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A B S T R A C T   

This paper introduces a real-time digital twin for ship operations in seaways. The concept of the digital twin is 
becoming popular, and it is adopted for ship operation systems in this study. In particular, this paper introduces a 
new and innovative concept of the digital twin to predict ocean waves and hydrodynamic performances, such as 
seakeeping and maneuvering, which enables the risk and optimum route to be forecast in real time. An essential 
element in the realization of such a real-time digital twin is the real-time prediction of ocean waves. Hence, a 
sophisticated algorithm for wave reconstruction using measured wave-radar images is developed, which is 
extended to predicting the future evolution of a three-dimensional wave field in front of a ship within a time 
window of the order of 10 min. As another essential element, an analysis program to solve the coupled 
seakeeping-maneuvering problem is developed. This analysis can also be used in real time. By combining this 
with wave prediction software, the future occurrence of ocean waves and ship responses can be predicted. By 
extending this approach, the risk and performance of ships in various ocean environments can be predicted. In 
this paper, concepts, approaches, and examples are introduced.   

1. Introduction 

Marine engineers and operators envision operating a ship while 
predicting what will occur in the future. The mid-term and long-term 
voyage plans are generally determined based on daily weather fore-
casts in which a large-scale ocean wave field (spatial resolution of 
several kilometers) is predicted by statistical values such as significant 
height, mean period, and direction. On the other hand, in a short term, 
the current ship navigation involves visual observing the ocean waves 
that are currently occurring and operating while responding to them or 
determining the operating conditions based on the limited ocean in-
formation. However, if what a ship will experience in 10 or 20 min can 
be predicted according to the time evolutions of sea surfaces and tidal 
currents near the vessel by marine radar measurements in real time 
(Hilmer and Thornhill, 2015), ship operators will have many advan-
tages, such as immediate decision-making on navigations to avoid any 
sudden risk or failure. This denotes the evolution of ship operation into a 
new concept in the short term. 

As well known, the basic concept of a digital twin whose origin can 
be found in the aerospace industry consists of the physical asset in real 
space, the virtual model in cyberspace, and the connection of 

information between them (Grieves, 2014). Recently, digital twin 
technology has been adopted for integrated design & maintenance and 
performance & safety improvements for modern ship systems that are 
becoming increasingly complex. Giering and Dyck (2021) proposed a 
modular and feature-based Maritime Digital Twin Architecture (MDTA) 
based on a single source of information for all stakeholders over the 
whole lifecycle of a vessel. For the operational phase in this holistic 
vessel support, the concept of “DT aggregate”, a platform for real-time 
integration, processing, and analysis of sensor data, and continuous 
exchange of information with physical assets through performance data 
and simulation results was introduced. In addition, Fonseca and Gaspar 
(2021) stated decision support that focuses on condition monitoring and 
simulation based on operation data as one of the main digital twin ship 
technology. For example, Bekker et al. (2018) established a plan to 
establish a real-time monitoring and decision-support system for a polar 
research vessel based on comprehensive measurements of ice load, hull 
vibration, shaft-line torque, and ocean environment, and Fonseca and 
Gaspar (2020) suggested the fundamentals of a digital twin (asset rep-
resentation, behavior model, and measured data) for wave & ship mo-
tion monitoring and dynamic positioning. Regarding the advanced DT 
applications for ship operation, these studies emphasized real-time 
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virtual model realization and physics-based data analysis, simulation, 
and visualization for decision support based on physical environment 
measurements as well as physical asset performances. Fig. 1 shows ex-
amples of the concept of a digital twin for ship operations by DNV-GL 
(Smogeli, 2017) and the digital ship of Daewoo Shipbuilding and Ma-
rine Engineering (DSME, 2021). 

Two main barriers hinder the application of the concept of digital 
twins to real-time ship operation. The first barrier is the technical dif-
ficulty in ocean environment prediction, particularly in the prediction of 
wave evolution at the locations in which a ship will pass in the near 
future. Current technology for wave prediction is mostly based on sta-
tistical analysis and relatively long-term predictions, e.g., in the order of 
days or weeks, which are predicted mostly by weather centers. The 
actual evolution of the wave profiles in space and time is required for the 
prediction of the actual motion responses/signals and potential risk. The 
second barrier is that all analyses and predictions must be performed in 
real time. In other words, the prediction of motion responses and 
maneuverability must be performed instantaneously without a time 
delay. Furthermore, if the ship operator, e.g., the captain, decides to 
change the operation conditions such as speed and heading, the resul-
tant performance must be foreseen in a very short time. 

In the present paper, the development of a real-time digital twin for 
ship operations is introduced. The primary service value is to predict 
seakeeping quantities such as wave-induced motions and loads and 
resulting operation performances of the ship in real sea states. Specif-
ically, short-term deterministic predictions are performed based on 
sensor observations of marine radar images, ship motion records, and 
GPS data, and monitoring and forecasting results for target values are 
given via a dashboard to support ship operators’ decision-making in real 
time. In accordance with the classification of digital services by Erikstad 
(2019), the system is an operational-level decision-support service for 
immediate ship navigations. In addition, it provides real-time insight 
into the current ocean environment and ship operations, and foresight 
information according to user-defined navigation scenarios; a 
future-cognitive system. A few new technologies have been developed 
and merged in the single system to overcome the two barriers mentioned 
above, and the simulation/computation time has been dramatically 
reduced. 

Regarding ocean wave analysis, marine radar measurement tech-
nology has been developed to evaluate both statistical sea state pa-
rameters and spatiotemporal evolution of the sea surface (Neito-Borge 
et al., 1999a; Hessner et al., 2001). Currently, wave fields with a radius 
of 2–5 km can be measured through the X-band radar with sufficient 
resolution. Generally, three-dimensional (3D) fast Fourier transform 
(FFT)-based spectral analysis is applied to measured radar images to 
retrieve ocean wave information, but several important corrections and 
modifications are required for nonphysical spectral components induced 
by image shadowing and titling effects. 

For wave-field reconstruction, Young and Rosenthal (1985) pro-
posed linear dispersion relation-based filtering, and Nieto-Borge et al 
(2004) introduced a modulation transfer function (MTF) to attenuate 
nonphysical high-frequency components. Recently, Stole-Hentschel 
et al. (2018) introduced an enhanced MTF, considering the tilting effect 
more strictly. In addition, Zinchenko et al (2021a) suggested a modifi-
cation method for the radar image itself that shifts the mean value such 
that the distribution of image intensity is similar to an actual wave field, 
and Qi et al. (2016) optimized numerical parameters for calibrations of 
image intensities and modifications of spectral components through 
comparison with higher-order spectral (HOS) method-based simulation 
results. 

The reconstructed wave components were used to set the initial state 
of the wave field prediction. Wave propagation can be straightforwardly 
modeled using the dispersion relation of a linear gravity wave. Hence, 
adjustments for wave number and frequency are required for each dis-
cretized component obtained using FFT (Naaijen and Blondel-Couprie, 
2012; Blondel-Couprie and Naaijen, 2012; Wijaya et al., 2015). 
Wave-field forecasting based on finite spatiotemporal measurement data 
is valid only for the predictable zone that is determined by the group 
velocities and propagation directions of wave components (Naaijen 
et al., 2014). Therefore, the predictability of the incident waves must be 
confirmed for specific time instants and locations by reflecting the 
characteristics of the ocean environment and ship operations (Qi et al., 
2018). Recently, various nonlinear analysis techniques, such as an 
enhanced choppy wave model (Desmars et al., 2020), modified 
nonlinear Schrodinger equation (MNLS; Simanesew et al., 2017), and 
the HOS method (Wu, 2004; Kollisch et al., 2018; Fujimoto and Waseda, 
2020) have been used to predict large-scale or severe ocean wave fields. 
Despite the better accuracy of nonlinear analyses, such models 
encounter large barriers for real-time analysis. 

Various studies have been conducted on systems that predict the 
operational performance of a floating structure in actual sea states based 
on marine radar measurements. In the joint industry project, Onboard 
Wave and Motion Estimator (OWME), the ocean environment was 
evaluated using the FFT technique, and the phases of the discretized 
components were optimized for the predefined wave directionalities 
(Dannenberg et al., 2010). By combining the wave propagation model 
and pre-computed response amplitude operator (RAO) model, the inci-
dent waves and the resulting ship motions were forecasted (Naaijen 
et al., 2016, 2018). For the decision support system, Computer-Aided 
Ship Handling (CASH; Clauss et al., 2012), predictions were also per-
formed on the wave-induced motion and hydrodynamic pressure dis-
tribution using a 3D FFT analysis. Recently, the HOS method was 
introduced to improve forecasting accuracy for severe ocean environ-
ments (Clauss et al., 2015). In addition, the Environmental and Ship 
Motion Forecasting system (ESMF; Alford et al., 2014; Kusters et al., 
2016) applied a polar FFT or data assimilation procedure to a Doppler 

Fig. 1. Example concepts of digital ship of DSME (2021) and digital twin of DNV-GL (Smogeli, 2017).  
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radar signal (the orbital velocity of a wave particle) to reconstruct sea 
surfaces. 

Various computational methods are available for seakeeping, and 
there is no need to describe the state of the art in this paper. However, 
methods applicable for real-time simulations are limited. In particular, 
seakeeping and maneuvering analyses must be coupled for ship navi-
gation in the waves. In this study, an impulse response function (IRF) 
approach is adopted for the rapid simulation of ship motion responses 
and maneuvering in waves. The IRF method is popular for the sea-
keeping problem, but pre-computation is required for motion RAOs and 

IRFs. Furthermore, it must be extended to include the change in ship’s 
speed and direction, i.e., encounter waves. In this study, a two-time scale 
model coupled with an IRF-based seakeeping and Maneuvering 
Modeling Group (MMG) for maneuvering (Lee et al., 2022) is integrated 
with a wave prediction model. The MMG model is the most popular 
method for maneuvering simulations. 

The remainder of this paper is organized as follows. In Sec. 2, the 
basic concept and outline of the present digital twin system are 
explained, and the theoretical background for submodules are 
described: the reconstruction and prediction of ocean waves, the 

Fig. 2. Overall procedure of real-time digital twin.  

Fig. 3. Flowchart of overall real-time prediction system.  
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simulation of ship motion and maneuvering, and the operation guidance 
considering the resistance and seakeeping performance. The application 
examples validated by comparison with the numerical simulation data 
of the time-domain seakeeping-maneuvering coupling method (Lee and 
Kim, 2021) are presented in Sec. 3. This section includes the in-
vestigations of various technical issues regarding prediction perfor-
mance such as the specifications of the radar image, filtering and 
modifications of the image intensity, and the considerations of ship 
operations relative to ocean environments. Finally, the conclusions are 
made in Sec. 4. 

2. Real-time digital twin for ship operation 

2.1. Basic concept 

The digital twin for ship operations requires a few essential elements: 
wave prediction, analysis of the ship’s hydrodynamic performance, and 
control platform for decision making and navigation control. These can 
be linked with and supported by various supplementary (but still 
important) functions such as risk prediction and avoidance, energy- 
saving operation, hull and equipment monitoring, and path optimiza-
tion. A sample procedure of this integration is shown in Fig. 2. 

To develop a digital twin, all analyses, simulations, predictions, and 
decision-making must be conducted in real time. The target time win-
dow in this study is of the order of 10 min. That is, the aim is to predict 
the wave evolution and ship responses within 20 or 30 min in the near 
future. This new digital twin system has the potential to support the 
operators’ decision-making for the general navigation of a commercial 
ship. Deterministic identifications in minutes for specific wave trains 
and ship displacements (or accelerations) rather than statistical values 
for ocean environments can provide more concrete information to avoid 

any risks due to excessive ship operations. In addition, the predicted 
environmental loads (in particular, wave drift force and moment) can be 
utilized to determine the optimum course and speed. For now, the 
present digital service is not perfect in itself. In the future, parameteri-
zation of ship motions and wave loads to be reflected in ship navigations, 
and optimizations in terms of minimum response, resistance, and path 
distance should be added for a complete system. 

2.2. System outline 

The proposed real-time prediction system for ship operation consists 
of a “WAVE” module related to wave-field reconstruction and predic-
tion, and a “MOTION” module related to simulating a ship’s seakeeping 
and maneuvering performances. Additionally, “RESISTANCE” and 
“SAFETY” modules are also installed for the operation guidance. The 
flowchart is shown in Fig. 3. 

The input data for the system are classified into three categories. The 
first is on-board measurement data, including marine radar images and 
wind measurements for the evaluation of the ocean environment near a 
ship. Moreover, wave-induced ship motions of all six degrees-of-freedom 
should be recorded for seakeeping computations by measurements 
through a typical onboard Motion Reference Unit (MRU). Second, GPS 
data such as the global position and operational velocity of a ship are 
necessary. Finally, in addition to the principal dimensions of a ship, a 
hydrodynamic database in the frequency domain (hydrodynamic co-
efficients, wave-induced excitation, and drift forces) and the Maneu-
vering Modeling Group (MMG; maneuvering derivatives, modeling for 
propulsion and steering) are required to simulate the ship operation. 

Based on the input data, the WAVE module performs wave-field 
analysis to evaluate the sea state parameters (significant wave height, 
mean wave period and direction, and current information) and obtains 

Fig. 4. Sequence-based simulation.  
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the phase-resolved wave components. According to the characteristics of 
the assessed ocean environments, the MOTION module conducts a 
deterministic seakeeping-maneuvering simulation in the time domain 
(for a certain predictable time range). Lastly, statistically or on average, 
the resistance performances and significant ship motions are evaluated 
in the RESISTANCE and SAFETY modules, respectively, and utilized to 
construct the operation guidance. 

The system runs based on the sequence-based simulation as shown in 
Fig. 4. Analysis and forecast of the wave field are conducted for one 
sequence consisting of N radar images. For each sequence, the moni-
toring data (MRU and GPS data for current ship operation) is used as 
initial conditions for the seakeeping-maneuvering simulation. The re-
sults of a previous sequence are updated by that of a new sequence. 
Regarding future ship operations, the user can define an operation sce-
nario by specifying the desired SOG (speed-over-ground) and COG 
(course-over-ground) as shown in Fig. 5. The operator-defined scenario 
is implemented by controlling the propeller revolution rate and rudder 
angle, which will be explained in detail in Sec. 2.4. The prediction re-
sults for various scenarios in a range set considering ship’s maneuver-
ability can be the database for decision support for optimum navigation. 
Actual ship navigations (monitoring data) and simulation results are 
linked via the operator’s decision in real time. This denotes a continuous 
exchange of information between the physical asset and the virtual 
model. 

2.3. Wave-field analysis 

Fig. 6 shows the flowchart of the WAVE module. Computations in the 
module proceed largely to four steps: i) collection of radar images, ii) 
modification of image intensity, iii) spectral analysis, and iv) wave-field 
prediction. A detailed explanation of each step is as follows. 

(1)Step 1: Collection of marine radar images 

The marine radar measures the surrounding wave field (e.g., ζw(x,y,
t)) through the backscattered image intensity (ρs(x,y,t)) using the Bragg 
resonance phenomenon of sea clutter (Young and Rosenthal, 1985). The 
coordinate system and definitions are summarized in Fig. 7. Here, hr is 
the installation height of the radar. The 3D spatiotemporal intensity data 
are constructed for a sequence of consecutive radar images, and the time 
interval (dt) between images is determined according to the radar 
rotation period (1.0–2.0 s). Furthermore, reliable measurements are 
possible only within a certain range, considering the specifications of the 
radar: minimum radius (Rmin) of 200–500 m, and maximum radius 
(Rmax) of 2–5 km. In this study, all the measurement data in a 
ring-shaped domain (Cartesian grid data) are utilized for the wave-field 
analysis. 

(2)Step 2: Modification of image intensity 

Radar images include physical ocean waves and nonphysical com-
ponents owing to radar imaging mechanisms, such as shadowing and 
tilting effects. Therefore, prior to performing spectral analysis, modifi-
cations to the image intensity are required such that its distribution is 
similar to that of an ocean wave field. First, the mean-shift modification 
proposed by Zinchenko et al. (2021a) is applied. Generally, the image 
intensity has a value in 8-bit grayscale (0–255). Because the intensity 
has a positive mean value and is close to zero in the shadowing region, 
the distribution is significantly distorted compared with the actual wave 
elevations. Therefore, the mean value is corrected using the following 
equation. 

ρm(x, y, t) =
{

ρs − βmρmean for non − shadowing
0 for shadowing (1)  

where ρmean = mean[ρs(x, y, t)] for non-shadowing. 
Limited to the non-shadowing region, the intensity is shifted by the 

mean value multiplied by a factor (βm). Generally, because more mea-
surements can be performed for wave crests than for wave troughs, βm 
has a value less than 1 (0.8–0.9). Moreover, the energy level of the image 
intensity is not uniform in space, unlike in an actual ocean wave field. 
Therefore, the following modification is performed to calibrate the en-
ergy level in the entire measurement domain: 

Fig. 5. Operation scenarios in prediction system.  

Fig. 6. Flowchart of WAVE module.  

Fig. 7. Coordinate system and definitions in WAVE module.  
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where αc and βc are coefficients for approximating the variance distri-
bution and can be obtained by applying the least square method to the 
measured data of a specific azimuth angle.  

(3) Step 3: Spectral analysis 

A 3D FFT-based spectral analysis (Nieto-Borge et al., 2004) is 
conducted to retrieve the sea state parameters and phase-resolved wave 
components from the radar images. The spatiotemporal image intensity 
can be expressed using spectral components, such that: 

ρ(x,y, t) =
∑

J
2
,
M
2
,
N
2

j=−
J
2
+1,m= −

M
2
+1,n= 0

Ajmn exp
[
i
(
kx,jx+ ky,my − ωnt+ εjmn

)]

where dkx = 2π
/

Lx kx,j = jdkx,dky = 2π
/

Ly,ky,m =mdky,dω= 2π
/

T,ωn = ndω.
(3)  

Here, Lx and Ly indicate the image sizes in x- and y-directions, respec-
tively. In addition, J and M are the numbers of data in each direction. 
The propagation direction of each discretized component can be deter-
mined according to the relationship between the signs of the total wave 

number (k = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y

√

) and the wave frequency (ω). 
Excessively low-frequency components due to the long-range 

dependent modulation effects in radar images are eliminated using a 
high-pass filter (ωn < κ1dω). The filtering range (κ1) should be deter-
mined considering the spectral energy distribution of ocean waves (sea 
states and ship operations) and the minimum frequency (dω). In addi-
tion, another non-physical component in the image intensity, the 
shadowing-induced high harmonic component, is removed by a band- 
pass filter based on the linear dispersion relation. In other words, only 
the components for ωn ∈ [ω0 ±κ2dω] are taken into account, where ω0 is 
the wave frequency corresponding to the total wave number for a deep 
sea (ω2

0 = gk) and κ2 is the range of the dispersion filter. Lastly, the 
following MTF is applied to attenuate overestimated high-frequency 
components that cannot be removed by the filters: 

A(MTF)
jmn =Ajmn

⃒
⃒M

(
kjm

)⃒
⃒ where M(k)2

= αMTFk− βMTF
jm . (4)  

Here, αMTF is the scaling coefficient according to the total energy of the 
wave field, and βMTF represents the degree to which the high-frequency 
components are mitigated. The exponent of the MTF can be determined 
empirically using the known wave spectrum obtained by an independent 
measurement (e.g., a wave buoy). The wave field (ζre(x, y, t)) can be 
reconstructed using the inverse fast Fourier transform (IFFT) for the 
modified spectral components.  

(4) Step 4: Wave-field prediction 

Based on the reconstructed components, the wave propagation 
model is constructed as follows. First, components with negligible en-

Fig. 8. Flowchart of the MOTION module.  

ρc(r, θ, t) = ρm(r, θ, t)

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

αc(θ)(r/Rmax)
βc(θ)

√

where var(ρm(r, θ, t)) ≈ αc(θ)
(

r
Rmax

)βc(θ)

(2)   
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ergy are removed for an efficient ship operation simulation (energy 
filter; the energy sum of the remaining components is 90%–98%). 
Subsequently, the frequency of each component is adjusted to satisfy the 
linear dispersion relation as follows: 

ζpr(x, y, t)=
∑

Ajmn exp
[
i
(
kx,jx+ ky,my − ω0(t − t∗)+ εjmn − ωnt ∗

)]
. (5)  

Here, t∗ ∈ [t0, t0 +T] is the reference time for the wave-field prediction. 
In other words, the waves propagate from the reconstructed field at t =

t∗. Hence, the phase of each component is adjusted such that εjmn→ 
εjmn + (ω0 − ωn)t∗. 

For a specific time and location, the predictability of each wave 

component depends on its group velocity (cg = ω
2k

(
1 + 2kh

sinh(2kh)

)
) and 

propagation direction (χ = tan− 1(ky /kx)). In other words, the compo-
nent can be forecasted when the wave propagates from the measurement 
domain. The prediction index (PI) can be defined as follows. 

PI(x, y, t) =
∑

S(p)
jmndkxdkydω

∑
Sjmndkxdkydω

where S(p)
jmn =

{
Sjmn when

(
xjm, yjm

)
∈ [Rmin,Rmax]

0 else
,

xjm = x + (t ∗ − t)
(
cg,jm cos χjm + uc

)
, yjm = y + (t ∗ − t)

(
cg,jm sin χjm + vc

)
.

(6)  

Here, S is the power spectrum of the discretized component 
(Sjmndkxdkydω = 1

2A
2
jmn). PI indicates the energy sum of the predicted 

components compared with the total energy. In this paper, the pre-
dictable time range (t ∈ [ts, te]) is defined as an interval with PI of 0.8 or 
higher at the radar location (the position of a ship; (x,y) = (0, 0)). 

For wave-field reconstruction, an additional estimation of the sig-
nificant wave height is required. The significant wave height repre-
senting the total wave energy (HS = 4 ̅̅̅̅̅̅m0

√ ) is used to scale the wave 
components (αMTF of the MTF). Various estimation methods have been 
suggested using only the radar images without an independent mea-
surement, such as the signal-to-noise ratio (SNR)-based empirical for-
mula (Nieto-Borge et al., 1999b), statistical characteristics of shadowing 
effects-based methods (Gangeskar, 2014; Wijaya and van Groesen, 
2016), and machine learning techniques (Salcedo-Sanz et al., 2015; 
Chen and Huang, 2021). In the present study, the significant wave 
height is assumed to be obtained through an independent measurement 
or estimation technique. 

Information on the ocean current is necessary for the dispersion filter 
in spectral analysis. Conversely, the current can be estimated according 
to the distribution of the spectral components. First, components of 1%– 
2% or more of the maximum value of spectral energy are extracted for 

efficient computation (the nonphysical low-frequency components are 
also filtered out). When the dispersion filter is applied to the extracted 
components, an initial guess for the current at which the largest energy 
is obtained can be determined using a direct search method (the 
nondimensional scalar product method; Serafino et al., 2010). There-
after, from the initial guess, the final estimation is performed using the 
iterative least square method (Senet et al., 2001; Huang and Gill, 2012) 
where the loss function is defined through a geometric error between the 
frequencies of a certain component and the linear dispersion relation. 
The process of extracting the fitting data using the dispersion filter and 

conducting the least square method is repeated for a converged current. 
Note that if a ship operates, the estimated value is the current relative to 
the ship’s operational velocity. 

The demonstration case of short-term deterministic wave prediction 
based on X-band radar measurements through a similar procedure to the 
ocean wave field analysis in this study can be found in Zinchenko et al. 
(2021b). 

2.4. Deterministic prediction for ship operation 

For the forecasted incident wave trains on a ship, a two-time scale 
model-based seakeeping-maneuvering simulation is performed in the 
MOTION module (Lee et al., 2021). In the time-domain simulation, 
efficient computation should be performed based on the current state of 
ship operation. The overall procedure for the MOTION module is shown 
in Fig. 8. This procedure is briefly described as follows. 

(1)Initial settings 

As shown in Fig. 9, two types of reference coordinate systems are 
adopted in the module: global coordinate system (earth-fixed; O − XYZ) 
and inertial coordinate system (ship-fixed; o − xyz) translating with a 
ship’s operational velocity (u0: forward speed, v0: sway speed, and r0: 
yaw rotation speed). The yaw angle (ψ0) of the ship is defined as the 
angle between the two coordinate systems. The transferred wave com-
ponents from the WAVE module are redefined according to the co-
ordinates such that:  

Here, Nw denotes the number of reconstructed wave components. 
Because the radar measurements are conducted with respect to the ship- 
fixed coordinate, the average trend of time-varying ship operation for 
the measurement duration (t ∈ [t0, t0 + T]) is reflected in the radar 
image. Therefore, the propagation direction of each component is cor-
rected using the mean yaw angle such that χw = tan− 1(ky,w /kx,w)+

ψmean. Furthermore, the phase is adjusted according to the ship position 
at the last instant of measurement by utilizing GPS data ((X,Y)t=t0+T =

(XT,YT)). 

Fig. 9. Coordinate systems and definitions in MOTION module.  

ζpr(x, y, t)=
∑Nw

w=1
Aw exp

[

i
(

kwx cos(χw − ψ0) + kwy sin(χw − ψ0)

+kw(X − ucT + XT)cos χw + kw(Y − vcT + YT)sin χw − ωwt + εw

)]

. (7)   
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(2)Seakeeping analysis 

The IRF method (Cummins, 1962) is used for seakeeping simulation. 
The six degrees-of-freedom (DOF) equations of wave-induced ship mo-
tions, ξi (i = 1,⋯,6) can be expressed as 
(

Mjk +M∞
jk

)
ξ̈k +

∫ t

− ∞
Rjk(t − τ)ξ̇k(τ)dτ+

(
Cjk +CR

jk

)
ξk =Fext,j. (8)  

Here, M and M∞ indicate the mass matrix and the infinite-frequency 
added mass, respectively. C and CR are the hydrostatic and radiation 
restoration coefficients, respectively. The memory effects of ship 
motion-induced radiated waves are considered by the retardation 
function (R(t)), which has the following relationships with the hydro-
dynamic coefficients, added mass (A(ω)), and damping coefficient 
(B(ω)): 

Rjk(t) =
2
π

∫ ∞

0
Bjk(ω)cos(ωt)dω

M∞
jk −

CR
jk

ω2 = Ajk(ω) +
1
ω

∫ ∞

0
Rjk(τ)sin(ωτ)dτ.

(9) 

To obtain the retardation function, a set of hydrodynamic co-
efficients for a wide range of frequencies, which depends on the oper-
ational velocity of the ship, is required. Moreover, the wave excitation 
forces for the discretized wave components (Fext) can be evaluated based 
on the transfer functions of the amplitude and phase, which also depend 
on the ship’s speed and heading angle (χw − ψ0). For the real-time 
simulation, the retardation function and excitation force are computed 
considering the ship operation at a specific time through interpolation of 
the pre-computed hydrodynamic database. In this study, the frequency- 
domain database was constructed using the 2D strip theory (Salvesen 
et al., 1970). Since the 2D method has limitations regarding 
low-frequency wave radiations and forward-speed effects, more accu-
rate seakeeping computations can be conducted by using the hydrody-
namic coefficients obtained by model tests or advanced numerical 
methods such as the 3D panel method and CFD. For efficiency, the up-
date of the dataset according to the operational velocity is performed 
only when the forward speed changes above a specific value (Δu0 > εu; 
0.1 to 0.2 knots), while interpolation with respect to the heading angle is 
implemented for every time step.  

(3) Maneuvering analysis 

Under the quasi-steady assumption that the characteristic time scales 
of the seakeeping and maneuvering motions are significantly different, 
the slowly varying maneuvering quantities are computed indepen-
dently. The MMG-based 4-DOF maneuvering equation is defined as 
follows. 

m(u̇0 − v0r0) = XH + XP + XR + Xwind + Xwave
m(v̇0 + u0r0) = YH + YP + YR + Ywind + Ywave
Ixxṗ0 = KH + KP + KR + Kwind + Kwave
Izzṙ0 = NH + NP + NR + Nwind + Nwave.

(10)  

Here, m, Ixx, and Izz denote the ship mass and mass moment of inertia in 
x- and z-directions, respectively, X and Y are the external forces in the 
surge and sway directions, respectively, and K and N indicate the 
external moments in the roll and yaw directions, respectively. The 
subscripts H, P, R, wind, and wave denote the hydrodynamic forces 
induced by the hull, propulsion, rudder, wind, and waves, respectively. 
The MMG for external forces and moments can be established based on 
model tests or numerical computations (resistance and self-propulsion 
tests, propeller-open-water test, static drift and circular motion tests, 
rudder force tests, etc.). The details of this model in a calm sea are 
available in Yasukawa and Yoshimura (2015). 

The wind loads are estimated based on the wind speed and direction 
relative to the ship. For a specific hull form, the wind load coefficients 
for various directions can be obtained from the wind tunnel test results 
or a regression formula (ISO, 2015). Moreover, the second-order drift 
force and moment are introduced as wave loads. Similar to the excita-
tion force, the wave loads are evaluated through the interpolation of a 
pre-computed database considering the ship’s operational velocity and 
heading angle at a certain time instant. In this study, a wave drift force 
database for various ship operations was constructed using the 
time-domain 3D Rankine panel method (Lee and Kim, 2020; Lee et al., 
2021). 

For future ship operations, an operational scenario should be pre-
scribed. The target values for a certain scenario are SOGtarget and 
COGtarget. For SOGtarget which corresponds to the ship’s total speed (U =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
0 + v2

0

√

), the control variable is the propeller revolution rate (nP), and 
the error is defined by εSOG = SOG − SOGtarget. On the other hand, for 
COGtarget (the straight route along the desired course direction), the 
steering based on a rudder angle control (δ) is implemented for the 
vessel which may be subjected to environmental loads in various di-
rections. In this study, the trajectory tracking method is applied for 
course-keeping. To define a course error (the difference between actual 
and given routes), a reference point is set on the desired route with a 
certain distance (Lr; about 3–5 times the ship length) from the ship as 
shown in Fig. 10. Then, the angle between the ship’s centerline and a 
line from midship to the reference point is used as the course error 
(εCOG). The proportional-integral-derivation (PID)-based control is 
implemented to obtain the required change in the propeller revolution 
rate and rudder angle for the computed errors, such that: 

ΔnP(t) = −

(

k(nP)
P εSOG(t) +

∫

k(nP)
I εSOG(t)dt + k(nP)

D
dεSOG(t)

dt

)

Δδ(t) = −

(

k(δ)P εCOG(t) +
∫

k(δ)I εCOG(t)dt + k(δ)D
dεCOG(t)

dt

) (11)  

Here, kP, kI, and kD are the control gains. Those control gains are 
determined based on a trial-and-error test or accumulated voyage data. 
Details of the course-keeping simulation based on the trajectory tracking 
method can be found in Lee and Kim (2021). 

2.5. Operational guidance 

Operational guidance can be provided based on the efficiency of the 
fuel consumption and risk assurance. In the RESISTANCE module, the 
calm-water resistance and wind- and wave-induced resistances are 
provided to estimate the fuel consumption. Risk prediction and avoid-
ance can be determined using the SAFETY module. Any algorithm 
related to safety, such as parametric rolling, excessive motion, and dy-
namic stability, can be included in this module. In particular, specific 
seakeeping criteria can be defined by motion responses or vertical & 
lateral accelerations at a certain location (the ship’s FP and bridge) as 
suggested by Stevens and Parsons (2002) and Pipchenko and Zhukov 
(2010). By utilizing the present hydrodynamics-based model, not only 
can the statistical values (such as the root-mean-square and significant 
values) be extracted through transfer functions (motion RAOs), but the 

Fig. 10. Trajectory tracking method.  
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seakeeping quantities over a certain time range can also be determin-
istically predicted. Considering the type and class of a given ship model 
and its operation condition, the user can define the safety criteria, and 
operational guidance can be established depending on whether the 
criteria are met or not for a certain navigation scenario. 

This operational guidance can be developed to include an autono-
mous decision function based on an artificial intelligence scheme. The 
short-term prediction modeling based on hydrodynamics, which has 
limitations in considering the nonlinearities of seakeeping and maneu-
vering quantities and the uncertainties in ship navigations, can be 
advanced by combining it with the data-driven modeling obtained using 
machine learning technologies. Hence, a large amount of data obtained 
from ship operations in actual voyages must be collected, and data- 
mining technology must be adopted. Eventually, operational guidance 

can be provided based on the hydrodynamic aspect and by considering 
all other factors related to ship operation. For example, wave-induced 
global structural responses, fatigue, and local extreme loads, such as 
slamming, can be important factors. As long as such factors can be 
predicted in real time, analysis algorithms can be included in the 
operational guidance modules. 

3. Applications 

3.1. Simulation conditions 

3.1.1. Ship model and free-running test 
To validate the developed real-time prediction system, virtual free- 

running of the well-known KVLCC2 tanker was simulated under the 
ocean environment corresponding to the Beaufort scale 8. Table 1 
summarizes the details of the simulation conditions. The ITTC spectrum 
and cos2 directional spreading were adopted to generate short-crested 
irregular waves of 650 wave components with random phases. It was 

Table 1 
Free-running simulation conditions.  

Designation Specifications 

Ocean environmental condition 
Sea state Beaufort scale 8 
Wind velocity, Vwind [m/s] 19.0 
Significant wave height, HS 

[m] 
5.5 

Mean wave period, Tmean [s] 9.1 
Main direction, χM [deg] 180.0 (head sea), 90.0 (beam sea), 0.0 (following 

sea) 
Directional spreading, χs [deg] 60.0 
Ship information 
Ship model KVLCC2 tanker (SIMMAN, 2008) 
Reference speed, Vref [knots] 15.5 (Fn = 0.142) 
MMG model Yasukawa et al. (2015)  

Fig. 11. Time histories of ship’s operational velocity and yaw angle.  

Table 2 
Synthetic radar image.  

Designation Specifications 

Radar height, hr [m] 40.0 
Min. radius, Rmin [m] 200 
Max. radius, Rmax [m] 2,560, 5,120, 10,240 
Resolution 1024 × 1024 
Space interval, dx & dy [m] 2.5, 5.0, 10.0 
Number of radar images 32, 64, 96 
Time interval, dt [s] 1.0  
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assumed that there was no ocean current. 
Fig. 11 shows the time series of ship velocity and yaw angle. In free- 

running conditions, the ship navigated under a constant engine power 
that propels the vessel at the reference speed in calm water. The total 
speed was observed to reduce owing to the added resistance induced by 
the wind and waves. In particular, for environmental loads in the beam 
sea condition, steering was performed based on the trajectory tracking 
method to prevent the vessel from drifting, rotating, and maintain its 
route. Accordingly, the drift and yaw angles occurred to a similar degree 
such that the ship operated along a straight path. 

3.1.2. Synthetic radar image 
Using the free-running simulation results (global position and 

operational velocity of the ship), synthetic radar images were generated 
for the wave field around the ship. Considering existing marine radar 
technology, the specifications of the adopted radar image are summa-
rized in Table 2. To investigate the prediction performance of the sys-
tem, radar images of various sizes (different maximum sensing radii) 
were utilized with a constant resolution (1024 × 1024; the space in-
terval is proportional to the image size). One image sequence consisted 
of 32, 64, or 96 radar images, and the time interval between the images 
was set to 1.0 s. 

For a given wave field, the radar image was created by reflecting 
geometrical shadowing effects, which is one of the dominant imaging 
mechanisms at general grazing incidence. If the radar beam (the straight 
line between the radar receiver and the wave elevation at a measure-

Fig. 12. Example of synthetic radar image: head sea condition, T = 64 s, Rmax = 2.56 km, t = t0 + T/2  
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ment location) is interfered with by the sea surfaces inside, the location 
is considered a shadowing region, where the image intensity is set to 
zero. On the other hand, for a non-shadowing region, the wave elevation 
is converted to an 8-bit grayscale (0–255), assuming that the intensity is 
proportional to the wave elevation. Fig. 12 shows an example of a 
synthetic radar image. The distribution of intensity differs significantly 
from the given wave field because of shadowing effects, and through the 
modifications for intensity, its distribution can have a wave-like form. It 
should be noted that the FFT-based spectral analysis was conducted for 
the Cartesian-grid rectangular domain containing a radar image. In 
other words, zero image intensity was assigned for the region outside the 

Fig. 13. 2D wave spectra, S2D(k,ω): head sea (left) and following sea (right), T = 64 s, Rmax = 5.12 km  

Table 3 
Estimation for ship’s operational velocity.  

Ocean condition Operational velocity, (u0, v0) [m/s] 

Simulation Estimation 

Head sea (5.27, − 0.00773) (5.24, − 0.0141) 
Beam sea (6.21, 0.442) (6.156, 0.482) 
Following sea (8.21, 0.00373) (8.24, 0.0295)  
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measurement domain (r < Rmin or r > Rmax). 

3.2. Wave-field reconstruction 

Fig. 13 shows the 2D wave spectra (S2D(k, ω)) normalized to their 
maximum value. A total of 64 radar images (T = 64 s) with a maximum 
sensing radius of 5.12 km were used for spectral analysis. The starting 
instant of the image sequence was set as t0 = 1000 s in the free-running 
simulation. The linear dispersion relation (fundamental mode) varied 
owing to the Doppler shift induced by ship operation. 

It should be noted that the line of the fundamental mode in the figure 
was derived for the main wave propagation direction. As there was no 
ocean current, the ship velocity could be reversely computed using the 
current estimation technique ((u0, v0) = − (uc, vc)), as summarized in 
Table 3. As expected, based on the distribution of the spectral compo-
nents, the slowly-varying operational velocity (maneuvering quantities; 
forward and sway speeds) could be estimated accurately compared to 
the mean value of the simulation data for the measurement duration. 
According to the shifted dispersion relation, nonphysical components 
were filtered out (the range of the dispersion filter: κ2 = 2). The ocean- 
wave components of low frequencies were dominant in the following sea 
conditions compared with the head sea condition. Therefore, the range 
of the high-pass filter was set considering the wave propagation 

direction relative to ship operation (head sea: κ1 = 2; following sea: κ1 =

1) so that the low-frequency ocean-wave components which can induce 
restoring-dominant ship motions are not removed by the high-pass filter. 

The wave-field reconstruction was validated by comparing it with 
the exact field used to create the synthetic radar image (ζw(x, y, t)). To 
evaluate its accuracy, the following correlation (cor(t)) is defined: 

cor(t) =

∑J

j=1

∑M

m=1

(
ζre

(
xj, ym, t

)
− μre(t)

)(
ζw
(
xj, ym, t

)
− μw(t)

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
JMσre(t)2)( JMσw(t)2)

√ (12)  

where (xj, ym) ∈ [Rmin,Rmax] denotes the Cartesian-grid point in the 
measurement domain. In addition, μ and σ are the mean and standard 
deviation of the wave elevations, respectively. 

Fig. 14 shows the reconstruction results for different measurement 
durations. Here, Tzero is the duration of zero-padding images. The 
duration of an image sequence is directly related to the resolution of the 
wave frequency (dω). Wave-field reconstruction was relatively inaccu-
rate for the 32 images (T = 32 s) because of the coarse frequency res-
olution. This tendency intensified in the following sea conditions, where 
low-frequency waves were more dominant. For a longer image 
sequence, the correlation inside the domain was fairly high, according to 
the sufficiently resolved frequencies. In FFT analysis, which considers 

Fig. 14. Correlations of wave reconstruction results for different measurement durations: Rmax = 5.12 km  

Fig. 15. Correlations of wave reconstruction results according to modifications of radar image intensity: T = 96 s, Rmax = 5.12 km  
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Fig. 16. Reconstructed wave elevations: head sea, T = 96 s, Rmax = 5.12 km, t = t0 + T/2, y = 0  

Fig. 17. Error distribution of reconstructed waves: head sea, T = 96 s, Rmax = 5.12 km, t = t0 + T/2  
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the data, periodic, nonphysical high-frequency components are gener-
ated owing to the discontinuity at a boundary (the Gibbs phenomenon). 
As such components were filtered out based on the linear dispersion 
relation, the correlation decreased at the boundaries. The root-mean- 
square (rms) errors between the exact and reconstructed fields showed 
similar trends to the correlation. By adopting zero-padding images, the 
errors at the boundaries were reduced and the reconstruction accuracy 
was improved through a finer frequency resolution. For both head and 
following sea conditions, it can be confirmed that a reliable wave-field 
reconstruction can be performed based on the frequency resolution 
corresponding to the measurement duration of T = 64 s or more 
(including zero-padding images). 

The reconstruction results were compared according to the modifi-
cations in the image intensity (Fig. 15). For the raw radar image, the 
correlation was relatively low, at approximately 0.65. This was because 
its intensity contained high-frequency components induced by positive 
gray scaling, which was not physical, but satisfied the linear dispersion 
relation. Although the components were alleviated by the MTF, the 
reconstruction results differed from the exact wave field in terms of the 
amplitude and phase (Fig. 16(a) and Fig. 17(a)). For the wave-like form 
intensity distribution through mean-shift modification, the correlation, 
representing how much the phases of the two datasets coincide, 
increased remarkably to approximately 0.8. However, owing to the 
nonuniform energy level in the measurement domain, overestimations 
and underestimations for wave elevations were confirmed in the regions 
in which shadowing effects were severe and insignificant, respectively 
(Figs. 16(b) and Fig. 17(b)). These errors were mitigated by calibrating 
the energy level, and the correlation was improved to approximately 
0.85 (Figs. 16(c) and Fig. 17(c)). The accuracy improvements by the 
calibration were greater for the rms errors (about 10%) because the 
overestimated wave elevations near the radar were alleviated. Overall, 
the reconstruction accuracy was slightly higher for head sea conditions 
according to the more scattered wave energies for a given frequency 
resolution. 

The reconstruction results were compared for different image sizes 

(Fig. 18). While the wave-number resolution (dk) increased for a larger 
maximum sensing radius, the resolution of the radar image was fixed at 
1024 × 1024; therefore, the range of the discrete wave number (kmax) 
decreased because the space interval (dx and dy) was proportional to the 
radius. Accordingly, it was difficult to consider high-frequency wave 
components through a radar image of a larger domain, which resulted in 
a reduced correlation. Nevertheless, the correlation was confirmed to be 
0.7 or higher for the 10.24 km-radius measurement. In conclusion, to 
accurately reconstruct the wave field, computation parameters such as 
the duration of an image sequence, specifications of a radar image, and 
filtering range should be optimized considering the ship operation. 

3.3. Prediction of wave-field and ship motion 

Using the phase-resolved wave components, deterministic pre-
dictions for wave trains incident on a ship and the resulting ship motions 
were conducted. Fig. 19 compares the predictable time ranges for 
different maximum sensing radii and ocean conditions. Under head sea 
conditions, the range was relatively short because the wave components 
passed rapidly through the ship. However, the range was significantly 
longer for the following sea conditions, where the waves propagated in 
the same direction as the ship operation. The range was observed to be 
almost proportional to the image size. Through the 5.12 km radius 
measurements, it was possible to forecast the incident waves for 
approximately 5 min in the head sea and approximately 20 min in the 
following sea. However, for a larger measurement domain, the number 
of reconstructed wave components increased significantly according to 
the finer wave number resolution, as summarized in Table 4 (when 

Fig. 18. Correlations of wave-field reconstruction results for different image sizes: T = 96 s  

Fig. 19. Prediction time ranges for different image sizes: T = 96 s  

Table 4 
Number of phase-resolved components.  

Ocean condition Maximum sensing radius, Rmax [m] 

2,560 5,120 10,240 

Head sea 2,693 18,795 460,036 
Beam sea 3,665 25,773 612,061 
Following sea 2,760 20,614 489,280  

Table 5 
Computation time: Intel i7-4790/3.60 GHz CPU (single-core process).  

Wave-field analysis Duration of image sequence (T; s) 
32.0 64.0 96.0  

Computation time (s) 
18.8 31.2 47.9  

Deterministic prediction (for 500-s 
simulation) 

Number of wave components 
2,000 5,000 10,000 20,000 

Computation time (s) 
5.05 9.98 19.1 36.4  
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applying the 90% energy filter). An excessive number of components 
causes difficulties in the real-time simulation of ship operation owing to 
high computational costs; therefore, an appropriate setting for the 
sensing radius is required. 

To operate the system in real time, the sum of the computation times 

for wave-field analysis and deterministic prediction should be shorter 
than the duration of an image sequence. Table 5 shows the CPU times for 
this analysis when a typical single-core process, Intel i7-4790/3.60 GHz 
CPU processor, was used. Approximately 48.0 s were required to extract 
the phase-resolved wave components from 96 radar images, i.e., 96-s 

Fig. 20. Prediction for incident waves: head sea condition, T = 96 s, Rmax = 2.56 km  

Fig. 21. Prediction for ship motions: head sea condition, T = 96 s, Rmax = 2.56 km  
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time window. Furthermore, the prediction of waves and ship using 
20,000 wave components required approximately 36.5 s for a 500-s 
simulation. Naturally, components that can cover a wider range of 
wave fields require more computational time. Therefore, an appropriate 
sensing radius setting is required. Alternatively, an additional data 

assimilation procedure should be performed to approximate the ocean 
wave field using a smaller number of components. Note that the 
computational time can be reduced significantly by using faster or 
multiple processors. 

Fig. 20 shows the wave prediction results for the head sea conditions. 

Fig. 22. Prediction for incident waves: following sea condition, T = 96 s  

Fig. 23. Prediction for ship motions: following sea condition, T = 96 s  
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For this prediction, the reference time should be set as close to the end of 
the sequence as possible, without losing accuracy. In this study, the 
reference time was set as t∗ = t0 + 3T/4, according to the correlation of 
the reconstruction results (see Fig. 14). It should be noted that maneu-
vering quantities of the free-running simulation were utilized for a 
predictable time range. Under the head sea, PI increased rapidly from 
the reference time and reached a value close to 1. This indicated that a 
forecast of almost all the wave components was possible at the ship 
position. Thereafter, as the waves propagated, PI decreased, and the 
error in the wave prediction increased accordingly. For the reliability of 
the prediction system, the predictable time ranges (PI > 0.8) of two 
successive sequences should overlap for a certain period. Hence, the 
duration of a sequence and the time interval between sequences should 
be adjusted, considering the size and location of the predictable range. 
Using the free-running simulation record, the ship motions were also 
predicted beginning from the final instant of measurement. In this 

simulation, the motion signals obtained using the proposed IRF-based 
computation and 3D time-domain Rankine panel method coupled with 
the MMG solver (Lee and Kim, 2021) were compared. Based on accu-
rate forecasting with a correlation greater than 0.9 for incident wave 
trains on the ship (at the radar location), the computed ship motions for 
each predictable range show good agreements between the two results 
(the correlation of about 0.8) as shown in Fig. 21. This denotes that the 
prediction accuracy and the predictable time range for ocean waves can 
be utilized as a basis for the overall operation of the present system. 

In the following sea conditions, the predictable time range was 
significantly longer as PI increased and decreased relatively slowly 
(Fig. 22). In addition, the predictable range was almost proportional to 
the maximum sensing radius according to the behaviors of PI. However, 
PI did not reach a value close to 1, which meant that some wave com-
ponents were difficult to forecast. Therefore, the error in wave predic-
tion was more significant than that in head sea conditions. As shown in 

Fig. 24. Maximum motion responses for various operation scenarios: roll (left) and pitch motions (right), T = 96 s, Rmax = 5.12 km  
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Fig. 23, some discrepancies were observed between the solutions of the 
IRF-based and Rankine panel methods. These errors were due to inac-
curate waves and the difference between the computational methods for 
the hydrodynamic forces in the following sea. Furthermore, in the 
following sea, the starting instant of a predictable range was later than 
that of the prediction: t0 + T < ts. Therefore, the wave forecast may not 
be very accurate between the two instants, but the errors in the ship 
motion predictions were relatively smaller. 

Fig. 24 shows the maximum motion response for each operational 
scenario. By comparing the prediction values of various scenarios, 
including the current state, decision support for ship operation is 
possible. The change in the maximum response was greater according to 
COG than SOG. Furthermore, the sensitivity of roll motion to COG was 

significant for the following sea conditions, while the pitch motion 
varied more for the beam sea condition. Because time-domain compu-
tation was required for each scenario, the number of applicable sce-
narios was determined by the computing power of the prediction 
system. 

3.4. Example of operational guidance 

Operational guidance can be established based on the results of the 
wave and motion analyses. As shown in Fig. 25, through the energy 
distribution of the phase-resolved wave components in a polar coordi-
nate, the main wavelength and propagation direction could be deter-
mined. This wave information was updated in real time for every 
sequence to detect changes in the ocean environment. As shown in 
Figs. 26 and 27, the resistance and seakeeping performance were 
computed for the beam sea conditions. Based on the established oper-
ational guidance, the tendency of the environmental loads and ship 
motions according to the change in the ship speed and yaw angle with 
respect to the current state were evaluated. This kind of information is 
helpful for ship operators to make decisions. 

4. Conclusions 

In this study, a real-time prediction system for wave field and ship 
operation was developed. To verify the prediction performance of the 
system, a free-running simulation in real sea states was numerically 
performed, and synthetic radar images for the corresponding ship op-
erations were utilized. The following conclusions were drawn based on 
the simulation results:  

• To improve the accuracy of wave-field reconstruction, modifications 
of both the spectral components and image intensity are required to 
ensure that the radar images have a wave-like intensity distribution.  

• The computation parameters for wave-field analysis (duration of a 
sequence, specifications of radar images, filtering range, etc.) should 
be optimized to consider the wave energy distribution determined by 
ship operation. In addition, the system should be operated reflecting 
the predictable time range and prediction accuracy, which also 

Fig. 25. Wave energy distribution: beam sea condition, T = 96 s, Rmax =

5.12 km 

Fig. 26. Resistance performance: beam sea condition, T = 96 s, Rmax = 5.12 km  
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depends on the relationship between the ship’s operational velocity 
and the main propagation direction of the waves.  

• Based on the phase-resolved wave components, operational guidance 
can be established by comparing the resistance and seakeeping 
performance for various operation scenarios. In the future, verifica-
tion of the operational guidance provided by the developed predic-
tion system should be performed based on real radar measurements 
and a sea trial test. 

• This real-time digital twin for ship operation has a significant po-
tential for application and extension. This technique reduces the risk 
and fuel consumption of ships during waves. Other algorithms 
related to ship operation and monitoring can be embedded into this 
system. Eventually, digital schemes based on the collection of actual 
ship operation data in waves will be combined with this simulation 
method to improve the prediction accuracy. 
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