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17 Abstract  

Tornadogenesis occurs in a variety of storm types, or  convective modes, each having a  unique  

climatology and  challenges  in  their detection and warning. Some warnings  result in  false alarms, 

meaning no tornado occurred within the warning  polygon. We used a mixed-methods approach 

to assess how convective mode––discrete supercell, cell in cluster, cell in line, or quasi-linear  

convective system (QLCS)––affects the tornado climatology  and National  Weather Service  

(NWS) procedures within three County Warning A reas  (CWAs): Memphis  (MEG), Nashville  

(OHX), and Morristown  (MRX). We used three data sets: tornadoes (2003–2014)  categorized by  

convective mode, false alarms (2012–2016) categorized by convective mode, and  11 interviews  

of NWS  forecasters. The  CWAs had no significant difference in mode  frequency when removing  

replication from  multiple-tornado events.  However,  when  outbreaks  were included, discrete 

supercell  and  QLCS signals  were identified in MEG and OHX, respectively. Convective mode, 

season, and time of day  were strongly  associated.  Tornadic discrete supercells followed a 

traditional severe  weather pattern of spring a nd daytime occurrences, and caused  fewer false 

alarms.  More QLCS tornadoes  happened  at night  and in  winter. Cells in lines and clusters  

accounted for larger proportions  of events in the  false alarm  data set  than  the  tornado  data set. 

Forecasters noted  challenges  in detecting tornadoes in convective modes other than discrete 

supercells, including short-lived QLCS tornadoes.  Key forecaster  concerns  other than convective  

mode included storm speed, outbreaks,  and lack of ground-truthing at night.  Forecasters differed  

in their motivation to either warn on every tornado or  avoid false alarms.  Key words:  tornado, 

climatology, supercell, QLCS, false alarm  
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Introduction 

Tornadogenesis occurs in a variety of storm types, or what many researchers refer to as 

convective modes. Convective modes differ in appearance, structure, and other characteristics, 

and result from different conditions in their ambient environment (e.g. amount of instability or 

wind shear). A quasi-linear convective system (QLCS) is a convective mode wherein weak 

tornadoes rapidly form and decay, stemming from embedded rotation that often appears in only 

one or two radar scans (Trapp et al. 2005). Meanwhile, rotation within a discrete supercell 

convective mode is easily spotted on radar. This gives forecasters time to make assessments and 

issue warnings before the supercell’s impending tornado––which may be wide, intense, and 

long-lasting––becomes an immediate threat to life and property (Brotzge et al. 2013). Because of 

these differences, each mode comes with a distinctive set of challenges to accurately and 

precisely detect and warn for a tornado (Brotzge et al. 2013). They also have dramatically 

different societal effects. Supercells are responsible for 90 percent of tornado fatalities from 

1998–2007 (Schoen and Ashley 2010) and caused more financial loss from 2003–2004 than 

tornadoes from other convective modes (Brotzge et al. 2013). 

We used a mixed-methods approach by pairing a climatology of tornadic and false-alarm 

convective modes with interviews with National Weather Service (NWS) forecasters. We 

quantitatively and qualitatively assessed the effect convective mode has on tornado detection and 

warning in three NWS County Warning Areas (CWAs): MEG in Memphis, OHX in Nashville, 

and MRX in Morristown. Pairing these results allowed us to address the climatological and 

operational aspects of potentially tornadic convective modes across the state. We had two 

hypotheses: 1. The three CWAs would have different climatologies of tornadic convective 
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modes, and 2. Warning challenges would increase for non-super cellular events, as demonstrated 

by false alarm analysis and forecaster interviews. 

Background 

Tornado warnings 

A tornado warning is issued by a NWS Weather Forecast Office (WFO) when a tornado 

has been visually spotted or radar-indicated (NOAA n.d.), with the goal of urging the public to 

take protective action. Each WFO is responsible for a set of counties, referred to as their CWA. 

Initially, tornado warnings were county-based, meaning if a tornado was expected to affect any 

part of the county, the entire county was warned. In October 2007, the NWS moved to a storm-

based method, where warnings were drawn as polygons outlining areas with the greatest threat 

(NOAA 2007). This change reduced the size of warning polygons, time spent under warnings, 

false-alarm ratios (FARs; discussed in detail in the next section) and a warning’s economic 

impact (Sutter and Erickson 2009).  

The decision to issue a warning is complex, as is the public’s decision on whether to take 

protective action (see Figure 1 of Brotzge and Donner (2013)). Weather radar and storm-spotter 

verification are the primary data used to identify potential tornadogenesis (Brotzge and Donner 

2013). Other data, including population vulnerability, tornado climatology, event anticipation, 

Storm Prediction Center (SPC) guidance, and history (Brotzge and Donner 2013), are also 

included in warning decisions. Some of these data are subjective or personal in nature and can 

vary among forecasters. Additionally, forecasters differ in experience and knowledge, which 

may lead to differences in decision-making (Andra, Quoetone, and Bunting 2002). The ultimate 

decision to warn is therefore inherently multifaceted, drawing heavily on the cumulative 
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experience of the forecaster. Further complicating the matter, even with the best skill there are 

still fatalities. During the 2011 outbreak, for example, all tornado fatalities occurred from 

tornadoes that were within tornado warning polygons (NOAA 2011). 

Warning success is often calculated using three parameters: FAR, probability of detection 

(POD), and lead time. Forecasters balance these three parameters, with the ultimate goal to 

detect all tornadoes, have no false alarms, give the longest possible lead-time, and draw the most 

effective warning polygon (Brotzge and Donner 2013). “False alarm” is the term for when a 

tornado warning is issued but no tornado occurs within the warning polygon. The FAR is the 

number of false alarms divided by the number of warnings, thus a percentage of warnings that 

did not verify. The national FAR was between 68 and 80 percent each year from 1998–2018 

(NOAA 2019). Issues may arise when using FAR data without sufficient context. For example, 

see the discussion on “close calls” by Barnes et al. (2007), which details why the “hit or miss” 

nature of a false alarm does not accurately depict what occurs in the environment or how it 

affects the public. While their statistics may be misleading at times, false alarms are important to 

analyze because they may affect public response to future severe weather events, as numerous 

false alarms may contribute to alarm fatigue or a “cry wolf” effect. Simmons and Sutter (2009) 

found that tornadoes occurring in areas with higher FARs killed more people, and that in past 

periods when forecasts notably improved, thus resulting in lower FARs, fatalities and injuries 

significantly decreased. Interestingly, FAR affects behavioral response even though public 

perceptions of FAR are often incorrect (Trainor et al. 2015). 

Some WFOs or individual forecasters may consciously consider FARs in their decision-

making. This may ultimately happen at the expense of the POD, which quantifies the proportion 

of confirmed tornadoes that are successfully warned for in advance (Brooks 2004). The national 
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POD was between 57 and 80 percent each year from 1998–2018 (NOAA 2019). Simmons and 

Sutter (2009) reported that further reduction of FAR would not reduce fatalities given that it 

would also likely reduce POD. FAR is often highest during times with low POD because 

limitations in knowledge, technology, and storm spotter availability can impede a forecaster’s 

ability to detect and warn for tornadoes in particular environments (Brotzge, Erickson, and 

Brooks 2011). 

Convective mode studies: Climatology and effects on warnings 

By analyzing convective modes, researchers provide information about the types of 

storms that are more hazardous or challenging to forecast. A major challenge to analyzing 

convective modes is the restraint related to the time it takes to classify storm types. This results 

in brief study periods, often confined to one or a few years. A longer database of convective 

mode classifications (2003–2011), which was tediously created by the SPC (see Smith et al. 

(2012)), has been used in the past and also for this work. For a previous study (Brotzge et al. 

2013) and for our own work, it does not entirely overlap the span of the other data sets being 

used, and thus is not always used to its full potential. Additionally, eight years is still relatively 

short for a climatology. A second challenge is that convective mode classification relies on 

archived radar data, thus it is necessary for a storm to be in a place and time with reliable radar 

coverage. This limits the data temporally and spatially, as well as its precision. Finally, when 

researchers take on convective-mode classification, it is subjective in nature as there are many 

different ways to categorize storms. To minimize subjectivity issues, people often work in teams 

and attempt to adhere to quantifiable thresholds and descriptive characteristics (Gallus, Snook, 

and Johnson 2008; Schoen and Ashley 2010). 
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Smith et al. (2012) found that, between 2003 and 2011, more tornadoes were caused by 

discrete and cluster right-moving cells across the United States than QLCS and disorganized 

convective modes. The proportion of tornadoes spawned by a QLCS, as opposed to a cell, varies 

greatly by location. Trapp et al. (2005) found that 18 percent of the 3828 tornadoes they studied 

from 1998–2000 occurred in a QLCS, but in some locations up to half of the tornado days were 

associated with QLCSs. Smith et al. (2012) showed that QLCS tornadoes are most common in 

the Southeast and Midwest. Other differences between these modes include tornado intensity and 

seasonality. Supercells usually cause most of the significant (EF2+) tornadoes and dominate the 

springtime climatology, while QLCS tornadoes are weaker and the most prominent tornado-

producer in January (Smith et al. 2012). 

Previous literature has shown that convective mode affects the ability of NWS forecasters 

to accurately forecast, detect, or warn for tornadoes. QLCSs are challenging because of their size 

and lack of prominent rotation. Tornadoes have the potential to initiate rapidly at any point along 

their ≥100-km length (Trapp et al. 2005) making detection and warning dissemination very 

difficult. Brotzge and Erickson (2010) showed that tornadoes from linear and other convective 

modes that were hard to classify (e.g. transitional modes, those evolving into a line) were least 

likely to be warned on before tornadogenesis. These results were supported by Brotzge et al. 

(2013), which showed POD dropped from 87.9 percent for discrete supercell to 48.6 percent for 

QLCS tornadoes. The worst POD (44.2 percent) was for tornadoes from disorganized 

convection. This work also documented the effect of convective mode on lead time, showing 

average lead time decreased from 17.8 minutes for discrete supercell to 12.3 minutes for QLCS 

tornadoes. The worst lead time (11.7 minutes) was associated with disorganized convection 
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(Brotzge et al. 2013). We are unaware of any research specifically assessing the relationship 

between convective mode and false alarms. 

FAR and POD statistics show that convective mode explains only part of the variability 

in forecast, detection, and warning challenges. FAR is largest (Brotzge, Erickson, and Brooks 

2011) and POD lowest (Brotzge and Erickson 2010) during non-peak storm periods, e.g., at night 

and during the winter, and on less-active, non-outbreak days. Distance from radar, population, 

and county size were also significant predictors of FAR, but these results were prior to the onset 

of storm-based warnings and during a time of county-based warnings (Brotzge, Erickson, and 

Brooks 2011). FARs (Brotzge, Erickson, and Brooks 2011) and tornadoes occurring without 

warning (Brotzge and Erickson 2010) are greater in the Southeast than the Great Plains. This 

may relate to the higher number of out-of-season and nocturnal tornadoes in the Southeast 

region, as well as non-meteorological factors such as visibility. 

Data and Methods 

Study Area 

We analyzed the convective mode climatology and effects in the three CWAs of the 

WFOs located in Tennessee (Figure 1). The offices are located in Tennessee, but they adhere to 

county, not state, boundaries, so they also warn for some counties outside of the state. 

Additionally, some out-of-state offices warn for a few Tennessee counties. MEG warns for 

western Tennessee, northern Mississippi, northeast Arkansas, and a small part of southeast 

Missouri. OHX warns for most of middle Tennessee. MRX warns for eastern Tennessee, 

southwest Virginia, and a small part of southwest North Carolina. These CWAs experience 

relatively different tornado climatologies, with the most notable difference being the lessened 
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tornado frequency in MRX (Brown, Ellis, and Bleakney 2016) and increased fatalities in MEG 

(Ashley, Krmenec, and Schwantes 2008; Brown, Ellis, and Bleakney 2016). All of OHX and 

portions of MEG and MRX are located within the highest frequency of QLCS tornadoes outlined 

by Smith et al. (2012). 

Tornado Data 

For tornadic convective modes, we relied heavily on the database presented in Smith et 

al. (2012). This database contains a list of tornadoes from 2003 to 2014, each having an assigned 

convective mode. Bryan T. Smith of the SPC kindly provided the data for the state of Tennessee 

for this study, hereafter referred to as the Smith database. The Smith database does not include 

all tornadoes during this period because of a filtering approach used during its creation. 

Specifically, the database contains tornado data segmented by county and filtered hourly for the 

highest-magnitude report on a Rapid Update Cycle (RUC) model (Benjamin et al. 2004), 40-km 

horizontally spaced analysis grid (Smith et al. 2012). To create a complete data set of observed 

tornadoes over the time period, we compared the tornadoes listed in the Smith database to those 

of the SPC (located online at http://www.spc.noaa.gov/gis/svrgis/). The SPC data set currently 

provides details for each confirmed tornado in the United States from 1950–2017, including date, 

time, magnitude, track location and length, and fatalities (Schaefer and Edwards 1999). We 

gathered information on all tornadoes recorded by the SPC in the CWAs that were not in the 

Smith database, including the tornadoes that occurred outside of the Tennessee border. This 

resulted in 570 total tornadoes from 2003–2014. We manually assigned the convective mode of 

the additional tornadoes using the methods described below. 
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Issues with the SPC tornado database are well documented. Most notable is the apparent 

increase in frequency through the record because of advancements in technology and reporting 

practices (Verbout et al. 2006), population sprawl (Elsner et al. 2013), and storm spotters 

(Doswell, Moller, and Brooks 1999), which have allowed more tornadoes to be observed and 

recorded in recent times. These biases do not have a large influence on our results because we 

are using a recent time period and not analyzing long-term trends. One important bias could be 

differences in observation likelihood based on convective mode. Not all tornadoes are observed, 

especially in our study area (Ellis et al. 2018), and weaker tornadoes are more likely missed 

(Verbout et al. 2006). Thus, QLCS tornadoes may be especially undercounted because they are 

typically weaker and less likely to cause loss of life or property (Brotzge et al. 2013). Trapp et al. 

(2005) suggested as many as 12 percent of QLCS tornadoes still go unreported, compared to 

only 1 percent from supercells.  

We categorized the tornado data by season and time of day. Tornadoes touching down 

between sunset and sunrise were labeled nocturnal. We used daily sunrise and sunset times for 

the cities of Knoxville, Nashville, and Memphis from the United States Naval Observatory 

(available online at http://aa.usno.navy.mil/data/docs/RS_OneYear.php). Seasons were divided 

as follows: winter (D-J-F), spring (M-A-M), summer (J-J-A), and fall (S-O-N). 

False Alarm Data 

False alarms from 2012–2016 was gathered using the Iowa Environmental Mesonet 

(available online at https://mesonet.agron.iastate.edu/cow/). We searched within the three CWAs 

for storms that were tornado-warned but did not produce any known tornadoes, uncovering 450 
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false alarms. We categorized the false alarms by time of day and season following the methods 

used for the tornado data. 

The false-alarm period is shorter than the tornadic convective mode period because all of 

the storms had to be manually classified, which is a time-intensive exercise. A limitation in using 

this period for false alarms is that it only briefly overlaps with the tornadic convective mode 

database. We instead wanted to increase the likelihood that this period overlapped with the 

employment of all those interviewed. False alarms often indicate a challenging forecasting or 

warning environment, which was the focus of the interviews. 

Convective Mode Classification 

The Smith database distinguishes between six different convective modes: discrete 

supercell, cell in cluster, cell in line, cluster, QLCS, and bow echo (Smith et al. 2012). We 

slightly modified these classifications. Specifically, few storms in the Smith database were 

classified as bow echoes, which are subsets of QLCSs (Weisman and Trapp 2003) composed of 

quasi-linear convection that “bows” into a comma-like shape due to low-level unidirectional 

winds. We combined these entries with the QLCS category. Only one tornado during the period 

of study falls into the convective mode category of “cluster,” thus we grouped this into “cell in 

cluster.” This results in four separate convective mode classifications: discrete supercell, cell in 

cluster, cell in line, and QLCS (Figure 2). 

To assign convective modes to the false alarms and additional tornadoes, we used 

archived NEXRAD Level II radar, obtained from Amazon Web Services. We viewed the radar 

images in the Gibson Ridge radar viewer (GR2Analyst, available online at 

http://www.grlevelx.com), referencing scans from the radar site closest to each storm. We used 
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information from adjacent radar sites if the nearest was not available or if more information was 

needed. We determined convective mode at the starting location of the tornado using the radar 

scan occurring immediately prior to the time of tornado initiation. We referenced preceding and 

subsequent radar scans in instances of ambiguity. By observing how the storm changed as it 

traveled, we obtained additional information about storm characteristics and the depth and 

strength of rotation to more accurately determine convective mode at the time of tornado 

initiation. We also used the Smith database as a reference guide to ensure consistent storm 

classification. We adjusted the time, and occasionally the date, of some of these tornadoes based 

on radar evidence, as did Smith et al. (2012). Some storms were more challenging to identify 

because of radar location or challenging storm structure. Each convective mode categorization 

was reviewed by at least three people, increasing our confidence in the results. 

We referenced multiple radar elevation scans and products to arrive at a correct 

convective mode classification. Most important were the base reflectivity product depicting 

rainfall intensity, and storm-relative velocity product revealing areas of embedded rotation, 

referred to as velocity couplets. Lowest-elevation radar tilts were given priority (typically 0.5° 

above the horizon) while subsequent higher scans were consulted as necessary, especially when 

distinguishing a cell in line from a QLCS. A clearly defined tornado vortex signature appearing 

through multiple radar tilts was indicative of a mesocyclone and a cellular convective mode. The 

mesocyclone was always immediately surrounded by convection with reflectivity above 35 dBZ. 

We labeled the storm a discrete supercell if the convection was not connected to any other high-

reflectivity convection with echoes ≥35 dBZ. In other words, the echo had to decrease to below 

35 dBZ before reaching another storm. If a mesocyclone was connected to other areas of rotation 

by reflectivity ≥35 dBZ, we labeled the storm as cell in line or cluster. Cell-in-lines were when 
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areas of rotation and reflectivity were oriented linearly; otherwise, the mode was cell-in-cluster. 

We classified weaker rotation, and a line of convection with reflectivity ≥35 dBZ for a distance 

of ≥100 km, as a QLCS. Rotation was much weaker and shallower in a QLCS than a cell, and 

sometimes it was not visible on the radar.  

Interview Data 

We interviewed NWS employees (n=11) in early 2017 concerning the effect convective 

mode has on the tornado forecast, detection, and warning process in Tennessee. We interviewed 

three employees at OHX, and four each at MEG and MRX. Open-ended questions related to 

tornado forecasting, tornado detection, warning procedures, and convective mode were posed, 

and forecaster responses were recorded and transcribed. We interviewed employees with various 

roles (e.g., Warning Coordinating Meteorologist, Meteorologist in Charge, etc.). We refer to all 

those interviewed as “forecasters.” All were in-person interviews except for one Skype 

interview. This research was approved by the University of Tennessee Institutional Review 

Board (UTK IRB-16-03462-XP). The interviewees signed a consent form allowing the 

interviews to be recoded and transcribed, and the results to be shared anonymously. Each 

interviews lasted approximately one hour. 

Convective Mode Analyses 

The relationships between tornadic convective modes (four categories), CWA (three 

categories), season (four categories), and time of day (two categories) were assessed using chi-

square tests. Cramer’s Phi was used post-hoc to test the strength of the associations. We modeled 
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the dependence of convective mode on CWA, season, and time of day using multinomial logistic 

regression. 

Tornado outbreaks may affect the independence of the samples and bias the results. For 

example, one QLCS may cause 15 tornadoes one night in December. Therefore, we created a 

new data set of unique tornadic events by counting only one of each convective mode per time of 

day (nocturnal and daytime) per day at each CWA. This resulted in a sample size of 253 events, 

approximately 44 percent of the original data. We analyzed relationships between unique 

tornadic events and CWA, season, and time of day as we did for all tornadoes, including chi-

square tests, Cramer’s Phi, and multinomial logistic regression. 

Lastly, we analyzed false-alarm convective modes via chi-square tests and Cramer’s Phi. 

Because there were some seasons when a CWA did not have a false alarm for a particular mode, 

we did not do a multivariate analysis. 

Interview Analyses 

We coded the interview data using descriptive and interpretive coding (Tracy 2012; 

Creswell 2013). We used thematic analysis to identify themes from the codes. Each set of 

interviews was coded separately by two people, then results were compared and discrepancies 

were reconciled. 

Results 

Tornadic convective modes 

A tornado’s convective mode was significantly associated with CWA, time of day, and 

season (Table 1, Appendix A). Nocturnally, more QLCS tornadoes were observed than expected, 
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and fewer discrete supercell tornadoes were observed than expected. There were minimal 

differences in observed and expected counts for tornadoes from cells in lines and clusters based 

on time of day. Seasonal variability can be seen in Figure 3. The largest seasonal differences 

between observed and expected values were that more QLCS tornadoes occurred in the winter 

and fewer in the spring. Cell-in-line tornadoes were more common in the fall than expected, and 

cell-in-clusters more common in the summer.  QLCS variability was notable among CWAs, too. 

In OHX, more tornadoes from linear events, both QLCS and cell in line, occurred than expected 

at the expense of tornadoes from clusters and discrete cells. Meanwhile, MEG observed more 

tornadoes from discrete cells than expected at the expense of linear events. In MRX, notably 

more tornadoes from cells in clusters occurred than expected and fewer from cells in lines. CWA 

had a slightly greater association with convective mode than season or time of day. 

There were also significant associations between the time of day, season, and CWA of a 

tornado (Table 1, Appendix B). Season and time of day had the largest association among these 

variables, with a larger proportion of tornadoes happening at night in the winter than during the 

other seasons. Time of day did not vary significantly between CWA, but season did. The biggest 

differences in observed and expected values occurred with MRX having more tornadoes in the 

warm seasons and fewer in the cool seasons than expected. OHX was the opposite, observing 

more tornadoes than expected in the winter and fewer in the spring and summer. MEG 

demonstrated less of a seasonal signal in tornado occurrences. 

We calculated odds ratios by exponentiating the coefficients of the multinomial logistic 

regression model (Table 2) and found that a tornado occurring at night is 2.69 times more likely 

to be from a QLCS than a discrete supercell. Nocturnal tornadoes were significantly more likely 

to be from any mode other than a discrete supercell. Other large differences in odds were the 
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likelihood for tornadoes from linear events in OHX as compared to MEG, and the likelihood of a 

cell-in-cluster or QLCS tornado in the summer compared to one from a discrete supercell. Most 

model coefficients were significant, and fall was the only category across the independent 

variables to not have differences in odds between convective modes. 

Convective mode of unique tornado events 

Next we assessed unique tornado events, i.e., only one of each convective mode was 

counted per time of day (nocturnal and daytime) per CWA per day. This removed the 

convective-mode bias from multiple-tornado events. Table 3 shows how the proportions of each 

convective mode changed as a result. There was still a significant association between 

convective mode variability and time of day, with more QLCS and fewer discrete supercells than 

expected nocturnally (Table 4), matching the results from all tornadic convective modes. CWA 

no longer had a significant association with convective mode and season. We could not assess 

the relationship between mode and season using chi-square tests because not all expected values 

were greater than five (Appendix C). The raw data show that QLCSs were the most common 

wintertime producers of tornadic events, while cell-in-cluster and discrete supercells were the 

biggest springtime producers. The relationship between time of day and season remained the 

strongest of all (Table 4, Appendix D). 

These relationships were also modeled using multinomial logistic regression (Table 5). 

There were only two instances of significant differences in odds between the convective modes: 

a nocturnal tornado was 3.74 times more likely to be from a QLCS versus a discrete supercell, 

and a cell-in-line tornado was 2.66 times more likely in OHX than one from a discrete supercell. 
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False-alarm convective modes 

False-alarm convective modes varied significantly based on season, CWA, and time of 

day (Table 6). The main differences in observed and expected values for the time-of-day 

variable were that, nocturnally, more (fewer) QLCS (discrete-supercell and cell-in-cluster) false 

alarms occurred than expected. Seasonally, there were more false alarms in the winter and spring 

(Figure 3B). However, it is likely that the FAR was low in the spring because there were also 

more tornadoes. There are noticeably few false alarms from discrete supercells in the winter, and 

in every season there are more false alarms from cells in clusters than any other mode. Cell-in-

cluster false alarms were the most prominent in all CWAs, and MRX had fewest linear-event 

false alarms. There were no QLCS false alarms during the study period in the spring or in MRX, 

causing large residuals in these categories (Appendix E), and leading us to forgo a multivariate 

analysis. 

CWAs varied significantly in the daily and seasonal timing of their false alarms (Table 6, 

Appendix F). The main difference in observed and expected values was that, in MRX, fewer 

false alarms occurred nocturnally than expected, while slightly more occurred nocturnally than 

expected in MEG and OHX. Seasonally, the largest differences were, in MRX, more false alarms 

occurred in the spring than expected, and fewer in the winter. In MEG, fewer false alarms 

occurred in the spring than expected and more in the fall, and in OHX more occurred in the 

winter than expected. 

NWS forecaster interviews 

We identified three themes: (a) forecast, detection, and warning challenges, (b) individual 

perceptions and decision-making variability, and (c) effects on office management and 
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procedure. Within the discussion of each theme, we demonstrate how convective mode affects 

each, as well as other inherent storm or forecaster characteristics that emerged as relevant. 

Forecast, detection, and warning challenges 

Most participants noted the ease of and their confidence in forecasting, detecting, and 

warning for discrete supercells as compared to QLCS events. Reasons given included: being able 

to use the velocity radar product for supercells, which is not as helpful for linear events; areas of 

rotation in isolated cells “stand out like a bullseye” whereas for a linear event it is a “needle in a 

haystack”; QLCS tornadoes form quickly and are short-lived; spotters may not report storm 

characteristics like wall clouds for QLCS events; and a QLCS usually moves more quickly 

through the area. Forecasters also expressed that the science behind supercells is more straight-

forward. One forecaster mentioned, “…we don’t know why some QLCS tornadoes touch down 

and why some don’t.” Three forecasters mentioned a benefit to a line––that there is a distinct 

beginning and end, and thus, can be “nice and contained” and easier to time. Overall, however, 

the word “easy” was used many more times when discussing tornadic supercells, while 

“complex” and “tough” were commonly used to describe tornadic QLCS events. Forecasters 

noted that success metrics likely fare worse for QLCS events, meaning a higher FAR, lower 

POD, and shorter lead time. 

QLCS events were also noted for their need of larger warning polygons. These larger 

polygons may improve POD but can increase the public’s perception of FAR. Many forecasters, 

especially those at MRX, mentioned their concern for straight-line winds from QLCS events 

rather than tornadoes. A common strategy mentioned when warning for a QLCS was using a 

severe thunderstorm warning with a tornado-possible tag in place of a tornado warning. If 
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necessary, forecasters can then issue smaller tornado warnings contained within or overlapping 

the severe-thunderstorm polygon. However, the forecaster must then keep track of multiple 

warnings simultaneously.  

Cellular events that are non-supercellular, for example, cells in clusters, were mentioned 

by some forecasters and were the focus of one. They referred to these events as “messy” and 

making the radar operator’s job “impossible,” stating they “don’t know where to look.” They 

also mentioned the need for ground-truthing to determine which cell is strongest. MRX 

forecasters mentioned how storms usually break apart before reaching their CWA, leaving them 

with messy, transitional “leftovers” compared to the more frequent supercells in western 

Tennessee. These leftovers are more challenging for spotters to interpret but are fortunately 

much weaker. 

All forecasters expressed concern about other storm characteristics that they perceive as 

more impactful than convective mode. These characteristics included storm speed, daily and 

seasonal timing, and outbreak events. Storm speed was mentioned because fast storms rush 

forecasters and, unfortunately, require bigger polygons, which may increase FARs or public 

confusion. Additionally, if a storm is moving at 60 mph, a specific speed mentioned by at least 

three forecasters, even the outflow will be damaging. One forecaster mentioned that it changes 

their internal rules for warning because they need to work quickly to get the warning out. They 

“don’t want to mess with these kinds of storms.” Nocturnal events were a concern for many 

because the public and storm spotters are sleeping, and forecasters recognize the large number of 

fatalities from nighttime tornadoes in their region. One forecaster suggested that nighttime is 

almost an equalizer, because there is no information coming in from storm spotters and the 
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public, thus no convective mode is particularly easy. Another, meanwhile, noted that it made the 

more challenging storms, like cells in clusters, even more difficult: 

The smaller cellular stuff is probably more of a problem, because you really want that 

truth. You really want to know what's going on. Which one is worse? Which one do I 

concentrate on? 

Time of year was mentioned for its influence on storm speed and the availability of different 

environmental parameters, for example, CAPE and shear, thus affecting convective mode. 

Outbreaks were noted for their effect on success metrics, as high-end events were perceived to 

cause lower FARs and higher POD. As one forecaster explains: 

The bigger events, it's like the Plains. It's like shooting fish in the barrel there. You can't 

overlook it and you can definitely maybe not get as much lead time on the initial tornado 

that might develop from a storm, but if you know the storm is going to persist, and you 

can definitely get a lot of lead time downstream. 

Individual perceptions and decision-making variability 

There was a noticeable difference in the stated occupational objectives of the forecasters, 

which related to differences in their decisions on whether to warn. While some forecasters 

mentioned that they entered this career because they love science and the weather, others 

mentioned a calling to save lives. One stated: 

I'm glad that I'm able to serve our public through my career down here. I'm pretty 

religious and I think there's a pretty good reason why I got selected to come down here. I 

think I can make a valiant effort on saving lives. 
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Those who mentioned a purpose of saving lives were more likely to affirm the importance of 

POD, especially over considering FARs. Forecasters were split nearly in half on whether concern 

for the public at night affects their warning procedure during nocturnal events. One forecaster 

mentioned they are more willing to have a false alarm because they want to look out for the 

sleeping public. Another forecaster said, when asked about nocturnal events, “…those scare the 

hell out of me.” 

Many forecasters mentioned that potential degree of impact plays a role in their warning 

decision, e.g., whether the storm is headed to a highly populated area. Meanwhile, one forecaster 

mentioned they “divorce” themselves from the people and are conservative about warnings, 

detailing how they use specific thresholds to determine whether to warn or not. Another 

forecaster said thresholds are dangerous because they do not account for the potential impacts. 

One forecaster mentioned being more cautious (i.e., more likely to warn) with the more 

dangerous cells, but being more conservative with a potentially tornadic line that would likely 

cause weaker tornadoes. Another forecaster mentioned how they are thankful that their 

supervisor understands that they will miss some of the weaker tornadoes. 

Differences in decision-making may stem from variability in office philosophy and from 

forecaster experience level. One forecaster said of office differences: 

Now, I think between offices there's different philosophies. Some offices want to cover 

everything as far as I can tell. We all talk about each other in different ways, but some 

offices want to cover everything, some offices are more conservative. My philosophy has 

always been we are here for the severe weather, not the almost-severe weather. 

Several forecasters noted that inexperienced forecasters are likely to warn more, with one stating, 

“…the younger you are or the newer you are, the faster you are to pull triggers, because 
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everything looks good.” Another said, “…somehow experience plays in, I think, how you use 

that experience to give you better foresight to what's severe and what's not.” 

Effects on office management and procedure 

Convective mode influences how radar is used in the WFO. Specifically, many 

forecasters noted that some modes favor sectorizing, a technique mentioned by all three WFOs 

wherein the radar is divided into sections, each manned by a different radar expert. Sectorizing is 

necessary when there are many warnings spread across a large space. Complex convection, e.g., 

a line with leading convection or a discrete mode transitioning to linear, requires sectorizing and 

more people. A simple, contained line was said to require fewer people, while a more 

complicated line or one stretching over a long distance benefits from sectorizing. A MEG 

forecaster mentioned that they think sectorizing is more important for their CWA because of the 

high likelihood of outbreaks and the size of their CWA, adding, “…we never rely on somebody 

working the whole CWA. That's dangerous.” 

Communication techniques and challenges depend on convective mode. One forecaster 

described how a large, sweeping QLCS, which will likely affect the whole CWA, would be 

highlighted in warning communications to the public. However, if tornadic supercells were also 

expected then warnings would focus on the increased threat associated with these storms. The 

danger of straight-line winds in a QLCS is also important to forecasters to communicate. This is 

especially true in MRX where these winds are more likely and sometimes more damaging than 

QLCS tornadoes, and where forecasters perceive that the public does not take them seriously. 

Many forecasters mentioned that social media helps them provide updated information 

during complex convection, and they hope to continue to improve their social media presence. 
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Partnerships with the media and emergency managers are also important during complex, 

nocturnal, or out-of-season events. Integrated Warning Team meetings and Media Days are some 

ways that forecasters mentioned networking with these groups and building trusting 

relationships. 

Convective mode itself does not have a great effect on staffing, but forecasters reported 

outbreak days and nocturnal events as providing challenges. With outbreak days, one forecaster 

said, “…you need all hands on deck.” Many forecasters mentioned how draining and anxiety-

inducing outbreaks and nocturnal events can be. One forecaster mentioned: 

If I've worked radar, and I've been intensely looking at the radar, after several hours, I 

start to wear down. And I might start making bad decisions. We try to limit people being 

on radar to about four hours or less, and we'll switch off to somebody else if we can. If 

it's right in the middle of a bunch of stuff going on, of course we can't, but because we 

know people just get worn out. 

A surprise nocturnal event can also make it challenging to get in touch with staff to bring them 

in, as well as summer and holidays because people may be traveling. 

Discussion 

Convective mode considerations 

We accepted our first hypothesis, that the three CWAs would have different 

climatologies of tornadic convective modes. OHX experienced a large number of tornadoes from 

linear modes, while MEG favored cellular convection. MRX was most frequented by cell-in-

cluster tornadoes. The MRX forecasters mentioned several times that they get unorganized 

leftovers, which is apparent in the climatology being dominated by cell-in-cluster tornadoes. 
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However, mode patterns were no longer significant when assessing unique tornado events, 

suggesting that outbreaks skewed the results. Cells-in-clusters were the most common mode for 

unique tornado events in all three CWAs. Perhaps the most notable finding here is that QLCS 

outbreaks in OHX and discrete supercell outbreaks in MEG are unique to their areas, but as a 

whole Tennessee is similar in having most tornadoes spawn from cells in clusters. The order of 

the frequency of tornadic modes did not differ in MRX (cell in cluster > discrete supercell > 

QLCS > cell in line) when comparing all tornadoes and unique tornado events, but did change in 

both MEG and OHX. This shows that outbreaks are not a factor in MRX. A data set going 

farther back in time could help determine whether the MEG and OHX outbreaks were unique 

features of the study period or if they were part of a larger pattern seen in the tornado 

climatology. The increased odds of a QLCS tornado at night was the only finding that was 

strengthened by assessing unique tornado events, signaling its importance in the local tornado 

climatology. 

The climatology of discrete-supercell tornadoes, outbreaks, and false alarms 

complemented comments from forecasters. Tornadic discrete supercells followed a more 

traditional severe-weather pattern of spring and daytime occurrences. They make up a larger 

proportion of events in the tornado data set than they do the false alarm data set, as expected 

based on forecaster discussion of their ease of warning. Discrete supercells also had the largest 

proportional decrease when moving from individual tornadoes to unique tornado events, 

meaning they occurred in groups more often than the other modes. This contributes to the “fish 

in a barrel” effect that one forecaster mentioned. Our findings support prior research suggesting 

discrete cellular modes and multiple-tornado days contribute positively to warning success 

(Brotzge and Erickson 2010; Brotzge, Erickson, and Brooks 2011; Brotzge et al. 2013). 
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Our second hypothesis was that warning challenges would increase for non-supercellular 

events, as demonstrated by false alarm analysis and forecaster interviews. We accept our 

hypothesis, but note that forecasters have ways of mitigating potential false alarms from QLCS 

events. QLCSs were specifically described as a challenging storm mode for tornado detection 

and warning. Forecasters agreed that POD and lead time are worse in QLCS events, matching 

the finding of previous literature (Brotzge et al. 2013). Additionally, the tornadic QLCS 

climatology is skewed more toward winter and nocturnal occurrences than other modes, both of 

which may increase the challenge in tornado detection, warning, and communication. However, 

QLCSs had the least total false alarms. While our data sets are not directly compatible because 

they are of different study periods, QLCSs caused a larger proportion of tornadoes than they did 

false alarms. More information about QLCS challenges could be gleaned from classifying 

convective modes of unwarned tornadoes. 

Our findings suggest that QLCSs do not have a tornado warning false-alarm problem. 

This could be in part because of the practice forecasters mentioned of using the severe 

thunderstorm warning with a tornado-possible tag, recognizing any potential tornado is likely 

short-lived and weak, and focusing on the straight-line winds. This reduces the FAR in a way 

that still alerts people of the potential tornado. Previous work describes how it is challenging to 

improve FAR or POD without worsening the other (Brooks 2004). However, it seems that, for 

QLCS events, the tornado-possible tag on a severe thunderstorm is a way of communicating a 

potential weak, short-lived tornado within the severe thunderstorm without increasing FAR. It is 

important to assess how this type of communication affects public response before calling it a 

success, but this could be why success metrics for linear modes did not appear as poor in our 

study as they do in previous studies on POD and lead time. A severe thunderstorm warning is 
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usually issued for a QLCS because of straight-line wind threats, and a major concern of our 

forecasters was that residents may not take seriously the threats from non-tornadic winds in a 

QLCS. This concern is warranted, because while organized cellular convection makes up the 

majority of tornado-related fatalities, unorganized and linear convection are responsible for the 

bulk of damaging non-tornadic convective winds (Schoen and Ashley 2010). 

Many forecaster interviews focused on the differences between QLCSs and discrete 

supercells, but the false-alarm results and the few discussions about non-discrete cellular 

convection suggested cells in clusters and lines provide a larger challenge. Cells in clusters and 

lines made up a larger proportion of false alarms than they did tornadoes, supporting the 

forecasters’ descriptions of their challenges. Unlike discrete supercells, cells in clusters made up 

a larger proportion of multiple-tornado events than isolated tornadoes, adding to their challenge. 

Combined, they accounted for about 37 percent of multiple-tornado events in the winter, but 61 

percent of false alarms in that season. This seemingly differs from the findings of Brotzge et al. 

(2013), which said that QLCS metrics fare much worse than cells in clusters and lines. This is 

likely because of a difference in the categorization of the convective modes–– Brotzge et al. 

(2013) included a “disorganized convection” category, which had the worst success metrics, but 

our disorganized convection was forced into one of four categories, likely being cell in line or 

cluster. Also, Brotzge et al. (2013) studied POD and lead time, not false alarms. Future research 

should assess all three metrics under a single classification scheme so direct comparisons can be 

made. Ideally that scheme should reflect the convection’s organization, as done by Schoen and 

Ashley (2010), and cellular events could be classified as unorganized, quasi-organized, or 

organized. 
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Other event features: Time of day, season, and outbreaks 

There were significant associations between the convective mode and the time of day and 

season a tornado occurred, but an even stronger association between the seasonal and diurnal 

timing tornadoes. According to the forecaster interviews, both season and time of day affect their 

procedures, mainly through their communication with the public and staffing issues. The biggest 

effect diurnal timing had on tornado detection and warning was the lack of ground-truthing 

during nocturnal events, which greatly hinders the forecaster’s ability to warn on complex 

convection. This was the most relevant difference in convective mode timing for forecasters 

because it affects their ability to do their job accurately. Discrete supercells, the easiest mode to 

warn for according to forecasters, only accounted for 18 percent of the unique nocturnal tornado 

events across the CWAs (29 percent during the day), supporting the idea that other types of 

convection are a more frequent nocturnal warning challenge for forecasters. These findings agree 

with previous literature showing higher FAR and lower POD are associated with tornadoes at 

night and outside of the severe weather season (Brotzge and Erickson 2010; Brotzge, Erickson, 

and Brooks 2011). As Brotzge and Erickson (2010) said, “those tornadoes most likely to strike 

when the public is least likely to be aware are also those tornadoes with the greatest chance of 

not being warned.” While we did not study POD, we did show through the convective mode 

climatology and forecaster interviews that the more challenging-to-warn events are occurring 

during these periods. Additionally, our previous work has shown that residents in these CWAs 

do not have a clear understanding of their wintertime tornado risk (Ellis, Mason, and Gassert 

2019). This, coupled with a more challenging forecast, could cause more confusion for the public 

and local leaders. 
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As mentioned by the forecasters, the challenge of a nocturnal event begins at the forecast, 

but continues through communication of the threat. When Mason et al. (2018) surveyed residents 

from the three CWAs used for our study, they found that fewer than half of the participants 

thought there was a high or very high chance they would receive a tornado warning at night if 

one was issued, compared to 80 percent during the day. However, Walters, Mason, and Ellis 

(2019) found that if participants did get a warning at night, they may be more likely to make a 

safe sheltering decision than they would during the day, after first checking other sources of 

information. 

Forecaster strategies and concerns 

Many of the strategies discussed by the forecasters are in agreement with those in Andra, 

Quoteone, and Bunting (2002), specifically, the use of sectorizing during a challenging event, 

selecting radar products appropriate for the expected convective mode, and using ground truth to 

calibrate their forecasts. Andra, Quoetone, and Bunting (2002) focused on automation of tornado 

detection and how it cannot be used as a replacement for expertise, and should only be used to 

enhance forecaster capabilities. Forecasters agreed with this sentiment in the interviews by 

demonstrating how they often account for people and potential impacts when warning, which 

cannot be easily automated. For example, a forecaster discussed how a large outdoor event 

taking place in a potential risk area may affect how they warn. Similarly, Brooks (2004) 

discussed how unbiased forecasts are not the goal because in some situations the cost of a missed 

event would outweigh the cost of a false alarm. 

Our work supports previous work highlighting the importance of ground truth for 

accurate tornado detection and warning. Brotzge and Erickson (2010) showed that success 

metrics decrease when (at night) and where (outside of the Great Plains) it is a challenge to view 
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tornadoes. The forecasters whom we interviewed echoed this sentiment, detailing a clear 

disadvantage in detection and warning at night, and the challenge being amplified by the type of 

complex convection that is common at that time. Andra, Quoetone, and Bunting (2002) list 

ground truth only second to radar data as the most important data set for forecaster warning 

decision-making. In our study area, where trees and hills dominate the landscape and nocturnal 

tornadoes are half of the tornado climatology (Ashley, Krmenec, and Schwantes 2008; Brown, 

Ellis, and Bleakney 2016), forecasters are at a particular disadvantage. Thus, this work adds to 

those documenting nocturnal tornado challenges, specifically detailing forecaster concerns and 

additional detection, warning, and communication challenges during nocturnal events. 

A concern brought up by many forecasters was storm speed. Faster storms rush forecaster 

decision-making, cause them to use larger polygons, and create more damaging straight-line 

winds. These factors increase the challenge of effective warning and communication. There is 

little literature on the speed of tornadic storms, and we encourage future research in this area in 

both the climatology of storm speed, its relation to convective mode, and its effects on warning 

success metrics. In creating a climatology of storm-based warnings, Harrison and Karstens 

(2016) found that the fastest warned storms were those in the Great Lakes and Ohio Valley 

regions, and that storms were fastest in winter. However, these results were not specific to 

tornado-warned events and the authors can only speculate about relationships between speed and 

convective mode, specifically that QLCS frequency affected average storm speeds (Harrison and 

Karstens 2016). 

Limitations 
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The time-intensive and challenging process of classifying convective modes limited this 

study in two ways. First, the study period is relatively short, although this is not uncommon in 

convective mode studies. Second, the study period for the false alarms does not directly coincide 

with the tornado data. More direct comparisons could be made with a larger data set that matches 

in space and time. This may be made possible in the future by automation of convective mode 

classifications, which Ashley, Haberlie, and Strohm (In review) have recently achieved for 

QLCS events. Until a larger data set is possible, we are left uncertain if our patterns, for example 

the QLCS outbreaks in OHX, are part of the larger climatology or are only an artifact of limited 

data. Additionally, it is challenging to compare results across studies because of a lacking 

universal convective classification scheme (Schoen and Ashley 2010). 

Another issue with the data set is that tornado climatologies rely on the observation of a 

tornado, which is not equal across space. While some locations now have little to no urban bias 

in their tornado reports (Elsner et al. 2013), this is not true for the Southeast and this study area 

(Ellis et al. 2018). If these undetected tornadoes are skewed toward more complex convection or 

weaker tornadoes, then our data may be biased toward certain storm modes. 

A strength of our study was an assessment of false alarms and convective modes, which 

is not yet in the literature. However, weaknesses include only studying one success metric used 

by the NWS (FAR) and not studying POD and lead time, which are two other important metrics. 

Assessing all three would more clearly discern the challenges associated with convective mode. 

While we discussed connections between our work and that of those who researched POD and 

lead time, it would be more meaningful to have those statistics directly match the spatiotemporal 

dimensions of our study. 
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Forecaster interviews revealed differences in their personal purpose of working for the 

NWS, which was inherently related to their considerations when warning on potential tornadic 

events. While these forecasters demonstrate differences in purpose and warning plans, it would 

be valuable to determine if those differences ultimately lead to different warning decisions. For 

example, does the religious forecaster who wants to “catch them all” warn significantly more 

often than the forecaster who strictly uses thresholds? 

Conclusion 

We used a mixed-methods approach to assess how the convective mode of a storm affects 

the climatology of tornadoes and NWS procedures within three CWAs that warn for Tennessee 

and surrounding areas. For the climatological analyses, we used archived radar data and a data 

set by Smith et al. (2012) to assign convective modes to tornadoes (2003–2014) and false alarms 

(2012–2016). We assessed associations among these data sets and CWA, time of day, and 

season. To gain information on how convective mode affects forecasting procedures, we 

interviewed 11 NWS forecasters across the three offices. The most unique aspects of our work 

were the direct discussions with the forecasters, which can be related back to the tornado and 

false alarm climatologies, and the assessment of the relationship between convective mode and 

false alarms. We hypothesized that the convective mode climatology would differ between the 

three CWAs, and that forecast challenges would increase for non-supercellular events. We 

accepted both hypotheses, but note two special considerations: 1. After outbreaks are removed, 

we observed no statistical difference among tornadic convective mode and CWA, and 2. 

Forecasters have mitigated some false-alarm issues for tornadoes from QLCS events by often 

using a severe thunderstorm warning with a tornado-possible tag. Other storm characteristics 
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696 have affected  forecasters  more than its convective  mode, for example the timing and speed of the  

storm. Forecasters have different, often personal, reasons to warn or not during a  challenging  

event.  
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813 Figure Captions  

814 Figure 1. Tornadoes  (A;  2003–2014) and false alarms (B; 2012–2016) that  occurred in three  

CWAs, categorized by convective mode.  

 

Figure 2. Archived base reflectivity  radar image of one tornadic event for  each convective mode 

type: A. Discrete supercell, B. Cell in cluster, C. Cell in line, and D. QLCS.  

 

Figure 3. Tornadoes  (A)  and false alarms (B) categorized by convective mode for each CWA.  
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836 Appendix  A  

Information pertaining to chi-square tests assessing the relationship between  tornadic  convective  

mode and season, CWA, and time of day. Included are the observed count (Obs), expected count  

(Exp), and standardized residual (R).  

837 

838 

839 

Discrete Supercell Cell in cluster Cell in line QLCS 

Obs Exp R Obs Exp R Obs Exp R Obs Exp R 

Spr 117 109 0.74 133 126 0.59 65 62 0.35 47 64 -2.14 

Sum 6 11 -1.40 22 12 2.80 1 6 -2.05 6 6 -0.08 

Fall 18 23 -1.03 26 27 -0.10 24 13 3.03 8 13 -1.49 

Win 31 29 0.32 18 34 -2.73 8 17 -2.13 40 17 5.50 

MEG 92 73 2.26 91 84 0.75 32 41 -1.47 26 43 -2.56 

OHX 34 56 -2.99 47 65 -2.26 53 32 3.68 53 33 3.45 

MRX 46 43 0.48 61 50 1.62 13 24 -2.31 22 25 -0.63 

Day 112 95 1.78 112 110 0.23 51 54 -0.41 39 56 -2.23 

Night 60 77 -1.96 87 89 -0.25 47 44 0.45 62 45 2.47 
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847 Appendix B  

Information pertaining to chi-square tests assessing the relationship between CWA, season, and 

time of day  for the tornadoes in this study. Included are the observed count (Obs), expected 

count (Exp), and standardized residual (R).  

848 

849 

850 

MEG OHX MRX Day Night 

Obs Exp R Obs Exp R Obs Exp R Obs Exp R Obs Exp R 

Spr 

Sum 

Fall 

Win 

142 

19 

34 

46 

153 

15 

32 

41 

-0.89 

1.09 

0.33 

0.78 

107 

3 

32 

45 

119 -1.08 

11 -2.50 

25 1.42 

32 2.34 

113 90 

13 9 

10 19 

6 24 

2.40 

1.45 

-2.05 

-3.70 

215 

31 

43 

25 

199 

19 

42 

53 

1.10 

2.67 

0.18 

-3.89 

147 

4 

33 

72 

163 -1.22 

16 -2.96 

34 -0.19 

44 4.31 

Day 

Night 

136 

105 

132 

108 

0.28 

-0.31 

99 

88 

103 -0.40 

84 0.44 

79 78 

63 64 

0.09 

-0.10 
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859 Appendix C  

Information pertaining to chi-square tests assessing the relationship between CWA, season, and 

time of day  for the  unique  tornado events in this study. Included are the observed count  (Obs), 

expected count (Exp), and standardized residual (R). R are not included when expected values  

are less than  five for one category.  

860 

861 

862 

863 

Discrete Supercell Cell in cluster Cell in line QLCS 

Obs Exp R Obs Exp R Obs Exp R Obs Exp R 

Spr 40 37 - 54 57 - 28 24 - 25 28 -

Sum 5 6 - 16 10 - 1 4 - 3 5 -

Fall 10 11 - 20 17 - 7 7 - 6 11 -

Win 9 10 - 8 15 - 6 6 - 15 10 -

MEG 32 28 0.74 44 43 0.15 15 18 -0.8 20 21 -0.32 

OHX 15 20 -1.21 30 31 -0.25 19 13 1.51 17 16 0.33 

MRX 17 15 0.4 24 24 0.08 8 10 -0.67 12 12 0.05 

Day 46 39 1.084 62 60 0.25 27 26 0.25 20 30 -1.8 

Night 18 25 -1.36 36 38 -0.32 15 16 -0.32 29 19 2.3 
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869 Appendix D  

870 Information pertaining to chi-square tests assessing the relationship between CWA, season, and 

time of day  for the tornado events in this study. Included are the  observed count (Obs), expected 

count (Exp), and standardized residual (R).  

871 

872 

873 

874 

875 

876 

877 

878 

879 

880 

40 

   MEG OHX   MRX  Day Night  

   Obs  Exp  R  Obs  Exp  R  Obs  Exp  R  Obs  Exp  R  Obs  Exp  R 

 Spr  57  64  -0.93  50  47  0.43  40  35  0.77  94  90  0.42  53  57  -0.52 

 Sum  13  11  0.61  3  8  -1.77  9  6  1.21  22  15  1.71  3  10  -2.15 

Fall   19  19  0.03  16  14  0.60  8  10  -0.74  22  26  -0.85  21  17  1.06 

 Win  22  17  1.30  12  12  -0.05  4  9  -1.71  17  23  -1.30  21  15  1.64 

 Day  68  68  0  52  50  0.34  35  37  -0.39 
      

Night   43  43  0  29  31  -0.42  26  24  0.49 



  

 

 

 

 

  

  

  

  

  

881 Appendix E  

882 Information pertaining to chi-square tests assessing the relationship between false-alarm  

convective mode  and season, CWA, a nd time of day. Included are the observed count (Obs), 

expected count (Exp), and standardized residual (R).  
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Discrete 

Supercell  
 Cell in cluster  Cell in line QLCS  

   Obs  Exp  R  Obs  Exp  R  Obs  Exp  R  Obs  Exp  R 

 Spr 

 Sum 

 48 

 18 

 34 

 13 

 2.39 

 1.33 

 93 

 31 

 75 

 29 

 2.03 

 0.35 

 22 

 13 

 33 

 13 

 -1.86 

 0.11 

 0 

 1 

 21 

 8 

 -4.58 

 -2.50 

Fall   20  18  0.59  39  39  0.03  14  17  -0.68  11  11  0.05 

 Win  8  29  -3.93  45  65  -2.45  41  28  2.46  46  18  6.58 

 MEG  31  43  -1.83  90  95  -0.53  56  41  2.31  29  27  0.48 

OHX   27  32  -0.84  69  70  -0.15  27  30  -0.62  29  20  2.13 

 MRX  36  19  3.83  49  43  0.99  7  18  -2.66  0  12  -3.44 

 Day 

Night  

 56 

 38 

 43 

 51 

 2.05 

 -1.87 

 108 

 100 

 94 

 114 

 1.41 

 -1.29 

 35 

 55 

 41 

 49 

 -0.9 

 0.82 

 5 

 53 

 26 

 32 

 -4.12 

 3.78 



  

 

 

 

 

  

  

  

  

  

  

890 Appendix F  

891 Information pertaining to chi-square tests assessing the relationship between CWA, season, and 

time of day  for the  false  alarms in this study. Included are the observed count (Obs), expected  

count (Exp), and standardized residual (R).  
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   MEG OHX   MRX  Day Night  

   Obs  Exp  R  Obs  Exp  R  Obs  Exp  R  Obs  Exp  R  Obs  Exp  R 

 Spr 

 Sum 

 56 

 27 

 75 

 29 

 -2.16 

 -0.34 

 56 

 14 

 55 

 21 

 0.13 

 -1.58 

 51 

 22 

 33 

 13 

 3.06 

 2.54 

 87 

 52 

 74 

 29 

 1.52 

 4.39 

 76 

 11 

 89 

 34 

 -1.39 

 -3.99 

Fall   52  38  2.18  22  28  -1.20  10  17  -1.73  29  38  -1.47  55  46  1.34 

 Win  71  64  0.86  60  47  1.85  9  29  -3.67  36  63  -3.45  104  76  3.14 

 Day 

Night  

 89 

 117 

 94 

 113 

 -0.45 

 0.41 

 63 

 89 

 69 

 83 

 -0.71 

 0.65 

 52 

 40 

 42 

 50 

 1.59 

 -1.45 
 

 

 

 

  

  

 

 

 

 



  

 

  

 

900 Figure 1.  

901 

902 

43 

 



  

  

 

  

  

  

903 

904 Figure 2. 

905

906 

907 

908 

44 

   



  

  

 

909 Figure 3. 

910 

45 

 


	Forecaster perceptions and climatological analysis of the influence of convective mode on tornado climatology and warning success
	Abstract
	Introduction
	Background
	Data and Methods
	Results
	Discussion
	Limitations
	Conclusion
	References
	Author Contact Information
	Figure Captions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix F



