n20\n85\n0.5\n20W\n0.15\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 17b. DJF SST standard deviation for the period 1950-1979. The contour interval\n:\n20\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n0.5\n5\nFigure 17a. DJF SST mean for the period 1950-1979. The contour interval is 1°c.\n25\n20\n20\n0.5\n5\n5\na\n2'0\n24\n0.5\n0.5\n20\n0.5\n0.5\nis .25°c. Dashed contours are 75°C and 1.25°C.\n0,5\n0,5\n0\nDashed contours are 27°C and 29°C.\n0.5\n0.5\nM\nM\n0,5\n0.5\n29\n0.\nVI.\n2\n2\n01\nN\n58\n20\n0.9\nof\nD\n29\n5\n25\n5\n0.5\n25\n0.5\n25\n10N\n00\n10S\n20S\n30S\n10S\n20S\n30S\n30N\n20N\n00\n30N\n20N\n10","30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n0\n00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n20W\nAnnual zonal wind component mean for the period 1950-1979. The contour\n40W\n40W\n1-4\n0\n60W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n80W\n0\n160W 140W 120W 100W\n60E 80E 100E 120E 140E 160E 180\n0\n(westerlies) are solid.\nFigure 18.\n40E\n40E\n10S\n20S\n30S\n30N\n20N\n10N\n00","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n0\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n2\nFigure 19b. January zonal wind component standard deviation for the period 1950-1979.\n0\nFigure 19a. January zonal wind component mean for the period 1950-1979. The contour\n4\n40W\n2\n1\n60W\n3\n2\n0\n80W\n0\n160W 140W 120W 100W\n2\n2\n0\n2\n0\n2\n3\n2\n-4-4 -4\nv\n4\n60E 80E 100E 120E 140E 16 0 E 180\nThe contour interval is 5 m/s.\nM\n3\nM\n2\n2\n4-4\n(westerlies) are solid.\n2\n2\n3\n4\n1\n2-2\n2\n-4 -4\n(0\n40E\n1\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nP\nB\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n2\nFigure 19c. January zonal wind component expressed as the difference from the annual mean\nFigure 19d. January zonal wind component expressed as the difference from the zonal mean\n20W\n20W\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\n06\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\n-2\n-2\n40E 60E 8 0E 1 00E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n40W\n2\n2\n2\n2\n2nd\nand 0\n60W\n4\n80W\n2\n2\n7\n00\n2\n0\n100W\n0\n120W\n0\n-2\nare dashed. The zero contour is emphasized.\n140W\n00\n2\n2\n-4\n160W\n0\n2\n?\n4\n2\n2 2\n180\nM\nof\n160E\n2\nmy\n140E\n&\n4\nYOU\n2017\n120E\n0-2\n02\n20\n- -2-2 -2\nare dashed.\n100E\n-0\n0\n0.\n80E\n4\n0\n2\n0\n60E\n-2\n-2\n-2\n00\n40E\n0\n20S\n30S\n30N\n20N\n10N\n00\n10S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0.0\n1\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n2\n20W\n20W\nFigure 20b. February zonal wind component standard deviation for the period 1950-1979.\n32\nFigure 20a. February zonal wind component mean for the period 1950-1979. The contour\n-4\n2\n4 0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n40W\n3\n1\n60W\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n10\n-4\n2\n2\n0-0\n2\n3\n0\n2\n8\n-4\n2\n2\nThe contour interval is 5 m/s.\nM\nM\n4\n-4-4\n3\n(westerlies) are solid.\n2\n40\n4\n0\n4\n1\n-4\n22\n40E\n-4\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nB\nB\no\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\nFigure 20c. February zonal wind component expressed as the difference from the annual mean\nFigure 20d. February zonal wind component expressed as the difference from the zonal mean\n20W\n20W\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\n2\n\"\n2\n2\n-2\n40W\n4 OW\n2\n2\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n60W\n2 0\n4\n2.\n2\n80W\n2\n0\n-2\n100W\n0\n-2\n160W 140W 120W\n-2\n-20\nare dashed. The zero contour is emphasized.\n2\n-2\ni2\n-2\n-2\n0\n0\n40E 60E 80E 100E 120E 140E 160E 180\nM\nM\n2\ni\n00\n-12\n0\n2\n6\n3)\n2\n-2\n0\nare dashed.\n45\n-2\n2\n-2\n0\n40E\n40E\n0\n2\n20S\n30S\n30N\n10N\n30S\n30N\n20N\n10N\n00\n10S\n20N\n00\n10S\n20S","30N\n20N\n10N\n30N\n20N\n10N\n00\n10S\n20S\n30S\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n2\n8\nFigure 21b. March zonal wind component standard deviation for the period 1950-1979.\n4\nMarch zonal wind component mean for the period 1950-1979. The contour\n40W\n40W\n1\n7-2\n60W\n60W\n1\n80W\n80W\n0\n100W\n100W\n-4\n120W\n120W\n0\n140W\n140W\n2\n3\n160W\n80E 100E 120E 140E 160E 180 160W\n2 2\n3\n0\n-4\nThe contour interval is 5 m/s.\n80E 100E 120E 140E 160E 180\n2\nM\n-4\n2\n1-4\n-4\n2\n4\n(westerlies) are solid.\nD\n1\n4\n0\n2\n-4\n2\n60E\n60E\n2\nFigure 21a.\n40E\n40E\n-4\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n00\n0\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 21c. March zonal wind component expressed as the difference from the annual mean\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 21d. March zonal wind component expressed as the difference from the zonal mean\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\n=2\n0\n4 OW\n2\n2\n2\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n2.\n24\n22\nZ\n0\n-2-2\n0\no\n022\n-2\nare dashed. The zero contour is emphasized.\n-2\n-2\nQ\n0\n2\n-2\nM\nby\n0\n23\n2\n2 3\na\ntests\n2\nN\n2\n-2-2\nare dashed.\n0\n2\n2-2\n-2\n4\n-2\n4\n42\nP2\n2\n40E\n40E\n0\n2\n10S\n20S\n30S\n30N\n20N\n10N\n00\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n0\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n2\n20W\n20W\n2\nFigure 22b. April zonal wind component standard deviation for the period 1950-1979.\nFigure 22a. April zonal wind component mean for the period 1950-1979. The contour\n40W\n40W\n2\n2\n0\n60W\n60W\n0\n0\n80W\n80W\n0\n-4\n2\n100W\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n0\nD\n0\na\n120W\n2\n140W\n2\n160W\n2\n2\nThe contour interval is 5 m/s.\n80E 100E 120E 140E 160E 180\n2\nO:\n1\n(westerlies) are solid.\n1\n2\n2\n10\n24\n2\n-4 -4\n60E\n60E\n2\n1\n40E\n40E\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n30N\n10N\n20N\n10N\n00\n10S\n00\n10S\n20S\n20S\n30S\n30S\n20E\n20E\n20E\n20E\n4\n0\n00\n00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n0\n20W\nFigure 22c. April zonal wind component expressed as the difference from the annual mean\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 22d. April zonal wind component expressed as the difference from the zonal mean\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n0\n0\n2\n0\n2\n20-2\n-2\n-2\n-3\n2\n0 24\nare dashed. The zero contour is emphasized.\n2\n-2\n2\na\n00\n0\n-2\no\n-2\n0\nIn\n0\n0\na-o\n&\nyou\n-2\n2\n5\nn\nN\n2.\nare dashed.\n0\n2\n2\n=2\n60E\n2\n40E\n40E\n0\n22\n0\n2\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n30N\n20N\n10N\n00\n10S\n20S\n30S\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2\n-0\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n0\n20W\n2\n-4\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\nFigure 23b. May zonal wind component standard deviation for the period 1950-1979.\n2\nFigure 23a. May zonal wind component mean for the period 1950-1979. The contour\n4\n1\n0\n0\n2\n0\n0-0\n0\nThe contour interval is . 5 m/s.\nM\nM\n1\n0\n2\n0\n(westerlies) are solid.\n2\n22\nt\n2\n1\n44\n0\n40E\n1 2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\nB\n4\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n10\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\nit\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nFigure 23c. May zonal wind component expressed as the difference from the annual mean\nFigure 23d. May zonal wind component expressed as the difference from the zonal mean\n0\n0\n40 W\n0\na 2\n4\n60W\n3\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n2 22\n2\n02\nare dashed. The zero contour is emphasized.\n22\n3\n-2\n0\nM\n0\nM\n0\n20\n0\n0\nN\n2\n8\n0\nare dashed.\n0\n2\n6\n-\n6\n2\nA\n0\n2\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nB\nX\n0\n2\n00\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n0\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n1\n1.1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n0\n2\n4\nFigure 24b. June zonal wind component standard deviation for the period 1950-1979.\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\nFigure 24a. June zonal wind component mean for the period 1950-1979. The contour\n2\n0-0\n4\n13\n0\n0\n21\n0\n2\n0\n2\n1\n0\nD\n23 2 2\n3\n3\nThe contour interval is . 5 m/s.\nM\n0\n0\na in\n0\n2\n(westerlies) are solid.\n1\n2\n2\n31\nN\n0\n0\n2\n40E\n40E\n12\n04\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20S\n30S\n20N\n10N\n00\n10S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n4\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n20W\nFigure 24c. June zonal wind component expressed as the difference from the annual mean\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nFigure 24d. June zonal wind component expressed as the difference from the zonal mean\n:\n0\n0\n4 or\n2\n2\n0\n60W\n0\n13\npo\n4\n.\n80W\n2\n0\n494\n0\n-2\n~0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n00\n2\n0\n0\n202\nare dashed. The zero contour is emphasized.\n2\n$4\n0\n2\n-2\n2\n0\nM\n-2\n2\n23\n4\n2\nN\n2\n2\n2\n2\nare dashed.\n2\n0\n&\n-2\n&\n-2 -2\n&\n0\n0\n21\n-\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n0\n1\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n2\n0\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n20W\n20W\n0\nFigure 25b. July zonal wind component standard deviation for the period 1950-1979.\n40W\n40W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n2\nFigure 25a. July zonal wind component mean for the period 1950-1979. The contour\n1\n60W\n60W\n13\n0\n80W\n80W\n140W 120W 100W\n100W\n2\n0\nQ\n2\nO\n2\n120W\n0\n0\n140W\n-4\n3.3\n160W\n1\n60E 80E 100E 120E 140E 160E 180 160W\n3\n0\n-4\n180\nThe contour interval is .5 m/s.\nM\nM\n0\n160E\n0\n09\n(westerlies) are solid.\n140E\n0\n2\n120E\nN\n1\n2\n100E\n0\n80E\n2\n60E\n2\n40E\n40E\n40E\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n30N\n20N\n20N\n10N\n00\n10S\n10N\n20S\n30S\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\n0\n4\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n0\n20W\n8\nFigure 25c. July zonal wind component expressed as the difference from the annual mean\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\nFigure 25d. July zonal wind component expressed as the difference from the zonal mean\n0\n8\n40W\n42\n0\n0\n60W\n2.\n16\n4.\nR\n80W\n2\n2\n4\nQ\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n0\n2\n2\n00\n2\n- 202\nare dashed. The zero contour is emphasized.\n2\n2\n2\n2\n-4\n2\nM\n2\n-2\n0\n52\n2\n-\n2\n2\n2\nN\n2\n2\nIS\nare dashed.\n2\n0\n8\n-2\n6*\n40E\n40E\nw\n-2\n2\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\nwill\n0\n20W\n20W\n0\nAugust zonal wind component standard deviation for the period 1950-1979.\nFigure 26a. August zonal wind component mean for the period 1950-1979. The contour\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n40W\n1 2\n1\n60W\n80W\n0\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n4\n2\n0\n0\n-0\n0\n2\n0\n2\n0\n0\n0\nThe contour interval is 5 m/s.\n(westerlies) are solid.\n0\n2\n2\nI\n-0\nD\n2\n0\n0\nd\nFigure 26b\n2\n40E\n40E\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nQ\nB\n4\n0\n00\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 26c. August zonal wind component expressed as the difference from the annual mean\n0\nFigure 26d. August zonal wind component expressed as the difference from the zonal mean\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\n2\n0\n0\n2\n2\n0\n4\n0\n-0\n0\n-2\n2\n-2\n-4\n0'-\n2\n-2 02\nare dashed. The zero contour is emphasized.\n-2\n}\n-4\n-2\n2\n-2\nM\n-2\n0\n2\nD\nare dashed.\n2\n2\n0\n2\n4\n-2 -2\n423\nOf\nF:\n20S\n30S\n30S\n30N\n20N\n10N\n00\n10S\n30N\n10N\n20N\n00\n10S\n20S","30N\n20N\n10N\n30N\n00\n10S\n20N\n10N\n00\n10S\n20S\n30S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n0\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\nand\nFigure 27b. September zonal wind component standard deviation for the period 1950-1979.\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 27a. September zonal wind component mean for the period 1950-1979. The contour\n2\n0\n02\n2\n2\nis\n2\n1\n2\n-4\nThe contour interval is 5 m/s.\n2\n(westerlies) are solid.\nYOU\n2\n21\n1\n1\n'O\n2\n60E\n2\n0.00\n4 , O E\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30N\n30S\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n2 C S\n30S\n20E\n20E\n20E\n20E\nQ\n4\nSeptember zonal wind component expressed as the difference from the annual mean\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\nSeptember zonal wind component expressed as the difference from the zonal mean\n0\n0\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nn.\n2\n0\n4\ni0\n0\n2\n0\n2\n0\n4\n04\n2\n44\n10\n0\n-2\n0\n2\n0\n2\n0 2\n0 0\nare dashed. The zero contour is emphasized.\n0\n&\n-2\n-2\n0\nI\n2\n2\n2 -2 2\n0\nyou\n2\n2\n2\no\n2\nare dashed.\n41\n6\n-2\n0\n40\n0\n0\n-2\nO\nFigure 27c.\nFigure 27d.\n2\n22\n-2\n40E\n40E\n2\n0\n10S\n20S\n30S\n30N\n20N\n10N\n00\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n0\n1\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n22\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 28b. October zonal wind component standard deviation for the period 1950-1979.\nFigure 28a. October zonal wind component mean for the period 1950-1979. - The contour\nin\n4\n40W\nor\n60W\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n0\n1\nin\n2\n2\n2\nThe contour interval is .5 m/s.\nM\n2\n(westerlies) are solid.\n1\n1\na\n2\n2\nin\n2\n0\n2\n6-14\n-4\n40E\n1-1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n20E\n20E\n20E\n20E\n0\n2\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n00\nFigure 28c. October zonal wind component expressed as the difference from the annual mean\n0\nOctober zonal wind component expressed as the difference from the zonal mean\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\n2\n40W\n4 OW\n0\n0\n0\n60W\n60W\n4\n3\n0\n2\n4\n80W\n80W\nA\n0\n0\n100W\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n-0\n0\n120W\n0\n0\n2\n0 2\nare dashed. The zero contour is emphasized.\n0\no\n140W\n0\n0\n0\n160W\n2\n0\n180\n0\nin\nM\n2,\n-2\n160E\nis\n140E\n2\n2\n120E\nn\n2\n?\n4\nof\nare dashed.\n100E\n2\n80E\n60E\n0\nFigure 28d.\n2\n40E\n-2\n40E\n12\n2\n0\n63\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n30N\n20N\n00\n10S\n10N\n20S\n30S\n00\n10S\n20S\n30S\n20E\n20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n0\n1\n00\n00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nFigure 29b. November zonal wind component standard deviation for the period 1950-1979.\nFigure 29a. November zonal wind component mean for the period 1950-1979. The contour\n3\n2\n2\n40W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n2\n1\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n13\n0\n0\n2\n0\nI\n22\n0 9 01\n2\n2\n2\nThe contour interval is 5 m/s.\n2 2\n2\n(westerlies) are solid.\n2\n4-3\n8\n1\n2\n67\n2\n40E\n40E\n40E\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\nB\n4\n0\n0\n4 , 0 E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 29c. November zonal wind component expressed as the difference from the annual mean\n0\nFigure 29d. November zonal wind component expressed as the difference from the zonal mean\n20W\n44\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW\n2\n0\n2\n0\nx-2\n4\n4\n08\n02\n-2\n0\n0\n}\n2\nare dashed. The zero contour is emphasized.\n0\n0\n0\n-2\n4\n0\n0\n0\nM\n0\n2 -2\nA\na\n2\n2\nw\n2\nN\n5\n22\nare dashed.\n0\n-2\n0\n-2\n-2\n0\n40E\n40E\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n1\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n4 0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n20W\n-2\nFigure 30b. December zonal wind component standard deviation for the period 1950-1979.\nFigure 30a. December zonal wind component mean for the period 1950-1979. - The contour\n-4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n4 OW\n0\n4-\n16\n60W\n2\n80W\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n4\ne:\n0\n2\n0\n3\nD\n2\n3\nThe contour interval is .5 m/s.\n2\n2\n(westerlies) are solid.\n2\no\n1\n2\n2\n2\n40E\n1\n:\ni\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n2\n0\n0\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 30c. December zonal wind component expressed as the difference from the annual mean\nFigure 30d. December zonal wind component expressed as the difference from the zonal mean\n-2\n20W\n20W\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\n-2\n4\n40W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n0\nof\nto\n-2\n0\n60W\n4\n06\n80W\n2\n2\n0\n100W\n0\n-2\n120W\n00\n0\n0\nare dashed. The zero contour is emphasized.\n0\n140W\n-2\n-4 4\n0\n2\n0\n160W\n0\n-2\n180\nMl\nM\n16 OE\n0\n-2\n2-2\n2\n2\n140E\nN\n2\n2\nm\na\n22\n120E\n2\n4\n6\n0\n2.\nare dashed.\n100E\n2\n-2\n80E\n0\n4\n60E\n0\n40E\n40E\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n30S\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n0\n0\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n1\n-\n1\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n4\n4\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\nMAM zonal wind component standard deviation for the period 1950-1979.\n1\nFigure 31a. MAM zonal wind component mean for the period 1950-1979. The contour\n0\n1\n0\nThe contour interval is 5 m/s.\n0\n0\n1\n-4\n(westerlies) are solid.\n1\n1\n2\ni\n1\nFigure 31b.\n40E\n1\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20S\n30S\n30N\n20N\n10N\n00\n10S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n0\n1\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n0\n-4\n40W\n40W\nJJA zonal wind component standard deviation for the period 1950-1979.\nFigure 32a. JJA zonal wind component mean for the period 1950-1979. The contour\n60W\n60W\n80W\n0\n80W\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n160W 140W 120W 100W\n0\n-\n0\n0\n60E 80E 100E 120E 140E 160E 180\nM\nThe contour interval is 5 m/s.\n0\n(westerlies) are solid.\n2\n1\n0\n1\n60E\nFigure 32b.\n40E\n40E\n40E\n1\n10S\n20S\n30S\n30N\n20N\n10N\n00\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nB\n0\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n:\n40W\nFigure 33b. SON zonal wind component standard deviation for the period 1950-1979.\nFigure 33a. SON zonal wind component mean for the period 1950-1979. The contour\n1\n60W\n15\n0\n80W\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n0\n0\nThe contour interval is 5 m/s.\nM\n1\n1\n(westerlies) are solid.\n1\n2\na\n1\n60E\ni1\n0\n0\n0\n40E\n10S\n20S\n30S\n10N\n00\n30N\n20N\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n30N\n20N\n10N\n00\n10S\n20S\n30S\n00\n10S\n20S\n30S\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n0\n00\n00\n00\ninterval is 2 m/s. Negative values (easterlies) are dashed; positive values\n1\n20W\n20W\n20W\n4\n40W\n40W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\nDJF zonal wind component standard deviation for the period 1950-1979.\nFigure 34a. DJF zonal wind component mean for the period 1950-1979. The contour\n1\n60W\n60W\n0\n80W\n0\n80W\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n140W 120W 100W\n1\n0\n0\n0\n2\n160W\n-4-4\nThe contour interval is .5 m/s.\n180\nM\nM\n4\n80E 100E 120E 140E 160E\n2\n(westerlies) are solid.\n1\n4\n2\n0\n60E\nFigure 34b.\n-4-4\n40E\n40E\n40E\nis\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n4\n00\n00\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\nFigure 35. Annual meridional wind component mean for the period 1950-1979. The contour\n-4\n20W\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40W\n0\n0\n0\n60W\n80W\n4\n140W 120W 100W\n4\n0\n-4\n0\nand\n160W\n0\n80E 100E 120E 140E 160E 180\n(southerlies) are solid.\n4\n4\n60E\n00\n0\n4 0E\n30N\n10N\n10S\n20S\n20N\n00\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n101\n0\n1\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nFigure 36a. January meridional wind component mean for the period 1950-1979. The contour\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n0\n20W\nJanuary meridional wind component standard deviation for the period 1950-\nZ\nI\n2 3\n40W\nor\n2\n60W\n0-9\n1\n1\n80W\n0\n4\n100W\n0\n120W\niN\n60E 80E 100E 120E 140E 160E 180 160W 140W\n2\n0\n0\n1\n2\n1979. The contour interval is .5 m/s.\n1\n2\n0\n00\nM\n0\n1.\n0\n(southerlies) are solid.\n2\nN\n8\n4\n-40\n0\nFigure 36b.\n4\n0\n1-0\n40E\n0\nO\n30N\n10S\n20S\n30S\n20N\n10N\n00\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nR\n2\n24\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nto\n-20\nFigure 36c. January merdional wind component expressed as the difference from the annual\nFigure 36d. January meridional wind component expressed as the difference from the zonal\n22\n20W\n40E 60E 80E 1 00E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W 20W\na\n0\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n2\n-2\n4 OW\n-4\n2\nY\n0\n2\na\nR\n60W\n80W\n20\n24\n100W\n&\n0\n4\n-2\n120W\n2 0 2\n2\n-2\n140W\n0\n2\n-2\n60E 80E 100E 120E 140E 160E 180 160W\n2\n-2\n&\n-2\n0\n-2\n0\n2\n2\nvalues are dashed.\nvalues are dashed.\n2\nX2\n2\n2\n6\nof\n2\n246\n2\n-2\n0\n12\nd\n2\n40E\n40E\n4\n0\n0\n0\n20N\n10N\n30N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n30N\n20S\n30S\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n1\n1\n4\n00\n00\n00\n4\n2\n0\n20W\n20W\n20W\nFigure 37b. February meridional wind component standard deviation for the period 1950-\n2\n2\nFigure 37a. February meridional wind component mean for the period 1950-1979. The\n40W\n40W\n40W\n1\ncontour interval is 2 m/s. Negative values (northerlies) are dashed;\n0\n4\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n60W\n60W\n1\n0\n80W\n80W\n4\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n40E 60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W\n0\nOF\n2\n4\n2\n-\n2\n2\n0\npositive values (southerlies) are solid.\nD\n2\n1979. The contour interval is .5 m/s.\n2\n2\n0\nM\nM\n2\n0\nD\nK\n1\n2\n4\n11\n00\n60E\n40E\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n10S\n20S\n30S\n20N\n10N\n00","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n12\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n2\nFigure 37c. February merdional wind component expressed as the difference from the annual\nFigure 37d. February meridional wind component expressed as the difference from the zonal\n-20\n2\n3\nas\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. - The contour interval is 2 m/s. Negative\n-4 -4\n-2\n8\n2\n-R\n4\n;2\n2\n&\n0\n-2-2\n0-2\n23\n60-2\n-2\n000\n2\n0\n0\n2\nM\n01\n0\n-2\n2\nZ\n2\nvalues are dashed.\nvalues are dashed.\n2\n2\n4\n2\no\na\n246\n2\n2\n0\n2\n4\n0\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n1\n~1\n4\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 60W 40W 20W 00\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\nFigure 38b. March meridional wind component standard deviation for the period 1950-1979.\n0\nFigure 38a. March meridional wind component mean for the period 1950-1979. The contour\n2 2\n1\n0\n80W\n4\n0\n2\n2\n-4\n0\nI\n2\n2\n23\nThe contour interval is .5 m/s.\nI\nM\n52\n(southerlies) are solid.\n2\n2\n1\n4\n2\n2\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n24\n00\n00\n00\n0\n2\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n2\nFigure 38c. March merdional wind component expressed as the difference from the annual\nFigure 38d. March meridional wind component expressed as the difference from the zonal\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n-2\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W\n40W\nQ\n-2\n-2\n60W\n2\n4 40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n2\n2\n02 4\n2\n-2\n0\n-2\n-2\n2\n-2\nof\n0\n0\n2\n0\n-2\nvalues are dashed.\nvalues are dashed.\n2\n3)\no\n24\n0\n4\n2\n-2\n40E\n0'\nQ\n00\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\nA\n1\n1\n4\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\nFigure 39b. April meridional wind component standard deviation for the period 1950-1979.\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 39a. April meridional wind component mean for the period 1950-1979. The contour\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n-4\n0\n0\n22\n0\nW\n1\n0\n4\n4\n0\n40\n2\n-4\n0\n2\n?\n-2\nZ\nThe contour interval is .5 m/s.\n2\nM\nM\n1\n42\n(southerlies) are solid.\n1\n1\n0\n20\n2)\nN\n1\n4\n2\na\n22\n40E\n10S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n024\n2\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0 2 -4\n20W\n20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 39c. April merdional wind component expressed as the difference from the annual\nFigure 39d. April meridional wind component expressed as the difference from the zonal\n-2\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n- 2-2\n40W\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n2\n4 .0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n202\n-2\n2\n-4-\n-2-2\nand\n2\n0\n2\n0\n8\n23\nvalues are dashed.\nvalues are dashed.\n2\n2\ny\n2\nn\n00\n10\n0\n0\n2\n40E\n0\n0\nw\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\nA\n4\n1\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n0\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 40b. May meridional wind component standard deviation for the period 1950-1979.\nMay meridional wind component mean for the period 1950-1979. The contour\n-2\n2\n0\n13\nC\n0\n0\n2\n0\n5\nor\n2\n0\n⑆\n22\n2\nThe contour interval is 5 m/s.\n2\nIn\nM\n(southerlies) are solid.\n2\nT\na\n4\n2-2\n0\nFigure 40a\n2\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\n02\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 40c. May merdional wind component expressed as the difference from the annual mean\nFigure 40d. May meridional wind component expressed as the difference from the zonal mean\n4\nfor the period 1950-1979. The contour interval is 2 m/s. Negative values\nfor the period 1950-1979. - The contour interval is 2 m/s. Negative values\n2\n2\n-2\n22\n0\n2\n- 2\n22\n02\n-2\n00\n-2\n?\n-4\nD\n2\n0\n0\n0\n8\nin\n2\n2\n2\n20\n2\n2\nW\n-2\n-21\nare dashed.\nare dashed.\n2\n8\n0\n22\n00\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n00\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n2\n0\nFigure 41b. June meridional wind component standard deviation for the period 1950-1979.\n20W\nJune meridional wind component mean for the period 1950-1979. The contour\n-4\n2\n7\n22\n40W\n0\n0\n0\n60W\n80W\n4\n2\n100W\nof\n2\n0\n120W\n#\n2\n0\n-4\n60E 80E 100E 120E 140E 160E 180 160W 140W\n22\n0\niz\nThe contour interval is .5 m/s.\nM\n(southerlies) are solid.\n2\n2\n4\n48\n1\nFigure 41a.\n40E\n40E\n40E\n40E\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n2\n2\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n0\n20W\n20W\n4\nM\n-2\nFigure 41c. June merdional wind component expressed as the difference from the annual\n-2\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nFigure 41d. June meridional wind component expressed as the difference from the zonal\nmean for the period 1950-1979. - The contour interval is 2 m/s. Negative\n2\n40W\n40W\n40\n0\n-2\n60W\n40E 60E 80E 1 00E 120E 140E 160E 180 1 60W 140W 120W 100W 80W 60W\n2\n2\n80W\n2\n2\n100W\n2\n0\n2\n0\n120W\n2\n-2\n6\n-2\n60E 80E 100E 120E 140E 160E 180 160W 140W\n0 -2\n8\n8\n0\n0\nM\n2 0\n2-2\n2\n&2\n2\nQ\n2\nI\n2\nvalues are dashed.\nvalues are dashed.\n2\n2\n-2-4\n22\n0\nx.\n0\n210\n2\n0\n40E\n2\n00\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n2.0E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n2\nFigure 42b. July meridional wind component standard deviation for the period 1950-1979.\n20W\nFigure 42a. July meridional wind component mean for the period 1950-1979. The contour\n0\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n2\n0\n10\n4\nn\n00\n2\n1\n0\n2\n-4\n8\n0\n~2\n0\n2\n2\nThe contour interval is .5 m/s.\nM\nM\n.0\n(southerlies) are solid.\n1\nE\n2)\n2\n0\n1\n4\n2\nof\n2\n1\n00\n0\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\nB\n2\n2\n00\n00\n0\n2\n20W\n20W\n-6\n-2\n-2\nFigure 42c. July merdional wind component expressed as the difference from the annual\nFigure 42d. July meridional wind component expressed as the difference from the zonal\n:\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. - The contour interval is 2 m/s. Negative\n-2\n-2\n-2\n40W\n40W\nO\n2\n2\nD\n$\n-2\n0\n60W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\n2\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n2\n02\n-2\n2\n-2\nis\n0\n22\n0\n-2 4 -6\n0\naz\na\nno\n-2\nof\n0\nM\n2\n0\n22\nd\n2\nvalues are dashed.\nvalues are dashed.\nN\n2\nyaz\n-2\n2\n2\n4\n2\n0\n2\n4\nof\n4\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n2\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 43b. August meridional wind component standard deviation for the period 1950-1979.\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n2\nFigure 43a. August meridional wind component mean for the period 1950-1979. The contour\n20W\n2\n0\n40W\n2\n0\n60W\n60E 80E 1 00E 120E 140E 160E 180 160W 14 OW 120W 100W 80W\n$\n2\n4\n0\n2\n1\n0\n-4\n1\n222\n0\n2\n0\n2\nThe contour interval is .5 m/s.\n1\nM\n(southerlies) are solid.\n1\na\nPD\n2\n54\n!\n00 0 0\n4\n40E\n30N\n20N\n1 O N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n2\n24\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n0\n-2\n-6\nFigure 43c. August merdional wind component expressed as the difference from the annual\nN\nFigure 43d. August meridional wind component expressed as the difference from the zonal\n20W\n-6\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n-2\n-4\n-2\n40W\n2\n2\n0\n-2\n40E 60E 80E 10 0 E 120E 140E 160E 180 160W 140W 120W 100W 8 OW 60W\n2\n2\n00 4\n2-2\n-4\n-4--\n-4\n⑆2\n- 2 -4\n0\n0\n0\nio\n2\nin\n0\n2\n0\n2\n2\nvalues are dashed.\nvalues are dashed.\n2\nN\n2\n2\n1.22\n20\n-2\n4\n2\n2\n2018\n0\n0\n0\n-2\n30N\n20N\n10N\n00\n10S\n30S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n1\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n-2\n2\nFigure 44b. September meridional wind component standard deviation for the period 1950-\n-4\n2-2\n0\nFigure 44a. September meridional wind component mean for the period 1950-1979. The\n1-1\ncontour interval is 2 m/s. Negative values (northerlies) are dashed;\nL\n0\n2\n0\n1\nbaco\n4\n0\n2\n0\n-\n00\n2\n-4\n0\npositive values (southerlies) are solid.\n1979. The contour interval is .5 m/s.\n2\nM\ne\n1\n4\n1\n4\niz\n0\n0\n40E\na\n-\n00\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n30N\n00\n10S\n20N\n20S\n30S\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n24\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n2\n0\n-4\n20W\n2\n-2\nFigure 44d. September meridional wind component expressed as the difference from the\nFigure 44c. September merdional wind component expressed as the difference from the\n60E 80E 100E 120E 140E 160E 180 160W 14 OW 120W 100W 80W 60W 40W\n0\n4\nannual mean for the period 1950-1979. The contour interval is 2 m/s.\nzonal mean for the period 1950-1979. - The contour interval is 2 m/s.\nto\n2 2\n2\n54\n2\n024\n-2\n00\n-2 -4. 4\n-2\n0\n0\n0\n2\n-2\n0\nIn\nNegative values are dashed.\nNegative values are dashed.\n2\n0\n2\n200\n2\n2\nN\nZ\n0\n2\n100\n2\n2\n2\n8\n0\n2\na\n0\n-2\non\n40E\n14\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n1\n4\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\n00\nFigure 45a. October meridional wind component mean for the period 1950-1979. The contour\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n2.\n4\n0\n20W\n20W\n20W\n2\nFigure 45b. October meridional wind component standard deviation for the period 1950-\n2\n2\n40W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n40W\n0\n0\n0\n60W\n60W\n3\n0\n1\n4 0 E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n4\n0\nr2\n2\n0\n-2\n2\na\na\n2 3\n1979. The contour interval is . 5 m/s.\nM\n0\n0\n(southerlies) are solid.\n0\n6\n2\n1\nG\n4\n1\n4\n0 0 0\n1\n4 0E\n+ 0E\n1<\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n0\nQ\n024\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nFigure 45c. October merdional wind component expressed as the difference from the annual\nFigure 45d. October meridional wind component expressed as the difference from the zonal\n-2\n40E 60E 80E 100E 120E 1 40E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n3\n2\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n0\n-2\n=2\n2\n4\n0\n13\n2\n4\n2\nT\nis\nZZ\n0\n29\n-2-D 24\n-2-2\n-221\nI\n2\n-2\n0 -2\n0\n0\n0\nM\n0\n0\n2\nNO\n2\n2\nvalues are dashed.\nvalues are dashed.\n2\n2\nN\no\nR\n24\n2\n0\n0\n2\n0\n0-2\n-2\n40E\n40E\n40E\n12\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n4\n00\n00\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n2\n20W\n20W\n20W\n1\nFigure 46b. November meridional wind component standard deviation for the period 1950-\n0\n23\nFigure 46a. November meridional wind component mean for the period 1950-1979. The\n...\n40W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\n0\n4 OW\n1\nI\ncontour interval is 2 m/s. Negative values (northerlies) are dashed;\n2\n0\n0\n60W\n60W\n1\n1.\n80W\n80W\n1\n4\n1\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n1\n0\n1\n2\n0\nI\n2\npositive values (southerlies) are solid.\n2\n1979. The contour interval is .5 m/s.\n2\n2\nM\nby\n0\nID\n2\n2\n5\n1\n4\n0\n0\n0\n1\nor\nto\nleb\n40E\n40E\n40E\n40E\n30N\n30S\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n30N\n20N\n10N\n00\n10S\n20S\n00\n10S\n20S\n30S\n30S\n20E\n20E\n20E\n20E\n2 -2 024\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 1 0E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nNovember meridional wind component expressed as the difference from the zonal\nFigure 46c. November merdional wind component expressed as the difference from the annual\n4 0E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nfor the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\n-4\n2\n2\n}\n2\nNO\n20\n2\n2\nof\n0\n0\n-2\n0\n2\n0 -2\n}\n0\n0\n2\n2\n0\nvalues are dashed.\nvalues are dashed.\n>>\n2\n57\n24\n0\nmean\n2\nFigure 46d.\n2.\n07-2\n$2.00\nT.\n0\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n1.1\n1\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0\n2\n20W\n2\nFigure 47b. December meridional wind component standard deviation for the period 1950-\n7\nDecember meridional wind component mean for the period 1950-1979. The\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\ncontour interval is 2 m/s. Negative values (northerlies) are dashed;\n2\n2\n1\n0\n4\n4\n0\n2\n1\n2\n0\npositive values (southerlies) are solid.\n1979. The contour interval is .5 m/s.\n2\n0\n1\n2\nO\nM\nof\n0\nO\nD\n1\n4\n0\n0\nFigure 47a.\n40E\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30N\n20N\n10N\n00\n10S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\nB\n2 0246\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n2\n2\nFigure 47c. December merdional wind component expressed as the difference from the annual\nFigure 47d. December meridional wind component expressed as the difference from the zonal\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nmean for the period 1950-1979. The contour interval is 2 m/s. Negative\nmean for the period 1950-1979. - The contour interval is 2 m/s. Negative\n-2\n-4\n2\n0\n2\n-2\n23\nbe\n02\n0\n2\n24\n000\n-2\n0\n2\n10\n0-2\n2\n0\n-2\n-4\n-2\n0\n2\n0\n-2\n2\nK\nvalues are dashed.\nvalues are dashed.\n12\n2\n2\n4\nR\nI\n2\n2\na\n2\n246\n0\n0\n0\n2\n40E\n40E\n1-4\n0\n8\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S","30N\n20N\n30N\n20N\n10N\n10N\n00\n00\n10S\n20S\n30S\n10S\n20S\n30S\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\nA\n4\n00\n00\n1\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n1\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 48b. MAM meridional wind component standard deviation for the period 1950-1979.\nFigure 48a. MAM meridional wind component mean for the period 1950-1979. The contour\n.\n1\nD\n0\ny\ni1\n4\ni\n0\n0\n1\n-4\n0\n1\n1 7\n1\n0\n1\nThe contour interval is 5 m/s.\n0\n1\n(southerlies) are solid.\n2\n4\n1\nO\n60E\n1\n40E\n40E\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\nB\n4\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n1\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n4\nFigure 49b. JJA meridional wind component standard deviation for the period 1950-1979.\n0\nFigure 49a. JJA meridional wind component mean for the period 1950-1979. The contour\n1\n0\n0\n4\n1\n1\n0\n-4\n0\n-4\n1\n0\n0\nThe contour interval is . 5 m/s.\n1\nin\n0-\n-1\n(southerlies) are solid.\n4\n2\n1\n60E\n00\n254\n40E\n0\nof\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n4\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 4 OW 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n1\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\n0\nFigure 50b. SON meridional wind component standard deviation for the period 1950-1979.\nFigure 50a. SON meridional wind component mean for the period 1950-1979. The contour\n-\n0\n1\nTO\n4\n1\n0\n-4-4\n0\nand\n1\n1 7\n1\nThe contour interval is .5 m/s.\n1\n0\n(southerlies) are solid.\n0\na\nN\no\n4\n1\n4\n1\n0\n0\n40E\nOr\n0\n07\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S","20N\n10N\n00\n10S\n20S\n30S\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30\n20E\n20E\n20E\n20E\nB\n4\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n1 -1\ninterval is 2 m/s. Negative values (northerlies) are dashed; positive values\nsi\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nFigure 51b. DJF meridional wind component standard deviation for the period 1950-1979.\nDJF meridional wind component mean for the period 1950-1979. The contour\n40W\n1\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\ny\n0\n4\n1\n0\n0\n1\n1\n0\n1\nThe contour interval is .5 m/s.\n0\n0\n(southerlies) are solid.\n1\n4\n1\n51a.\n1\n40E\nNO\n40E\nFigure\n30N\n20N\n10N\n00\n10S\n20S\n30S\n30N\n2 ON\n10N\n00\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nAnnual vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nFigure 52.\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\nB\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nJanuary mean vector wind expressed as the difference from the annual mean for\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 53a. January mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nM\nTV\nis emphasized.\nFigure 53b.\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 54a. February mean vector wind for the period 1950-1979. The contour interval is\nFigure 54b. February mean vector wind expressed as the difference from the annual mean\nfor the period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s\n2.5 m/s. The 5 m/s isopleth is emphasized.\nisopleth is emphasized.\n2\nn\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 55b. March mean vector wind expressed as the difference from the annual mean for\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 55a. March mean vector wind for the period 1950-1979. The contour interval is\n3\n2.5 m/s. The 5 m/s isopleth is emphasized.\nis emphasized.\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n2.0E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 56b. April mean vector wind expressed as the difference from the annual mean for\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 56a. April mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nM\n2\nis emphasized.\n40E\n30N\n20N\n10N\nEQ\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20S\n30S\n10S","30N\n20N\n10N\nEQ\n30N\n20N\n10S\n20S\n30S\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 57b. May mean vector wind expressed as the difference from the annual mean for the\nperiod 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth is\nFigure 57a. May mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nemphasized.\n40E\n30N\n20N\n10 N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 58b. June mean vector wind expressed as the difference from the annual mean for\nFigure 58a. June mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nM\nis emphasized.\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nE Q\n10 S\n20S\n30S","20N\n10N\nEQ\n10S\n30N\n20S\n30S\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20E\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 59b. July mean vector wind expressed as the difference from the annual mean for\nFigure 59a. July mean vector wind for the period 1950-1979. The contour interval is\nMA\n2.5 m/s. The 5 m/s isopleth is emphasized.\nis emphasized.\n30 S\n30N\n20N\n10N\nEQ\n20S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n10S","30N\n30N\n20N\n10N\nEQ\n10S\n20N\n10N\nEQ\n10S\n20S\n30S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 60b. August mean vector wind expressed as the difference from the annual mean for\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\nFigure 60a. August mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\nh\nis emphasized.\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nFigure 61a. September mean vector wind for the period 1950-1979. The contour interval is\nFigure 61b. September mean vector wind expressed as the difference from the annual mean\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nfor the period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s\n2.5 m/s. The 5 m/s isopleth is emphasized.\nisopleth is emphasized.\n40E\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\nEQ\n10S\n20S\n30S\n10N","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n4 OE 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 62b. October mean vector wind expressed as the difference from the annual mean for\nFigure 62a. October mean vector wind for the period 1950-1979. The contour interval is\nthe period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s isopleth\n2.5 m/s. The 5 m/s isopleth is emphasized.\n2\nN\nis emphasized.\n40E\n30N\n20N\nEQ\n10S\n20S\n30S\n10N\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 63a. November mean vector wind for the period 1950-1979. The contour interval is\nNovember mean vector wind expressed as the difference from the annual mean\nfor the period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s\n2.5 m/s. The 5 m/s isopleth is emphasized.\nisopleth is emphasized.\n60E\nFigure 63b.\n40E\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\nB\nB\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nDecember mean vector wind for the period 1950-1979. The contour interval is\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 64b. December mean vector wind expressed as the difference from the annual mean\nfor the period 1950-1979. The contour interval is 2.5 m/s. The 5 m/s\n2.5 m/s. The 5 m/s isopleth is emphasized.\nisopleth is emphasized.\nFigure 64a.\n40E\n40E\n40E\n40E\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n10N\n20\n301","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n60E 80E 100E 120E 140E 160E 180 1601 W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nJJA mean vector wind for the period 1950-1979. The contour interval is\nFigure 65. MAM mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\n2.5 m/s. The 5 m/s isopleth is emphasized.\nin\nM\nFigure 66.\n40E\n40E\n40E\n40E\n20N\n10N\nEQ\n30N\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nSON mean vector wind for the period 1950-1979. The contour interval is\nFigure 68. DJF mean vector wind for the period 1950-1979. The contour interval is\n2.5 m/s. The 5 m/s isopleth is emphasized.\n2.5 m/s. The 5 m/s isopleth is emphasized.\nFigure 67.\n40E\n40E\n30N\n30N\nEQ\n10S\n20S\n30S\n20 N\n10N\nEQ\n10S\n20S\n30S\n20N\n10N","30N\n30N\n20N\n10N\n20N\n10N\nEQ\nEQ\n10S\nFOS\n20S\n20S\n30S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n0\n0\na\n25.\nto\n15\n20\nB\nB\n15\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n25.0\n-0.2\n2\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to the\n20W\n0\n20W\nFigure 69b. September (-1) through November (-1) SST anomalies ENSO composite based on\nyear before the ENSO. The contour interval is 0.2°C. Negative values are\n-V.R\nSeptember (-1) through November (-1) mean SST ENSO composite based on the\n-0.4\n25 0\nyear before the ENSO. The contour interval is 1°C. The 27°C and 29°C\n20.0\n40h\n0.2\n40W\n25.0\n012\n-0.2\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 60W\n60W\n1\n3\n15.0\n0.2\n20.0\n0.4\nQ.4\n80W\n80W\n15.0\n2\n-0\n100W\n0\n0.6\nO\nQ.4\n20.0\n120W\n-0.4\n20.0\n2\n140W\n0.4\n0.40.2\n0.6\n160W\n0 2\n0.2\n-0.4\n180\nM\n25. 0\n160E\n0,20, 2\n0\n25\n140E\n0.\n2\n0.2\nisopleth is dashed.\nTAX\n25%\n>D\n25.0\n2\n120E\n20.0\n25.\n-0.2\n100E\n2\n0\n-04\nK\ndashed.\n0\n-0:\n2\nOE\na\n0.2\n-0,4\n8\n0.4\n0.2\nS\n60E\n20. 0\nFigure 69a.\na\n0.2\n-0.2\n-0.1\n0.2\n25 023\n2-0-2\n40E\n40E\n0.2\n0\n30N\n20N\n10N\nEQ\n10 S\n20S\n30S\n10S\n20S\n30N\n20N\n10N\nEQ\n30S","30N\n30N\n20N\n10N\n20N\nEQ\n10N\nLOS\nEQ\n20S\n30S\nLOS\n20s\n30S\n20E\n20E\n20E\n2\n0\n20E\n20\n0\n0\n25\na\nB\nB\n20.\n-0.2\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n20.0\n85.0\n0.2\nFigure 70a. December (-1) through February (0) mean SST ENSO composite based on the years\nbefore the ENSO. The contour interval is 1°C. The 27°C and 29°C isopleth is\nbefore the ENSO. The contour interval is 0.2°C. Negative values are dashed.\nFigure 70b. December (-1) through February (0) SST anomalies ENSO composite based on the\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to year\n20W\n20W\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to the year\n20.0\n-0.2\n40W\n40W\n- 0.2\n25 9\n-0.2\n60W\n60W\n20.0\n3\n10.2\n20.0\n02\n5.0\n.\n80W\n16 OW 140W 120W 100W 80W\n20.0\n0.2\ny\n0.2\n-0.8\n20\n100W\n5\n0\nn\n-0.0\n4\n120W\n0.2\n-0\n0.4 -0.2\n140W\n0.2\n0, 2\n160W\n0.2\n0.2 - 0.20.2\n-0.2\n180\n40E 60E 80E 100E 120E 140E 160E 180\na\nIn\n0-0.2\n160E\nD\n25.\n140E\n0.0\n2)\n2\n25.0\n2\n120E\nI\n0.4\nO.\n-0.4\n2000\nis\n8\n0\n100E\n20\nO: 24\n0\nto\n-0.2\ndashed.\n0.2\n80E\n-0.2\n-0.4\n25 0\nQ.2\no\n2\n0\n60E\n-0.2\n25 0\n-0.2\n2\n40E\no\n25.0\nZ\nD\n30N\n20N\n10 N\nEQ\n1 0 S\n20S\n30S\n30N\n10N\n20N\nEQ\n10 S\n20S\n30S","30N\n30N\n20N\n10N\nEQ\n20N\n10N\nEQ\n210S\n20S\n10S\n20s\n30S\n30S\n20E\n20E\n20E\n20E\n0.2\n0.\n20\nA\n20.\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n25.0\n0.2\n2\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to year of the\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\n0.\n1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the year of the\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 71a. March (0) through May (0) mean SST ENSO composite based on the years 1951,\nENSO. The contour interval is 1°C. The 27°C and 29°C isopleth is dashed.\n0.2\nFigure 71b. March (0) through May (0) SST anomalies ENSO composite based on the years\n-0.2\n20.0\n40W\n-0.2\n0.2-02\nENSO. The contour interval is 0.2°C. Negative values are dashed.\n60W\n20.0\n13\n0\n25.0\n.\n.2\n8\n80W\n2\n0\n9.2\n8\n20.0\n0\n0\n0.2\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\n0\n2\n20\n0\n0.20.4 0.2\n0.20.0\n0.2\n-0.2-0.2\n-0.2\nM\n0.2\nv\n0.2\n25.\n-0.40 -0.2\n-0.4\n9\n-\n7\n22\n-0.2\n5.0\n0.2\nTO\n{\n15.\n-0\no\n25\n0\n20.24\n0.2\n0.2\n40E\na\n25.0\n30N\n10 N\nEQ\n10 S\n20S\n30 S\n30N\n10N\nEQ\n10S\n20S\n30S\n20N\n20","30N\n20N\n10N\nEQ\n20N\n10S\n20S\n30S\n30N\n10N\nEQ\n10S\n200 S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n0\n20E\n0\n15\n40\n20\n0.2\n$25\n0.2\nB\n15\n60E 80E 100E 120E 140E 16 0E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nlet\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n25.0\nFigure 72a. June (0) through August (0) mean SST ENSO composite based on the years 1951,\n1951, 1953, 1957, 1965, 1969, 1972 and 1976. The (0) refers to year of the\n0 : 2\nFigure 72b. June (0) through August (0) SST anomalies ENSO composite based on the years\n1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the year of the\nENSO. The contour interval is 1°C. The 27°C and 29°C isopleth is dashed.\n20.0\n25. 0\n2\n25.0\n0.2\n20.0\n20.0\nENSO. The contour interval is 0.2 C. 0 Negative values are dashed.\n-0.2\n1\n15.0\n0.6\n20.0\n4\n25.0\n.\n0.20.40.4\nn.2\n15!\n0\n20.0\nZONO\n-0\n-0.\n20.0\n20.0\n0.6\nD\n6\n0\n-0.2 -0.4\nin\nIn\n25,0\n6\n20. 0\nO\na 4\n-0.2\n0.2\nYOU\n5.0\n0.2\n0\n25 0.29\nD\nM\n-0.2\n20.\no\n10.\n0.2\n0\n30.0\n20.0\n9.2\n30\n0.2\nD\n-0.2\n25.0\n40E\n30N\n20 N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n30N\n20N\n10N\nEQ\nEQ\n10S\n20S\n30S\n10N\n.120 S\n20S\n30S\n20E\n20E\n20E\n20E\n0\n2\n0\n0\n10\n15\nQ.2\n0\n25\n20\nB\nB\n15\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n0.2\n-0.2\n25.0\n=0.2-0.\nSeptember (0) through November (0) mean SST ENSO composite based on the years\n0.2\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the year of\nFigure 73b. September (0) through November (0) SST anomalies ENSO composite based on the\nL\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to year\n0\nof the ENSO. The contour interval is 0.2°C. Negative values are dashed.\n0.2\n-0.2\nthe ENSO. The contour interval is 1°c. The 27°C and 29°C isopleth is\n20.0\n0.2\n0.2\n&\n25.0\n0.2\n25.\n-0.2\n15.0\n-0.2\n90.4\n0.2\n0.6\n0.0\ny\n0.02\n0.6\n5.0\n0\n2\n20.0\n-0.2\n0 2\n20.0\n-0.\n20.0\n-0.4 -0.4\n0.2\n1 4\n-0.2\nM\n*\nin\n20.0\n25. 0\ny\n25.)\nbe\n25\n2)\n80.0\n0.2\n-0.2\n25.\n&\n0.\no\n2\ndashed.\n10\n0,2\n20.0\n9.2\n0.8\nFigure 73a.\n2\n40E\n40E\n0\n5\n1 O N\n30S\n20S\n30S\n30N\nEQ\n10S\n20N\n30N\n20N\n10N\nE Q\n10S\n20S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\nSos\n20E\n20E\n20E\n20E\n0.2\n20\n20\n2\nB\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 60W 20W 00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nL\n0\n0.2\n20.0\n5.0\nFigure 74a. December (0) through February (+1) mean SST ENSO composite based on the years\n0\nafter the ENSO. The contour interval is 1°c. The 27°C and 29°C isopleth is\nDecember (0) through February (+1) SST anomalies ENSO composite based on the\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to year\nafter the ENSO. The contour interval is 0.2°C. Negative values are dashed.\n20W\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the year\n-0.2\n20.0\n40W\n40W\n25.0\n60W\n2\n0.2\n6.2\n04\nin\n10-1\n25.0\n0.2\n0.8\n0.2\n80W\n80W\nY\n-\n0\nR8\n20. 8\n2\n4 , 0 E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W\nQ 6\n0 2\n20\n-0.2 -0.2\n- 0.2 -0.2\n0\n.-0.2\n0.2\nis\n0.2\n0 2\n0\n0.2\n25\nD\n2010\nOZ\nno\nA\n2)\n0\n25. 0\n50\n0.2\n052\na\n0.2\nA\nw\n5\n0.\n0.2\nG\n8\n25.0\n20\n0.2\ndashed.\n0\n0.20.4\n0.2\n25 0\n2\n0.4\nOo\n25 0\nFigure 74b.\n100\n25.0\n0.2\n0.\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n30N\n10N\nEQ\n10S\n20s\n30S\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n20\n0.2\nB\nB\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W SOW 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to year before\n20.0\n5.0\n0.2\nFigure 75a. March (+1) through May (+1) mean SST ENSO composite based on the years 1951,\nFigure 75b. March (+1) through May (+1) SST anomalies ENSO composite based on the years\n4\n01\n1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the year after\n20.0\nthe ENSO. The contour interval is 0.2°C. Negative values are dashed.\nthe ENSO. The contour interval is 1°C. The 27°C and 29°C isopleth is\n0.2\n25\n20.0\n0.2\n0.2\n0:0\n25.0\nA\na.2\n2\n7\n20.0\nare\n20\n05\n5\n3.\n2\n&\n0\n-0.2\n0.2\n- 0. 2 -0.2\n-0.2\n0.4\n-0.2\n30 0\n-\no\nM\n02\n-\n0 2\n0.2\nD\n4\n0.2\n25.0\n15 Q0 20 0\nand\n00\n2\n>>>\n0.4\n0.2\n25.0\nN\nN\n20.\n-0.2\n0\n25.00\ndashed.\n0.2\n0.2\n018\n0.2\n9,4\n0.2\n0.2\n40E\n40E\n0\n25\n30S\n30N\n20N\n10 N\nEQ\n10 0 S\n30N\n20N\n10N\nEQ\n1 0 S\n20S\n30S\n20","30N\n20N\n10N\nEQ\n10S\nZOS\n30S\n30N\n20N\n10N\nEQ\nLOS\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n0\n2\n0\n2\n$\n0\n20\na\n25\nB\nB\n0\n15\n5\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nFigure 76b. June (+1) through August (+1) SST anomalies ENSO composite based on the years\n25.0\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to year after\n0\n0.2\nafter the ENSO. The contour interval is 1°c. The 27°C and 29°C isopleth is\n0.2\n0.2\n0,2\nand\nLab\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the year\n20.0\n20\n0\nFigure 76a. June (+1) through August (+1) mean SST ENSO composite based on the years\n-\n-0.2\n0.2\n0.40.2\nthe ENSO. The contour interval is 0.2°C. Negative values are dashed.\n25.0\n25.0\n0.2\n0.2\n5. 0 2012\n20.0\n0.2\n1\n-0.6\n20.0\n0.6\ny\n0 8\n20.0\n2\n- 0. 2 - 0.2 0.\n-0.2\n20.0\n20.0\n20.0\n0,2\n25 0\n2\nin\n0\n0.2\n9.2\n20.0\n0.2\n0.2\n25.0\n2\nYASH\n0\n2\n20.0\n0\n0\ndashed.\n30.0\n0.2\n20. 0\nQ\n0.2\n0.2\nto\n40E\n40E\nto\n0.\n25.\n30N\n20N\n10N\nE Q\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nSeptember (-1) through November (-1) mean vector wind ENSO composite based on\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to\nrefers to the year before the ENSO. The contour interval is 0.5 m/s. The\nbased on the years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1)\nSeptember (-1) through November (-1) anomalous vector wind ENSO composite\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W\nthe year before the ENSO. The contour interval is 2.5 m/s. The 5 m/s\n1 m/s isopleth is emphasized.\nisopleth is emphasized.\nFigure 77b.\nFigure 77a.\n40E\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 78b. December (-1) through February (0) anomalous vector wind ENSO composite based\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n20W\nFigure 78a. December (-1) through February (0) mean vector wind ENSO composite based on\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers to\non the years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (-1) refers\nto the year before the ENSO. The contour interval is 0.5 m/s. The 1 m/s\nthe year before the ENSO. The contour interval is 2.5 m/s. The 5 m/s\n40W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\nIn\nisopleth is emphasized.\nisopleth is emphasized.\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 79a. March (0) through May (0) mean vector wind ENSO composite based on the years\n1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the year of\nMarch (0) through May (0) anomalous vector wind ENSO composite based on the\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the\nyear of the ENSO. The contour interval is 0.5 m/s. The 1 m/s isopleth is\nthe ENSO. The contour interval is 2.5 m/s. The 5 m/s isopleth is\nIn\nP\nemphasized.\nemphasized.\nFigure 79b.\n40E\n30N\nEQ\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20N\n10N\n10S\n20S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure 80b. June (0) through August (0) anomalous vector wind ENSO composite based on the\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nyear of the ENSO. The contour interval is 0.5 m/s. The 1 m/s isopleth is\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to the\nyear of the ENSO. The contour interval is 2.5 m/s. The 5 m/s isopleth is\nFigure 80a. June (0) through August (0) mean vector wind ENSO composite based on the\nemphasized.\nemphasized.\n60E\n40E\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n20E\n20E\n20E\n20E\n00\n00\n00\n00\nthe year of the ENSO. The contour interval is 0.5 m/s. The 1 m/s isopleth is\nSeptember (0) through November (0) anomalous vector wind ENSO composite based\non the years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 81a. September (0) through November (0) mean vector wind ENSO composite based on\nthe year of the ENSO. The contour interval is 2.5 m/s. The 5 m/s isopleth\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (0) refers to\n40W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\na\nis emphasized.\nemphasized.\nFigure 81b.\n40E\n40E\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20S\n30S\n20N\n10N\nEQ\n10S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nDecember (0) through February (+1) anomalous vector wind ENSO composite based\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 82a. December (0) through February (+1) mean vector wind ENSO composite based on\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to\non the years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers\nto the year after the ENSO. The contour interval is 0.5 m/s. The 1 m/s\nthe year after the ENSO. The contour interval is 2.5 m/s. The 5 m/s\nin\nisopleth is emphasized.\nisopleth is emphasized.\nFigure 82b.\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\nEQ\n10N\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nyear after the ENSO. The contour interval is 0.5 m/s. The 1 m/s isopleth is\nMarch (+1) through May (+1) anomalous vector wind ENSO composite based on the\nyear after the ENSO. The contour interval is 2.5 m/s. The 5 m/s isopleth is\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the\nFigure 83a. March (+1) through May (+1) mean vector wind ENSO composite based on the\nemphasized.\nemphasized.\nFigure 83b.\n30N\n20N\n10N\nEQ\n1 0 S\n20S\n30S\n30N\n20N\nEQ\n10S\n20S\n30S\n10N","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nthe year after the ENSO. The contour interval is 0.5 m/s. The 1 m/s isopleth\nyear after the ENSO. The contour interval is 2.5 m/s. The 5 m/s isopleth is\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 84b. June (+1) through August (+1) anomalous vector wind ENSO composite based on\nthe years 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nyears 1951, 1953, 1957, 1965, 1969, 1972, and 1976. The (+1) refers to the\nFigure 84a. June (+1) through August (+1) mean vector wind ENSO composite based on the\n40W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\nIN\nis emphasized.\nemphasized.\n40E\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S","28\n28\n26\n8\n2i8\n8\n2\n26\n24\n24\n28\n28\n0\n0\n26\n218\n2.8\n26\n26\n24\n2.8\n280\n2\n26\n218\n2.8\n2\n26\n2\n28\n2.8\n0\n0\n2\n86\n218\n2.8\n26\n2\n2-8\n280\n24\n26\n218\n2-8\n26\n26\n24\n28\n2-8\n0,\n0\n24\n26\n218\n2.8\n2\n2.8\n283\n26\n0\n2\n26\n90E 150E 150W 30W\n30E cross - -section of the mean equatorial interval SST is\n90W\n30E\nTime-longitude period 1950-1979. The contour greater\nFigure 85.\nbased 1°C. The on the 25°C isotherm is emphasized. Values\nthan 28°C are shaded.","28\n28\n28\n26 2424\n28\n2'8\n26\n1950\n24\n28\n28\n6\n28\n24\n2.8\n26\n28\n228\n26\nKO.\n2.8\n1951\n26\n24\n26\n28\n04\n26\n2.8\n2.8\n26\n1952\n24\n26\n2\n28\nZ\n6\n26\n28\n26\n0\n(128\n28\n26\n1953\n1\n2\n28\n24\n26\n28\n26\n1954\n24\n26\n0\n2\n26\n28\n26\n28\n28\n28\n28\n1955\n26\n24\n24\n0\n24\n22\n2\n6\n28\n26\n30E 90E 150E 150W 90W 30W\n30E\nFigure 86.\nTime-longitude cross-section of the mean monthly\nequatorial SST for the years 1950-1955. The contour\ninterval is 1°c. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28 26\n24\n28\n28\no\n0\n28\n1956\n2\n26\n2\n6\n26\n2'8\n6\n2 &\n2.8\n28\n1957\n26\n2.8\n24\n28\n26\n0\n28\n24\n26\n2.6\n2.8\n2°&\n26\n26\n1958\n20\n24\n.2.8.\n4\n26\n28\n26\n2.8\n26\nO\n26\n1959\n2\n28\n28\n26\n28\nV4\n86\n)\n28\n2.8\n0\n28\n26\n1960\n26\n0\n4\n26\n28\n28\n26\n8\n1961\n2\n26\n28\nto\n24\n28\n26\n28\n30E 90E 150E 150W 90W 30E\n30W\nTime-Tongitude cross-section of the mean monthly\nFigure 87.\nequatorial SST for the years 1956-1961. The contour\ninterval is 1°C. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28 28\n28\n26\n2'8\n28\n28\n28\n8\n1962\n2\n2\n0\n2\n3.0\n26\n128\n2.8\n28\n2.8\n3.0\n2\n0\n0\n1963\n2\n28\n2.4\n28\n4\n0\n6\n28\n24\n26\n28\na\n28\n2.8\n2.8\n26\n26\n1964\n2\n2.8\n24\n0\n0\n4\n26\n28\n6\n28\n26 ?\n28\n20\n1965\n26 )\n24\n2.8\n24\nas\n28\n28\n26\n0\n2628\n0\n2.8\n2.8\n26\n1966\n20\n2\n28\n2\n4\n28\n26\n28\n2.8\n8\n8\n1967\n24\n28\n6\n28\n26\n30W\n30E\n150E\n150W\n90W\n30E\n90E\nTime-Tongitude cross-section of the mean monthly\nFigure 88.\nequatorial SST for the years 1962-1967. The contour\ninterval is 1°c. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28\n28\n2826\n24\n28\n2'8\n2.8\n4\n26\n1968\n26\n28\n2\n26\n24\n86\n28\n18.8\n26\n2\n0\n8\n1969\n2\n26\n(\n28\n4\n86\n28\n2.8\n20\n1970\n24\n0\n2\n26\n28\n1971\n24\n26\n6\n26\n28\nO\n86\n2'81\n28\n1972\n26\n24\n28\n24\n9\n28\n26\n26\n2.8\n26\n&\n26\n1973\n28\n24\n26\n150E 150W 90W\n30W\n30E\n30E\n90E\nTime-longitude cross-section of the mean monthly\nFigure 89.\nequatorial SST for the years 1968-1973. - The contour\ninterval is 1°C. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28 26\nA\n28\n28\n8\n26\n1974\n2.8\n2\nI\n4\n26\n28\n28\nD.\n0\n1975\n2\n24\n26\n28\n26\n28\n28\n2.8\n1976\n28\n24\n6\n6\n28\n24\n26\n28\n2\n1977\n24\n2\n24\n28\n86\n28\n28\n26\n1978\n20\n2.8\n2\n0\n24\n0\n4\n26\n2.8\n28\n28\n2.8\n0.\n2.8\n26\n1979\nH\n24\n28\n28\n24\n3.0\nI:\n28\n26\n30E 90E 150E 150W 90W 30W\n30E\nTime-longitude cross-section - of the mean monthly\nFigure 90.\nequatorial SST for the years 1974-1979. The contour\ninterval is 1°c. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28\n28\n28\n26\n26\n8\n26\n1980\n27\n2.8\n24\n26\n28\n2i8\n28\n1981\n2\n26\n3.0\n8\nof\n26\n28\n28\n1982\n24\n28\n24\n28\nV4\n1\n26\n16\n28\n2.8\n30\n28\n2.8\n30\n1983\n28\n2\n24\n26\nD\n6\n28\n28\n1984\n26\n24\n14\n26\n6\n2.8\n28\n1985\n20\n2\n28\n24\n86\n150E 150W 90W\n30E\n90E\n3 CW 30E\nTime-longitude cross-section of the mean monthly\nFigure 91.\nequatorial SST for the years 1980-1985. The contour\ninterval is 1°c. The 25°C isotherm is emphasized.\nValues greater than 28°C are shaded.","28\n26 26\n28\n28\n8\n26\nof\n8°\n2\n1982\n28\n4\n28\n26\n)\n26\n2.8\n28\n.\n30\n28\n2.8\n30\n1983\n28\n2\n24\n26\n.D\n8\n26\n2 &\n1984\n414\n26\n6\n86\n8\n28\n1985\n26\n2\n28\n24\n86\n0\n2.8\n2.8\n2\n1986\n2\n28\n2.6\n0\n6\n26\n28\n28\n30\no\n26\n2\n1987\n28\n26\n2\n2\n0.\n26\n90E 150E 150W 90W\n30W\n30E\n30E\nTime-longitude cross-section of the mean\nequatorial interval SST for the years 1982-1987. monthly The\nFigure 92.\nValues is 1°c. The 25°C isotherm is emphasized. contour\ngreater than 28°C are shaded.","- 1 1 - 1\n1950\n0\n1951\n1952\n1953\n1954\n1\n1955\n0\n90E 150E 150W\n90W\n30W\n30E\nTime-longitude cross section of equatorial The contour SST\n30E\nFigure 93.\nfor the years 1950-1955.\nanomalies .5°C. The zero isotherm is emphasized. is greater\ninterval values are dashed. Light shading -0.5°C.\nis\nNegative than 0.5°C; dark shading is less than","1 - 1 - 1 1\n1956\n0\n1957\n0\n1958\n1959\n1960\n1961\nL\n30E 90E 150E 150W 90W 30W 30E\nTime-longitude cross-section of equatorial SST\nFigure 94.\nanomalies for the years 1956-1961. The contour\ninterval is 5°C. The zero isotherm is emphasized.\nNegative values are dashed. Light shading is greater\nthan 0.5°C; dark shading is less than -0.5°C.","2\n1962\n3\n1963\n.)\n1964\n6\n1965\n1966\n00\n1967\n30E\n90E\n150E 150W\n90W\n30W\n30E\nTime-Tongitude cross-section of equatorial SST\nFigure 95.\nanomalies for the years 1962-1967. The contour\ninterval is .5°C. The zero isotherm is emphasized.\nNegative values are dashed. Light shading is greater\nthan 0.5°C; dark shading is less than -0.5°C.","1 1\n1968\n1969\n1970\n1971\n0\n1972\n0\n0:\n1973\n30E 90E 150E 150W 90W 3 OW\n30E\nTime-longitude cross-section of equatorial SST\nFigure 96.\nanomalies for the years 1968-1973. - The contour\ninterval is .5°C. The zero isotherm is emphasized.\nNegative values are dashed. Light shading is greater\nthan 0.5°C; dark shading is less than -0.5°C.","1974\n1975\n0\n1976\n1977\n1978\n1979\n150E\n150W\n30E\n90E\n90W\n30E\n30\nW\nequatorial\nFigure 97\nTime-\nSST\nof\nanomalies Negative interval 0.5°; values is dark 5°C. are shading dashed. is less than -0.5°C.\n1974-1979.\ncontour\nfor\nyears\nthe\nThe\nemphasized.\nisotherm\nThe\nzero\nis\nshading\ngreater\nLight\nis\nthan","1980\n1981\n1982\n1983\n0\n1984\n1985\nJ\nTime-1ongitude 30E 90E cross-section 150E 150 W 90W 30W\n30E\nanomalies for the years - - of equatorial\nFigure 98.\nNegative interval values is .5°c. are The zero 1980-1985. isotherm The is contour SST\nthan 0.5°c; dark shading dashed. is less Light than shading -0.5°C. emphasized. is\ngreater","1982\n1983\n0\ngoo\n1984\n1985\n1986\n0\n0\n1987\n90W\n30W\n30E\n90E\n150E\n150W\n30E\nTime-longitude cross-section - of equatorial SST\nFigure 99.\nanomalies for the years 1982-1987. The contour\ninterval is .5°c. The zero isotherm is emphasized.\nNegative values are dashed. Light shading is greater\nthan 0.5°C; dark shading is less than -0.5°C.","1\n- 1\n1\n1\n1950\n2\n1\n:- 1\n1951\n1952\n2\n1\n1953\n2\n1\n1954\n1\n2\n1\n1\n1\n1955\n1\n1\nTime-longitude 90E Cross-Special 150E 150W of 90 W 30W\n30E\n30E\nexpressed the years as the from equatorial the annual SST\nFigure 100.\nThe 1950-1955. The contour interval mean for\ndashed. zero isotherm is emphasized. Negative is 1.0°C. are\nshading is Light less shading than -1.0°C. is greater than 1.0°C; values dark","1\n1\n1\n-\n-\n1956\n2\n1\n0\n1\n1957\n2\n1\n1\n1958\n1959\n-1\n0\nR\n...\n1960\n1\n2\n1\n2.\n1\n1961\n101. 30E 90E 150E 150W 90W 30W 30E\nTime-longitude cross-section of equatorial\nexpressed the as the difference from the annual SST\nFigure\nThe years 1956-1961. The contour interval mean for\ndashed. zero isotherm is emphasized. Negative is 1.0°C. are\nshading is Light less shading than -1.0°C. is greater than 1.0°C; values dark","2\n1962\n2\n1\n1963\n10\n1\n1\n1\n1964\n1\n2\n1\n1\n1\n1\n1965\n3\n1\n1966\n)\n1\n1\n1967\n2\n30E 90E 150E 150W 90W 30W 30E\nFigure 102.\nTime-longitude cross-section - of equatorial SST\nexpressed as the difference from the annual mean for\nthe years 1962-1967. The contour interval is 1.0°C.\nThe zero isotherm is emphasized. Negative values are\ndashed. Light shading is greater than 1.0°C; dark\nshading is less than -1.0°C.","- 1 - 1\n1\n1968\n1\n2\n0\n0\n1\n1969\n3\n1\n1\n2.\n06\n1\n1970\n1\n1\n1971\n1\n1\n1\n1972\nof\n1\n1.2\n1\n1973\n2\n1\n30E 90E 150E 150W 90W 30W 30E\nFigure 103.\nTime-longitude cross-section of equatorial SST\nexpressed as the difference from the annual mean for\nthe years 1968-1973. The contour interval is 1.0°C.\nThe zero isotherm is emphasized. Negative values are\ndashed. Light shading is greater than 1.0°C; dark\nshading is less than -1.0°C.","- 2\n1\n1\n1.\n2.\n1974\n1\n1975\n1\n1\n1\n1\n1976\n1\n1977\n1\n00\n1978\n1979\n30E\n90W\n30W\n30E\n90E\n150E 150W\nTime-longitude cross-section of equatorial SST\nFigure 104.\nexpressed as the difference from the annual mean for\nthe years 1974 -1979. - The contour interval is 1.0°C.\nThe zero isotherm is emphasized. Negative values are\ndashed. Light shading is greater than 1.0°C; dark\nshading is less than -1.0°C.","1\n1\n1\n1980\n1.\ns\n1\n1981\n1982\n1\n2\n1.\n2\n2\n6\n1\n3\n1\n1983\n3\n1\n1984\n1\n1\n2\n1\n1985\nI\n30E 90E 150E 150W 90W 30W\n30E\nTime-longitude cross-section - of equatorial SST\nFigure 105.\nexpressed as the difference from the annual mean for\nthe years 1980-1985. - The contour interval is 1.0°C.\nThe zero isotherm is emphasized. Negative values are\ndashed. Light shading is greater than 1.0°C; dark\nshading is less than -1.0°C.","1\n1982\n1.\n7\n1\n0\n1\n3\n1\n1983\n3\n1\n,\n3\n1\n1984\n0\na\n1\n1\n1985\n0\n13\n1986\n1\n1\n1\n1987\na\n30E 90E 150E 150W 90W\n30W\n30E\nTime-longitude cross - -section of equatorial SST\nFigure 106.\nexpressed as the difference from the annual mean for\nthe years 1982-1987. The contour interval is 1.0°C.\nThe zero isotherm is emphasized. Negative values are\ndashed. Light shading is greater than 1.0°C; dark\nshading is less than -1.0°C.","is","4\n2\n2\n2\n2\n2\n4 2\n2\n2\n1950\n2\n1951\n2\n2\n2\n1952\n1953\n2\n2\n2\n1954\n2\n2\n2\n1955\n2\n90E 150E 150W 90W\n30 W\n30E\n30E\nTime-longitude cross-section - of the mean monthly\nFigure 108.\nequatorial zonal wind component for the years 1950-\n1955. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2\n2 -6 - 6 - -4\n4 -2\n2\n1956\n-2\nE\n-2\n2\n1957\n2\n2\n1958\n2\n2\n1959\n2\n2\n2\n1960\n2\n1961\n150E 150W 90W\n30E\n90E\n30 W\n30E\nTime-longitude cross-section - of the mean monthly\nFigure 109.\nequatorial zonal wind component for the years 1956-\n1961. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2\n- 4 2\n4\n- 6 -6\n2\n-\n1962\n1963\n1964\n2\n4\n1965\n0\n1966\n2\n1967\na\n30E 90E 150E 150W 901 W\n3 OW\n30E\nTime-longitude cross-section - of the mean monthly\nFigure 110.\nequatorial zonal wind component for the years 1962-\n1967. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2\n-2\n4 - 6 - 6\n-2\n4\n-\n1968\n2\n1969\n2\n1970\n1971\n1972\n-2\n1973\n0\n30E 90E 150E 150 W 90W 30W\n30E\nTime-longitude cross - section of the mean monthly\nFigure 111. .\nequatorial zonal wind component for the years 1968-\n1973. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2 6 - -6 - 4 -2\n4\n2\n2\n1974\n2\n1975\n2\n2\n1976\n2;\nI\n2;\n2\n2\n1977\n2\n1978\n2.\n2\n1979\n30E 90E 150E 150W 90W 30 W\n30E\nFigure 112.\nTime-longitude cross-section of the mean monthly\nequatorial zonal wind component for the years 1974-\n1979. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2\n- 2 - 4 - -6 - 64-2\n24 - 42\n2\n1980\n2\n2\n2\n1981\n1982\n2\n2\n2\n2\n2\n1983\n-2\n2\n-2\n1984\n2\n2\n1985\n2\n30E 90E 150E 150W 90W 30W\n30E\nTime-longitude cross-section - of the mean monthly\nFigure 113. .\nequatorial zonal wind component for the years 1980-\n1985. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (easterlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","-6 - 64-7 2\n-4 42\n24\n1982\n-2\n-2\n2.\n-2\n1983\n2,\n2\n1984\n2\n-2;\n1985\n-2,\n1986\n2\n4\n2\n1987\n2\n150E 150W 90W\n30E 90E\n30W\n30E\nTime-longitude equatorial cross-section of the mean\n1987. zonal wind component for the monthly 1982-\nFigure 114.\nisotherm The contour interval is 2.0 m/s. years The\nare dashed. is emphasized. Negative values (easterlies) zero\ndark shading Light is less shading than -4.0 is greater m/s. than 4.0 m/s;","2\n1950\n1951\n1952\n1953\n1954\n1955\n30E\n90E\n150E 150W\n90W\n3 OW\n30F\nFigure 115.\nTime-longitude cross-section - of equatorial zonal wind\ncomponent anomalies for the years 1950-1955. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","1956\n1957\n1958\n1959\n1960\n1961\n30E\n90E\n150E\n150W\n90W\n30W\n30E\nTime-longitude cross-section - of equatorial zonal wind\nFigure 116.\ncomponent anomalies for the years 1956-1961. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","1962\n0\n1963\n1964\n1965\n1966\n1967\n30E\n90E\n150E 150W 90W 30W\n30E\nFigure 117.\nTime-longitude - cross-section - of equatorial zonal wind\ncomponent anomalies for the years 1962-1967. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","1968\n1969\n1970\n1971\n0.\n1972\n1973\n150E 150W\n90E\n90 W\n30 W\n30E\n30E\nTime-longitude cross-section - of equatorial zonal wind\nFigure 118.\ncontour component interval 1968-1973. isotherm The is\nanomalies for the years\nis 1.0 m/s. The zero\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","2\n1974\n1975\n1976\n0\n1977\n1978\n1979\n90E\n150E\n150W\n30E\n90W\n30W\n30E\nTime- longitude cross-section - of equatorial zonal wind\nFigure 119.\ncomponent anomalies for the years 1974-1979. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","1980\n1981\n1982\n-2\n1983\n1984\n1985\n30E 90E 150E 150W 90W 30W 30E\nTime-longitude cross-section of equatorial zonal wind\nFigure 120.\ncomponent anomalies for the years 1980-1985. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","1982\n2\n1983\n1984\n1985\n1986\n1987\n&\n30E 90E 150E 150W 90W 30W 30E\nTime-longitude cross-section of equatorial zonal wind\nFigure 121.\ncomponent anomalies for the years 1982-1987. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","2\n1950\n1951\n1952\n1953\nC-\ni-1\n1954\n1955\n4\n150E\n150W\n3 OE\n90E\n30 W\n90\nOE\n3\nTime-Tongitude\nFigure 122.\nequatorial\nmean component 1.0 m/s. for is the expressed The greater years zero 1950-1955. than isotherm 2.0 m/s; is emphasized. dark shading is less\nzonal\nwind\nof\ndifference\nannual\nthe\nfrom\nthe\nas\ninterval\ncontour\nThe\nis\nLight\nshading\nthan -2.0 m/s.","2\n0\n1956\n0\n1\n1957\n1'\n1958\n2\nOG\n1\n1959\n1\nI\n1\n1960\n1\n1961\n3\n150E 150W 90W\nTime-longitude cross-section - of equatorial zonal 30E\n30E\n90E\n30W\nFigure 123.\nmean component for expressed as the difference from the wind\n1.0 the years 1956-1961. The contour interval annual is\nm/s. The zero isotherm is emphasized. Light\nshading than is greater than 2.0 m/s; dark shading is less\n-2.0 m/s.","2\n1\n-\nDU\n1\n1\n1962\n2\n1\n1\n1\n1963\n1\n1\n1964\n1\n1965\n2\n0\n1\n1966\n0\n1\n1\n1\n1\n1\n1\n1967\n2\n1\n30E 90E 150E 150W 901 3 OW 30E\nTime-longitude cross-section of equatorial zonal wind\nFigure 124.\ncomponent expressed as the difference from the annual\nmean for the years 1962-1967. The contour interval is\n1.0 m/s. The zero isotherm is emphasized. Light\nshading is greater than 2.0 m/s; dark shading is less\nthan -2.0 - m/s.","2\n1968\n- 1\n0\nM\n1969\n1\n1970\n1\n1\n10\n1971\n1\n1\n1972\n1\n1\n1\n1\n4\n-2\n1973\n1.\n1\nTime-longitude 30E 90E cross-section of equatorial from zonal the annual wind\n150E 150W\n90 W\n30W\n30E\nFigure 125.\nexpressed as the difference interval is\nmean component for the years zero 1968-1973. isotherm is emphasized. The contour Light is less\nshading 1.0 m/s. is The greater than 2.0 m/s; dark shading\nthan -2.0 m/s.","3\n1\n1\n1974\n-1\n1\n1\n1\n1975\n1\n2\n1\n1\n1\n1976\n1\n1\n1\n1\n1\n1977\n1\no\n1978\n1979\n30E 90E 150E 150W 90W 3 OW 30E\nTime-Tongitude ross-section of equatorial zonal wind\nFigure 126.\ncomponent expressed as the difference from the annual\nmean for the years 1974-1979. The contour interval is\n1.0 m/s. The zero isotherm is emphasized. Light\nshading is greater than 2.0 m/s; dark shading is less\nthan - -2.0 m/s.","2\n1\n1\n1\n1980\n)-\n1\n0-1\n1\n1\n0\n1\n-1,\n1\n1981\n1\n1\n-1 1\n-1'\n1\n-1-1\n1982\n1\n-2\n1\n1983\n-1\n1\n0\n1\n1984\n1\n1\n1985\n30E 90E 150E 150W 90W 30W 30E\nTime-longitude cross-section of equatorial zonal wind\nFigure 127.\ncomponent expressed as the difference from the annual\nmean for the years 1980-1985. The contour interval is\n1.0 m/s. The zero isotherm is emphasized. Light\nshading is greater than 2.0 m/s; dark shading is less\nthan - -2.0 m/s.","3\n?\n1-1\n1\n2\n$\n1\n1-1\n1\n1982\n-1\n-2:\n1\n1983\n1\n1\n0\n1\n2\n1984\n1\n2\n1\n1\n-1,\nI\n1\n1\n1\n0\n1985\n2\n1\n-1,\n1\na\n1986\n-1,\n1\n1987\n10\n1\n2\n1\n2\n30E 90E 150E 150W 90W\n30W\n30E\nTime-longitude cross-section - of equatorial zonal wind\nFigure 128.\ncomponent expressed as the difference from the annual\nmean for the years 1982-1987. The contour interval is\n1.0 m/s. The zero isotherm is emphasized. Light\nshading is greater than 2.0 m/s; dark shading is less\nthan -2.0 m/s.","","2\n2\n- 4\n-2\n- 4 2\n2\n4\n4\n2\n-2\n2-\n2\n1950\n2\n2\n2\n3\n1951\n2\n2\n0\n2\n1952\n2\n-2\n2\n2.\n-2\n24\n2\n1953\n2\n4\n1954\n23\n2\n2\n2\n24\n1955\n8.\n2\n90E 150E 150W 90W 30\n30E\n30E\nFigure 130.\nTime-longitude cross-section - of the mean monthly\nequatorial meridional wind component for the years\n1950-1955. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","- 4\n2\n2\n2\n2\n2\nB\n2\n1956\n0\n2\n1957\n2\n2\n2\n1958\n6\n1959\n2\nZz\n1960\n2\n1961\ns\n6\n2\n30E 90E 150E 150W\nTime-Tongitude equatorial cross-section of the 90W mean 301 W\n30E\n1956-1961. meridional wind component for monthly\nFigure 131.\nisotherm The contour interval is 2.0 the years\nare dashed. is emphasized. Negative values m/s. (northerlies) The zero\ndark shading Light is less shading than -4.0 is greater m/s. than 4.0 m/s;","2\n2\n2\n2\n2\n4\n2\n2\n1962\n2\n2\n2\n-2\n2\n2\n2\n1963\n2\n2\n-2\n-2\n2\n-2\n2\n4\n1964\n2)\n-2\n-2\n-2\n2\n2\n1965\n2\n0\n4\n2\n- 2\n-2\n4\n2\n2\n1966\n0\n2\n2\n2\n4\n2\n1967\n0\nZ\n2\n2\n150E 150W 90W\n3 0 W\n30E\n30E\n90E\nTime-Tongitude cross-section of the mean monthly\nFigure 132.\nequatorial meridional wind component for the years\n1962-1967. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","- 4\n- 2\n-2\n2\n2\n2\n2\n2\n1968\n6\n2\n2\n2\n2\n- 2\n2\n4\n2\n2\n1969\n8\n2\n2\n2\n2\n1970\n2\n2:\n2\n4\n2\n1971\n2\n2\n2\n0\n4\n20\n2\n2\n1972\n0\n26\n2\n2\n2\n2\n2\n1973\nA\n12\n30E\n90E\n150E 150W\n90h\n30W\n30E\nFigure 133.\nTime-longitude cross-section of the mean monthly\nequatorial meridional wind component for the years\n1968-1973. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","4\n2\n2\n2\n2\n2\n2\n2\n-2\n22\n1974\n2\n-2\nq\n-2\n2-9\n1975\nA.\n2\n-2\n4\n2\n2\n1976\n2\n0\n2\n2\n2\n-2 -2\n2\n2\n-2\n2\n-2\n4\n2\n2\n1977\n2\n2\n2\n2\n-2\n-2\n2\n1978\n:\n2\n2\n2\n2\n-2\n-2\n2\n2\n1979\n2\n0\n2\n30E 90E 150E 150W 90W 30W\n30E\nFigure 134. .\nTime-longitude cross - section of the mean monthly\nequatorial meridional wind component for the years\n1974-1979. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","- 4\n-2\n- 2\n2\n2\n2\n2\n2\nA\n4\n-2\n2\n1980\n4\n2\n-2\n-2\n-2\n2\n4\n1981\n2\n2\n2\n2\n-2\n-2\n-2\n2z\n2\n6\n1982\n1.\n2\n2\n2\n2\n2-4\n-2 =4\n2.\n-2\n2\n2\n1983\nZ\n2\n4\n2\n2\n2\n-2\n-2\n-2\n2\n6\n2\n1984\n2\n2\n2\n2\n-2\n2\n-2;\n4\n6\n2\n1985\n4\n2\n2\n2\n30E 90E 150E 150W 90W 30W\n30E\nFigure 135. Time-longitude cross-section of the mean monthly\nequatorial meridional wind component for the years\n1980-1985. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","24\n2\n-\n2\n2\n2\n-\n2\n2 2\n2\n1982\n0\nt\n2\n2\n2\n2\n4\n2 4\n2\n-2\n2\n-2\n1983\n2\n2\n2\no\n2\n2\n2\n2\n2\n-2\n-2\n-2\n2\n4\n2\n-2-\n2\n1984\n4\n2\n2\n-2,\n-2\n2\n4\n-2\n8\n2\n1985\n4\n2\n2\n2\n-2\n-2\n2\n4\n4\n2\n1986\nof\n2\n2\nto\n2\n-2\n2\n2\n2\n1987\nI\n2\n6\n2\n2\n30E 90E 150E 150W 90W 30W\n30E\nTime-longitude cross-section of the mean monthly\nFigure 136.\nequatorial meridional wind component for the years\n1982-1987. The contour interval is 2.0 m/s. The zero\nisotherm is emphasized. Negative values (northerlies)\nare dashed. Light shading is greater than 4.0 m/s;\ndark shading is less than -4.0 m/s.","2 -2 - -222\n0\n1950\n1951\n1952\n1953\n1954\n1955\n150E\n150W\n90 W\n30W\n30E\n30E\n90E\nTime-longitude cross - section of equatorial meridional\nFigure 137.\nwind component anomalies for the years 1950-1955. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","1956\n)\n1957\n1958\n0\n1959\n1960\n1961\n30E\n90E\n150E 150W 90W\n30 W\n30E\nTime-longitude - cross-section of equatorial meridional\nFigure 138.\nwind component anomalies for the years 1956-1961. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","0\n1962\n1963\n1964\n1965\nin\n00 (\n0\n1966\n1967\nC\n150E 150W\n30E 90E\n90W\n30W\n30E\nTime-longitude cross-section of equatorial meridional\nFigure 139.\nwind component anomalies for the years 1962-1967. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","1968\n1\n1969\n1970\nensyri\n1971\n1972\n1973\n150E 150W 90W 30W 30E\n30E\n90E\nTime-longitude cross-section of equatorial meridional\nFigure 140.\nwind component anomalies for the years 1968-1973. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","1974\n1975\n1976\n1977\n1978\nis\nI\n1979\n30E\n90E\n150E\n150W\n90W\n30W\n30E\nFigure 141.\nTime-longitude cross-section - of equatorial meridional\nwind component anomalies for the years 1974-1979. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","1980\n1981\n1982\n1983\n0\n1984\n0\n1985\n150E 150W\n30E\n90E\n90W\n30W\n30E\nTime-longitude - cross-section - of equatorial meridional\nFigure 142.\nwind component anomalies for the years 1980-1985. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than -1.0 m/s.","1982\n1983\n0\n1984\n0\n1985\n1986\n14\n1987\n150E 150W\n90W\n30W\n30E\n90E\n30E\nTime-longitude cross-section of equatorial meridional\nFigure 143.\nwind component anomalies for the years 1982-1987. The\ncontour interval is 1.0 m/s. The zero isotherm is\nemphasized. Light shading is greater than 1.0 m/s;\ndark shading is less than - -1.0 m/s.","","- 5\n3\n(\n2\n1\n1956\n7\n2\n1957\n2\n1\n1958\n2\n2\n1\n1959\n2\nNO\n1\n1\n1960\n,16\n1\n1\n1961\n12\n150W\n30E\n30E\n90E\nW\n30\nW\nmeridional\n-longitude\nwind Time- annual interval component shading mean is for 1.0 is the m/s. greater years The than zero 2.0 isotherm m/s; dark shading\nFigure\nof\n145\ndifference\nthe\nfrom\nthe\nas\n1956-1961.\ncontour\nThe\nemphasized.\nis\nLight less than -2.0 m/s.\nis","5 - 3 -2\n-\n1962\nA\nz\n1963\n2\n2\n2\n0\n2\n1\n1964\n2\n0\n1\n2\n1\n1\n1965\n1966\n2\nR\n3\n1\n1\n1\n1967\n150E\n30E\n90E\n1501\n901 W\nW\n30\nOE\nW\nTime- longitude\n3\nFigure 146.\nwind component expressed years 1962-1967. isotherm is\nequatorial\nmeridional\nsection\nof\nannual interval shading mean is for 1.0 is m/s. the greater The than zero 2.0 m/s; dark shading\ndifference\nthe\nfrom\nthe\nas\ncontour\nThe\nemphasized.\nLight less than -2.0 m/s.\nis","- 6 3\n2\n3\n1\n1\n1968\n0\na\n1\n2\n1\n1969\n2\n1\n1\n1970\nZ\n1\n1\n3\n1\n1971\n2\n2\n1\n1\n1\n2\n1\n1\n1972\n8\n12\n1\n2\nC\n3\n1\n3\n1973\nOIL\nwind Time-longitude cross-section - of equatorial 90W 30W meridional 30E\n30E 90E\n150E\n150W\nFigure 147.\nannual component expressed as the difference the\ninterval mean for the years 1968-1973. The from\nLight is 1.0 m/s. The zero isotherm is contour\nless than shading is greater than 2.0 m/s; dark emphasized. shading is\n-2.0 m/s.","1975\n1976\n1977\n1978\n1979","1981\n149.","- 5 -3\n- 2 1\n1\n1\ni\n2\n1\n1982\ns\n2\n0\n2\n1\n1\n-1\n1\n3\n1\n3\n3\n1\n1\n1983\n3n\nD\n1\n1\n1\n2\n3\n-2\n1\n1\n1984\n2\n1\n2\n1\n2\n3\n-2\n1\n1\n1\n1985\n3\n1\nI\n11\n1\n1\n2\n-2\n1\n1\n1986\n2\n1\n1\n2\n3\n1\n1\n1\n1987\nI\n3\n1\n1\nFigure 150. 30E Time-longitude 90E expressed as 1982-1987. the of difference The contour from the\n150E\n150W\n90W\n301\n30E\nequatorial\nmeridional\nwind component mean for the years zero isotherm is emphasized. shading\nannual Light interval shading is 1.0 is m/s. greater The than 2.0 m/s; dark\nless than -2.0 m/s.\nis","30N\n26\n25\n22\n20\n24\n21\n23 24 25\n26\n23\n22\n20\n21\n21\n21\n22\n22\n23\n23\n24\n24\n20N\n25\n25\n28\n26\n26\n10N\n27\n27\n00\n10S\n27\n27\n26\n26\n20S\n25\n25\n24\n2\n22\n24\n21\n20\n24\n23\n2\n22\n23\n20\n30S\nJAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN\nFigure 151. Time-latitude cross-section of the zonally averaged SST. The\ncontour interval is 1°c.","30N\n-2\n0\n-1\n-2-\n-3\n20N\n10N\n00\n-2\n10S\n20S\n30S\nJAN\nFEB\nMAR\nAPR\nMAY\nJUN\nJUL\nAUG\nSEP\nOCT\nNOV\nDEC\nJAN\nFigure 152. Time-latitude cross-section of the zonally averaged zonal wind.\nThe contour interval is 1 m/s. Negative values (easterlies) are\ndashed.","30N\ni\n-1\n-2-\n20N\n-3\n10N\n1-3\n-3-\n-2\n-2-\n1-1\n00\n10S\n1\n1\n20S\n?\n30S\nJAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN\nFigure 153. Time-latitude cross-section of the zonally averaged meridional\nwind. The contour interval is 1 m/s. Negative values\n(northerlies) are dashed.","30N\n20N\n50:5100N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\nOCT\n- OCT\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\nJAN\nJAB\nJUL\nJUL\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n5050\nvector indicates a maximum during July, an eastward vector indicates October, APR\nAPR\n0\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nFigure 154a. 1st harmonic of the SST annual cycle. Amplitudes are indicated by the length\nFigure 154b. 2nd harmonic of the SST annual cycle and comparison of the magnitude of the\nof the vector, phase by the direction of the vector. A northward pointing\nfirst harmonic to the second harmonic. The length of the vector indicates\nrepresents a magnitude of 2.5°C. A north-south - vector indicates maxima in\nJanuary and July. The contours are the amplitude of the second harmonic\netc. The length of the sample vector represents a magnitude of 2.5°C.\nthe magnitude of the second harmonic. The length of the sample vector\ndivided by the amplitude of the first harmonic expressed as a percent.\n5\n50\nContours are drawn at 50, 100 and 200 percent.\n50\n50\nTo\n510 50-50\n30N\n20N\n10 N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","OCT\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nOCT\nEQ\n10S\n20S\n30S\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n90\n50\nJAN\nJUL\nJUL\nJAB\nS\n50\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n50\nAPR\nAPR\n50\n(50\n0\nand\n0\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n90-50\nFigure 155a. 1st harmonic of the zonal wind annual cycle. Amplitudes are indicated by the\npointing vector indicates a maximum during July, an eastward vector indicates\nFigure 155b. 2nd harmonic of the zonal wind annual cycle and comparison of the magnitude\nso\n90\nindicates the magnitude of the second harmonic. The length of the sample\nvector represents a magnitude of 2.5 m/s. A north-south vector indicates\nlength of the vector, phase by the direction of the vector. A northward\nOctober, etc. The length of the sample vector represents a magnitude of\nmaxima in January and July. The contours are the amplitude of the second\n50\nof the first harmonic to the second harmonic. The length of the vector\nharmonic divided by the amplitude of the first harmonic expressed as a\n5/01\n50,\n5\n50'50\n0\n50\npercent. Contours are drawn at 50, 100 and 200 percent.\n50\n50\n5G\nL50\n50\n50\n50\n50\ne\nD\n5\n50\n50\n50\n50\nthe\nNo\n50\n50\n50\n500\n50\n5.0\n50\n90\n2.5 m/s.\n50\n60E\n50\n58\n40E\n40E\n5 00\n50\n50\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\nEQ\n30S\n30N\n20N\n10N\n10S\n20S","OCT\nOCT\n30N\n20N\nEQ\n30N\n20N\n10S\n20S\n10N\nEQ\n10S\n20S\n30S\n30s\n5050\n20E\n20E\n20E\n20E\n$ 0\nJUL\nJAB\nJUL\nJAB\n5\n50\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nC\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\n50\nsecond harmonic divided by the amplitude of the first harmonic expressed as a\nnorthward pointing vector indicates a maximum during July, an eastward vector\nindicates maxima in January and July. The contours are the amplitude of the\nFigure 156a. 1st harmonic of the meridional wind annual cycle. Amplitudes are indicated\n50\nmagnitude of the first harmonic to the second harmonic. The length of the\n5-0\nvector indicates the magnitude of the second harmonic. The length of the\n50\nFigure 156b. 2nd harmonic of the meridional wind annual cycle and comparison of the\nsample vector represents a magnitude of 2.5 m/s. A north-south vector\nby the length of the vector, phase by the direction of the vector. A\nindicates October, etc. The length of the sample vector represents a\n50\nis\n5050\n50\n5.0\n50\npercent. Contours are drawn at 50, 100 and 200 percent.\n50\n50\n50 0 50\n50\n50\n55\n50\nM\n50 !\n50\nmagnitude of 2.5 m/s.\n5'0\n50 50 50\n.\nO\na\n50\n40E\n5050\n30N\n10N\nEQ\n10S\n30N\n20S\n30S\n20N\n10N\nEQ\n20N\n10S\n20S\n30S","30S\n30N\n20N\n10N\nEQ\n18 S\n20S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n-OCT\nOCT\n50\n20E\n20E\n20E\n20E\n/\nJAB\nJUL\nJAB\nJUL\n00\n00\n00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nAPR\nAPR\n20W\n20W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W\nsecond harmonic divided by the amplitude of the first harmonic expressed as a\nFigure 157a. 1st harmonic of the 200 mb zonal wind annual cycle. Amplitudes are indicated\nnorthward pointing vector indicates a maximum during July, an eastward vector\nindicates maxima in January and July. The contours are the amplitude of the\nmagnitude of the first harmonic to the second harmonic. The length of the\n50\nvector indicates the magnitude of the second harmonic. The length of the\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 5400 W\n40W\nFigure 157b. 2nd harmonic of the 200 mb zonal wind annual cycle and comparison of the\n50\nsample vector represents a magnitude of 10 m/s. A north-south vector\nby the length of the vector, phase by the direction of the vector. A\nindicates October, etc. The length of the sample vector represents a\n60W\n50\n40E 60E 80E 100E 120E 140E 160E 180 160W50490 120W 100W 80W\npercent. Contours are drawn at 50, 100 and 200 percent.\nmagnitude of 10 m/s.\nD\n50\n50\n30N\n20N\n10N\nEQ\n1 QS\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\nE\n10S\n305\n10N\nOCT\n50\n50\n50\n50\nOCT\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n20E\n20E\n/\nJAB\nJAB\nJUL\nJUL\n50\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\n00\nAPR\nAPR\n50\n20W\n20W\nrepresents a magnitude of 20 W/m*m. A north-south vector indicates minima in\n158a. 1st harmonic of the OLR annual cycle. Amplitudes are indicated by the length\nvector indicates a minimum during July, an eastward vector indicates October,\n50\n/\n158b. 2nd harmonic of the OLR annual cycle and comparison of the magnitude of the\nof the vector, phase by the direction of the vector. A northward pointing\nfirst harmonic to the second harmonic. The length of the vector indicates\n40W\netc. The length of the sample vector represents a magnitude of 20 W/m*m.\n40W\nO\nJanuary and July. The contours are the amplitude of the second harmonic\nthe magnitude of the second harmonic. The length of the sample vector\ndivided by the amplitude of the first harmonic expressed as a percent.\n60W\n60W\n3\n50\n50\n80W\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W\n50 50\n100W\n50\n120W\n50\n50\n&\n140W\nContours are drawn at 50, 100 and 200 percent.\n50\n160W\n00\n180\n50\n..\nM\n50\n160E\n50\n50\n140E\n50\n120E\n50\n100E\n50\n50\n80E\nso\n50\n60E\n50\n40E\n50\n40E\n150\n50\nFigure\nFigure\n2 O-N\n50\n50\n50\n1 ON\n2 0-S\n50\nEQ\n10S\n30S\n30N\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nFigure A1. Locations which had at least one observation in a 2° latitude by 2° longitude\nLocations which had data in a 20 latitude by 2° longitude grid box for more\ngrid box during any January in the 1950's.\nthan five Januaries during the 1950's.\nFigure A2.\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20 S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20N\n10N\nEQ\n30N\n10S\n20S\n30S\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nLocations which had data in a 2° latitude by 2° longitude grid box during all\nLocations which had data in a 2° latitude by 2° longitude grid box for more\nthan five Januaries during the 1970's.\nten Januaries during the 1950's.\n60E\nFigure A3.\nFigure A4.\n40E\n40E\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\nLocations which had data in a 2° latitude by 2° longitude grid box during all\nFigure A6. Locations which had data in a 2° latitude by 2° longitude grid box for more\nthan ten Januaries during the 30 year period 1950-1979.\nIIII\n...\nten Januaries during the 1970's.\nshe\nFigure A5.\nH\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n20E\n20E\n20E\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00 20E\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W 40W 20W 00\n00\nLocations which had data in a 2° latitude by 2° longitude grid box during all\n20W\nFigure A7. Locations which had data in a 2° latitude by 2° longitude grid box for more\n40W\n40E 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60W\nthan 20 Januaries during the 30 year period 1950-1979.\n30 years during the 1950-1979 - period.\nFigure A8.\n40E\n40E\n30N\n20N\n10N\nEQ\n10S\n20S\n30S\n30N\n20N\n10N\nEQ\n10S\n20S\n30S","3\n8398\n5962\nNOAA Library, E/AI21\nWSC-4"]}