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Abstract

Tornadogenesis occurs in a variety of storm types, or convective modes, each having a unique
climatology and challenges in their detection and warning. Some warnings result in false alarms,
meaning no tornado occurred within the warning polygon. We used a mixed-methods approach
to assess how convective mode—discrete supercell, cell in cluster, cell in line, or quasi-linear
convective system (QLCS)—affects the tornado climatology and National Weather Service
(NWS) procedures within three County Warning Areas (CWAs): Memphis (MEG), Nashville
(OHX), and Morristown (MRX). We used three data sets: tornadoes (2003—2014) categorized by
convective mode, false alarms (2012-2016) categorized by convective mode, and 11 interviews
of NWS forecasters. The CWAs had no significant difference in mode frequency when removing
replication from multiple-tornado events. However, when outbreaks were included, discrete
supercell and QLCS signals were identified in MEG and OHX, respectively. Convective mode,
season, and time of day were strongly associated. Tornadic discrete supercells followed a
traditional severe weather pattern of spring and daytime occurrences, and caused fewer false
alarms. More QLCS tornadoes happened at night and in winter. Cells in lines and clusters
accounted for larger proportions of events in the false alarm data set than the tornado data set.
Forecasters noted challenges in detecting tornadoes in convective modes other than discrete
supercells, including short-lived QLCS tornadoes. Key forecaster concerns other than convective
mode included storm speed, outbreaks, and lack of ground-truthing at night. Forecasters differed
in their motivation to either warn on every tornado or avoid false alarms. Key words: tornado,

climatology, supercell, QLCS, false alarm
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Introduction

Tornadogenesis occurs in a variety of storm types, or what many researchers refer to as
convective modes. Convective modes differ in appearance, structure, and other characteristics,
and result from different conditions in their ambient environment (e.g. amount of instability or
wind shear). A quasi-linear convective system (QLCS) is a convective mode wherein weak
tornadoes rapidly form and decay, stemming from embedded rotation that often appears in only
one or two radar scans (Trapp et al. 2005). Meanwhile, rotation within a discrete supercell
convective mode is easily spotted on radar. This gives forecasters time to make assessments and
issue warnings before the supercell’s impending tornado—which may be wide, intense, and
long-lasting—becomes an immediate threat to life and property (Brotzge et al. 2013). Because of
these differences, each mode comes with a distinctive set of challenges to accurately and
precisely detect and warn for a tornado (Brotzge et al. 2013). They also have dramatically
different societal effects. Supercells are responsible for 90 percent of tornado fatalities from
1998-2007 (Schoen and Ashley 2010) and caused more financial loss from 2003—2004 than
tornadoes from other convective modes (Brotzge et al. 2013).

We used a mixed-methods approach by pairing a climatology of tornadic and false-alarm
convective modes with interviews with National Weather Service (NWS) forecasters. We
quantitatively and qualitatively assessed the effect convective mode has on tornado detection and
warning in three NWS County Warning Areas (CWAs): MEG in Memphis, OHX in Nashville,
and MRX in Morristown. Pairing these results allowed us to address the climatological and
operational aspects of potentially tornadic convective modes across the state. We had two

hypotheses: 1. The three CW As would have different climatologies of tornadic convective
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modes, and 2. Warning challenges would increase for non-super cellular events, as demonstrated

by false alarm analysis and forecaster interviews.

Background

Tornado warnings

A tornado warning is issued by a NWS Weather Forecast Office (WFO) when a tornado
has been visually spotted or radar-indicated (NOAA n.d.), with the goal of urging the public to
take protective action. Each WFO is responsible for a set of counties, referred to as their CWA.
Initially, tornado warnings were county-based, meaning if a tornado was expected to affect any
part of the county, the entire county was warned. In October 2007, the NWS moved to a storm-
based method, where warnings were drawn as polygons outlining areas with the greatest threat
(NOAA 2007). This change reduced the size of warning polygons, time spent under warnings,
false-alarm ratios (FARs; discussed in detail in the next section) and a warning’s economic
impact (Sutter and Erickson 2009).

The decision to issue a warning is complex, as is the public’s decision on whether to take
protective action (see Figure 1 of Brotzge and Donner (2013)). Weather radar and storm-spotter
verification are the primary data used to identify potential tornadogenesis (Brotzge and Donner
2013). Other data, including population vulnerability, tornado climatology, event anticipation,
Storm Prediction Center (SPC) guidance, and history (Brotzge and Donner 2013), are also
included in warning decisions. Some of these data are subjective or personal in nature and can
vary among forecasters. Additionally, forecasters differ in experience and knowledge, which
may lead to differences in decision-making (Andra, Quoetone, and Bunting 2002). The ultimate

decision to warn is therefore inherently multifaceted, drawing heavily on the cumulative
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experience of the forecaster. Further complicating the matter, even with the best skill there are
still fatalities. During the 2011 outbreak, for example, all tornado fatalities occurred from
tornadoes that were within tornado warning polygons (NOAA 2011).

Warning success is often calculated using three parameters: FAR, probability of detection
(POD), and lead time. Forecasters balance these three parameters, with the ultimate goal to
detect all tornadoes, have no false alarms, give the longest possible lead-time, and draw the most
effective warning polygon (Brotzge and Donner 2013). “False alarm” is the term for when a
tornado warning is issued but no tornado occurs within the warning polygon. The FAR is the
number of false alarms divided by the number of warnings, thus a percentage of warnings that
did not verify. The national FAR was between 68 and 80 percent each year from 1998-2018
(NOAA 2019). Issues may arise when using FAR data without sufficient context. For example,
see the discussion on “close calls” by Barnes et al. (2007), which details why the “hit or miss”
nature of a false alarm does not accurately depict what occurs in the environment or how it
affects the public. While their statistics may be misleading at times, false alarms are important to
analyze because they may affect public response to future severe weather events, as numerous
false alarms may contribute to alarm fatigue or a “cry wolf” effect. Simmons and Sutter (2009)
found that tornadoes occurring in areas with higher FARs killed more people, and that in past
periods when forecasts notably improved, thus resulting in lower FARs, fatalities and injuries
significantly decreased. Interestingly, FAR affects behavioral response even though public
perceptions of FAR are often incorrect (Trainor et al. 2015).

Some WFOs or individual forecasters may consciously consider FARs in their decision-
making. This may ultimately happen at the expense of the POD, which quantifies the proportion

of confirmed tornadoes that are successfully warned for in advance (Brooks 2004). The national
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POD was between 57 and 80 percent each year from 1998-2018 (NOAA 2019). Simmons and
Sutter (2009) reported that further reduction of FAR would not reduce fatalities given that it
would also likely reduce POD. FAR is often highest during times with low POD because
limitations in knowledge, technology, and storm spotter availability can impede a forecaster’s
ability to detect and warn for tornadoes in particular environments (Brotzge, Erickson, and

Brooks 2011).

Convective mode studies: Climatology and effects on warnings

By analyzing convective modes, researchers provide information about the types of
storms that are more hazardous or challenging to forecast. A major challenge to analyzing
convective modes is the restraint related to the time it takes to classify storm types. This results
in brief study periods, often confined to one or a few years. A longer database of convective
mode classifications (2003—2011), which was tediously created by the SPC (see Smith et al.
(2012)), has been used in the past and also for this work. For a previous study (Brotzge et al.
2013) and for our own work, it does not entirely overlap the span of the other data sets being
used, and thus is not always used to its full potential. Additionally, eight years is still relatively
short for a climatology. A second challenge is that convective mode classification relies on
archived radar data, thus it is necessary for a storm to be in a place and time with reliable radar
coverage. This limits the data temporally and spatially, as well as its precision. Finally, when
researchers take on convective-mode classification, it is subjective in nature as there are many
different ways to categorize storms. To minimize subjectivity issues, people often work in teams
and attempt to adhere to quantifiable thresholds and descriptive characteristics (Gallus, Snook,

and Johnson 2008; Schoen and Ashley 2010).
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Smith et al. (2012) found that, between 2003 and 2011, more tornadoes were caused by
discrete and cluster right-moving cells across the United States than QLCS and disorganized
convective modes. The proportion of tornadoes spawned by a QLCS, as opposed to a cell, varies
greatly by location. Trapp et al. (2005) found that 18 percent of the 3828 tornadoes they studied
from 1998-2000 occurred in a QLCS, but in some locations up to half of the tornado days were
associated with QLCSs. Smith et al. (2012) showed that QLCS tornadoes are most common in
the Southeast and Midwest. Other differences between these modes include tornado intensity and
seasonality. Supercells usually cause most of the significant (EF2+) tornadoes and dominate the
springtime climatology, while QLCS tornadoes are weaker and the most prominent tornado-
producer in January (Smith et al. 2012).

Previous literature has shown that convective mode affects the ability of NWS forecasters
to accurately forecast, detect, or warn for tornadoes. QLCSs are challenging because of their size
and lack of prominent rotation. Tornadoes have the potential to initiate rapidly at any point along
their >100-km length (Trapp et al. 2005) making detection and warning dissemination very
difficult. Brotzge and Erickson (2010) showed that tornadoes from linear and other convective
modes that were hard to classify (e.g. transitional modes, those evolving into a line) were least
likely to be warned on before tornadogenesis. These results were supported by Brotzge et al.
(2013), which showed POD dropped from 87.9 percent for discrete supercell to 48.6 percent for
QLCS tornadoes. The worst POD (44.2 percent) was for tornadoes from disorganized
convection. This work also documented the effect of convective mode on lead time, showing
average lead time decreased from 17.8 minutes for discrete supercell to 12.3 minutes for QLCS

tornadoes. The worst lead time (11.7 minutes) was associated with disorganized convection
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(Brotzge et al. 2013). We are unaware of any research specifically assessing the relationship
between convective mode and false alarms.

FAR and POD statistics show that convective mode explains only part of the variability
in forecast, detection, and warning challenges. FAR 1is largest (Brotzge, Erickson, and Brooks
2011) and POD lowest (Brotzge and Erickson 2010) during non-peak storm periods, e.g., at night
and during the winter, and on less-active, non-outbreak days. Distance from radar, population,
and county size were also significant predictors of FAR, but these results were prior to the onset
of storm-based warnings and during a time of county-based warnings (Brotzge, Erickson, and
Brooks 2011). FARs (Brotzge, Erickson, and Brooks 2011) and tornadoes occurring without
warning (Brotzge and Erickson 2010) are greater in the Southeast than the Great Plains. This
may relate to the higher number of out-of-season and nocturnal tornadoes in the Southeast

region, as well as non-meteorological factors such as visibility.

Data and Methods

Study Area

We analyzed the convective mode climatology and effects in the three CWAs of the
WFOs located in Tennessee (Figure 1). The offices are located in Tennessee, but they adhere to
county, not state, boundaries, so they also warn for some counties outside of the state.
Additionally, some out-of-state offices warn for a few Tennessee counties. MEG warns for
western Tennessee, northern Mississippi, northeast Arkansas, and a small part of southeast
Missouri. OHX warns for most of middle Tennessee. MRX warns for eastern Tennessee,
southwest Virginia, and a small part of southwest North Carolina. These CW As experience

relatively different tornado climatologies, with the most notable difference being the lessened
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tornado frequency in MRX (Brown, Ellis, and Bleakney 2016) and increased fatalities in MEG
(Ashley, Krmenec, and Schwantes 2008; Brown, Ellis, and Bleakney 2016). All of OHX and
portions of MEG and MRX are located within the highest frequency of QLCS tornadoes outlined

by Smith et al. (2012).

Tornado Data

For tornadic convective modes, we relied heavily on the database presented in Smith et
al. (2012). This database contains a list of tornadoes from 2003 to 2014, each having an assigned
convective mode. Bryan T. Smith of the SPC kindly provided the data for the state of Tennessee
for this study, hereafter referred to as the Smith database. The Smith database does not include
all tornadoes during this period because of a filtering approach used during its creation.
Specifically, the database contains tornado data segmented by county and filtered hourly for the
highest-magnitude report on a Rapid Update Cycle (RUC) model (Benjamin et al. 2004), 40-km
horizontally spaced analysis grid (Smith et al. 2012). To create a complete data set of observed
tornadoes over the time period, we compared the tornadoes listed in the Smith database to those

of the SPC (located online at http://www.spc.noaa.gov/gis/svrgis/). The SPC data set currently

provides details for each confirmed tornado in the United States from 1950-2017, including date,
time, magnitude, track location and length, and fatalities (Schaefer and Edwards 1999). We
gathered information on all tornadoes recorded by the SPC in the CW As that were not in the
Smith database, including the tornadoes that occurred outside of the Tennessee border. This
resulted in 570 total tornadoes from 2003-2014. We manually assigned the convective mode of

the additional tornadoes using the methods described below.
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Issues with the SPC tornado database are well documented. Most notable is the apparent
increase in frequency through the record because of advancements in technology and reporting
practices (Verbout et al. 2006), population sprawl (Elsner et al. 2013), and storm spotters
(Doswell, Moller, and Brooks 1999), which have allowed more tornadoes to be observed and
recorded in recent times. These biases do not have a large influence on our results because we
are using a recent time period and not analyzing long-term trends. One important bias could be
differences in observation likelihood based on convective mode. Not all tornadoes are observed,
especially in our study area (Ellis et al. 2018), and weaker tornadoes are more likely missed
(Verbout et al. 2006). Thus, QLCS tornadoes may be especially undercounted because they are
typically weaker and less likely to cause loss of life or property (Brotzge et al. 2013). Trapp et al.
(2005) suggested as many as 12 percent of QLCS tornadoes still go unreported, compared to
only 1 percent from supercells.

We categorized the tornado data by season and time of day. Tornadoes touching down
between sunset and sunrise were labeled nocturnal. We used daily sunrise and sunset times for
the cities of Knoxville, Nashville, and Memphis from the United States Naval Observatory

(available online at http://aa.usno.navy.mil/data/docs/RS_OneYear.php). Seasons were divided

as follows: winter (D-J-F), spring (M-A-M), summer (J-J-A), and fall (S-O-N).

False Alarm Data

False alarms from 2012—-2016 was gathered using the lowa Environmental Mesonet

(available online at https://mesonet.agron.iastate.edu/cow/). We searched within the three CWAs

for storms that were tornado-warned but did not produce any known tornadoes, uncovering 450
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false alarms. We categorized the false alarms by time of day and season following the methods
used for the tornado data.

The false-alarm period is shorter than the tornadic convective mode period because all of
the storms had to be manually classified, which is a time-intensive exercise. A limitation in using
this period for false alarms is that it only briefly overlaps with the tornadic convective mode
database. We instead wanted to increase the likelihood that this period overlapped with the
employment of all those interviewed. False alarms often indicate a challenging forecasting or

warning environment, which was the focus of the interviews.

Convective Mode Classification

The Smith database distinguishes between six different convective modes: discrete
supercell, cell in cluster, cell in line, cluster, QLCS, and bow echo (Smith et al. 2012). We
slightly modified these classifications. Specifically, few storms in the Smith database were
classified as bow echoes, which are subsets of QLCSs (Weisman and Trapp 2003) composed of
quasi-linear convection that “bows” into a comma-like shape due to low-level unidirectional
winds. We combined these entries with the QLCS category. Only one tornado during the period
of study falls into the convective mode category of “cluster,” thus we grouped this into “cell in
cluster.” This results in four separate convective mode classifications: discrete supercell, cell in
cluster, cell in line, and QLCS (Figure 2).

To assign convective modes to the false alarms and additional tornadoes, we used
archived NEXRAD Level II radar, obtained from Amazon Web Services. We viewed the radar
images in the Gibson Ridge radar viewer (GR2Analyst, available online at

http://www.grlevelx.com), referencing scans from the radar site closest to each storm. We used
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information from adjacent radar sites if the nearest was not available or if more information was
needed. We determined convective mode at the starting location of the tornado using the radar
scan occurring immediately prior to the time of tornado initiation. We referenced preceding and
subsequent radar scans in instances of ambiguity. By observing how the storm changed as it
traveled, we obtained additional information about storm characteristics and the depth and
strength of rotation to more accurately determine convective mode at the time of tornado
initiation. We also used the Smith database as a reference guide to ensure consistent storm
classification. We adjusted the time, and occasionally the date, of some of these tornadoes based
on radar evidence, as did Smith et al. (2012). Some storms were more challenging to identify
because of radar location or challenging storm structure. Each convective mode categorization
was reviewed by at least three people, increasing our confidence in the results.

We referenced multiple radar elevation scans and products to arrive at a correct
convective mode classification. Most important were the base reflectivity product depicting
rainfall intensity, and storm-relative velocity product revealing areas of embedded rotation,
referred to as velocity couplets. Lowest-elevation radar tilts were given priority (typically 0.5°
above the horizon) while subsequent higher scans were consulted as necessary, especially when
distinguishing a cell in line from a QLCS. A clearly defined tornado vortex signature appearing
through multiple radar tilts was indicative of a mesocyclone and a cellular convective mode. The
mesocyclone was always immediately surrounded by convection with reflectivity above 35 dBZ.
We labeled the storm a discrete supercell if the convection was not connected to any other high-
reflectivity convection with echoes >35 dBZ. In other words, the echo had to decrease to below
35 dBZ before reaching another storm. If a mesocyclone was connected to other areas of rotation

by reflectivity >35 dBZ, we labeled the storm as cell in line or cluster. Cell-in-lines were when
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areas of rotation and reflectivity were oriented linearly; otherwise, the mode was cell-in-cluster.
We classified weaker rotation, and a line of convection with reflectivity >35 dBZ for a distance
of >100 km, as a QLCS. Rotation was much weaker and shallower in a QLCS than a cell, and

sometimes it was not visible on the radar.

Interview Data

We interviewed NWS employees (n=11) in early 2017 concerning the effect convective
mode has on the tornado forecast, detection, and warning process in Tennessee. We interviewed
three employees at OHX, and four each at MEG and MRX. Open-ended questions related to
tornado forecasting, tornado detection, warning procedures, and convective mode were posed,
and forecaster responses were recorded and transcribed. We interviewed employees with various
roles (e.g., Warning Coordinating Meteorologist, Meteorologist in Charge, etc.). We refer to all
those interviewed as “forecasters.” All were in-person interviews except for one Skype
interview. This research was approved by the University of Tennessee Institutional Review
Board (UTK IRB-16-03462-XP). The interviewees signed a consent form allowing the
interviews to be recoded and transcribed, and the results to be shared anonymously. Each

interviews lasted approximately one hour.

Convective Mode Analyses
The relationships between tornadic convective modes (four categories), CWA (three
categories), season (four categories), and time of day (two categories) were assessed using chi-

square tests. Cramer’s Phi was used post-hoc to test the strength of the associations. We modeled
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the dependence of convective mode on CWA, season, and time of day using multinomial logistic
regression.

Tornado outbreaks may affect the independence of the samples and bias the results. For
example, one QLCS may cause 15 tornadoes one night in December. Therefore, we created a
new data set of unique tornadic events by counting only one of each convective mode per time of
day (nocturnal and daytime) per day at each CWA. This resulted in a sample size of 253 events,
approximately 44 percent of the original data. We analyzed relationships between unique
tornadic events and CWA, season, and time of day as we did for all tornadoes, including chi-
square tests, Cramer’s Phi, and multinomial logistic regression.

Lastly, we analyzed false-alarm convective modes via chi-square tests and Cramer’s Phi.
Because there were some seasons when a CWA did not have a false alarm for a particular mode,

we did not do a multivariate analysis.

Interview Analyses

We coded the interview data using descriptive and interpretive coding (Tracy 2012;
Creswell 2013). We used thematic analysis to identify themes from the codes. Each set of
interviews was coded separately by two people, then results were compared and discrepancies

were reconciled.

Results

Tornadic convective modes
A tornado’s convective mode was significantly associated with CWA, time of day, and

season (Table 1, Appendix A). Nocturnally, more QLCS tornadoes were observed than expected,
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and fewer discrete supercell tornadoes were observed than expected. There were minimal
differences in observed and expected counts for tornadoes from cells in lines and clusters based
on time of day. Seasonal variability can be seen in Figure 3. The largest seasonal differences
between observed and expected values were that more QLCS tornadoes occurred in the winter
and fewer in the spring. Cell-in-line tornadoes were more common in the fall than expected, and
cell-in-clusters more common in the summer. QLCS variability was notable among CWAs, too.
In OHX, more tornadoes from linear events, both QLCS and cell in line, occurred than expected
at the expense of tornadoes from clusters and discrete cells. Meanwhile, MEG observed more
tornadoes from discrete cells than expected at the expense of linear events. In MRX, notably
more tornadoes from cells in clusters occurred than expected and fewer from cells in lines. CWA
had a slightly greater association with convective mode than season or time of day.

There were also significant associations between the time of day, season, and CWA of a
tornado (Table 1, Appendix B). Season and time of day had the largest association among these
variables, with a larger proportion of tornadoes happening at night in the winter than during the
other seasons. Time of day did not vary significantly between CWA, but season did. The biggest
differences in observed and expected values occurred with MRX having more tornadoes in the
warm seasons and fewer in the cool seasons than expected. OHX was the opposite, observing
more tornadoes than expected in the winter and fewer in the spring and summer. MEG
demonstrated less of a seasonal signal in tornado occurrences.

We calculated odds ratios by exponentiating the coefficients of the multinomial logistic
regression model (Table 2) and found that a tornado occurring at night is 2.69 times more likely
to be from a QLCS than a discrete supercell. Nocturnal tornadoes were significantly more likely

to be from any mode other than a discrete supercell. Other large differences in odds were the
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likelihood for tornadoes from linear events in OHX as compared to MEG, and the likelihood of a
cell-in-cluster or QLCS tornado in the summer compared to one from a discrete supercell. Most
model coefficients were significant, and fall was the only category across the independent

variables to not have differences in odds between convective modes.

Convective mode of unique tornado events

Next we assessed unique tornado events, i.e., only one of each convective mode was
counted per time of day (nocturnal and daytime) per CWA per day. This removed the
convective-mode bias from multiple-tornado events. Table 3 shows how the proportions of each
convective mode changed as a result. There was still a significant association between
convective mode variability and time of day, with more QLCS and fewer discrete supercells than
expected nocturnally (Table 4), matching the results from all tornadic convective modes. CWA
no longer had a significant association with convective mode and season. We could not assess
the relationship between mode and season using chi-square tests because not all expected values
were greater than five (Appendix C). The raw data show that QLCSs were the most common
wintertime producers of tornadic events, while cell-in-cluster and discrete supercells were the
biggest springtime producers. The relationship between time of day and season remained the
strongest of all (Table 4, Appendix D).

These relationships were also modeled using multinomial logistic regression (Table 5).
There were only two instances of significant differences in odds between the convective modes:
a nocturnal tornado was 3.74 times more likely to be from a QLCS versus a discrete supercell,

and a cell-in-line tornado was 2.66 times more likely in OHX than one from a discrete supercell.
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False-alarm convective modes

False-alarm convective modes varied significantly based on season, CWA, and time of
day (Table 6). The main differences in observed and expected values for the time-of-day
variable were that, nocturnally, more (fewer) QLCS (discrete-supercell and cell-in-cluster) false
alarms occurred than expected. Seasonally, there were more false alarms in the winter and spring
(Figure 3B). However, it is likely that the FAR was low in the spring because there were also
more tornadoes. There are noticeably few false alarms from discrete supercells in the winter, and
in every season there are more false alarms from cells in clusters than any other mode. Cell-in-
cluster false alarms were the most prominent in all CWAs, and MRX had fewest linear-event
false alarms. There were no QLCS false alarms during the study period in the spring or in MRX,
causing large residuals in these categories (Appendix E), and leading us to forgo a multivariate
analysis.

CWAs varied significantly in the daily and seasonal timing of their false alarms (Table 6,
Appendix F). The main difference in observed and expected values was that, in MRX, fewer
false alarms occurred nocturnally than expected, while slightly more occurred nocturnally than
expected in MEG and OHX. Seasonally, the largest differences were, in MRX, more false alarms
occurred in the spring than expected, and fewer in the winter. In MEG, fewer false alarms
occurred in the spring than expected and more in the fall, and in OHX more occurred in the

winter than expected.

NWS forecaster interviews

We identified three themes: (a) forecast, detection, and warning challenges, (b) individual

perceptions and decision-making variability, and (c) effects on office management and
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procedure. Within the discussion of each theme, we demonstrate how convective mode affects

each, as well as other inherent storm or forecaster characteristics that emerged as relevant.

Forecast, detection, and warning challenges

Most participants noted the ease of and their confidence in forecasting, detecting, and
warning for discrete supercells as compared to QLCS events. Reasons given included: being able
to use the velocity radar product for supercells, which is not as helpful for linear events; areas of
rotation in isolated cells “stand out like a bullseye” whereas for a linear event it is a “needle in a
haystack™; QLCS tornadoes form quickly and are short-lived; spotters may not report storm
characteristics like wall clouds for QLCS events; and a QLCS usually moves more quickly
through the area. Forecasters also expressed that the science behind supercells is more straight-
forward. One forecaster mentioned, “...we don’t know why some QLCS tornadoes touch down
and why some don’t.” Three forecasters mentioned a benefit to a line—that there is a distinct
beginning and end, and thus, can be “nice and contained” and easier to time. Overall, however,
the word “easy” was used many more times when discussing tornadic supercells, while
“complex” and “tough” were commonly used to describe tornadic QLCS events. Forecasters
noted that success metrics likely fare worse for QLCS events, meaning a higher FAR, lower
POD, and shorter lead time.

QLCS events were also noted for their need of larger warning polygons. These larger
polygons may improve POD but can increase the public’s perception of FAR. Many forecasters,
especially those at MRX, mentioned their concern for straight-line winds from QLCS events
rather than tornadoes. A common strategy mentioned when warning for a QLCS was using a

severe thunderstorm warning with a tornado-possible tag in place of a tornado warning. If
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necessary, forecasters can then issue smaller tornado warnings contained within or overlapping
the severe-thunderstorm polygon. However, the forecaster must then keep track of multiple
warnings simultaneously.

Cellular events that are non-supercellular, for example, cells in clusters, were mentioned
by some forecasters and were the focus of one. They referred to these events as “messy” and
making the radar operator’s job “impossible,” stating they “don’t know where to look.” They
also mentioned the need for ground-truthing to determine which cell is strongest. MRX
forecasters mentioned how storms usually break apart before reaching their CWA, leaving them
with messy, transitional “leftovers” compared to the more frequent supercells in western
Tennessee. These leftovers are more challenging for spotters to interpret but are fortunately
much weaker.

All forecasters expressed concern about other storm characteristics that they perceive as
more impactful than convective mode. These characteristics included storm speed, daily and
seasonal timing, and outbreak events. Storm speed was mentioned because fast storms rush
forecasters and, unfortunately, require bigger polygons, which may increase FARs or public
confusion. Additionally, if a storm is moving at 60 mph, a specific speed mentioned by at least
three forecasters, even the outflow will be damaging. One forecaster mentioned that it changes
their internal rules for warning because they need to work quickly to get the warning out. They
“don’t want to mess with these kinds of storms.” Nocturnal events were a concern for many
because the public and storm spotters are sleeping, and forecasters recognize the large number of
fatalities from nighttime tornadoes in their region. One forecaster suggested that nighttime is

almost an equalizer, because there is no information coming in from storm spotters and the
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public, thus no convective mode is particularly easy. Another, meanwhile, noted that it made the
more challenging storms, like cells in clusters, even more difficult:
The smaller cellular stuffis probably more of a problem, because you really want that
truth. You really want to know what's going on. Which one is worse? Which one do 1
concentrate on?
Time of year was mentioned for its influence on storm speed and the availability of different
environmental parameters, for example, CAPE and shear, thus affecting convective mode.
Outbreaks were noted for their effect on success metrics, as high-end events were perceived to
cause lower FARs and higher POD. As one forecaster explains:
The bigger events, it's like the Plains. It's like shooting fish in the barrel there. You can't
overlook it and you can definitely maybe not get as much lead time on the initial tornado
that might develop from a storm, but if you know the storm is going to persist, and you

can definitely get a lot of lead time downstream.

Individual perceptions and decision-making variability

There was a noticeable difference in the stated occupational objectives of the forecasters,
which related to differences in their decisions on whether to warn. While some forecasters
mentioned that they entered this career because they love science and the weather, others
mentioned a calling to save lives. One stated:

I'm glad that I'm able to serve our public through my career down here. I'm pretty

religious and I think there's a pretty good reason why I got selected to come down here. |

think I can make a valiant effort on saving lives.
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Those who mentioned a purpose of saving lives were more likely to affirm the importance of
POD, especially over considering FARs. Forecasters were split nearly in half on whether concern
for the public at night affects their warning procedure during nocturnal events. One forecaster
mentioned they are more willing to have a false alarm because they want to look out for the
sleeping public. Another forecaster said, when asked about nocturnal events, “...those scare the
hell out of me.”

Many forecasters mentioned that potential degree of impact plays a role in their warning
decision, e.g., whether the storm is headed to a highly populated area. Meanwhile, one forecaster
mentioned they “divorce” themselves from the people and are conservative about warnings,
detailing how they use specific thresholds to determine whether to warn or not. Another
forecaster said thresholds are dangerous because they do not account for the potential impacts.
One forecaster mentioned being more cautious (i.e., more likely to warn) with the more
dangerous cells, but being more conservative with a potentially tornadic line that would likely
cause weaker tornadoes. Another forecaster mentioned how they are thankful that their
supervisor understands that they will miss some of the weaker tornadoes.

Differences in decision-making may stem from variability in office philosophy and from
forecaster experience level. One forecaster said of office differences:

Now, I think between offices there's different philosophies. Some offices want to cover

everything as far as I can tell. We all talk about each other in different ways, but some

offices want to cover everything, some offices are more conservative. My philosophy has
always been we are here for the severe weather, not the almost-severe weather.
Several forecasters noted that inexperienced forecasters are likely to warn more, with one stating,

“...the younger you are or the newer you are, the faster you are to pull triggers, because
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everything looks good.” Another said, ““...somehow experience plays in, I think, how you use

that experience to give you better foresight to what's severe and what's not.”

Effects on office management and procedure

Convective mode influences how radar is used in the WFO. Specifically, many
forecasters noted that some modes favor sectorizing, a technique mentioned by all three WFOs
wherein the radar is divided into sections, each manned by a different radar expert. Sectorizing is
necessary when there are many warnings spread across a large space. Complex convection, e.g.,
a line with leading convection or a discrete mode transitioning to linear, requires sectorizing and
more people. A simple, contained line was said to require fewer people, while a more
complicated line or one stretching over a long distance benefits from sectorizing. A MEG
forecaster mentioned that they think sectorizing is more important for their CW A because of the
high likelihood of outbreaks and the size of their CWA, adding, “...we never rely on somebody
working the whole CWA. That's dangerous.”

Communication techniques and challenges depend on convective mode. One forecaster
described how a large, sweeping QLCS, which will likely affect the whole CWA, would be
highlighted in warning communications to the public. However, if tornadic supercells were also
expected then warnings would focus on the increased threat associated with these storms. The
danger of straight-line winds in a QLCS is also important to forecasters to communicate. This is
especially true in MRX where these winds are more likely and sometimes more damaging than
QLCS tornadoes, and where forecasters perceive that the public does not take them seriously.

Many forecasters mentioned that social media helps them provide updated information

during complex convection, and they hope to continue to improve their social media presence.
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Partnerships with the media and emergency managers are also important during complex,
nocturnal, or out-of-season events. Integrated Warning Team meetings and Media Days are some
ways that forecasters mentioned networking with these groups and building trusting
relationships.

Convective mode itself does not have a great effect on staffing, but forecasters reported
outbreak days and nocturnal events as providing challenges. With outbreak days, one forecaster
said, “...you need all hands on deck.” Many forecasters mentioned how draining and anxiety-
inducing outbreaks and nocturnal events can be. One forecaster mentioned:

If I've worked radar, and I've been intensely looking at the radar, after several hours, [

start to wear down. And I might start making bad decisions. We try to limit people being

on radar to about four hours or less, and we'll switch off to somebody else if we can. If
it's right in the middle of a bunch of stuff going on, of course we can't, but because we
know people just get worn out.

A surprise nocturnal event can also make it challenging to get in touch with staff to bring them

in, as well as summer and holidays because people may be traveling.

Discussion

Convective mode considerations

We accepted our first hypothesis, that the three CWAs would have different
climatologies of tornadic convective modes. OHX experienced a large number of tornadoes from
linear modes, while MEG favored cellular convection. MRX was most frequented by cell-in-
cluster tornadoes. The MRX forecasters mentioned several times that they get unorganized

leftovers, which is apparent in the climatology being dominated by cell-in-cluster tornadoes.
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However, mode patterns were no longer significant when assessing unique tornado events,
suggesting that outbreaks skewed the results. Cells-in-clusters were the most common mode for
unique tornado events in all three CW As. Perhaps the most notable finding here is that QLCS
outbreaks in OHX and discrete supercell outbreaks in MEG are unique to their areas, but as a
whole Tennessee is similar in having most tornadoes spawn from cells in clusters. The order of
the frequency of tornadic modes did not differ in MRX (cell in cluster > discrete supercell >
QLCS > cell in line) when comparing all tornadoes and unique tornado events, but did change in
both MEG and OHX. This shows that outbreaks are not a factor in MRX. A data set going
farther back in time could help determine whether the MEG and OHX outbreaks were unique
features of the study period or if they were part of a larger pattern seen in the tornado
climatology. The increased odds of a QLCS tornado at night was the only finding that was
strengthened by assessing unique tornado events, signaling its importance in the local tornado
climatology.

The climatology of discrete-supercell tornadoes, outbreaks, and false alarms
complemented comments from forecasters. Tornadic discrete supercells followed a more
traditional severe-weather pattern of spring and daytime occurrences. They make up a larger
proportion of events in the tornado data set than they do the false alarm data set, as expected
based on forecaster discussion of their ease of warning. Discrete supercells also had the largest
proportional decrease when moving from individual tornadoes to unique tornado events,
meaning they occurred in groups more often than the other modes. This contributes to the “fish
in a barrel” effect that one forecaster mentioned. Our findings support prior research suggesting
discrete cellular modes and multiple-tornado days contribute positively to warning success

(Brotzge and Erickson 2010; Brotzge, Erickson, and Brooks 2011; Brotzge et al. 2013).
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Our second hypothesis was that warning challenges would increase for non-supercellular
events, as demonstrated by false alarm analysis and forecaster interviews. We accept our
hypothesis, but note that forecasters have ways of mitigating potential false alarms from QLCS
events. QLCSs were specifically described as a challenging storm mode for tornado detection
and warning. Forecasters agreed that POD and lead time are worse in QLCS events, matching
the finding of previous literature (Brotzge et al. 2013). Additionally, the tornadic QLCS
climatology is skewed more toward winter and nocturnal occurrences than other modes, both of
which may increase the challenge in tornado detection, warning, and communication. However,
QLCSs had the least total false alarms. While our data sets are not directly compatible because
they are of different study periods, QLCSs caused a larger proportion of tornadoes than they did
false alarms. More information about QLCS challenges could be gleaned from classifying
convective modes of unwarned tornadoes.

Our findings suggest that QLCSs do not have a tornado warning false-alarm problem.
This could be in part because of the practice forecasters mentioned of using the severe
thunderstorm warning with a tornado-possible tag, recognizing any potential tornado is likely
short-lived and weak, and focusing on the straight-line winds. This reduces the FAR in a way
that still alerts people of the potential tornado. Previous work describes how it is challenging to
improve FAR or POD without worsening the other (Brooks 2004). However, it seems that, for
QLCS events, the tornado-possible tag on a severe thunderstorm is a way of communicating a
potential weak, short-lived tornado within the severe thunderstorm without increasing FAR. It is
important to assess how this type of communication affects public response before calling it a
success, but this could be why success metrics for linear modes did not appear as poor in our

study as they do in previous studies on POD and lead time. A severe thunderstorm warning is
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usually issued for a QLCS because of straight-line wind threats, and a major concern of our
forecasters was that residents may not take seriously the threats from non-tornadic winds in a
QLCS. This concern is warranted, because while organized cellular convection makes up the
majority of tornado-related fatalities, unorganized and linear convection are responsible for the
bulk of damaging non-tornadic convective winds (Schoen and Ashley 2010).

Many forecaster interviews focused on the differences between QLCSs and discrete
supercells, but the false-alarm results and the few discussions about non-discrete cellular
convection suggested cells in clusters and lines provide a larger challenge. Cells in clusters and
lines made up a larger proportion of false alarms than they did tornadoes, supporting the
forecasters’ descriptions of their challenges. Unlike discrete supercells, cells in clusters made up
a larger proportion of multiple-tornado events than isolated tornadoes, adding to their challenge.
Combined, they accounted for about 37 percent of multiple-tornado events in the winter, but 61
percent of false alarms in that season. This seemingly differs from the findings of Brotzge et al.
(2013), which said that QLCS metrics fare much worse than cells in clusters and lines. This is
likely because of a difference in the categorization of the convective modes— Brotzge et al.
(2013) included a “disorganized convection” category, which had the worst success metrics, but
our disorganized convection was forced into one of four categories, likely being cell in line or
cluster. Also, Brotzge et al. (2013) studied POD and lead time, not false alarms. Future research
should assess all three metrics under a single classification scheme so direct comparisons can be
made. Ideally that scheme should reflect the convection’s organization, as done by Schoen and
Ashley (2010), and cellular events could be classified as unorganized, quasi-organized, or

organized.
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Other event features: Time of day, season, and outbreaks

There were significant associations between the convective mode and the time of day and
season a tornado occurred, but an even stronger association between the seasonal and diurnal
timing tornadoes. According to the forecaster interviews, both season and time of day affect their
procedures, mainly through their communication with the public and staffing issues. The biggest
effect diurnal timing had on tornado detection and warning was the lack of ground-truthing
during nocturnal events, which greatly hinders the forecaster’s ability to warn on complex
convection. This was the most relevant difference in convective mode timing for forecasters
because it affects their ability to do their job accurately. Discrete supercells, the easiest mode to
warn for according to forecasters, only accounted for 18 percent of the unique nocturnal tornado
events across the CWAs (29 percent during the day), supporting the idea that other types of
convection are a more frequent nocturnal warning challenge for forecasters. These findings agree
with previous literature showing higher FAR and lower POD are associated with tornadoes at
night and outside of the severe weather season (Brotzge and Erickson 2010; Brotzge, Erickson,
and Brooks 2011). As Brotzge and Erickson (2010) said, “those tornadoes most likely to strike
when the public is least likely to be aware are also those tornadoes with the greatest chance of
not being warned.” While we did not study POD, we did show through the convective mode
climatology and forecaster interviews that the more challenging-to-warn events are occurring
during these periods. Additionally, our previous work has shown that residents in these CWAs
do not have a clear understanding of their wintertime tornado risk (Ellis, Mason, and Gassert
2019). This, coupled with a more challenging forecast, could cause more confusion for the public

and local leaders.
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As mentioned by the forecasters, the challenge of a nocturnal event begins at the forecast,
but continues through communication of the threat. When Mason et al. (2018) surveyed residents
from the three CWAs used for our study, they found that fewer than half of the participants
thought there was a high or very high chance they would receive a tornado warning at night if
one was issued, compared to 80 percent during the day. However, Walters, Mason, and Ellis
(2019) found that if participants did get a warning at night, they may be more likely to make a
safe sheltering decision than they would during the day, after first checking other sources of
information.

Forecaster strategies and concerns

Many of the strategies discussed by the forecasters are in agreement with those in Andra,
Quoteone, and Bunting (2002), specifically, the use of sectorizing during a challenging event,
selecting radar products appropriate for the expected convective mode, and using ground truth to
calibrate their forecasts. Andra, Quoetone, and Bunting (2002) focused on automation of tornado
detection and how it cannot be used as a replacement for expertise, and should only be used to
enhance forecaster capabilities. Forecasters agreed with this sentiment in the interviews by
demonstrating how they often account for people and potential impacts when warning, which
cannot be easily automated. For example, a forecaster discussed how a large outdoor event
taking place in a potential risk area may affect how they warn. Similarly, Brooks (2004)
discussed how unbiased forecasts are not the goal because in some situations the cost of a missed
event would outweigh the cost of a false alarm.

Our work supports previous work highlighting the importance of ground truth for
accurate tornado detection and warning. Brotzge and Erickson (2010) showed that success

metrics decrease when (at night) and where (outside of the Great Plains) it is a challenge to view
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tornadoes. The forecasters whom we interviewed echoed this sentiment, detailing a clear
disadvantage in detection and warning at night, and the challenge being amplified by the type of
complex convection that is common at that time. Andra, Quoetone, and Bunting (2002) list
ground truth only second to radar data as the most important data set for forecaster warning
decision-making. In our study area, where trees and hills dominate the landscape and nocturnal
tornadoes are half of the tornado climatology (Ashley, Krmenec, and Schwantes 2008; Brown,
Ellis, and Bleakney 2016), forecasters are at a particular disadvantage. Thus, this work adds to
those documenting nocturnal tornado challenges, specifically detailing forecaster concerns and
additional detection, warning, and communication challenges during nocturnal events.

A concern brought up by many forecasters was storm speed. Faster storms rush forecaster
decision-making, cause them to use larger polygons, and create more damaging straight-line
winds. These factors increase the challenge of effective warning and communication. There is
little literature on the speed of tornadic storms, and we encourage future research in this area in
both the climatology of storm speed, its relation to convective mode, and its effects on warning
success metrics. In creating a climatology of storm-based warnings, Harrison and Karstens
(2016) found that the fastest warned storms were those in the Great Lakes and Ohio Valley
regions, and that storms were fastest in winter. However, these results were not specific to
tornado-warned events and the authors can only speculate about relationships between speed and
convective mode, specifically that QLCS frequency affected average storm speeds (Harrison and

Karstens 2016).

Limitations
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The time-intensive and challenging process of classifying convective modes limited this
study in two ways. First, the study period is relatively short, although this is not uncommon in
convective mode studies. Second, the study period for the false alarms does not directly coincide
with the tornado data. More direct comparisons could be made with a larger data set that matches
in space and time. This may be made possible in the future by automation of convective mode
classifications, which Ashley, Haberlie, and Strohm (In review) have recently achieved for
QLCS events. Until a larger data set is possible, we are left uncertain if our patterns, for example
the QLCS outbreaks in OHX, are part of the larger climatology or are only an artifact of limited
data. Additionally, it is challenging to compare results across studies because of a lacking
universal convective classification scheme (Schoen and Ashley 2010).

Another issue with the data set is that tornado climatologies rely on the observation of a
tornado, which is not equal across space. While some locations now have little to no urban bias
in their tornado reports (Elsner et al. 2013), this is not true for the Southeast and this study area
(Ellis et al. 2018). If these undetected tornadoes are skewed toward more complex convection or
weaker tornadoes, then our data may be biased toward certain storm modes.

A strength of our study was an assessment of false alarms and convective modes, which
is not yet in the literature. However, weaknesses include only studying one success metric used
by the NWS (FAR) and not studying POD and lead time, which are two other important metrics.
Assessing all three would more clearly discern the challenges associated with convective mode.
While we discussed connections between our work and that of those who researched POD and
lead time, it would be more meaningful to have those statistics directly match the spatiotemporal

dimensions of our study.
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Forecaster interviews revealed differences in their personal purpose of working for the
NWS, which was inherently related to their considerations when warning on potential tornadic
events. While these forecasters demonstrate differences in purpose and warning plans, it would
be valuable to determine if those differences ultimately lead to different warning decisions. For
example, does the religious forecaster who wants to “catch them all” warn significantly more

often than the forecaster who strictly uses thresholds?

Conclusion

We used a mixed-methods approach to assess how the convective mode of a storm affects
the climatology of tornadoes and NWS procedures within three CW As that warn for Tennessee
and surrounding areas. For the climatological analyses, we used archived radar data and a data
set by Smith et al. (2012) to assign convective modes to tornadoes (2003—2014) and false alarms
(2012-2016). We assessed associations among these data sets and CWA, time of day, and
season. To gain information on how convective mode affects forecasting procedures, we
interviewed 11 NWS forecasters across the three offices. The most unique aspects of our work
were the direct discussions with the forecasters, which can be related back to the tornado and
false alarm climatologies, and the assessment of the relationship between convective mode and
false alarms. We hypothesized that the convective mode climatology would differ between the
three CW As, and that forecast challenges would increase for non-supercellular events. We
accepted both hypotheses, but note two special considerations: 1. After outbreaks are removed,
we observed no statistical difference among tornadic convective mode and CWA, and 2.
Forecasters have mitigated some false-alarm issues for tornadoes from QLCS events by often

using a severe thunderstorm warning with a tornado-possible tag. Other storm characteristics
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have affected forecasters more than its convective mode, for example the timing and speed of the
storm. Forecasters have different, often personal, reasons to warn or not during a challenging

event.
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Figure Captions

Figure 1. Tornadoes (A; 2003-2014) and false alarms (B; 2012—2016) that occurred in three

CWAs, categorized by convective mode.

Figure 2. Archived base reflectivity radar image of one tornadic event for each convective mode

type: A. Discrete supercell, B. Cell in cluster, C. Cell in line, and D. QLCS.

Figure 3. Tornadoes (A) and false alarms (B) categorized by convective mode for each CWA.
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Appendix A

Information pertaining to chi-square tests assessing the relationship between tornadic convective

mode and season, CWA, and time of day. Included are the observed count (Obs), expected count

(Exp), and standardized residual (R).

Discrete Supercell Cell in cluster Cell in line QLCS
Obs Exp R Obs Exp R |[Obs Exp R |Obs Exp R
Spr 117 109 0.74 | 133 126 059 | 65 62 035 | 47 64 -2.14
Sum 6 11 -140 | 22 12 280 | 1 6 -205| 6 6 -0.08
Fall 18 23 -1.03| 26 27 -0.10| 24 13 3.03 8 13 -1.49
Win 31 29 032 | 18 34 -273| 8 17 -2.13 | 40 17 5.50
MEG 92 73 226 | 91 84 075 | 32 41 -147| 26 43 -2.56
OHX 34 56 -299 | 47 65 -226| 53 32 368 | 53 33 345
MRX 46 43 048 | 61 50 162 | 13 24 -231| 22 25 -0.63
Day 112 95 1.78 | 112 110 023 | 51 54 -041] 39 56 -2.23
Night 60 77 -196 | 87 89 -025| 47 44 045 | 62 45 247
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847 Appendix B
848  Information pertaining to chi-square tests assessing the relationship between CWA, season, and
849  time of day for the tornadoes in this study. Included are the observed count (Obs), expected
850  count (Exp), and standardized residual (R).
MEG OHX MRX Day Night
Obs Exp R |Obs Exp R |Obs Exp R |[Obs Exp R |[Obs Exp R
Spr | 142 153 -0.89 | 107 119 -1.08 | 113 90 2.40 | 215 199 1.10 | 147 163 -1.22
Sum | 19 15 1.09 | 3 11 -2.50 | 13 9 145 | 31 19 267 | 4 16 -2.96
Fall | 34 32 033 | 32 25 142 | 10 19 -205| 43 42 0.18 | 33 34 -0.19
Win | 46 41 0.78 | 45 32 234 | 6 24 370 25 53 -389| 72 44 431
Day | 136 132 028 | 99 103 -040| 79 78 0.09
Night | 105 108 -0.31| 88 84 044 | 63 64 -0.10
851
852
853
854
855
856
857
858
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Appendix C

Information pertaining to chi-square tests assessing the relationship between CWA, season, and

time of day for the unique tornado events in this study. Included are the observed count (Obs),

expected count (Exp), and standardized residual (R). R are not included when expected values

are less than five for one category.

Discrete Supercell Cell in cluster Cell in line QLCS
Obs Exp R [Obs Exp R Obs Exp R |Obs Exp R
Spr | 40 37 - 54 57 - 28 24 - 25 28 -
Sum 5 6 - 16 10 - 1 4 - 3 5 -
Fall 10 11 - 20 17 - 7 7 - 6 11 -
Win 9 10 - 8 15 - 6 6 - 15 10 -
MEG | 32 28 074 | 44 43 015 |15 18 -08| 20 21 -032
OHX | 15 20 ~-121] 30 31 -025| 19 13 15117 16 0.33
MRX | 17 15 04 | 24 24 0.08 8 10 -0.67| 12 12 0.05
Day [ 46 39 1.084| 62 60 025 | 27 26 025| 20 30 -1.8
Night | 18 25 -136| 36 38 -032| 15 16 -032] 29 19 23
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869 Appendix D
870  Information pertaining to chi-square tests assessing the relationship between CWA, season, and
871  time of day for the tornado events in this study. Included are the observed count (Obs), expected
872  count (Exp), and standardized residual (R).
MEG OHX MRX Day Night
Obs Exp R |Obs Exp R [Obs Exp R |Obs Exp R |Obs Exp R
Spr | 57 64 -093| 50 47 043 40 35 077] 94 90 042)| 53 57 -0.52
Sum [ 13 11 0.61 [ 3 8 -1.77| 9 6 12122 15 171 3 10 -2.15
Fall | 19 19 003 | 16 14 0.60 [ 8 10 -0.74| 22 26 -085| 21 17 1.06
Win | 22 17 130 12 12 -0.05| 4 9 -171f( 17 23 -130( 21 15 1.64
Day | 68 68 0 52 50 034 | 35 37 -0.39
Night [ 43 43 0 29 31 -042] 26 24 049
873
874
875
876
877
878
879
880
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881 Appendix E

882  Information pertaining to chi-square tests assessing the relationship between false-alarm
883  convective mode and season, CWA, and time of day. Included are the observed count (Obs),

884  expected count (Exp), and standardized residual (R).

Discrete
Cell in cluster Cell in line QLCS
Supercell

Obs Exp R |Obs Exp R |Obs Exp R |Obs Exp R

Spr | 48 34 239|193 75 203 |22 33 -18| 0 21  -4.58
Sum [ 18 13 133 |31 29 035 | 13 13 0.11 1 g -2.50
Fall | 20 18 05939 39 003 |14 17 -068| 11 11 0.05

Win | 8 29 -393(45 65 -245| 41 28 246 | 46 18 6.58

MEG| 31 43 -183| 90 95 -053 |56 41 231 | 29 27 048

OHX | 27 32 -084|69 70 -0.15]| 27 30 -0.62| 29 20 2.13

MRX | 36 19 383 (49 43 099 | 7 18 -2.66| 0 12 -3.44

Day | 56 43 2.05 (108 94 141 |35 41 -09 | 5 26 -4.12

Night [ 38 51 -1.87|100 114 -129| 55 49 082 | 53 32 3.78
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890 Appendix F
891  Information pertaining to chi-square tests assessing the relationship between CWA, season, and
892  time of day for the false alarms in this study. Included are the observed count (Obs), expected
893  count (Exp), and standardized residual (R).
MEG OHX MRX Day Night

Obs Exp R Obs Exp R |Obs Exp R | Obs Exp R |Obs Exp R
Spr | 56 75 26| 56 55 013 51 33 306 8 74 15276 8 -1.39
Sum | 27 29 -034 | 14 21 -158| 22 13 254 52 29 439 11 34 -3.99
Fall | 52 38 218 | 22 28 -120| 10 17 ~-1.73| 29 38 -147| 55 46 134
Win | 71 64 086 | 60 47 185 9 29 367 36 63 -345(104 76 3.14
Day | 89 94 -045| 63 69 -0.71| 52 42 1.59
Night | 117 113  0.41 890 83 0.65]| 40 50 ~-1.45
894
895
896
897
898
899
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