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1  |  INTRODUCTION

Recognizing the urgency of restoring natural habitats to halt biodi-
versity loss and mitigate the impacts of climate change, the United 
Nations (UN) has proclaimed 2021–2030 the Decade on Ecosystem 

Restoration. As part of this effort, the UN announced the ambitious 
goal of restoring a billion hectares of ecosystem. Governmental and 
conservation organizations are increasingly leveraging ecological 
restoration to mitigate the impacts of habitat loss on biodiversity 
and ecosystem services, and to meet conservation targets. Yet the 
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Abstract
Aims: Ecological restoration is integral to meeting conservation goals in rapidly chang-
ing landscapes, but outcomes vary substantially with some projects failing to meet 
their targets. To understand the causes of this variability, long-term monitoring of 
existing projects is critical, but this comes at considerable costs. Current literature 
counts several studies using time series of satellite images to assess vegetation re-
sponses to disturbances and landscape transformations. Yet such methods are seldom 
used in the restoration literature and in practice. This synthesis seeks to identify how 
common remote sensing approaches for the assessment of plant recovery could in-
form the monitoring and management of restored plant communities.
Methods: This paper reviews the methods and metrics used to detect trajectories 
(i.e., change through time) in plant properties from rich time series of aerial and satel-
lite images following change drivers including fire, extreme climatic events, climate 
change, and pest outbreaks. Specifically, it reviews the sensors, vegetation properties, 
modeling approaches, and indicators that can help measure plant stress and response 
to interventions.
Results and Conclusions: Remote sensing methods commonly used in disturbance 
ecology and assessments of land-cover changes could inform the monitoring of res-
toration projects at low cost and over large spatio-temporal scales, thus bridging the 
gap between field surveys to rapidly identify stressors or unexpected vegetation re-
sponses. Potential applications include comparing sites to identify factors impacting 
their responses to restoration, assessing restoration success, and testing ecological 
hypotheses to guide future project planning and design.
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outcomes of restoration interventions vary substantially (Moreno-
Mateos et al., 2012). To explain this variability, improve restoration 
design, and achieve the goals identified by the UN, it is vital to study 
the role of site and regional factors in shaping habitat responses to 
interventions (Brudvig et al., 2017). This calls for a more consistent 
monitoring of restored ecosystems, as stated by the Group on Earth 
Observations Biodiversity, which is developing a set of essential 
biodiversity variables that combine field data and remote sensing to 
facilitate the consistent monitoring of ecosystems.

Restoration practice is influenced by the theory of ecological 
succession; initial restoration treatments (e.g., stressor removal, abi-
otic modifications, seeding) are expected to elicit a directional and 
progressive recovery towards pre-set goals. However, the pathway 
to restoration success—often called the “trajectory” (i.e., changes in 
ecosystem properties from the moment of restoration until targets 
are met)—is rarely perfectly linear. Sites can take years, sometimes 
decades, to achieve a structural and compositional complexity likely 
to support targeted ecosystem functions and reminiscent of a pre-
set reference point (Moreno-Mateos et al., 2012). Some sites may 
never meet these targets or rely on active management to maintain 
habitat properties.

Several factors can influence the response of a site to resto-
ration interventions. Projects frequently observe an initial upward 
increase in vegetation extent, biomass, and sometimes diversity, 
as restoration opens up new niches favoring species establishment 
(Figure 1), sometimes accelerated via reintroduction. The slope of 
this increase varies with the intervention, site conditions, and land-
scape context (Matthews et al., 2009c; Matthews, 2015). Passive 
restoration (i.e., disturbance removal without further intervention) 
relies on species recovery from the seed bank or colonization from 
surrounding populations and might consequently see a slower up-
ward trajectory (Hubbell et al., 1999). Even projects using active 
restoration (e.g., planting, seeding) may take time to meet plant cov-
erage, height, or composition targets because species vary in their 
germination and growth rates or responses to environmental fluctu-
ations (Kettenring & Tarsa, 2020).

After this initial increase, projects can observe an asymptotic 
phase (Figure 1a) during which vegetation properties remain stable. 
The timing of the transition between this upward trajectory and the 
asymptote depends on the properties of the vegetation (e.g., vege-
tation coverage targets are generally met earlier than composition or 
diversity), whether recovery is assisted via active interventions, and 

the initial degree of site degradation. Sites in which previous land 
uses have depleted the seed bank can experience a slower recovery 
and necessitate planting or seeding (Kettenring & Tarsa, 2020a). The 
capacity of a site to meet targets also depends on well-connected 
nearby habitats providing propagules to maintain populations 
(Kettenring & Tarsa, 2020). Sites supporting a greater richness might 
also be more stable due to a greater biotic resistance and diversity of 
responses to disturbance (Elmqvist et al., 2003). Other projects may 
see a temporary decline after the initial upward trend or following 
an asymptote (Figure 1b) due to nearby landscape transformations 
modulating nutrients, pollution, or the likelihood of pest and non-
native species introduction, all of which can impact plant persistence 
and composition (Matthews et al., 2009a, 2009b,).

Identifying the factors impacting post-restoration trajectories 
can inform adaptive management and improve the design of future 
projects. Comparing the trajectories of sites with similar ecological 
characteristics or restoration design might reveal factors affecting 
plant recovery that would not be immediately evident from field 
observations alone. For example, a global meta-analysis of post-
restoration wetland recovery revealed the impacts of climate and 
project size on the capacity to meet ecosystem function targets 
(Moreno-Mateos et al., 2012). Site comparisons have also highlighted 
the role of factors including hydrology, the identity of planted spe-
cies, and landscape context on restoration success (Matthews et al., 
2009b, 2009c; Meyer et al., 2010).

Time series of satellite and aerial images are extensively used to 
monitor gradual, abrupt, linear, and nonlinear trends in vegetation 
responses to disturbances. Remote sensors capture spectral infor-
mation (i.e., patterns of light reflectance and absorption by different 
land surfaces) in different portions of the electromagnetic spectrum 
sensitive to vegetation abundance, photosynthetic activity, and 
moisture. Some programs have been acquiring satellite images at a 
regular interval for over 20 years (e.g., Landsat, Moderate Resolution 
Imaging Spectroradiometer [MODIS]; see Table 2), thus enabling 
long-term monitoring of vegetation responses to different drivers 
of change. In parallel, rapid technological advancements in unoc-
cupied aerial vehicles (UAVs) promote post-restoration monitoring 
by facilitating image acquisition at custom time intervals and spatial 
extents (Anderson & Gaston, 2013). Comparing temporal changes 
in the light reflectance and absorption of vegetation has enabled 
previous studies to assess how natural disturbances and landscape 
transformations have impacted biomass, photosynthetic activity, or 

F IGURE  1 Hypothetical vegetation 
response to restoration and 
environmental change where (a) is an 
asymptotic response and (b) a unimodal 
response

(a) (b)

Initial colonization and vegetation growth
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composition. This synthesis focuses on vegetation properties as a 
central component of post-restoration monitoring and an indicator 
of the ecosystem’s response to management, site conditions, and 
stressors. Although times series of satellite and aerial images have 
been frequently used to monitor vegetation recovery following dis-
turbances, fewer studies have used them to monitor restorations. 
Restoration interventions, whether they involve stressor removal, 
topographic transformation, or seeding, are likely to trigger a plant 
response akin to that observed after a sudden disturbance (e.g., fire, 
flood) or a gradual change in environmental conditions (e.g., climate 
change). Here, I review how time series of satellite and aerial im-
ages have been used to characterize plant trajectories following 
disturbances and landscape transformations. I then discuss how 
these approaches could inform the long-term monitoring and adap-
tive management of restored sites at low cost. This study focuses 
on remote sensing instruments that can capture larger swaths (i.e., 
can capture larger study sites or regions), including spaceborne (i.e., 
data acquired via satellites) and airborne sensors (i.e., data acquired 
by cameras mounted on aircrafts and UAVs). The review excludes 
ground-based sensors such as phenocams, spectrometers, and flux 
towers, which can nonetheless provide valuable information for 
post-recovery assessments (Knox et al., 2017).

2  | METHODS

I used the Web of Science database and different combinations of 
the keywords restor*, traject*, remote sensing, time series, recovery, 
drone, UAV, radar, hyperspectral, and vegetation, to identify peer-
reviewed papers using time series of satellite or aerial images to de-
scribe the vegetation response following disturbances or landscape 
transformations. After reviewing the abstracts, I excluded papers 
that were not peer-reviewed, did not focus on the trajectory of plant 
communities, included less than two years of data, or did not use sat-
ellite, aerial, or UAV-acquired images (Appendix S1). When reading 
selected papers, I noted their target ecosystem(s), the sensor(s) used 
to generate trajectories, their time span and scale (e.g., site, regional, 
national, continental, global), and location. I then assessed the meth-
ods and spectral vegetation indices used to generate site trajecto-
ries. I remarked whether/which thresholds were used to detect the 
impact of disturbances on plant communities and characterize their 
recovery, or whether/which similarity indices were used to compare 
the trajectories of several sites. Lastly, I recorded the factors that 
each study considered to be drivers of plant community trajectories 
(e.g., fire, climate, succession; Figure 2).

3  |  RESULTS

This keyword research identified 120 papers published between 
1996 and 2022 (Appendix S1). These papers all used time series 
of aerial or satellite images to identify vegetation response (sec-
tion 4.1) to change drivers (Figure 2). Several papers (67%) used a 

remote sensing-based trajectory approach to assess plant commu-
nity response to pulse disturbances (i.e., short-term, well delineated 
disturbances to ecosystems) including wildfire, pest outbreaks, and 
droughts (Figure 2). One-third of papers focused on press distur-
bances (i.e., long-term ecosystem perturbations; Figure 2) including 
land-cover or land-use change (Kariyeva & van Leeuwen, 2012; Qiu 
et al., 2018) and climate change. Fewer papers (8%) assessed site 
response to restoration interventions. The scale of the assessment 
varied from site level, to regional, continental, or even global level. 
Studies covered a time span of 3 to 76  years, with an average of 
17 years.

Most studies (52%; n  =  62) were conducted in forests, with 
fewer studies focused on other ecosystems including wetlands (i.e., 
areas permanently or temporarily flooded, and supporting species 
adapted to these conditions; n  =  16), drylands (i.e., ecosystems in 
arid and semi-arid climates; n = 7), chaparrals (i.e., shrub-dominated 
ecosystems found in Mediterranean climates; n = 4), crops (n = 7), 
and grasslands (i.e., ecosystem dominated by grasses, n = 3). Some 
papers, particularly those assessing the impact of changes in land 
use/land cover on vegetation dynamics, simultaneously monitored 
various ecosystems (n = 12). Several studies focused on fire-prone 
regions including Brazil, the United States, Europe, and China. Long-
term assessments of land-cover changes were conducted in China, 
Africa, and Latin America (Figure 3). Studies focusing on restoration 
and management interventions were equally distributed among the 
Americas, Europe, Africa, and Asia. Finally, studies conducted at a 
global scale (n = 10) predominantly analyzed the impact of climate 
change, land-cover changes, or local dynamics among a globally dis-
tributed ecosystem.

4  | DISCUSSION

This sample of peer-reviewed papers includes various approaches 
to monitoring plant dynamics over time and space. These studies 
generated trajectories from time series of satellite and aerial images 
to characterize plant community responses to both pulse (e.g., fire, 
pests) and press (e.g., climate or land-cover changes) disturbances 
over a short (<5 years) to long (>20 years) time span. Although few 
studies focused on restored ecosystems, their methods can none-
theless support post-restoration monitoring because it elicits a 
similar vegetation response (i.e., initial disturbance decreasing vege-
tation biomass followed by its recovery). The methods and indicators 
described in this review could thus help answer key management 
questions including: how are plant communities responding to res-
toration treatments (Figure 4, Q1); is the project meeting restora-
tion targets (Figure 4, Q2); are post-restoration vegetation dynamics 
changing through time (Figure 4, Q3); and which factors are impact-
ing the post-restoration responses of plant communities? (Figure 4, 
Q4). To answer these questions, project managers and research-
ers must first identify the remote sensing indicators (section 4.1; 
Figure 4) and sensors (section 4.2; Figure 4) best suited to their pro-
jects to then model plant community response through time (section 
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4.3; Figure 4). From the resulting model of plant responses, project 
managers and researchers can detect thresholds and benchmarks to 
assess if restoration targets have been met (section 4.4; Figure 4) or 
breakpoints signaling changes in vegetation dynamics (section 4.4.2; 
Figure 4). Finally, models of vegetation responses can be compared 
across several sites to identify factors modulating responses to res-
toration (section 4.5.1; Figure 4) or test ecological hypotheses (sec-
tion 4.5.3; Figure 4).

4.1  |  Indicators of vegetation condition

In assessing long-term plant responses, managers must first identify 
the vegetation properties of interest and their spectral indicators 
(Figure 4, Q1, Step A) to model their trajectory (Figure 1). Managers 
can focus on the structural attributes (e.g., above-ground biomass, 
photosynthetic activity; section 4.1.1) of plant communities, their 
composition (section 4.1.2), or the ecosystem functions they provide 
(section 4.1.3), which all affect their spectral reflectance through 
time, season, and within different portions of the electromagnetic 
spectrum sensitive to plant characteristics. These dynamics can be 
monitored at the pixel, community, or site scale. Some studies choose 
a pixel approach to capture spatial heterogeneity in plant response 
and its drivers or establish the spatial extent of a phenomenon (e.g., 
extent of fire damage). Others focus on the plant community, patch, 
or site level to reduce the influence of noise or serve as a basis for 
site comparison and assessment of restoration effectiveness. These 
studies use different statistics (e.g., mean, median, maximum) to 
summarize values across all the pixels included in a unit.

4.1.1  |  Structure

Structural indicators describe the three-dimensional distribution 
of plant biomass in a canopy (Noss, 1990) and include canopy 
height, cover, and biomass. They are commonly used in ecological 
restoration as an early metric of success because of their rapid re-
sponse compared with composition or diversity (Craft et al., 2003). 
Structural indicators signal the capacity of restoration projects 
to provide key ecosystem services including habitat provision-
ing, carbon sequestration, and erosion control. Spectral vegeta-
tion indices (e.g., Normalized Difference Vegetation Index [NDVI], 
Enhanced Vegetation Index) sensitive to variations in plant bio-
mass, coverage, and photosynthetic activity (Huete et al., 1997) 
are commonly used to estimate changes in vegetation coverage 
and biomass following disturbances. Spectral information from 
active sensors (section 4.2.2) such as light detection and ranging 
(LiDAR) and radio detection and ranging (radar) can detect three-
dimensional changes in plant biomass, height, and density across 
different canopy layers (e.g., understory, upper canopy) (Bergen 
et al., 2009). After a disturbance, germination from the seed bank, 
leaf regrowth from remaining trees and shrubs, and plant colo-
nization in open niches all modulate light absorption in different 
spectral bands; thereby increasing spectral vegetation index (SVI) 
values (Cai et al., 2018, ) until vegetation growth and colonization 
have stabilized or led to the saturation of SVIs (Huete et al., 1997). 
Increases in canopy height, density, and patch expansion can also 
be perceived by active sensors (Räpple et al., 2017). These can 
also detect successional changes following disturbances, thanks 
to their sensitivity to canopy layers and their height and density 

F IGURE  2 Publications reviewed for 
this study by drivers of change. Press 
disturbances are long-term disturbances 
on ecosystems, whereas pulse 
disturbances tend to be more temporary

Land-use/land-cove change

Number of studies

F IGURE  3 Publications reviewed in 
this paper, by study area. Excludes 10 
studies with a global scope
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differences (Ramsey et al., 1999). Structural indicators (Table 1) 
are also sometimes sensitive to changes in composition, particu-
larly where species turnover impacts canopy characteristics (Sato 
et al., 2016).

Prior to generating trajectories, several studies conducted field 
measurements of structural properties (e.g., vegetation coverage, 
biomass) to establish their relation to SVIs or to validate digital 
elevation and surface models derived from LiDAR data (Chasmer 

F IGURE  4 Common management 
questions and potential methodological 
approaches to answer them

TABLE  1 Examples of remote sensing indicators used to estimate vegetation properties and condition and their applications in studies 
reviwed in this synthesis

Indicators of 
vegetation condition Remote sensing indicators Site properties Data requirements

Structure Spectral vegetation 
indices

Vegetation coverage, biomass, 
photosynthetic activity (Cai et al. 
(2018a, ); rate of vegetation recovery 
(Storey et al., 2016)

At least one satellite or aerial image 
captured at low cloud coverage

Digital elevation model 
and digital surface 
model

Canopy height (Reis et al., 2019); patch 
expansion (Räpple et al., 2017)

Data from LiDAR sensor

Composition Spectral signature of 
individual species; 
phenological metrics

Species composition; species turnover 
(Kariyeva & Van Leeuwen, 2012)

Hyperspectral or high-resolution data for 
some species, dense time series for 
species with distinct phenology

Maximum annual 
greenness, texture 
metrics

Species diversity (Hernández-Stefanoni 
et al., 2012)

Several images throughout the growing 
season

Function Spectral vegetation 
indices

Evapotranspiration (Mexicano et al., 2013); 
Gross Primary Productivity (Khare 
et al. 2017); Net Primary Productivity 
(Villa et al., 2012)

Several images throughout the growing 
season; models or field data to convert 
spectral vegetation index into estimates 
of function

Phenological metrics Phenology (Chen et al., 2019) Several images throughout the growing 
season
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et al., 2018; Cai et al., 2018). Studies should conduct these mea-
surements along a gradient of vegetation coverage or disturbance 
to establish robust relationships between field-measured vegeta-
tion properties and their remote sensing indicators. Once these 
relationships are established, projects can derive trajectories 
from daily interpolated SVI values (i.e., interpolation to create a 
complete time series from periodic observations) to account for 
seasonal and annual fluctuations. Other studies use annual values 
estimated either by aggregating observations (e.g., based on max-
imum, mean, or the sum of positive values over the growing sea-
son) or using one image per year captured at peak biomass (Meigs 
et al., 2011).

Lastly, some studies opt to derive recovery indices from spec-
tral vegetation indices. Recovery indices can be computed from 
both active and passive sensors and measure the time needed for 
a pixel to reach its pre-disturbance greenness (João et al., 2018) or 
biomass (Freund et al., 2021; Nicolau et al., 2021), or the greenness 
or biomass of reference sites (Storey et al., 2016) following a dis-
turbance. Because they integrate a baseline value (e.g., 5-year me-
dian, average during normal years), recovery indices can account for 
spatio-temporal variability in abiotic characteristics, plant composi-
tion, and their spectral properties. Local variation in resources—with 
topography, management, land use, or microclimate—can all impact 
plant coverage and productivity and their spectral signature. Even 
after full recovery, mixed pixels may remain below the site or re-
gional average, because they encompass different land covers (e.g., 
forest, water, grassland) or growth forms (e.g., trees, shrubs, herbs) 
with contrasted spectral values. Climatic fluctuations and landscape 
transformations can further impact the capacity of a pixel to reach 

a certain level of greenness or biomass. Using nearby, undisturbed 
pixels as a reference (Storey et al., 2016) might provide more realis-
tic targets for restoration projects and a flexible approach to goal-
setting where landscape transformations and climate change result 
in shifting baselines (Fule et al., 2017).

4.1.2  |  Composition

Compositional indicators describe the identity, richness, and diver-
sity of the species in a plant community (Noss, 1990). Restorations 
commonly seek to reach the composition and/or diversity of refer-
ence sites and historical assemblages. However, compositional in-
dicators are perhaps the most challenging to track using airborne 
and spaceborne sensors. When the spatial resolution of the sensor 
is coarser, it can be particularly difficult to detect individual species 
in mixed pixels in which their spectral signature becomes blended. 
Furthermore, several species can seem to have similar spectral re-
flectance when using broadband data sets. Hyperspectral data 
sets (section 4.2.4), which summarize spectral information within 
hundreds of narrow bands, can best differentiate species based on 
their chemical differences. For example, Meng et al. (2018) mapped 
variations in species composition along a burn gradient by deriving 
crown characteristics from LiDAR data (e.g., height, crown vigor) and 
spectral indices sensitive to different pigments from hyperspectral 
data (e.g., chlorophyll, carotenoid), which enabled them to detect in-
dividual species and their response to fire.

Some of the studies reviewed here also used indicators sen-
sitive to changes in plant dominance, composition, and diversity 

TABLE  2 Remote sensing data sets used within reviewed studies, their properties, and applications included in this review. Information 
on additional sensors of interest not covered by this synthesis is available in Transon et al. (2018) and Toth and Jóźków (2016)

Data sets Spatial resolution Frequency Time span Bands Scale of analysis

Open-access

AVHRR 1 km Daily 1979–2019 4–6 Regional, global

AVIRIS 2–20 m Variable 1998–Present 224 Site, regional

ASTER 15–90 m 16 days 1999–Present 14 Site, regional

CORONA 2–8 m Variable 1960–1972 1 Site, regional

EnMAP 30 m 4–27 days 2022–… 242 Site, regional, state, country, global

ERS 26–30 m 35 days 1991–2011 Site, regional, state, country, global

Hyperion 30 m 16–30 days 2001–2017 220 Site, regional, state, country, global

Landsat 30–60 m 16 days 1972–Present 4–11 Site, regional, state, country, global

MODIS 250–1000 m Daily 2002–Present 36 Regional, state, country, global

PRISMA 30 m 7–14 days 2015–Present 249 Site, regional, state, country, global

Sentinel-1 5–40 m 6–12 days 2014–Present 4 Regional, state, country, global

Sentinel-2 10–20 m 2–10 days 2015–Present 13 Regional, state, country, global

Commercial

GeoEye 0.5–1.84 m 2–8 days 2008–Present 5 Site

IKONOS 0.82–3.2 m 1–14 days 1999–2015 4 Site

SPOT 10–20 m 1–3 days 1986–Present 4–5 Site

WorldView 0.31–1.24 m 1–2 days 2009–Present 8 Site
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instead of identifying individual species. For example, fluctuations 
in phenological metrics (e.g., start and end of flowering season) 
can signal plant community shifts including changes in diversity 
or dominance by a non-native species with a different phenology. 
Kariyeva and van Leeuwen (2012) used phenological metrics to 
detect crop changes and transitions from natural to anthropogenic 
plant communities. Using phenological metrics, Steinaker et al. 
(2016) revealed that woodland deforestation in Argentina reduced 
the growing season by up to 100  days because the loss of tree 
coverage favored the proliferation of shrubs. Recent research also 
shows the potential of remote sensing data sets to help estimate 
plant diversity. For example, maximum greenness (e.g., the highest 
SVI value observed each year) can help estimate plant richness 
due to the positive relationships between ecosystem productivity 
and diversity, which promote the efficient use of resources in time 
and space (Castillo-Riffart et al., 2017; Madonsela et al., 2017; 
Taddeo et al., 2019). Similarly, some studies have shown that indi-
cators of spectral heterogeneity can be sensitive to plant diversity 
and variations in plant composition (Hernández-Stefanoni et al., 
2012; Taddeo et al., 2021).

4.1.3  |  Functional

Functional indicators describe the capacity of species to produce 
and regulate ecological processes including primary production, 
habitat provisioning, and climatic regulation. Functional indica-
tors are increasingly used in post-restoration monitoring (Perring 
et al., 2015) particularly in highly modified landscapes where 
local conditions might preclude the return of historical plant as-
semblages but nonetheless allow ecosystem service provision. 
Equations derived from empirical observations can be used to 
convert SVI values into an ecosystem function estimate. For ex-
ample, Mexicano et al. (2013) estimated the evapotranspiration of 
a costal wetland in Mexico by multiplying its NDVI by the evapo-
transpiration potential of local plant canopies measured empiri-
cally. Some remote sensing data sets also provide pre-calculated 
ecosystem functions. For example, MODIS (Table 2) offers Gross 
Primary Productivity (MOD17A3) and Net Primary Productivity 
products (MOD17A3HGF), both estimating primary productivity 
from dominant growth forms and SVI values. Hyperspectral and 
active sensors can be particularly beneficial in assessing ecosys-
tem functions, thanks to their sensitivity to plant functional traits 
(Andrew et al., 2014). For example, Byrd et al. (2018) used data 
from Sentinel-1 (a synthetic aperture radar satellite; section 4.2.2) 
and Landsat to estimate the carbon sequestration capacity of tidal 
wetlands in the United States based on their vegetation properties 
(e.g., height, growth form).

Phenology is another commonly used indicator of vegetation re-
covery and is an essential biodiversity variable (Pereira et al., 2013) 
that can be easily monitored from remote sensing data. Phenological 
variations through time and space can reflect the vegetation re-
sponse to stress and climate change (White et al., 1997; Pettorelli 

et al., 2005) and capacity to provide key functions including habitat 
provisioning and carbon sequestration. To model phenology, studies 
first apply a filter (Pettorelli et al., 2005) or a phenological model to a 
time series of satellite images to obtain a smooth, continuous curve 
representing the growth season of a plant community (Pettorelli 
et al., 2005). Phenological metrics can subsequently be identified 
using pre-determined thresholds (White et al., 1997) or by detect-
ing changes in the inflexion of the growing season curve marking 
a “greening”, “browning”, or vegetation stabilization near peak bio-
mass (Pettorelli et al., 2005). To validate phenological metrics de-
rived from satellite time series, researchers and project managers 
can conduct frequent field surveys of vegetation to identify key 
phenological events, use phenological cameras, or higher resolution 
and higher frequency satellite data sets (White et al., 1997; Hufkens 
et al., 2012).

Phenological metrics can, in some instances, detect short-term 
disturbances or plant community shifts that do not otherwise sig-
nificantly alter aggregated measures of vegetation structure. For ex-
ample, Chen et al. (2019) monitored fluctuations in peak SVI over an 
8-year period to distinguish the short-term (i.e., temporary reduction 
in growth that may be followed by a recovery) and long-term impacts 
(i.e., significant long-term impact on crop yield) of floods on crop 
productivity. In other studies, phenological metrics have indicated 
transformations in the composition of plant communities following 
succession, management change, or land-use conversion (Kariyeva 
& van Leeuwen, 2012; Steinaker et al., 2016). Although few field-
based post-restoration monitoring efforts focus on the phenological 
characteristics of restored ecosystems, phenological assessments 
could nonetheless provide clues on site response to interventions 
and stressors, as illustrated in previous examples.

4.2  |  Sensors

As open-access and low-cost remote sensing products become in-
creasingly available, managers and scientists must decide which 
spectral, spatial, and temporal resolutions are best suited to their 
management question or hypothesis, study extent, target plant 
characteristics, and change driver (Figure 4, Q1, Step B). Luckily, 
cloud-based platforms such as Google Earth Engine (Gorelick et al., 
2017) enable the batch processing of large remote sensing data 
sets and facilitate their analysis, comparison, and in some cases, 
fusion. Most studies reviewed here—particularly those focusing 
on multiple sites or a regional to global scale—utilized open-access 
optical sensors (e.g., MODIS, Landsat, Sentinel-2; Table 2; section 
4.2.1) which provide free satellite images summarizing spectral 
information into tens of broader bands. Some studies also used 
active sensors (i.e., sensors emitting their own radiation) includ-
ing LiDAR and radar (section 4.2.2), whereas others used hyper-
spectral sensors (i.e., satellites summarizing spectral information 
into hundreds of narrow bands; section 4.2.4). Finally, some used 
commercial sensors (e.g., IKONOS, WorldView; Table 2) and UAVs 
(section 4.2.3).
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4.2.1  |  Optical open-access sensors

With frequent (16–30  days) image acquisition since 1972, NASA’s 
Landsat program offers the longest global record of remote sensing 
data (Table 2) and is consequently the most widely used across this 
sample of studies. This time span is well suited to monitoring site 
responses to climate change (Guo et al., 2017; Copeland et al., 2019) 
or examining factors promoting site resilience (Chen et al., 2014; 
Fernández-García et al., 2018). With its 30–60-m resolution, Landsat 
was used throughout this sample to monitor vegetation properties 
at various scales ranging from site level to the global level. With be-
tween 4 and 11 bands in the visible, near-infrared, shortwave infra-
red, and thermal portions of the electromagnetic spectrum, Landsat 
products can be used to monitor a variety of plant community prop-
erties. Landsat products are commonly used to measure fluctuations 
in vegetation structure and abundance using SVIs based on visible, 
near-infrared, and shortwave bands. Landsat’s frequent data acqui-
sition and long time span can detect seasonal variations and phe-
nological indicators, long-term changes and interannual variations 
(e.g., recovery indices), although MODIS and Sentinel-2 have better 
temporal resolution. Throughout its 30+ years, the Landsat program 
has operated different sensors that vary slightly in spatial, spectral, 
and temporal resolution. Long-term analyses thus warrant pre-
processing to harmonize early images captured at a coarser resolu-
tion (e.g., Landsat MSS; 1972–2013; 60 m) with later ones captured 
at a 30-m resolution (e.g., TM, ETM+, OLI; 1984–present). Equations 
developed by Roy et al. (2016) enable users to calibrate Landsat sen-
sors with different bandwidths.

The MODIS sensor aboard the Terra and Aqua platforms was also 
commonly used across this sample. MODIS provides daily surface 
reflectance data in 19 bands at a 250–500-m resolution (Table 2). 
Users can download pre-calculated products including SVIs to es-
timate vegetation structure and abundance or indicators of ecosys-
tem functions including Gross Primary Productivity (section 4.1.3). 
With this coarser spatial resolution, MODIS enables regional (Qiu 
et al., 2017; Ni et al. 2019) to global monitoring (Zhang et al., 2016) 
of key drivers of ecosystem change. MODIS has been capturing im-
ages since 2000. Its frequency, with daily image acquisition, is well 
suited to studies focusing on plant phenology which rely on frequent 
observations to identify key events in the growing season. Its fre-
quency can be particularly beneficial for monitoring in regions with 
high cloud cover. However, its coarser resolution compared with 
Landsat or Sentinel-2 can be limiting when trying to monitor plant 
communities with a patchy distribution.

Few of the studies reviewed here used the multispectral instru-
ment (MSI) Sentinel-2, probably because of its shorter archival time 
span (5+ years), which currently limits its application for the long-
term assessment of restoration progress. Sentinel-2 has offered 12 
spectral bands at a 10-m resolution since 2015 (Table 2). It provides 
better temporal (one image every 5–10 days) and spatial resolution 
(10 m) than the Landsat constellation. As such, Sentinel-2 is likely to 
become an important data source for post-restoration monitoring. 
Because Landsat and Sentinel-2 have similar bands and bandwidth, 

several studies have combined them (see section 4.2.5) to increase 
the temporal frequency of images in regions with high cloud cover, 
expand the temporal scope of analyses, or improve spatial resolution 
(Zhang et al., 2021). For example, Zhang et al. (2021) fused Landsat 
8 OLI and Sentinel-2 data to map small-scale disturbances in a trop-
ical forest with frequent cloud cover. Furthermore, Sentinel-2 pro-
vides additional spectral bands representing the red-edge portion 
of the electromagnetic spectrum, which in previous studies showed 
sensitivity to vegetation condition and response to disturbances 
(Abdullah et al., 2019; Evangelides & Nobajas, 2020).

Lastly, a few studies reviewed here leveraged remote sensing 
data captured by commercial sensors (e.g., WorldView; IKONOS; 
Table 2). Commercial data sets generally offer more spectral bands 
and a finer temporal and spatial resolution. Such properties can be 
particularly useful when mapping and monitoring distinct plant com-
munities (Ballanti et al., 2017; Chapple & Dronova, 2017). However, 
using commercial sensors over a large spatial extent or long period 
can rapidly increase monitoring costs. Consequently, the studies 
using commercial sensors focused on one site and assessed vege-
tation change over few images, instead of relying on data-heavy ap-
proaches such as phenological assessments or breakpoint analysis 
(Chapple & Dronova, 2017; Ballanti et al., 2017).

4.2.2  |  Active sensors

Some studies used LiDAR systems typically mounted on an airplane 
or UAV, which enable data acquisition at custom spatio-temporal 
extents. LiDAR instruments emit their own pulse to measure their 
distance to various surfaces on Earth. Variations in the intensity of 
the return signal can help detect land surfaces and their proper-
ties. This enables LiDAR systems to estimate the three-dimensional 
structure of surfaces, including canopies and their different layers. 
Such information can be particularly useful when monitoring vegeta-
tion recovery after disturbance or restoration. For example, Räpple 
et al. (2017) used a LiDAR system mounted on a UAV to monitor the 
three-dimensional expansion of vegetated riparian habitats follow-
ing a flood event. Similar methodological approaches could be used 
to track vegetation expansion and height in restorations.

Radar sensors emit microwave pulses at regular time intervals 
and then record the portion of the signal that is backscattered and 
at what speed. This allows the sensors to estimate their distance 
from a given surface. As such, radar systems are particularly use-
ful in detecting variations in canopy height and density (Bergen 
et al., 2009), while their sensitivity to structural heterogeneity 
might help estimate the diversity of ecological communities (Bae 
et al., 2019). Radar systems have the chief advantage of using lon-
ger wavelengths that can penetrate through clouds, making their 
use particularly appealing in regions of the globe with frequent 
cloud cover. Sentinel-1 is commonly used to map plant commu-
nities and their dynamics thanks to its high spatial and temporal 
resolution (Table 2). A few of the studies reviewed here (Griffiths 
et al., 2010; Jenkins et al., 2014) also used data from the ERS-1 
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and ERS-2 sensors (Table 2), but the sensors unfortunately ceased 
operation in 2000 and 2010, respectively.

4.2.3  |  Unoccupied aerial vehicles

UAVs (i.e., aircrafts controlled remotely and commonly called drones) 
can further promote rapid and repeated assessments of site condi-
tion, floristic health, and composition (Anderson & Gaston, 2013) to 
monitor restoration success and inform adaptive management. UAVs 
can detect certain species-specific characteristics including distinct 
phenology or physical and chemical differences (e.g., water, chloro-
phyll, carotene content), enabling the identification of some indi-
vidual species and an estimation of diversity (Calderón et al., 2013; 
Whiteside & Bartolo, 2018). Users can customize the frequency, 
timing (e.g., focusing on certain phenological stages during which 
species can best be identified), and spatial extent of data acquisi-
tion, thus offering a more flexible approach and finer resolution than 
governmental satellites. Furthermore, some studies reviewed here 
used UAVs with several cameras, which enabled them to track both 
the spectral properties and three-dimensional biomass distribution 
of plant canopies (Calderón et al., 2013; Whiteside & Bartolo, 2018; 
Reis et al., 2019). For example, Calderón et al. (2013) used a combi-
nation of thermal and multispectral cameras to measure the impact 
of a fungus on the leaf chemistry and physiology of olive orchards. 
Whiteside and Bartolo (2018) used multispectral and LiDAR cameras 
to track the recovery of woody species following the rehabilitation 
of a mine. However, UAVs present challenges that might curb their 
use in particular sites or ecosystems. For example, species identifica-
tion can be difficult in ecosystems with dense vegetation, tall trees 
masking the understory, or very short vegetation (Durgan et al., 
2020). The limited autonomy of UAVs (i.e., length of flight before 
needing a battery change or recharge) is not suited to the monitoring 
of large sites. Country-specific and local regulations (summarized in 
Stöcker et al., 2017) can require permits and piloting licenses and re-
strict their use in high-density areas or near certain federal facilities.

4.2.4  |  Hyperspectral sensors

Hyperspectral sensors record spectral information within hundreds 
of narrow bands sensitive to various plant characteristics including 
pigment, water, and nitrogen content (Andrew et al., 2014). As such, 
they are well suited to studies seeking to map plant diversity or de-
tect changes in the composition of a plant community following a 
disturbance. Such properties can also be useful in assessing the re-
sponse to disturbance and recovery patterns specific to individual 
species. For example, Numata et al. (2011) used hyperspectral data 
from the sensor Hyperion (Table 2) to derive spectral indices sen-
sitive to forest water and pigment content, to assess the rapidity 
with which forested plant communities recovered from burn dam-
age. Luckily, researchers and managers now have access to an in-
creasing number of open-access hyperspectral data sets including 

PRecursore IperSpettrale della Missione Applicativa (PRISMA; 30-m 
resolution and 249 bands), Environmental Mapping and Analysis 
Program (EnMAP; 30-m resolution and 242 bands), and Hyperion 
(10–20-m resolution and 128 bands), among others (Transon et al., 
2018). The increasing availability of these sensors and their sensitiv-
ity to various plant characteristics make them particularly appealing 
in the context of restoration monitoring.

4.2.5  |  Data fusion and combination

Some studies in this sample used a combination of remote sensing 
data sets with complementary properties. For example, Sato et al. 
(2016) used LiDAR to measure forest biomass recovery within burn 
scars identified using MODIS images. LiDAR can thus offer more 
detail on the structure of vegetation canopies where optical sen-
sors such as MODIS and Landsat may be impacted by a saturation 
effect. Similarly, Morgan et al. (2021) used data acquired by a UAV 
as ground-truthing to estimate changes in vegetation cover across a 
30-year Landsat time series. Some studies utilized commercial sen-
sors with finer spectral and spatial resolution to generate training 
samples, particularly where a large spatial scope precluded an exten-
sive field survey. For example, Chu et al. (2016) identified areas with 
low to high burn severity within WorldView-2 images to serve as 
training samples to detect and classify burn within Landsat images.

Emerging data fusion approaches will also improve capacities 
for vegetation monitoring and trajectory analysis. The harmonized 
Landsat–Sentinel-2 combines images acquired by Landsat 8 OLI and 
Sentinel-2 MSI, both of which have similar spectral characteristics, 
into new data sets with more frequent images (5–16 days) (Claverie 
et al., 2018). The data set now covers 5+ years of data. This can 
be particularly useful for phenology analysis requiring high temporal 
frequency or in regions of the globe prone to frequent cloud cover-
age. Similarly, the Spatial and Temporal Adaptive Reflectance Fusion 
Model (STRAFM) joins Landsat and MODIS imagery to create a data 
set with medium–high resolution (30 m) and a higher temporal fre-
quency conducive to disturbance assessment and phenological anal-
yses (Gao et al., 2006).

4.3  | Model vegetation trajectories

Complete time series can help assess how indicators of vegeta-
tion condition (section 4.1) are changing over time. To generate a 
complete time series from satellite observations, assess its general 
properties (Figure 4, Q1, Step C), and minimize outliers, studies can 
fit linear trends to annual SVI and spectral values (section 4.3.1), 
and use more flexible nonlinear models (section 4.3.2) or piecewise 
models (section 4.3.3) sensitive to different phases in vegetation re-
covery. These approaches to trend detection and analysis seek to 
characterize the direction, magnitude, and duration of phases in the 
vegetation response to management, restoration, or press and pulse 
disturbances.
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Remote sensing is a particularly useful tool to model vegeta-
tion trajectories because it can provide repeated observations at a 
consistent time interval and over long periods. Across the studies 
reviewed here, trajectory detection was commonly used to assess 
the time needed for an ecosystem to re-cover to a pre-disturbance 
benchmark following a short-term, time-bound disturbance (i.e., 
pulse disturbance) such as a wildfire (João et al., 2018), drought 
(Bernardino et al., 2020), or flood (Cai et al., 2018a). Other studies 
used trajectory analyses to assess the impacts of press disturbances 
on ecosystem properties of interest. Such disturbances included cli-
mate change, successional changes, or modifications to management 
practices (Hutchinson et al., 2015; Vinatier et al., 2018).

4.3.1  |  Linear models

Linear regressions (Table 3) can model the general direction of veg-
etation change, fill gaps in time series, and smooth noisy data points 
(Zhu, 2017). They are best suited to the modeling of gradual vegeta-
tion responses to press disturbances because they assume a continu-
ous change in a constant direction and at a constant rate (Zhu, 2017). 
Across this review, linear regressions helped detect plant responses 
to climate changes, land conversions, and restoration efforts (Qiu 
et al., 2018; Pastick et al., 2019). Theil–Sen regression—which identi-
fies the trend as the median value across slopes computed among 
pairs of points (Fernandes & Leblanc, 2005)—is commonly used 
to detect linear trends in time series because it is less sensitive to 
outliers than least square regression analysis (Fernandes & Leblanc, 
2005). Wilcoxon–Mann Whitney (Pastick et al., 2019) or Mann–
Kendall (Yi et al., 2013; Qiu et al., 2017) statistics can subsequently 
be used to assess the significance of linear trends. Studies can then 
compare the direction (i.e., upward versus downward) and slope (i.e., 
rate of change) of trends observed across the study area to disentan-
gle pixel responses to different drivers of change (Qiu et al., 2018; 
Pastick et al., 2019). Multivariate linear models can also be leveraged 
to assess the relative contribution of different change drivers. For 
example, Liu et al. (2014) used a partial least regression model, which 
reduces explanatory variables into a smaller set of uncorrelated pre-
dictors, to assess the impact of temperature and precipitation on 
net primary productivity in Hunan Province, China. Copeland et al. 
(2019) used linear mixed models to assess the impact of climatic con-
ditions, invasive species, and management on the post-restoration 
recovery of drylands.

4.3.2  |  Nonlinear models

Nonlinear models (Table 3) can account for fluctuating rates of 
change over time, whereas linear models assume that change re-
mains constant (Zhu, 2017). Disturbances and restoration can trigger 
an asymptomatic response characterized by an initial upward trend 
as vegetation benefits from empty niches followed by a stabilization 
in spectral signal as colonization and plant growth slow (Figure 1a). TA
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For example, Storey et al. (2016) fit an asymptotic model that char-
acterized the recovery of shrublands after a fire (i.e., increase in 
greenness as vegetation expands until it stabilizes). Sun et al. (2012) 
used a similar function to model the recovery of forested pixels fol-
lowing an ice storm in China. Immediately after the ice storm, milder 
temperature, abundant precipitation, and nutrients left by decaying 
vegetation enabled the rapid regrowth of vegetation. Other sites 
may follow a unimodal trajectory (Figure 1b) in which an initial up-
ward trend in vegetation growth is followed by a decrease as a new 
stressor arises. Across this literature review, some studies sought 
to identify pixels that conformed to a pre-determined hypothetical 
nonlinear model or compare the fit of different models (Chasmer 
et al., 2018).

Some studies preferred more flexible gap-filling (i.e., interpola-
tion of missing values using prior and subsequent observations) and 
curve smoothing techniques. From the resulting continuous curves, 
the studies can then generate different indices describing the recov-
ery of the ecosystem (João et al., 2018). Such techniques can be clas-
sified into broad categories including filtering, threshold-based, and 
decomposition approaches. Filter-based approaches (e.g., Whittaker 
smoother, Savitzky–Golay filter) use a local (i.e., portion of the time 
series) temporal interpolation to fill in gaps between observations 
and correct extreme values. Threshold-based techniques (e.g., BISE) 
reject outlier values based on a pre-determined threshold. Finally, 
decomposition models (e.g., wavelet analysis) use a global approach 
(the model is applied to the entire time series) to decompose the 
time series into a multiscale temporal pattern.

4.3.3  |  Piecewise regressions

Piecewise linear models (Table 3), which segment time series into 
several linear trends or phases, can detect both abrupt and gradual 
changes, and upward and downward trends, whereas linear and non-
linear models focus on one generalized response to drivers of change 
(Zhu, 2017). As such, piecewise linear models can identify multiple 
sources of disturbance operating at different schedules. In this re-
view, applications included separating different pest outbreaks, de-
tecting successional changes, and disentangling the impact of various 
management practices (Meigs et al., 2011; Hutchinson et al., 2015). 
Commonly used algorithms to conduct piecewise linear regressions 
include Breaks for Additive Season and Trend (BFAST; Verbesselt 
et al., 2010) and Landsat-based detection of Trends in Disturbance 
and Recovery (LandTrendr; Kennedy et al., 2010). Both algorithms 
seek to segment time series by identifying breakpoints separating 
trends varying in slope, direction, or fluctuations. Bernardino et al. 
(2020) used BFAST to identify trajectories in dryland responses to 
landscape transformations and climate change. In their study, de-
forested pixels were characterized by a period of relative stability 
in greenness (pre-deforestation) followed by a decline. By contrast, 
agriculture abandonment and subsequent restoration was charac-
terized by decreasing greenness followed by an upward trend. Meigs 
et al. (2011) used LandTrendr to identify different forested pixel 

responses to pest outbreaks (e.g., long decline followed by recovery, 
long decline, short decline, and recovery) and separate the impact 
of different insect mortality agents (e.g., pine beetle versus western 
spruce budworm).

Statistics can characterize different phases, or time series seg-
ments, separated by breakpoints. The direction and slope of indi-
vidual segments might help distinguish different drivers of change. 
Similarly, the duration of the different segments can distinguish dis-
turbances and indicate whether they result in an abrupt or gradual 
vegetation response. Studying how the frequency of breakpoints 
varies throughout the study area can reveal locations prone to more 
disturbances, successional shifts, or landscape transformations. For 
example, Bernardino et al. (2020) identified “hotspots” in the fre-
quency of breakpoints associated with changes in the ecological 
functioning of drylands, which corresponded to areas subject to in-
creased anthropogenic pressure and rapid climate change. Piecewise 
linear regressions could be applied in the ecological restoration con-
text to detect “turning points” in restoration projects and identify 
their potential causes. For example, an upward increase followed by 
a decrease has been attributed in field-based studies to a lack of con-
nectivity and its impact on propagule availability and to an increase 
in aggressive coverage and its impact on plant diversity and coverage 
(Hubbell et al., 19991999aMatthews et al., 2009c; Matthews, 2015).

4.4  |  Thresholds and benchmarks

Once a time series revealing trends and fluctuations in vegetation 
properties is generated, project managers can identify when the site 
meets a pre-determined target (Figure 4, Q2, Step E) or falls below 
a certain value suggesting an arising source of stress. Managers 
can also identify within time series inflexions marking transitions 
in the spectral properties of vegetation resulting from succession, 
disturbance, or other ecological processes (Figure 4, Q3, Step F; 
breakpoints).

4.4.1  |  Thresholds and benchmarks

Thresholds (Table 4) mark a tipping point between two stable states 
(i.e., different combinations of biotic and abiotic characteristics that 
can persist at a location) following a disturbance modifying biotic 
structure and interactions or abiotic conditions (Briske et al., 2006). 
Beyond this threshold, interventions are likely needed to recover 
pre-disturbance conditions (Briske et al., 2006a). In the remote sens-
ing literature, thresholds typically consist of a spectral value (e.g., 
SVI, burn index) used to separate the undisturbed and disturbed 
states of a pixel or distinguish its “disturbed” state from its “recov-
ery”. Thresholding enables a quasi “real-time” identification of distur-
bances and restoration progress because it relies on pre-determined 
values beyond which the pixel shifts to its disturbed or recovered 
state (Zhu, 2017). Thresholds are most useful to identify abrupt driv-
ers of changes (e.g., fire, flood) triggering a rapid vegetation response.
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Ground-truthing can determine spectral thresholds associated 
with an observed plant response to disturbances, including shifts in 
successional stage, dominant species, or decreases in plant coverage 
and density. Shifts in alternative stable states, for example, can modify 
tree density and dominant growth forms, thereby impacting the tree 
cover observable from satellite images (Scheffer et al., 2012). For ex-
ample, vegetation removal due to fire and the subsequent deposition 
of ash can trigger a decrease in the NDVI sensitive to plant biomass 
and increase surface temperatures (observable from thermal sensors 
such as Landsat; Table 2) or burn indices. Once spectral values asso-
ciated with site-level signs of vegetation disturbance are identified, 
they can be used to assess other instances in time and space.

Where a large spatial scope precludes the representative ac-
quisition of field samples, studies instead use thresholds based on 
historical averages or reference sites; an approach also commonly 
used to set restoration targets. Ideally, “historical thresholds” should 
be based on an average or median spectral value over several years 
to account for fluctuations in vegetation biomass and atmospheric 
conditions. For example. Yi et al. (2013) used a 2-year pre-fire NDVI 
average as a benchmark  to identify fire damage. Studies can also 
use reference sites to set a threshold between disturbance and re-
covery. Pre-determined thresholds of greenness variation can sepa-
rate noise from “real” variation in greenness indicating a vegetation 
response to disturbances. For example, Villa et al. (2012) used a 
threshold of vegetation coverage, based on the SVI values of undis-
turbed areas, to separate tsunami damage from normal fluctuations 
in SVI driven by tidal fluctuations.

Thresholds are context dependent (Bestelmeyer, 2006): some 
sites might be inherently greener than others because of their envi-
ronmental conditions, the plant communities those conditions sup-
port, or the presence of water bodies and anthropogenic features. 
Recognizing this, Yang et al. (2018) used a site-specific coefficient of 
variation in SVI (ratio of site standard deviation to mean) rather than 
an absolute value to identify a realistic threshold of plant damage 
specific to each site. Similarly, thresholds might need to be dynam-
ically evaluated because landscape transformation, climate change, 
and other drivers of change continue to impact ecosystems and their 
spectral properties.

4.4.2  |  Breakpoints

Breakpoints (Table 4) are used in piecewise regressions to separate 
trends differing in direction, slope, or fluctuations. Breakpoints 
might occur where extreme disturbances mark a transition from 
an upward trend in greenness to its rapid decline (Figure 1b). 
Similarly, successional transitions triggered by a disturbance can 
impact trend slope and direction, resulting in a series of break-
points (Greig et al., 2018). Finally, a breakpoint between a gradual 
increase in greenness and a steeper one might reflect the positive 
impact of a management policy on plant communities (Bernardino 
et al., 2020). Whereas thresholding relies on pre-determined values 
to identify shifts in ecosystem states, breakpoints use complete 
time series to identify past instances of community shifts. As such, 
they do not allow for “real-time” monitoring of ecosystem shifts, 
but rather can assess factors triggering changes in plant commu-
nities. To assess whether breakpoints are occurring in the time 
series, studies can use the ordinary least squares residuals-based 
Moving Sum (OLS-MOSUM)—which detects potential breakpoints 
based on the moving sum of residuals—then test different itera-
tions of breakpoints until an optimal solution (e.g., a solution that 
minimizes the Bayesian Information Criterion; Verbesselt et al., 
2010) is met. In the restoration context, breakpoint analysis can 
help compare the recovery time of different sites and assess how 
disturbances impact recovery. For example, Niu et al. (2019) used 
breakpoint analysis to assess how vegetation growth in northern 
China was impacted by regional restoration efforts, dust storms, 
and land management.

4.5  | Application in restoration 
science and practice

Once trajectories are identified, breakpoints detected, and trends 
measured, several of the approaches described here can be tai-
lored to the restoration context to help project managers identify 
factors modulating the trajectories of plant communities (Figure 4, 
Q4, Step G).

TABLE  4 Applications of thresholds and breakpoint analysis and their data needs

Indicator Applications Data needs Drivers of change

Thresholds Identify disturbances (Scheffer et al., 2012; Yi 
et al., 2013)

Spectral information from previous or nearby 
disturbances or historical data

Abrupt events 
triggering rapid 
vegetation response

Separate noise in time series from “real” 
change (Villa et al., 2012)

Long-term time series Abrupt events 
triggering rapid 
vegetation response

Identify when site has met goals Spectral information from reference site Restoration, 
management

Breakpoints Detect multiple disturbances (Verbesselt 
et al., 2010)

Complete time series Various drivers of 
changes

Identify factors impacting vegetation 
recovery (Niu et al., 2019)

Complete time series Various drivers of 
changes
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4.5.1  |  Identify sites and landscape drivers

Clustering sites with similar trajectories could reveal local and re-
gional constraints to vegetation recovery. Previous efforts to clus-
ter sites based on field observations have shown the incidence of 
landscape context, management, and land legacies, all of which 
may not be immediately evident when focusing on the response 
of one site alone (Matthews, 2015). Time series extracted from 
satellite observations can facilitate site clustering at low cost 
and across broader gradients of environmental conditions than 
is achievable using field observations alone. For example, Qiu 
et al. (2017) clustered pixels showing similar trajectories to high-
light how regional constraints, including climatic and topographic 
patterns, had modulated the local outcomes of a national affor-
estation program. Clustering can expand the temporal scope and 
frequency of site monitoring to deepen our understanding of how 
press disturbances and the combined actions of multiple stressors 
impact vegetation dynamics. Chasmer et al. (2018) grouped pixels 
with a similar trajectory to examine how watershed characteristics 
(e.g., topography, soil) regulated vegetation response to drought in 
Canada. Different indices of trajectory similarity—including cor-
relation indices, descriptive statistics, and distance-based similar-
ity indices—can identify pixels or sites with analogous temporal 
responses (see Lhermitte et al., 2011). Correlation indices (e.g., 
Pearson’s cross-correlation; Lhermitte et al., 2011) determine 
whether two time series are generally moving in the same direc-
tion. Statistics describing trajectories (e.g., slope, duration, direc-
tion, average) can serve as a starting point to group pixels or sites. 
Once these statistics are generated for each unit of analysis, mul-
tivariate clustering approaches (e.g., classification and regression 
trees, principle components analysis) can group sites. Distance-
based similarity indices (Lhermitte et al., 2011) can group trajecto-
ries based on their distance at different time steps.

4.5.2  |  Assess restoration progress

The trajectory approach could establish when restoration goals 
are met and promote a more flexible evaluation of restoration suc-
cess. Site capacity to meet certain thresholds is context depend-
ent because local constraints (e.g., topography, adjacent land uses) 
can limit maximum potential vegetation density. Furthermore, a 
trajectory approach could offer more flexible targets in land-
scapes with shifting baselines. Benchmarks and reference condi-
tions are typically based on one sampling campaign or very few 
years of sampling, thus not always accounting for the impact of 
extreme climate events, landscape transformations, and climate 
change on the plant communities of reference and restored sites. 
Although monitoring plant dynamics in both reference and re-
stored sites can be resource-intensive, remote sensing can be 
leveraged to dynamically assess whether restored sites are devi-
ating or otherwise approaching the conditions of reference sites. 
The same similarity indices that can guide site clustering (4.5.1) 

could be used to this effect. Where reference sites are not readily 
applicable, an alternative approach could be to develop an “ex-
pected” trajectory based on several restored projects (i.e., range 
of trajectories). Open-access optical sensors can help characterize 
broad signals of plant community health and response to inter-
ventions. UAVs, which typically provide a better spatial resolution 
than open-access products, will also become increasingly useful 
in helping project managers track the responses of target species 
and identify the role of local factors on their recovery (Neumann 
et al., 2021).

4.5.3  |  Test ecological hypotheses

Future studies could leverage the trajectory approach to test eco-
logical hypotheses pertaining to patterns of vegetation recovery 
and their drivers (Figure 4, Q4, Step H). Different ecosystem pro-
cesses, disturbance types, and forms of management are likely to 
produce a contrasted site response and long-term spectral signal. 
The restoration literature reports various responses to restora-
tion interventions, with some sites showing an asymptotic trajec-
tory (Figure 1a), whereas others show a linear or unimodal response 
(Figure 1b). Model fitting (i.e., testing which mathematical model 
best fits the general trend of observed values) can help identify 
where such responses are occurring, to tease their potential drivers. 
For example, Meigs et al. (2011) generated hypothetical trajectories 
describing how vegetation responses to two pests (mountain pine 
beetle and western spruce budworm) were mediated by different 
environmental conditions (e.g., frequency of pest outbreaks, initial 
site productivity). Similarly, Qiu et al. (2017) formulated hypotheti-
cal trajectories representing different landscape transformations 
and sought to identify where these different trajectories were oc-
curring to assess broad patterns of landscape change. Furthermore, 
assessing the characteristics of vegetation trajectories (e.g., slope, 
direction, time before stabilization) can help measure the incidence 
of different environmental drivers. For example, Cai et al. (2018) as-
sessed how the recovery rate of burned forest varied with local seed 
availability and presence of environmental filters to seed dispersal. 
Copeland et al. (2018) assessed how the post-fire recovery rate (i.e., 
time needed to recover to pre-disturbance greenness) of drylands 
varied with biological invasions, soil characteristics, and extreme 
weather.

4.6  |  Limitations

Although a trajectory approach could expand the spatio-temporal 
scope of restoration monitoring at low cost, its ease of use might 
vary with ecosystems and geographic regions. Most studies re-
viewed here focused on forests, while fewer papers looked at eco-
systems with shorter canopies (e.g., grasslands), sparse vegetation 
(e.g., drylands), or water exposure and fluctuations (e.g., wetlands). 
Both spectral indicators of vegetation properties and algorithms 
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for time series analysis have been thoroughly tested in—and often 
developed for—forests, giving future studies extensive literature to 
rely upon. The structural characteristics of forests—including gen-
erally a high coverage and leaf area index—facilitate the separation 
of disturbed and undisturbed states characterized by a decline in 
greenness. In ecosystems with a sparse or heterogeneous vegeta-
tion distribution, it becomes more challenging, but not impossible, to 
detect vegetation in mixed pixels (e.g., pixels covered by vegetation 
and bare ground) or separate disturbances from natural fluctuations.

Geographic variations in the availability of cloud-free data might 
also make the use of trajectory analysis somewhat challenging when 
relying on passive sensors. Some regions are characterized by more 
cloud coverage, limiting the availability of cloud-free data to gener-
ate SVIs. In these regions, indicators relying on frequent observa-
tions (e.g., phenological metrics) might be difficult to generate, but 
studies can instead focus on aggregated indices (e.g., annual maxi-
mum greenness) or rely on one cloud-free image per year, preferably 
captured at peak growing season. Spatial variability in cloud cover 
might also be challenging for studies focusing on a national or global 
scope. For such studies, it might be prudent to conduct a sensitivity 
assessment to determine whether their selected indicators of vege-
tation properties are affected by the availability of cloud-free images 
or leverage radar sensors, which are not impacted by cloud cover.

Finally, open-access remote sensing data sets with a long time 
span and frequent data acquisition (Table 2) typically have a coarser 
resolution. They are consequently more suited to the monitoring of 
total vegetation coverage, or the average phenology or ecosystem 
functions of plant communities, rather than their composition. UAVs 
and commercial sensors with higher spectral resolution (Table 2) 
could help detect some changes in species composition or diversity, 
but their use is best suited to studies with a limited extent. Research 
wishing to study temporal changes in species composition could use 
a trajectory approach to target field monitoring efforts, notably by 
detecting signs of ecosystem stress or unexpected trajectories.

5  |  CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

Restoration interventions can elicit a plant community response 
similar to that triggered by fire, flood, or hurricanes; vegetation re-
moval opens new niches and increases resource availability. This 
favors seed bank emergence and colonization from nearby popu-
lations, thereby increasing vegetation biomass, coverage, and their 
spectral indicators. As such, remote sensing approaches used to 
monitor vegetation response to press and pulse disturbances could 
be integrated into post-restoration monitoring efforts. Monitoring 
post-restoration vegetation trajectories at the pixel or site level 
could enable project managers to detect when a site is meeting tar-
gets or diverging from them suggesting a need for adaptive manage-
ment. Comparing the trajectories of several sites could help identify 
the factors modulating their recovery that would otherwise be chal-
lenging to identify using site monitoring alone. Finally, a trajectory 

approach could set more flexible restoration targets by monitoring 
conditions in reference and restored sites simultaneously, thereby 
accounting for the impact of landscape changes on the vegetation 
potential of both sites.

To support the widespread use of a trajectory approach in resto-
ration monitoring, future studies could tailor indicators and methods 
that are already used to monitor vegetation response to natural dis-
turbances to the specific context of restoration. Spectral indicators 
of vegetation structure are already used in some post-restoration 
studies, but recovery and phenological indicators are used more 
sparingly. Future studies could test the application of existing re-
covery indices, or develop similar ones, to offer guidance on how to 
select the baseline conditions to be integrated to the recovery index. 
Similarly, future studies could assess how specific phenological met-
rics (e.g., growing season length, rate of spring green up, maximum 
greenness) respond to post-restoration changes (e.g., succession, 
fluctuations in species diversity) to promote their use as indicators 
of recovery.

Another important avenue for research is developing early 
warning signals of ecosystem shifts (i.e., tipping points) in restored 
ecosystems. Breakpoint analysis, although helpful for understand-
ing when and how vegetation has responded to specific drivers of 
change, relies on a complete time series. Thresholds can identify 
signs of disturbance but rely on previous data (i.e., an understand-
ing of how specific disturbances impact spectral characteristics). 
Current literature counts several attempts to develop early signals 
of ecosystem shifts notably by assessing changes in spatial patterns 
(Kefi et al., 2018), but few have tested their applicability using real-
world data (Nijp et al., 2019) or in restored ecosystems.
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