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ABSTRACT 

The response of boundary layer properties and cloudiness to changes in surface 

evaporative fraction (EF) is investigated in a single-column model to quantify the locally 

coupled impact of sub-grid surface variations on the atmosphere during summer. Sensitive 

coupling days are defined when the model atmosphere exhibits large variations across a range 

of EF centered on the analyzed value. Coupling sensitivity exists as both positive (cloudiness 

increases with EF) and negative (clouds increase with decreasing EF) feedback regimes. The 

positive regime manifests in shallow convection situations, which are capped by a 

strengthened inversion and subsidence, restricting the vertical extent of convection to just 

above the boundary layer. Surfaces with larger EF (greater surface latent heat flux) can inject 

more moisture into the vertically confined system, lowering the cloud base and an increasing 

cloud liquid water path (LWP). Negative feedback regimes tend to manifest when large-scale 

deep convection, such as from mesoscale convective systems and fronts, is advected through 

the domain, where convection strengthens over surfaces with a lower EF (greater surface 

sensible heat flux). The invigoration of these systems by the land surface leads to an increase 

in LWP through strengthened updrafts and stronger coupling between the boundary layer and 

the free atmosphere. These results apply in the absence of heterogeneity-induced mesoscale 

circulations, providing a one-dimensional dynamical perspective on the effect of surface 

heterogeneity. This study provides a framework intermediate complexity, lying between 

parcel theory and high-resolution coupled land-atmosphere modeling, and therefore isolates 

the relevant first-order processes in land-atmosphere interactions. 

SIGNIFICANCE STATEMENT 

Cloud formation, distribution, and other properties may be sensitive to heterogeneous 

surfaces depending on the strength and location of such heterogeneities and the background 

atmospheric state. This may drive differences in the cloud population depending on which 

part of the domain one is located. This may also lead to mesoscale circulations, which may 

strengthen or weaken this effect. Currently, climate models act on scales (~100 km) that are 

too large to explicitly represent these processes, which are strongest at smaller scales (around 

5-40 km). Therefore, sub-grid scale heterogeneity is neglected, and any predictability and 

model fidelity it may provide is lost. We use a simple model to diagnose sensitivity of the 

local atmosphere to surface variations meant to represent possible sub-grid heterogeneity, 

providing a first-order estimate of its effect. We conclude that preferentially sensitive 

atmospheric states exist that lead to positive and/or negative feedback between land and 

atmosphere. This information is valuable to future climate model parameterizations aimed at 

improving the representation of these feedbacks. 
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1. Introduction 

Land-atmosphere (L-A) interactions are known to play a major role in determining 

continental weather and climate (Santanello et al., 2018). Evaluating the strength and 

behavior of this coupling has been an ongoing topic of research since the land surface was 

first identified as a source of predictability in the climate system (Shukla & Mintz, 1982). 

The role of the land surface has been explicitly accounted for in coupled climate models by 

using land surface models (LSMs) as a dynamic lower boundary condition to the 

atmosphere. However, a persistent challenge is the disconnection between the spatial scales 

at which the land surface influences local processes such as boundary layer growth 

(turbulent- to meso-scales) and the coarser resolution (meso- to synoptic-scales) at which 

weather and climate models are typically run (Kawashima & Ishida, 1992; Entekhabi, 1995; 

Roy & Avissar, 2000). Because of this, processes that dictate the influence of the sub-grid 

(0.1-10 km for today’s models) land surface heterogeneities on grid-scale atmospheric 

conditions need to be parameterized (Manabe et al., 1965; Henderson-Sellers et al., 1993; 

Letzel & Raasch, 2003; Huang & Margulis, 2012). 

Many current LSMs incorporate land surface heterogeneity by using a sub-grid 

mosaic of tiles representing fractions of diff erent land cover/land use types within each grid 

cell (Avissar & Pielke, 1989; Koster & Suarez, 1992; Lawrence et al., 2019). This allows an 

LSM to compute separate responses to the atmospheric state; how much each tile contributes 

to the grid cell mean value is based on its fractional coverage without regard to spatial 

structure. Individual tile contributions are aggregated when the area weighted average of 

states and fluxes is passed to the atmospheric model. This is a hindrance, as spatial 

averaging removes any signal of the dynamically induced response that may be produced by 

heterogeneity, leading to model errors and biases. 

Sub-grid scale heterogeneity that can induce a dynamic atmospheric response may be 

driven by variations in land use/land cover type (e.g. vegetated vs. bare soil), soil type (e.g. 

clay vs. sandy soils), topography, local geology (e.g karst vs. non-karst geomorphology), 

and/or spatial variations in soil moisture (SM) left after scattered precipitation events (i.e. 

meteorologically forced heterogeneity) (Tian et al., 2022; Chen et al., 2020; Norton, 2018; 

Dirmeyer & Norton, 2018; Simon et al., 2021). Depending on their spatial structure and the 

large-scale atmospheric state, such characteristics of the land surface may produce a 

response in the development of the daytime planetary boundary layer (PBL), local 

convection, cloud formation/structure, and precipitation (Avissar & Schmidt, 1998; Taylor 
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& Ellis, 2006; Huang & Margulis, 2009; van Heerwaarden et al., 2009; van Heerwaarden et 

al., 2010; Huang & Margulis, 2012; van Heerwaarden et al., 2014; Kang & Ryu, 2016; Lee 

et al., 2019; Omidvar et al., 2020; Harvey et al., 2022). This has been shown in both 

observations and fine-resolution LESs. These processes may drive secondary, mesoscale 

circulations that may act to strengthen or weaken the atmospheric response, although the 

effects of such circulations are beyond the scope of this work. Nevertheless, the role of the 

dynamic influence of land surface heterogeneity has become a major topic of research and 

climate model development, and many argue for improvements upon the mosaic tile 

approach in LSMs and how the land surface interacts with the atmospheric model (Liu et al., 

1999; Taylor et al., 2013; Machulskaya & Mironov, 2018; Huang et al., 2022). 

A commonly used quantity in L-A coupling studies is the surface evaporative 

fraction (EF), defined as the ratio of latent heat flux to the net available energy at the land 

surface (i.e., the sum of the latent heat (LH) and sensible heat (SH) fluxes): 

(1) 

EF is a good choice to quantify the varied flux partitioning states induced by land surface 

heterogeneity, and therefore drive an atmospheric response, due to its ability to capture the 

combined effect of both SH and LH. Additionally, EF is the link between the land surface 

states and the PBL (through the partitioning of surface fluxes of heat and moisture fluxes 

that alter air temperature and humidity), and it has many applications over a large range of 

spatial and temporal scales (Dirmeyer et al., 2000; Bezerra et al., 2013; Ford et al., 2014; 

Williams & Torn, 2015; Ukkola et al., 2018; Zhang et al., 2019; Yang et al., 2021). 

Both surface heat fluxes play key roles in L-A coupling and PBL processes. SH 

drives heating and upward mixing of the PBL through driving turbulence and updrafts, 

potentially affecting cloud formation (Shin & Ha, 2007; Bosman et al., 2018; Kim & Kwon, 

2019), and can be a key factor in the intensification and prolongation of heat waves and 

drought (Roundy & Wood, 2015; Ford et al., 2018; Benson et al., 2021; Dirmeyer et al., 

2021); LH moistens the PBL, acting to lower the cloud base and alter cloud cover and 

distribution (Ek & Holtslag, 2004; Betts, 2009; Qian et al., 2013; Zheng et al., 2021; Wei et 

al., 2021; Hsu et al., 2022). Depending on the atmospheric profile, the land surface, and 

other factors such as incoming solar radiation, the feedbacks between land and atmosphere 

may be more sensitive to one flux component than the other (Findell & Eltahir, 2003a; 

Findell & Eltahir, 2003b; Koster et al., 2006; Guo et al., 2006; Guillod et al., 2015; Tawfik 
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et al., 2015a&b; Santanello et al., 2018; Hsu et al., 2021), and will likely intensify or shift 

location under climate change (Seneviratne et al., 2010; Dirmeyer et al., 2012; Dirmeyer et 

al., 2013). 

Differences in sensitivity to certain components in the local L-A coupling processes 

have been referred to as wet/dry advantage (Findell et al., 2003a; Findell & Eltahir, 2003b), 

moisture/energy-limited (Budyko, 1974; Sposito, 2017), or positive/negative feedback 

regimes (Brunsell, 2006; Qiu & Williams, 2020). These coupling regimes may be defined by 

a variety of factors, but in general they tend to be location and time dependent (Koster et al., 

2006; Guo & Dirmeyer, 2013; Roundy et al., 2013; Catalano et al., 2016). Additionally, 

feedbacks may have differing effects depending on whether they are evaluated spatially or 

temporally, and on the scales (both spatial and temporal) considered. For example, Findell et 

al. (2011) conducted a study, using the North American Regional Reanalysis (resolution 

~80km), on the sensitivity of convective triggering and accumulated precipitation to the EF 

over time. This study determined the climatology of coupling between these variables rather 

than the local processes involved in the feedback. They found that for much of the United 

States and Mexico, EF had a strong positive feedback on convective triggering in the PBL 

(i.e. a higher EF (wetter surface) over a given time led to a higher frequency of convective 

triggering). 

An observational study conducted by Taylor et al. (2011) found a seemingly 

contradictory result: the existence of a strong negative feedback between the surface states 

and convective initiation. That study focused on the spatial structure of land surface 

properties and their role in the feedbacks. Their conclusion, over a domain within the Sahel, 

was that convection was more often triggered over dry surfaces. Additionally, they 

concluded that this effect was enhanced over areas with large soil moisture gradients, 

indicating a large degree of surface heterogeneity. This effect was strongest on spatial scales 

of heterogeneity on the order of 10-40 km. A subsequent study by Klein & Taylor (2020) 

found that mesoscale convective systems were enhanced when they passed over surfaces 

with stronger SH in regions having sharp gradients in EF. 

Guillod et al. (2015) reconciled these conflicting results for surface-convective 

feedbacks, using remote sensing data. They showed that both feedbacks may exist; one 

based on temporal variations and the other spatial patterns, and that convection is most 

likely to be triggered over regions that are anomalously wet in time but have strongly 
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heterogeneous surface states. When convection was triggered, it tended to occur over the 

drier part of the domain. 

Conflicting L-A feedbacks have been reported in modeling studies as well. Studies 

involving models with coarse spatial resolutions have reported stronger positive feedbacks 

between SM/EF and convection/clouds (Hohenegger et al., 2009; Taylor et al., 2013; Moon 

et al., 2019), while high-resolution convection-permitting models and large-eddy simulations 

(LES) tend to report negative feedbacks (Kang & Bryan, 2011; Chen et al., 2020; Simon et 

al., 2021; Gaal & Kinter, 2021). GCMs are usually not able to resolve the scales needed to 

capture important features of surface heterogeneity, so when a given grid cell has more 

moisture at the surface, there is usually an increased cloud response. Meanwhile, LESs 

resolve the spatial scales needed to trigger a heterogeneous land-atmosphere coupling 

response and tend to exhibit feedback behavior more consistent with observations. 

There are many processes affecting land-atmosphere coupling, especially in the 

presence of surface heterogeneity. We choose to focus on the sensitivity of the PBL to the 

effects of surface variations, quantified as a range of EF given identical available energy. 

This encompasses the possible effects of heterogeneity in soil moisture, land cover and soil 

types together, but excluding topographic forcing. We attempt to answer the question: Under 

what conditions does the atmosphere exhibit a heightened sensitivity to surface variations, 

and therefore surface heterogeneity? The simplicity of a single-column model is exploited to 

survey a range of surface conditions with the same large-scale atmospheric forcing to isolate 

the effect of the surface variability. Heterogeneity-induced circulations are not explicitly 

considered in this framework, only the varying response of the local atmospheric column. 

In subsequent sections we introduce a method to determine atmospheric sensitivity to 

surface flux partitioning perturbations and demonstrate its ability to answer the research 

question outlined above.. The methodology is described in Section 2. Results are presented 

in Section 3. In Section 4, we discuss how this method relates to prior research and how it 

may be used in future studies. 

2. Methodology 

In this study, we carry out a set of model experiments with version 6 of the Single 

Column Atmosphere Model (SCAM6; Gettelman et al. 2019), to quantify atmospheric states 

having increased coupling sensitivity to sub-grid surface conditions that may arise due to land 

surface heterogeneity. SCAM6 is available as a part of the Community Atmosphere Model 
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(CAM) version 6 within the Community Earth System Model (CESM) version 2.1.1 

(Danabasoglu et al., 2020). Single-column models (SCMs) are fundamentally single grid cell 

columns of global circulation models (GCMs), and prognose atmospheric variables for a 

single location in the presence of a prescribed, evolving large-scale atmospheric state. The 

relevant grid scale for SCAM6 is the T42 grid provided within CESM2, corresponding to 

~250 km spatial resolution. We employ a novel approach that allows us to examine coupling 

sensitivity to the conditions of a spatially varying surface. This method uses an ensemble of 

simulations where each ensemble member is subject to a different, time-evolving surface 

constrained by prescribed values of EF, while initial states and large-scale atmospheric 

forcing are identical. The varying surface EF within an ensemble are meant to represent the 

range of potential surface conditions present within a heterogeneous domain the size of a 

GCM grid cell. By comparing members of this ensemble to each other and a control 

simulation forced with the observed surface state, we may quantify a potential coupling 

sensitivity to varying surface conditions. 

a. Model Configuration 

Because SCAM6 only predicts the evolution of a single atmospheric column, 

boundary conditions (BCs) must be specified via a large-scale forcing dataset. We generate 

BCs from the constrained variational analysis (VARANAL) product (Xie et al., 2004; Tang 

et al., 2019) for the atmospheric radiation measurement (ARM) Southern Great Plains (SGP) 

site in Northern Oklahoma (36.61° N, 97.49° W), provided through the ARM Data 

Discovery online archive (https://adc.arm.gov/discovery/). The most recent version of 

VARANAL provides observationally-based hourly forcing data at 25 hPa vertical intervals 

over the SGP site from May 1, 2012 to August 31, 2019, representative of a circular 

horizontal footprint of diameter ~300 km. For the lateral BCs, VARANAL provides SCAM 

with large-scale flow (U, V), as well as its associated advective tendencies for temperature 

(T) and water vapor mixing ratio (Q). The lower boundary is controlled by prescribed 

turbulent fluxes of sensible (SH) and latent (LH) heat, and the surface skin temperature. The 

sum SH+LH represents a prescribed available energy. 

To keep the model close to the observed large-scale state, especially in the upper 

atmosphere, temperature is relaxed to the large-scale values given by VARANAL. A 

relaxation e-folding timescale of 2 days is applied at the top of the atmospheric column and 

10 days at the surface, with a linear ramping in between the two. This allows SCAM6 

physics to dominate the tendencies within the boundary layer, where processes act on 
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timescales much shorter  than 10 days (Dal Gesso & Neggers, 2017). Shorter relaxation 

timescales above the PBL allow for  a  more  accurate large-scale state in the free troposphere  

- even in the presence of errors in the dynamical forcing  (Gettelman et al., 2019). With this 

relaxation, the prognostic equation for temperature gains an extra term: 

(2)  

where  𝜏(𝑧)  is the level-dependent relaxation timescale.  

We restrict our analyses to the years 2012 to 2018 during  the warm season from June  

through September (JJAS), when land-atmosphere coupling  and convective activity is 

strongest. For each year’s JJAS period, there is both a control run (CTRL) and an ensemble  

of 19 altered surface runs (ALT). For all  runs, we follow a 2-day hindcast approach  (Ma et al. 

2015)  where a simulation is initiated every day at 0000 LST and is run for  2 days. The second 

day of each simulation is  concatenated into a continuous dataset for  each year spanning from 

the beginning of June 1st  until the end of September 29th. This approach avoids long-term 

biases and drift  found in long continuous simulations, allowing for a cleaner comparison 

between separate surface forcings for  any  given day  and a  free  atmosphere  that is  well-

constrained by  the large-scale forcing (Ma  et al. 2015, Huang et al. 2022). For any  day  the 

large-scale atmospheric forcings  for the  CTRL run  and each of its respective  ALT runs are  

identical;  the only difference is in the surface flux  partitioning. For a  given ALT run, we  

constrain the surface state to adhere to a constant evaporative  fraction (EF)  for time steps 

when EF   from VARANAL is positive. This predominantly impacts the surface fluxes 

between sunrise and sunset, when both sensible and latent  heat fluxes are positive. 

Consequentially, surface  forcing is equivalent across runs when EF is negative; this usually  

occurs during nighttime hours. More specifically, we define the altered surface  forcing  as 

such: each ALT run  corresponds to a given EF  across the spectrum spanning 0.05  to  0.95 in 

increments of 0.05. This way, only the surface  flux partitioning is changed, not the amount of 

available energy at the surface. This approach allows us to examine how the grid-scale  

atmosphere responds across a range of prescribed EFs, as the large-scale atmospheric forcing  

remains identical. 

b. Coupling Sensitivity Score 

To quantify  atmospheric  sensitivity to varying  EF, we define  a metric called the 

coupling sensitivity score (CSS). CSS measures the perturbations of a  given target variable, 
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X, when subjected to variations in surface EF. For each day, there  are two terms: CSS+  and 

CSS–, which measure the strength of positive and negative feedbacks, respectively. To 

compute the CSS, we first take a subset of ALT ensemble members whose surface states are  

nearest to the CTRL run’s value of EF (𝐸𝐹𝐴𝐿𝑇 ≈ 𝐸𝐹𝐶𝑇𝑅𝐿). We first identify the ensemble  
𝑖 

member whose EF is closest to the daytime average  (0900-1700 LST) EF in the CTRL run. 

We call this member ALTC  (C standing for “closest”). The daytime average EF is computed 

by inserting the daytime mean of SH and LH into Eq.  (1). The subset is then defined as the 7 

ALT runs whose surface  EF  span the range ±0.15 of 𝐸𝐹𝐴𝐿𝑇 . This range, which we call the 
𝐶 

“sensitivity window”, is chosen to detect variations in coupling behavior in the immediate 

vicinity of the mean surface  state, replicating  most of the sub -grid states likely  to be found in  

the domain. It is likely  for the range of EF  within such a domain to be larger, however: e.g., 

paved surfaces  and open water bodies will tend toward opposite extremes of EF.  We have  

chosen this conservative  window to focus on sub-grid states that are  most likely to be present 

(i.e. those closest to the mean state)  due to variations in soil moisture, soil properties and land 

cover. 

Each ensemble member within the sensitivity window is meant to represent a local 

surface flux partitioning state that may  exist  within the domain the size of a GCM grid cell.  

We note that there are  12 out of 840  simulation days where  𝐸𝐹𝐴𝐿𝑇 . When this 
𝐶 

≥ 0.85

occurs, ther e are  fewer  than three ALT ensembles members with 𝐸𝐹𝐴𝐿𝑇 ≥
𝑖

 𝐸𝐹𝐴𝐿𝑇 , and so the  
 𝐶 

CSS is computed over the range: 0.65 ≤ 𝐸𝐹𝐴𝐿𝑇  
𝐶 

≤ 0.95. This  has minimal effect on the 

results, however, as none of these 12 da  ys had large  L-A coupling  sensitivity  as indicated by  

the CSS. 

We compute the gradient using second order accurate central difference  

approximations of target variable X  with respect to  EF  for  all  ALT ensemble members  (for  

the edge values EF  = [0.05, 0.95], first order forward/backward differences are used). F inally, 

CSS+  and CSS–  are defined as the maximum and minimum values of  𝜕𝑋/𝜕(𝐸𝐹), 

respectively,  from only those ensemble members within the sensitivity window. 

(3) 
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If CSS+ < 0 or CSS– > 0, they are reset to zero, indicating no feedback of that sign was 

detected. 

Finally, we define a “sensitive coupling day” as any day that has a CSS+ and/or CSS– 

whose magnitude is in the 5th percentile tails of their distributions across all days for all years 

in the analysis, excluding clear sky days, to isolate the effect of the surface on moist 

convection. We define clear sky days as any day in which afternoon average (1200-1700 

LST) cloud liquid water path (LWP) falls under a threshold of 0.005 kg/m2 for all ensemble 

members within the sensitivity window. With this definition, 206 clear sky days were 

identified out of 840 total days. A sensitive coupling day specified by large CSS+ is referred 

to as a positive feedback day, whereas one specified by a large CSS– is referred to as a 

negative feedback day. It is possible for one day to register as both a positive and negative 

feedback day if large magnitudes of CSS+ and CSS– coexist within that day’s sensitivity 

window. With this definition, there are 32 sensitive coupling days specified for each feedback 

regime out of a total of 634 non-clear days, with only 3 of the 634 days identified as having 

both regimes (2 of the days with both regimes have a maximum value of 𝜕𝑋/𝜕(𝐸𝐹) within 

the sensitivity window, with decreasing values towards both the wetter and drier ends of the 

EF spectrum; the other day has the opposite, where a minimum value of 𝜕𝑋/𝜕(𝐸𝐹) is located 

within the sensitivity with increasing values in either direction (not shown)). 

For this study, we use the afternoon average LWP as the target variable, X; 

henceforth, any variable denoted as an “afternoon average” indicates an average over 1200-

1700 LST. LWP is chosen for its ability to represent changes in cloud characteristics within 

𝑝=𝑝0 𝑑𝑝 
the column as a scalar, and under hydrostatic conditions is defined as: 𝐿𝑊𝑃 = ∫ 𝑟𝐿 ,

0 𝑔 

where 𝑟𝐿 is the liquid water mixing ratio, 𝑔 is the gravitational constant, and 𝑝0 is a reference 

pressure; 𝑝0=1,000 hPa in SCAM6, at the surface of its hybrid pressure-sigma vertical grid. 

LWP is especially sensitive to changes in low- and mid-level convective clouds (due to their 

higher moisture content), while being relatively insensitive to high clouds (Huang et al., 

2015). Using LWP also allows for correspondence between CSS-identified positive and 

negative feedback regimes and the canonical energy-limited (i.e., dry advantage) and 

moisture-limited (i.e., wet advantage) L-A coupling regimes. Because of the methodology, 

𝜕(𝐸𝐹) in Eq. (3) is always 0.1, so with LWP as the target variable the equation of CSS may 

be simplified to: 
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(4)  

Fig. 1 a  provides a visual aid for understanding the CSS. It shows the time

)  for all  ALT ensemble members (along the  y-axis) in the 2014

series of 

𝜕(𝐿𝑊𝑃)/𝜕(𝐸𝐹  se ason (along  

the x-axis). For CSS computation, only the gradient values that fall within the sensitivity  

window (dotted black lines) each day  are  considered. Overall, larger magnitudes of CSS+  or 

CSS–  are sporadic for this year, with many days effectively insensitive to surface variations –  

i.e., there are  a few days with large  gradients  (dark colors) observed to be within the 

sensitivity window; on most days, gradients are weak  (pale colors). On the  bottom row, the 

left and middle panels provide examples for a positive feedback day and a  negative feedback 

day, respectively. One of the three  days  in this  study  where both feedbacks occur is shown in 

the right panel. For the positive feedback day (Fig.  1b), 𝐸𝐹𝐴𝐿𝑇  = 0.5, and cloud cover and 
𝐶 

LWP are  more  enhanced  over the wet surfaces (higher EFs) than the dry ones (lower EFs). 

Within the sensitivity window, LWP has a minimum of 0.0 kg  m2  for  EF  <  0.5 and a  

maximum of ~0.2 kg  m2  at EF = 0.65; the maximum cloud cover fraction for any ensemble  

member within the sensitivity  window has a minimum of ~0.1 a nd a maximum of ~1.0. For 

the negative feedback day  (Fig.  1c), 𝐸𝐹𝐴𝐿𝑇  = 0.7, and the opposite occurs, a dry advantage. 
𝐶 

On this day, LWP has a  minimum of 0.0 kg  m2  at EF  = 0.85  and a maximum of ~0.15 kg  m2  

at EF = 0.7. T he maximum cloud cover fraction for any ensemble member  within the 

sensitivity window has a  minimum of 0.0 a nd a maximum of ~0.3. For the day  where both 

feedbacks exist (Fig. 1d ), there is a narrow range of  EFs within the window (around 0.5) with 

increased LWP, however, increasing or decreasing the EF from these values results in a 

noteworthy  decrease in cloud content.  
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Fig. 1. Top: a) afternoon average 𝜕(𝐿𝑊𝑃)/𝜕(𝐸𝐹) in shading for each day (x-axis) and 

surface EF (y-axis) for the 2014 season, solid black line indicates 𝐸𝐹𝐴𝐿𝑇𝐶 
with a ±0.15 

sensitivity window in dotted black, days identified as sensitive are starred with positive 

feedback in blue and negative feedback in red. Bottom: For 3 specific days, cloud cover 

fraction in shading for each pressure level (left y-axis) and ALT ensemble EF (x-axis) 

overlaid by vertically integrated LWP (right y-axis) from ALT runs (orange lines) and the 

CTRL run (orange star); vertical lines for 𝐸𝐹𝐴𝐿𝑇𝐶 
are in solid grey surrounded by ±0.15 

sensitivity window in dashed grey for one positive feedback day in (b), a negative feedback 

day in (c) and a both feedbacks day (from 2013) in (d). 

c. Significance Testing 

Statistical significance in this study is determined by computing confidence intervals 

with the bias-corrected accelerated bootstrap technique (Efron, 1987; Efron & Tibshirani, 

1993). This method is provided in the stats module of the SciPy Python library, which we 

use in our analysis. Non-parametric methods, like the bootstrap, make no assumptions about 

the data distribution, and the bias-corrected accelerated technique is well-suited for sets of 

unequal sample sizes. 

3. Results 

a. Method Validation 
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Fig. 2. RMSE for profiles in shading for Q (a) and T (c) over the 2014 period for each ALT 

SCAM run, overlaid by the time series of EF from VARANAL data (solid line) and the ALT 

SCAM with minimum RMSE compared to the CTRL SCAM run (dotted line); Bivariate 

probability density functions of EFctrl and EFbest for the entire analysis period in shading for Q 

(b) and T (d), black lines represent EFctrl=EFbest. 

Fig. 2a and 2c show the root mean square error (RMSE) for the atmospheric profiles 

(surface up to 200 hPa) of afternoon average Q and T, respectively, between the control run 

and each of member of ALT for the 2014 season (in shading). To compute the mean RMSE 

for each day, vertical levels are pressure-weighted according to each level’s thickness. 

Overlaid on those same plots are the time series of the daytime average EF from 

VARANAL (solid line), which we take here as the “truth”, and the time series of EF 

corresponding to the ensemble member that has the minimum error for a given day (dotted 

line). We refer to these values as EFctrl and EFbest, respectively; their time series are highly 

correlated, showing that model profiles with time-varying EF are adequately reproduced 

when prescribing a constant surface EF throughout the day. Fig. 2b and 2d show bivariate 

probability density functions (PDFs) of EFctrl and EFbest covering all years in the study 

period, for T and Q, respectively. Each measure has a correlation of 0.91. Both also have a 
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small but statistically significant (95% confidence) negative mean bias error (MBE) in EF: 

MBET = -0.0283, MBEQ = -0.0273. This bias is acceptable for this study, given that the 

minimum EF increment for the ensemble is almost double the magnitude of MBE. The high 

correlation and low error give confidence that the ensemble members corresponding to 

EFbest, for a given day, reliably represent the CTRL run. Furthermore, mean RMSE for 

temperature and moisture profiles over the entire analysis period when comparing CTRL 

with VARANAL are 1.84 K and 0.842 g kg-1 , respectively (not shown). These errors are 

acceptable for this study, as there are much larger differences between ALT ensemble 

members than there are between CTRL and VARANAL. 

b. Sensitive Days 

Fig. 3. Frequency distributions of CSS (red) and CSS+ (blue); y-axis shows the number of 

events, in days, for each bin on the x-axis. Dotted black lines represent sensitivity thresholds 

(5th percentile for CSS–, 95th percentile for CSS+). 

Fig. 3 shows the distributions of CSS+ and CSS– values, with sensitive thresholds 

marked for each by a dashed black line (5th percentile for CSS–, 95th percentile for CSS+). 

While each distribution has a similar, long tail of extreme events, the distributions are not 

symmetrical. This shows that positive and negative feedbacks do not behave the same way or 

occur at the same frequency, depending on magnitude. The most common outcome in the 

positive regime is a small positive feedback (0.02 ≤ CSS+ ≤ 0.04), while fewer events with 
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no feedback are detected (CSS+ ≤ 0.01). Contrarily, the most common event in the dry 

advantage regime is that no feedback was detected (CSS– ≥ −0.01). Additionally, strong 

coupling sensitivity (|CSS| > 0.1) occurs more frequently in the wet advantage regime, with 

13 days indicating strong positive feedback compared to 8 days indicating a strong negative 

feedback. 

1) PBL EVOLUTION & MIXING DIAGRAMS 

(i) Flux Partitioning & PBL Growth 

Fig. 4. Mean diurnal cycles of PBL height from near sunrise to near sunset. Timesteps 

statistically significant from the insensitive regime are marked with points overlaid on the 

time series. 
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Fig. 5. PDFs of EF from all days in the analysis period (a), only the sensitive days in (b): 

negative [positive] feedback in red [blue]; differences between negative feedback and 

insensitive days in (c), between positive feedback and insensitive days in (d). 

We next investigate the effects of surface flux partitioning and PBL growth on 

coupling sensitivity. To do this, we examine composite diurnal cycles of the PBL height (Fig. 

4) as well as the distribution of flux partitioning states for insensitive, positive, and negative 

regimes (Fig. 5). 

Negative feedbacks indicate an energy-limited regime (i.e., not moisture limited; 

evaporation is plentiful), and a shallower PBL reflects this (Seo & Dirmeyer, 2022). 

Conversely, the positive feedback days tend not to be energy-limited, and they have a more 

vigorous PBL (Fig. 4), however, they are still both lower than the insensitive days. The 

differences are significant for both regimes for most of the day, except for the mid-afternoon 
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(1300-1500) for the negative regime. This must be due to a higher mid-afternoon variability 

of the negative regime PBL, since the positive regime is significant during these times, but is 

closer in magnitude to the insensitive days. Fingerprints of these regimes are also found when 

considering only the surface contributions to PBL evolution. The top row in Fig. 5 shows 

distributions of surface evaporative fractions for the entire sample, sensitive positive and 

negative feedback days shown together, and the bottom row their differences with the 

insensitive regime. The negative feedback distribution shifts towards larger values of EF 

(wetter, cooler surfaces; Fig. 5c). This provides further evidence that negative feedback days 

are more energy-limited. These differences are further elucidated when comparing the two 

sensitive distributions. Moving from the wet advantage to the dry advantage regime coincides 

with a shift towards larger EFs (Fig. 5b). 

(ii) Mixing Diagrams 

We next analyze PBL processes and their role in driving coupling sensitivity. A useful 

tool for quantifying different source terms (surface fluxes, advection, entrainment, etc.) to 

PBL evolution is the mixing diagram (Betts, 1992; Santanello et al., 2009). With the 

assumption of a well-mixed PBL, mixing diagrams can be used to diagnose local land-

atmosphere coupling (LoCo) on sub-diurnal time scales (Findell et al., 2017; Seo & 

Dirmeyer, 2022). They relate near-surface temperature and humidity measurements to the 

PBL energy balance. This analysis represents a diagnostic that is more sophisticated than 

parcel theory, but simpler than the prognostic simulation with a single-column model. 

We use the lowest model level values of T and Q over the period 0600-1800 LST. The 

variables are transformed into energy space with the following products: 𝑐𝑝𝑇 and 𝜆𝑄, where 

𝑐𝑝 is the specific heat of dry air (at constant pressure) and 𝜆 is the latent heat of vaporization. 

Plotting hourly timeseries of 𝑐𝑝𝑇 against 𝜆𝑄 approximates the evolution of these PBL state 

throughout the day. 

To isolate the contributions to the evolution of 𝑐𝑝𝑇 and 𝜆𝑄 by surface sensible and latent 

heat fluxes, a vector 𝑽𝑠𝑓𝑐 is computed. 𝑽𝑠𝑓𝑐 is defined as: 

(5) 
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where ρm is the mean density within the PBL, PBLH is the PBL height, and 𝛥𝑡 is the 

timestep (Santanello et al., 2009). Additionally, a vector representing the contributions from 

the mean horizontal advection, 𝑽𝑎𝑑𝑣 , may be computed directly from the VARANAL large-

scale forcing data. First, we find PBL mean advective tendencies of T and Q by integrating 

from the surface to the PBL top (using the trapezoidal method) and dividing by the PBL 

height. These mean tendencies are converted to mean sensible or latent energy inputs [J kg-1] 

by multiplying by 𝑐𝑝 or 𝐿, respectively, and Δ𝑡. Finally, a residual vector representing the 

effects of entrainment, radiation, and to a lesser extent the model’s relaxation scheme (and 

other effects) is given by: 

(6) 

where RER  Radiation–Entrainment–Relaxation and 〈𝑐𝑝𝑇, 𝜆𝑄〉𝑓 is the state of the PBL at 

the final timestep (1800 LST). Taking these mean vectors into account, one can quantify the 

contributions of each component (SFC, ADV, RER) to the heat and moisture content of the 

PBL. Means over the two subsets of days representing the positive and negative feedback 

days are taken, as well as their compliment, the subset of “insensitive” days. The composite 

mixing diagrams are shown in Fig. 6; the mixing diagram for the clear sky days (removed 

from analysis) are also shown for reference. 

18 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0237.1.Brought to you by GEORGE MASON UNIVERSITY | Unauthenticated | Downloaded 08/31/23 05:34 PM UTC 



 

  

   

 

 

    

    

   

  

    

   

 

 

  

 

   

   

    

Fig. 6. Composite mixing diagrams for clear sky (grey), insensitive (green), positive 

feedback (blue), and negative feedback (red) days from 600-1800 LST, each point represents 

one model timestep (Δt = 20 min.). For positive and negative feedback days, open circles 

indicate that no statistically significant difference (95% confidence) from the insensitive 

days is found at this time, squares indicate that only the moisture component (λQ) is 

significant, and triangles indicate that only the temperature component (cpT) is significant. 

Positive feedback days are significantly cooler than days in the insensitive regime for 

every timestep. This is mostly due to the cooler initial state of the PBL at 0600 LST, which 

persists throughout the whole period (Fig. 6). The evolution of the mixing diagram also 

differs from the insensitive regime. Positive feedback days begin to dry in the morning an 

hour earlier, at 0820 instead of 0920 LST. Since daytime surface latent heat fluxes moisten 

the PBL, this earlier drying must be induced by advection, entrainment, or both. However, 

even though drying begins earlier for the positive regime, it is much weaker than for the 

insensitive days and changes sign in the afternoon, where a moistening of the PBL is 

observed after ~1520 LST. This eventually results in a net moistening of 1054 J kg-1 for the 

positive regime, compared to a net drying of -219 J kg -1 for the insensitive regime. The 
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positive feedback regime also experiences 2231 J kg-1 less heating during the day than the 

insensitive days. 

On negative feedback days, there is initially more moisture content (610 J kg-1) in the 

PBL, and the initial heat content is comparable to the insensitive days (Fig. 6). In the early 

morning, this moisture difference is not statistically significant. However, it becomes so at 

~1120 LST and remains significant for the rest of the period, with the exception of a one hour 

period from 1240-1340 LST. This is because of a delayed drying of the PBL, starting at 1000 

LST. Drying within the PBL from 1000-1500 LST also occurs at a slower rate when 

compared to the insensitive days. This is the time when the solar radiation is highest and the 

PBL is most turbulent, suggesting that advection and/or entrainment of air into the PBL is 

weaker, the entrained/advected air is less dry, the surface latent heat flux is larger, or a 

combination of these mechanisms is present. This causes negative feedback days to end the 

day much wetter than they began, with a total moistening of 1862 J kg-1 from 0600-1800 

LST; 76% more than the positive feedback days. Negative feedback days also have less 

heating than positive feedback days (2.45×104 vs. 2.73×104 J kg-1), suggesting a more 

energy-limited state. 

To further distill the information contained in the composite mixing diagrams, we 

examine the mean component vectors: 𝑽𝑠𝑓𝑐, 𝑽𝑎𝑑𝑣, and 𝑽𝑅𝐸𝑅. In Fig. 7, points representing 

vectors for each positive feedback and negative feedback day overlay two-dimensional 

histograms representing the probability distribution of the insensitive day vectors. All 

vectors originate from (0,0). These vectors measure the aggregate contribution to the PBL 

evolution from each source over the entire time period. Significance for all mixing diagram 

vectors is tested separately for each dimension (𝑐𝑝𝑇 & 𝜆𝑄). 

For positive feedback days, only 𝑽𝑎𝑑𝑣 is statistically significantly different from the 

insensitive days.  Because the surface component is not significant here, the positive 

feedback days tend to take place nearer to the overall mean state (as opposed to the negative 

feedback days). Positive feedback days have a mean EF of 0.6272 compared to 0.6273 for 

the insensitive days (Fig. 7a). For the intermediate part of the range (0.5 < EF < 0.7) there 

are 31 sensitive days, 19 of which are identified as only positive feedback, 9 are only 

negative feedback, and 3 are both. This suggests that positive feedback days are not usually 

moisture limited, so what is leading to an increased sensitivity? This brings us to the 

advective component, 𝑽𝑎𝑑𝑣 (Fig. 7b). Advection provides a noteworthy, aggregate cooling 
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effect of -3692 J/kg compared to the insensitive days (- 1147 J/kg). This is 51% of the net 

cooling difference calculated from the composite mixing diagrams (-2231 J/kg), suggesting 

that at least half of the additional cooling on positive feedback days is due to advection. 

More advective cooling like this may make it easier for water vapor to condense into clouds 

as it rises through the PBL. It should also be noted that there is large spread, however, 27 of 

the 32 positive feedback days do indeed experience a net cooling through advection. The 

effect of 𝑽𝑅𝐸𝑅 is not significant for positive feedback days, although again, there is large 

spread (Fig. 7c). 

Fig. 7. Termini of daily mixing diagram vectors starting at the origin for: Vsfc (a), Vadv (b), 

and VRER (c). Points representing days identified as only positive feedback (blue), only 

negative feedback (red), and both (purple) overlay a probability distribution of the respective 

vectors for all other days in the analysis period. Composite vectors for positive feedback 

days, negative feedback days, and all days are shown with red, blue, and green crosshairs, 

respectively. Each composite vector crosshair is surrounded by an ellipse representing its 

95% confidence interval in the 2-D phase-space of moisture (x-axis) and heat (y-axis). In the 

left panel, the solid grey line denotes constant EF = 0.5, and the dashed grey line denotes 

constant EF = 0.7. 

For negative feedback days, 𝑽𝑠𝑓𝑐 and 𝑽𝑅𝐸𝑅 are significantly different from the 

insensitive days, while 𝑽𝑎𝑑𝑣 is not. These days have more latent energy input from the 

surface, with comparable amounts of heating, corresponding to a mean EF of 0.697 (Fig. 

7a). At the wetter end of the spectrum (EF > 0.7) there are 21 sensitive days, 16 of which are 

negative feedback only and 5 of which are positive feedback only. This indicates that as the 

surface EF shifts towards more extreme higher values, the more likely a negative feedback 

will occur. Considering 𝑽𝑅𝐸𝑅, we see that for negative feedback days there is significantly 

less warming than usual, 2.07×104 J kg-1 compared to 2.62×104 J kg-1 for insensitive days 
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(Fig. 7c). It is not straightforward to pin down the exact source of this reduced warming 

effect due to the multiple contributors to the residual vector; possibilities include cooler 

entrained air, less incoming radiation due to increased cloud cover, the evaporative cooling 

of falling precipitation within the PBL, and/or the relaxation scheme used in the simulations. 

Interestingly, all these named effects (besides model relaxation) tend to occur 

simultaneously during strong, actively precipitating, mesoscale convective systems 

(Schumacher & Rasmussen, 2020). 

2) DIURNAL CYCLE COMPOSITES 

Lastly, we expand our viewpoint from within the PBL to include the free atmosphere 

above the PBL. For this section, we compute mean diurnal cycles from the CTRL run for the 

state variables, T and Q, their horizontal advective tendencies, the cloud cover fraction (Fig. 

8), and precipitation (Fig. 9). We disregard levels below 200 hPa, assuming that 

troposphere-stratosphere interactions are not relevant to land-atmosphere interactions. 

(i) Positive Feedback Days 

From the previous section, positive feedback days are cooler than average within the 

PBL. This result is reinforced when combined with the composite diurnal cycle of the 

positive feedback regime. A large, cool anomaly is present from the surface up to about 

850 hPa for the entire day (Fig. 8c). There is also a moderate but significant cool anomaly 

from 450-350 hPa beginning around 1200 LST and lasting throughout the afternoon. 

Anomalous advective cooling is also seen near the surface for the entire day. This cooling is 

statistically significant in the morning from 0700-1100 LST, and then again, briefly, from 

1540-1620 LST (Fig. 8d). These results are consistent with those in the previous section. 

Additionally, the day begins significantly cooler than average from the surface to 800 hPa, 

showing that the initial conditions of the atmosphere play a role as well. While the mixing 

diagram approach shows no clear moisture limitation within the PBL, there is a significant 

dry anomaly in the free atmosphere from 750-350 hPa for the first half of the day (Fig. 8a). 

A significant signal of moist advection helps to alleviate this dryness beginning at 1100 LST 

(Fig. 8b), however, the air directly above the PBL is still drier than average during the entire 

day. Therefore, more moisture input is likely to make more of an impact, consistent with a 

positive feedback regime. 
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The dynamics of the system are also important. Anomalous rising motion before sunrise 

shows that it is not only the surface that is triggering convection (and later cloud formation),  

but that it may also be induced by large-scale divergence above the PBL prior to sunrise 

(Fig. 8e). Moving further up into the atmosphere, Fig. 8e shows that there is significant, 

anomalous subsidence above 800 hPa for most of the day, which is strongest in the early 

morning hours and from 1000-1300 LST. This may act to stifle deeper convection, 

restricting cloud cover to just above the PBL. Unsurprisingly, in Fig. 8f, cloud cover fraction 

anomalies show a decrease in mid- to upper-level cloud cover (above 600 hPa) that is 

sporadically significant until late afternoon, and an increase in low level clouds directly 

above the PBL (950-750 hPa) for the entire day. Fig. 9 shows diurnal cycles of precipitation 

rates, and for the positive feedback days, the convective and total precipitation rates are 

comparable to insensitive days during the daytime, while the stratiform precipitation rate is 

significantly reduced in the afternoon (1200-1700 LST).  Convective and total precipitation 

measures also have periods with significantly less precipitation during the early morning and 

night. These reductions in precipitation may aid in the limitation of available moisture, 

helping to set up a positive feedback regime. 

23 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0237.1.Brought to you by GEORGE MASON UNIVERSITY | Unauthenticated | Downloaded 08/31/23 05:34 PM UTC 



 

  

    

24 

File generated with AMS Word template 2.0 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0237.1.Brought to you by GEORGE MASON UNIVERSITY | Unauthenticated | Downloaded 08/31/23 05:34 PM UTC 



 

  

    

   

   

 

  

 

  

 

 

  

  

  

 

    

 

    

 

  

 

  

    

Fig. 8. Composite diurnal cycles of anomalies for: Q (a,g), T (c,i), the advective tendencies 

of Q (b,h) and T (d,j), the wind divergence (e,k), and the cloud cover fraction (f,l) for all 

positive [negative] feedback days in left [right] column. Black contours indicate 95% 

confidence thresholds. In (e,k), statistically significant (95% confidence) vertical wind 

anomalies are represented by the black arrows. 

Fig. 9. Composite diurnal cycles of stratiform (a), convective (b), and total (c) precipitation 

rates. Positive feedback days are shown in blue, negative feedback days in red, and 

insensitive days in green. Timesteps whose precipitation rate is statistically significant are 

marked with points overlaid on the time series. 

(ii) Negative Feedback Days 

The diurnal cycles for the negative feedback regime show stark differences when 

compared to those of the positive regime. Beginning with Fig. 8g, we see that there is a 

significant abundance of moisture below 500 hPa all the way to the surface. This, along with 

a larger amount of moisture input from the surface (as indicated by the mixing diagram), sets 

up an environment ripe for stronger moist convection and storm activity. Fig. 8i indicates a 

warmer environment the whole day, although there is no statistical significance. Fig. 8k 

shows large-scale divergence and vertical velocity anomalies. This result appears to indicate 

the presence of a large-scale element, such as a squall line, mesoscale convective system 

(MCS), or other form of deep convection, which begins to pass through the domain before 

sunrise. This is evidenced by significant convergence (green) at lower levels combined with 

significant divergence (magenta) at the top of the troposphere beginning at 0600 LST, along 

with strong vertical velocity anomalies at the mid-levels of the atmosphere near sunrise and 

during the early afternoon. 

Another noteworthy feature is the presence of significant downward velocity anomalies 

preceding convection. This large-scale subsidence feature has been observed for large, 
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precipitating cumulonimbus clouds and may be induced by cloud-scale circulations (Fritsch, 

1975; Knupp & Cotton, 1985). This may also be what causes the heating anomaly observed 

near the surface in Fig. 8j at the same time, as the subsiding air may be heated through 

adiabatic compression. Another heating anomaly is observed once convection is initiated at 

mid-levels (800-600 hPa), which may be caused by the latent heat release of condensation 

within the updraft region (Fig. 8j). Deeper convective activity can also be seen clearly in 

Fig. 8l, which shows significant anomalies of cloud cover fraction spanning most of the 

atmosphere above the PBL beginning at 0600 and lasting the rest of the day. Evidence of 

deeper convection is also seen in Fig. 9, where negative feedback days have significantly 

more precipitation, both stratiform and convective. The stratiform anomaly, which peaks at 

0900 LST, occurs before the convective anomaly, which peaks at 1300 LST. This may 

indicate the larger system breaching the domain before the actual convective cell passes 

through. Another important feature in these composites is that most of the features 

associated with deep convective appear to decay starting in the mid-afternoon around 1400 

LST (Fig. 8g, k, & l), making surface heating even more important to maintain convection. 

In this study, the negative feedback regime is defined so that a lower (higher) EF leads to 

increased (decreased) convection and cloud formation. Therefore, a shift to a lower (higher) 

EF leading to increased (decreased) surface heating may act to further energize (decay) these 

larger systems as they pass over, leading to increased/prolonged (decreased/shortened) 

convective activity and rainfall. This also provides more evidence for the significance of the 

RER vector in the mixing diagram method, where effects other than advection most likely 

play a larger role within the PBL, such as increased evaporative cooling, or decreased 

incoming net radiation (due to increased cloud cover). 

4. Discussion and Conclusions 

The goal of this study is to develop a method to understand how and under what 

conditions there is a higher degree of coupling sensitivity between a sub-grid surface states 

(that may be present in a heterogeneous domain the size of a GCM grid-cell), and the 

overlying atmosphere. We use SCAM6, a single-column model, to create an ensemble of 

concurrent simulations over the ARM-SGP site in Northern Oklahoma, using an 

observationally-based large-scale forcing dataset, VARANAL, to drive the model. All 

ensemble members have the same atmospheric forcings (i.e., lateral boundary conditions), 

but separate lower boundary conditions covering a range of prescribed evaporative fractions. 
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These boundary conditions are meant to represent the full range of flux partitioning states 

that may be present in a heterogeneous domain, and therefore overlooked by today’s climate 

models. By evaluating the perturbed surface ensemble members against each other and a 

control simulation (forced with the observed surface state), we quantify L-A coupling 

sensitivity. 

To our knowledge, this study is unique in analyzing L-A coupling sensitivity, rather than 

just coupling strength and variability, on such short timescales (sub-daily) for a large sample 

of days over the course of many years. There are many days that show a high degree of 

sensitivity to variable surface conditions. This strong coupling behavior is expected, because 

the ARM-SGP site is located within one of the canonical L-A coupling “hotspots” (Koster et 

al., 2006; Dirmeyer, 2011). Our results also indicate that on these timescales, coupling 

behavior can shift very quickly. There are multiple days where a positive feedback of EF on 

the cloud population was dominant, followed by a day with the opposite outcome (a 

negative feedback). There are also periods of 2-3 days which all had dominant feedbacks of 

the same sign. This is in line with other studies that have found coupling behavior to have a 

large range of possible states day-to-day (Roundy et al., 2013; Roundy & Santanello, 2017; 

Zeng et al., 2019; Yang et al., 2022). In this analysis, positive feedback days have stronger 

coupling sensitivities on average, indicating that the wet advantage regime is more 

active/dominant in CESM2, at least for this location. A stronger positive feedback of surface 

properties such as soil moisture or EF on clouds and precipitation has been found in many 

other studies when applied to GCMs or coarse regional models (Hohenegger et al., 2009; 

Taylor et al., 2013; Moon et al., 2019) – although these studies lack the finer temporal 

resolution used here, often computing L-A coupling metrics by using daily mean values over 

the entire diurnal cycle. 

Even though the positive feedback regime is slightly stronger, days with strong negative 

feedbacks still occur. By compositing the most sensitive days in each regime, we show that 

the atmosphere exhibits preferential states and/or boundary conditions that lead to a favored 

positive or negative feedback. Positive feedback days tend to manifest on days of shallower 

convection, where such convection’s vertical extent is restricted by a strengthened inversion 

and subsidence above the PBL. The conditions needed to initiate and maintain convection 

are provided by the large-scale forcing. Therefore, an increase in EF at the surface injects 

more moisture into the PBL, driving increased cloud content by moistening surface parcels 
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that will be lifted by shallow convection. These conditions may be analogous to shallow 

cumulus or stratocumulus cloud regimes. Negative feedback days tend to manifest on days 

with existing deep convective systems, possibly caused by mesoscale convective systems or 

storm fronts passing through the domain. Instead of initiating and increasing cloud 

production through an increase in PBL moisture content, as in the positive feedback days, 

the increase in LWP is driven by an enhancement or prolongation of the deeper convective 

systems through increased sensible heat flux. This process is similar to those identified in 

observations (Taylor, 2015; Klein & Taylor, 2020; Gaal & Kinter, 2021). 

Sensitive feedback days are found around a range of EF close to analyzed values (Zhu et 

al., 2019) for this location, and behavior such as this has been observed in field campaigns in 

similar climates (e.g., Lyons et al., 1993). Surface heat fluxes and EF can be highly 

heterogeneous within domains of a similar size to GCM grid cells (Elhag et al., 2011; Eswar 

et al., 2013; Chaney et al., 2016; Zhu et al., 2020; Chaney et al., 2021), with length scales of 

heterogeneity comparable to those known to be most ideal in the initiation of mesoscale 

circulations (van Heerwaarden et al., 2014). GCMs currently cannot represent such 

processes, but this study shows that differences in EF can initiate significant shifts in 

coupling behavior. This kind of L-A coupling is neglected, and accounting for it would 

likely lead to increased model fidelity. We argue that improved parameterizations that 

account for these processes that display high sensitivity of coupling behavior to the surface 

should be a high priority for model development. 

It should be noted that the conclusions presented here come with a few caveats. Firstly, 

these results are only for one location. Similarly, only one model has been used. However, 

as stated previously, similar results have been found over other locations around the world, 

using both observations and models other than CESM2. Second, the return leg of the 

feedback regimes is neglected in this study. In other words, once clouds and precipitation 

have formed, the feedback of those features on the surface states is lost. Some examples of 

these feedbacks are radiative cooling underneath the cloud base and the evaporative cooling 

and the moistening of the surface by precipitation. While these feedbacks may change the 

results, we are not able to detect them given the prescribed surface conditions. Third, these 

specific results depend on the quality of the model. The fidelity of the model is an important 

factor in the conclusions, and its ability to reproduce observations is essential to give 
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credence to these results. Finally, the SCAM6 model does not account for the effects of sub-

grid scale secondary circulations that may arise from a spatially heterogeneous surface. 

Our results describe how the atmospheric column exhibits a sensitivity to a variable 

surface state, separating it from the secondary effects of induced circulations.  Further 

studies will need to quantify the additional effect of such circulations, once they are initiated 

by surface heterogeneity. It is our intention to compare these intermediate results to a 

convective resolving model, such as an LES, to determine if the presence of secondary 

circulations weaken, enhance, or alter the feedback regimes described in this study. Thus, 

the mixing diagram analyses, SCM and LES simulations form a continuum of increasing 

sophistication, which may aid the parameterization improvements we call for above. A more 

thorough comparison to observations would be ideal. However, field campaigns with 

sufficient spatial resolution over a long enough period to inform such analysis are lacking. 

Future observational campaigns aimed at studying land-atmosphere interactions should take 

this into account, if possible, although we acknowledge that this is a challenging task. 
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