
Morpheus: An A-sized AUV with morphing fns and algorithms for
agile maneuvering

Supun Randeni1,∗ , Michael Sacarny1 , Michael Benjamin1 and Michael Triantafyllou1

1Department of Mechanical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA
∗supun@mit.edu
This work was supported by Lockheed Martin Corporation

Abstract— We designed and constructed an A-sized base
autonomous underwater vehicle (AUV), augmented with a stack
of modular and extendable hardware and software, including
autonomy, navigation, control and high fdelity simulation
capabilities (A-size stands for the standard sonobuoy form
factor, with a maximum diameter of 124 mm). Subsequently,
we extended this base vehicle with a novel tuna-inspired
morphing fn payload module (referred to as the Morpheus
AUV), to achieve good directional stability and exceptional
maneuverability; properties that are highly desirable for rigid
hull AUVs, but are presently diffcult to achieve because they
impose contradictory requirements. The morphing fn payload
allows the base AUV to dynamically change its stability-
maneuverability qualities by using morphing fns, which can
be deployed, defected and retracted, as needed. The base
vehicle and Morpheus AUV were both extensively feld tested in-
water in the Charles river, Massachusetts, USA; by conducting
hundreds of hours of operations over a period of two years. The
maneuvering capability of the Morpheus AUV was evaluated
with and without the use of morphing fns to quantify the
performance improvement. The Morpheus AUV was able to
showcase an exceptional turning rate of around 25-35 deg s−1 .
A maximum turn rate improvement of around 35% - 50% was
gained through the use of morphing fns.

I. INTRODUCTION

The directional stability of autonomous underwater vehi-
cles (AUVs) ensure the ability to maintain a steady course
with minimal corrective control actions in the presence of
disturbances [1]–[3]. The agility, or the maneuverability, of
an AUV is the potential to make rapid maneuvers in heading
and depth planes. The stability and agility have contradic-
tory requirements; i.e. static or controlled surfaces located
towards the stern of the vehicle (e.g. rudders, elevators, fxed
fns, shrouds, etc.) increase the directional stability; however,
they also adversely affect the maneuverability, reducing the
ability to make rapid turns. This is because the increment in
the stability index of a vehicle due to stern control surfaces
is often larger than the turning moment it provides [4]–[11].

Both stability and maneuverability are desired features for
AUVs [12]; therefore, AUVs in general are designed for
a middle ground performance, partially compromising both
stability and maneuverability. Improving both these features
simultaneously was not possible for torpedo-shaped AUVs
because they impose contradictory requirements. However, in
our recent work [9], [11], we theoretically as well as experi-
mentally showed that both stability and maneuverability can

be improved by dynamically altering the directional stability,
adopting the concept of bio-inspired morphing fns.

A. Designing an A-sized “base” AUV

An AUV is a complex system with a number of co-
related subsystems. These subsystems can be primarily di-
vided into two categories: (1) the base layer, and (2) the
specialized layer. The base layer consists of components that
are essential for basic autonomous operations of the vehicle
(i.e. the base vehicle); for example, underwater navigation,
basic autonomy, low-level control, basic communication, and
related essential sensing capabilities. In general, AUVs are
employed to conduct specifc task(s) and mission(s). The
specialized layer includes additional hardware and software
components that are vehicle and application specifc, which
are built on top of the base layer. This layer may include
additional hardware interfaces and drivers, sensor processing
algorithms, autonomy algorithms, etc. For instance, a vehicle
designed to conduct side-scan sonar mapping operations, the
specialized layer will include the sonar related hardware
components and specialized software modules such as sensor
drivers, on-the-fy data processing and recording software,
and potential autonomy algorithms for adaptive sampling and
mapping.

In this work, we designed and constructed an A-sized
base AUV, augmented with a stack of modular hardware
and software, including navigation, autonomy, control and
high fdelity software-in-the-loop (SITL) and hardware-in-
the-loop (HITL) simulation capabilities (note – A-size stands
for the standard sonobuoy [13] form factor, with a maximum
diameter of 124 mm and a length of around 0.9 m, ensuring
the ability to launch from standard sonobuoy launchers
onboard a wide array of fxed wing and rotary wing air crafts,
surface ships and submarines [14]). Subsequently, leveraged
from our previous work [11], we extended the base vehicle
with a new tuna-inspired morphing fn payload module
design, where the fns that can be deployed, defected and
retracted as required, augmenting the vehicle with capability
to dynamically change its stability-maneuverability qualities.
The designed base vehicle with morphing fn payload mech-
anism is named as the Morpheus AUV.

B. Designing a morphing fn payload module

Aquatic animals that specialize in cruising, such as tunas,
require a higher directional stability to minimize the control
action needed during cruising. Hence, they have streamlined
bodies that are relatively stiff, limiting their body fexing to
the last 30% of their length [15]. However, their prey consists

1

mailto:supun@mit.edu

of smaller fsh that have high body fexibility, and, hence,
by employing signifcant body curvature, they can turn very
rapidly [16]. As a result, tunas are capable of systemati-
cally changing the shape of their body fns to dynamically
change the directional stability to conduct rapid maneuvers
at high speed [17], [18] – when the forward located fns
are retracted, their body becomes more directionally stable,
gaining the ability to stably cruise at high speeds using a
small amount of control energy. When they need to make a
rapid turn, especially at high speeds, they deploy the dorsal
fns whose mere presence destabilizes the body, increasing
maneuverability. In addition, active control of the ventral fns
provides additional turning moment, and smooth transients of
forces and moments to obtain the precise level of directional
body stability for the intended maneuver [19].

Inspired by tuna’s adaptation mechanism, our previous
work [9], [11] demonstrated the ability to implement an
engineered design of retractable fns for rigid-hull, torpedo-
shaped AUVs in order to dynamically vary the stability-
maneuverability indices. While there is a number of recent
studies and designs on developing biomimetic AUVs [20]–
[23], as suggested by [24] and [25], there is still a large
gap between fsh-like vehicle platforms and their corre-
sponding aquatic animal; hence, torpedo-shaped AUVs are
still superior to biomimetic AUVs in terms of speed and
endurance. In addition, many missions tasked to AUVs, such
as seabed mapping, anti-submarine warfare, and surveillance,
cannot be performed by biomimetic vehicles due to their un-
steady large lateral motions, mechanical noise, and diffculty
to design a suffciently large payload bay while fulflling
soft-body bio-mimetic requirements. However, bio-mimetic
AUVs are superior in terms of their maneuverability and
agility, as compared to traditional torpedo-shaped vehicles
[24]. Therefore, the intention of our work is not to develop
a biomimetic AUV, but rather to create a bio-inspired vehicle
by replicating the resultant hydrodynamic effects for a rigid-
body engineered design, in order to enhance the vehicle’s
operational performance.

Through theoretical derivations, towing tank experiments
and analytical simulations, [9] investigated the ability to
alter the stability and maneuvering qualities of self-propelled,
rigid hull AUVs by employing morphing fns. Our previ-
ous work [11] further extended this by investigating the
variation of stability-maneuverability with different vehicle
confguration and appendage designs. The evaluated vehicle
confgurations included: (1) the bare hull vehicle, (2) bare
hull with different sizes of stern control surfaces, (3) differ-
ent sizes of stern control surfaces combined with forward
fns (4) different sizes of forward fns, and (5) different
locations of the forward fns. This investigation was carried
out by employing mathematical analysis, captive model tests
and maneuvering simulations; validated with free swimming
experiments. A 1-meter long bare hull AUV, retroftted
with different 3D-printed static appendages was used to
investigate the variation of turning rate with free-swimming
experiments.

In this paper, we present the design and construction of an

A-sized base vehicle, including: (1) hull form and appendage
confguration; (2) base vehicle hardware design, including
the mechanical design and the construction of actuators,
internal electronics and embedded computer system; (3) base
vehicle software design, including underwater navigation,
basic autonomy, low-level control, basic communication, and
related essential sensing capabilities. Subsequently, leveraged
from our previous work [11] in terms of hydrodynamic
design, we develop an operational morphing fn payload
module, and outft it into our A-sized base vehicle; creating
the Morpheus AUV. We present the design and construction
of the morphing fn payload, including: (1) theoretical as-
pects; (2) mechanical and hardware design; and (3) software
algorithms for adaptive control of the morphing fns. We
demonstrate both the base vehicle and Morpheus AUV in-
water, in the Charles river, Massachusetts, USA by conduct-
ing hundreds of hours of operations over a period of two
years, evaluating the maneuvering capability of the vehicle
with and without the use of morphing fns to quantify the
performance improvement.

II. BASE VEHICLE HARDWARE DESIGN

original EMATT free
flood tail-cone

optimized
tail-cone

electronics
bay

main motor
bay

morphing fin payload

original EMATT
nose-cone

optimized
nose-cone

Perseus payload

(A)

(B)

(C)

(D)

(E)

Fig. 1. The designed A-sized base AUV in four different confgurations.
Sections outlined in green, blue and red indicate base vehicle, morpheus
payload and piUSBL payload components respectively. (A) The base vehicle
in the conventional EMATT hullform; (B) base vehicle in the optimized
hullform; (C) base vehicle appended with morphing fn payload (i.e.
Morpheus AUV); (D) Morpheus AUV with disassembled hull sections; and
(D) base vehicle appended with both morphing fn payload and piUSBL
payload (i.e. Perseus AUV)

The base vehicle developed in this work was a derivation
of the expendable mobile anti-submarine warfare training

2

target (EMATT) vehicle hullform, designed and produced by
Lockheed Martin Corporation [14]. Figure 1A shows the frst
iteration of our base vehicle, which utilized an EMATT shell,
augmented with our own electronics and software stacks. The
shell included the original EMATT nose-cone, empty body
shell, main-motor bay that housed the original EMATT main
motor, and a free-food tail-cone with solenoid controlled
control surfaces. Throughout this paper, we refer to this
vehicle as the “MIT-EMATT”.

The second iteration of our base-vehicle; i.e the optimized
edition, is shown in Figure 1B, which included hydrodynam-
ically optimized nose and tail cones. The optimized nose-
cone included an embedded GPS antenna, LED strobes,
external pressure sensor and vacuum port; and the optimized
tail-cone included four individually controlled, servo-driven
control surfaces. These are further discussed in the following
sections.

Figures 1C and 1D show the base vehicle appended with
the morphing fn payload module. When our base vehicle
is appended with the morphing fn payload it is referred
to as the Morpheus AUV. The Morpheus AUV had an
overall length of 0.9 m and an A-sized maximum diameter
of 0.123 m. Figure 1E shows the base vehicle appended with
morphing fn payload module as well as a piUSBL payload
module [26], [27], which is referred to as the Perseus AUV.

A. Nose-cone design

The original EMATT platform had a nose-cone with a fat-
tip, primarily to ensure a higher usable space density, which
resulted in a higher drag coeffcient (see Figure 2A). In this
work, a new nose-cone was designed as shown in Figures 2B
and 2C, which was optimized to reduce the hydrodynamic
resistance of the body as well as to preserve the usable space
density inside the nose-cone [28].

The optimized nose-cone was manufactured by 3D print-
ing; which was connected to the vehicle body using a metal
hull extending ring, as shown in Figure 2C. The nose-cone
was designed with two cylindrical slots, which were used
to install the vehicle’s external pressure sensor sensor (i.e.
Blue Robotics depth sensor [29] housing an MS5837-30BA
pressure sensor [30]) to measure the vehicle depth, and a
vacuum port. A third rectangular slot was also designed,
which allowed to insert a circuit board containing the GPS
antenna and LED strobe. Upon installation of the circuit
board, the slot was potted with clear epoxy to ensure the
water-tightness. The vehicle’s main battery bank was housed
inside the nose-cone.

B. Tail-cone design

The original EMATT platform had a tail-cone with a
solenoid-controlled single rudder and a single elevator. Due
to solenoid control, they both were limited to three po-
sitions: hard-to-port, hard-to-starboard and neutral. In the
MIT-EMATT base-vehicle, we maintained the same actuator
mechanism, connected to our own electronics and software.

The hydrodynamically optimized tail-cone version, as
shown in Figure 3 had four cruciform-shaped, independently

vacuum port

potted GPS antenna &
LED strobe

external pressure
sensor

Hull extension
ring

original flat-tip
nose-cone

optimized
nose-cone

(A) (B)

(C)

Fig. 2. Comparison between the (A) fat-tip nose-cone of the original
EMATT platform, and (B) hydrodynamically optimized nose-cone. (C) The
3D printed optimized nose-cone consisted of two cylindrical slots to install
the external pressure sensor and vacuum port; and a third rectangular slot to
insert a circuit board containing the GPS antenna and LED strobes, which
was potted with clear epoxy to make it waterproof.

controlled, servo-driven control surfaces that can provide
heading, pitch and roll control to the vehicle. Due to servo
control, each control surface had the ability to be precisely
controlled with a maximum articulation angle limit of around
15 degrees. The control surfaces and the propeller were
protected by a shroud, which was an operational requirement.
The shroud was connected to the hull of the vehicle using
four fxed fns, which were not only acting as supports for
the shroud, but their fxed 3◦ defection angle also developed
lift forces and hence a moment that counteracts the propeller
torque.

As shown in Figure 3A, the tail-cone assembly consisted
of the four control surfaces, their control linkages, and four
servos, all mounted in a 3D-printed shell. The servos were
held in place in the shell by 3D-printed dogs. Servo shaft
rotation was converted to push-rod reciprocating action by
cam assemblies. The push-rods then drove control surface
articulation through control arms, while the control surfaces
rotate around fxed pins. Since the tail-cone module was free-
to-food and the utilized micro-servos were not intended for
submersion, they were oil-flled in-house. The servo cables
were transitioned to the watertight main-motor bay through
marine epoxy-flled bulkhead penetrators.

C. Electronics design

Figure 4 represents the overall electronics design. Off-the-
shelf electronic components, including a BeagleBone Blue
single-board computer and motor controller were physically
and electrically joined on a central custom backboard printed
circuit board (PCB). Wiring then connected the backboard to

3

upper
rudder

starboard
elevator

fixed fin

shroud

watertight
main-motor bay

free-flood
servo bay

shroud protecting
actuators

oil-filled
servos

cam
assembly

(A) (B)

(C)

Fig. 3. The hydrodynamically optimized tail-cone with four independently
controlled, servo-driven control surfaces. (A) The tail-cone assembly con-
sisted of the four oil-flled micro-servos, cam and push-rod assemblies and
control linkages, all mounted in a 3D-printed shell. (B) The two rudders,
two elevators and propeller were protected by a shroud. The shroud was
connected to the hull of the vehicle using four fxed fns, which had a fxed
3◦ defection angle to counteract the propeller torque. (C) The free-food,
3D-printed tail-cone section was separated from the watertight main-motor
bay using a bulkhead, which had a shaft seal to penetrate the propeller drive
shaft.

batteries, power controls, sensors, servos, and a custom LED
strobe panel.

1) BeagleBone Blue:
The BeagleBone Blue single board computer [31] was

selected as the main vehicle computer. It contains an ARM
processor [32] that runs Linux operating system, as well
as two Programmable Real-Time Units (PRUs), which are
independent of the ARM processor; therefore, capable of
quickly responding to inputs and produce very precisely
timed outputs, such as PWM motor control outputs, similar
to a micro-controller. Thus, both low-level control as well
as higher-level processes were able to be run on a single
computer, reducing the complexity and saving physical space
that is precious for A-sized AUVs. The BeagleBone Blue
included analog to digital converters (ADC), general purpose
input and output (GPIO), PWM support, embedded inertial
measurement unit (IMU), I2C interface, embedded WiFi, and
universal asynchronous receiver-transmitter (UART) serial
buses.

2) Backboard:
A custom PCB served as an electronic and physical

integration foundation for the BeagleBone and other com-
ponents, including the motor controller, current sensor, GPS
module, 6V power supply, power conductors, servo con-
nections, and system cabling. Discrete components provided
ADC conditioning and logic translation for the LED strobe.

3) Motor controller:
The utilized main motor controller was a Cytron MD25HV

7-58V controller, selected to provide power in excess of
1 kW, should this be required for future designs, all in a
compact and durable package. The standard EMATT motor
required 150 W.

4) Current sensor:
A Pololu 4046 current sensor produced an analog signal

that was used to monitor motor current.
5) Depth and barometric pressure sensors:
A Blue Robotics Bar30 depth sensor provided real-time

depth readings via the I2C bus to the BeagleBone. The
BeagleBone itself has an ambient pressure sensor, useful for
pre- and mid-test internal vacuum monitoring.

6) LED strobe:
The LED strobe panel was located in the nose-cone. It

consisted of LEDs and a GPS antenna mounted on a custom
PCB, all potted in clear epoxy.

7) Servo drive:
The six micro-servos in the Morpheus vehicle design were

driven by conventional PWM signaling from the BeagleBone
through the backboard.

8) GPS and cellular modem:
GPS and cellular modem capabilities were provided by an

Adafruit FONA 3G Cellular Breakout board. The antenna for
this was routed to the nose-cone.

9) Power supply:
The nominal battery voltage for the system was 44.4 volts,

supplied by two 6 cell lithium-polymer (LiPo) batteries in
series. These were connected to the rest of the system by
a 30A combination circuit breaker/power switch, followed
by a relay-operated DC contactor. The contactor was only
activated when an external plug is inserted into a through-
hull connector. This allowed us to control vehicle power after
the hull has been closed and pressurized.

Raw battery voltage was brought down to 12V by an
automotive-style buck converter and distributed to the Bea-
gleBone and LED panel. A Pololu 4092 buck converter
provided regulated 6V DC power for the Adafruit FONA
GPS and 3G cellular module.

Backboard

GPS/CommsMotor ControllerDepthLED Panel Servos

Current
Sensor

Batteries

BeagleBone Blue Breaker/Switch

Contactor

Buck Converters

12V 6V

44V

Motor

Fig. 4. A high-level overview of the electronics of the Morpheus AUV.

III. BASE VEHICLE SOFTWARE DESIGN

In this work, we subdivided the critical components (both
software and hardware) of the Morpheus AUV into two
categories; the base vehicle components, and specialized

4

components. This modular subdivision allowed us to ratio-
nally reconfgure and re-purpose our A-sized base vehicles
for other applications.

Figure 5 illustrates a higher level overview of hardware
and software components of the Morpheus AUV, together
with the information fow among them. The components that
belong to the base layer are flled in blue, while those belong
to the specialized layer (i.e. related to morphing fns, in this
case) are flled in green. The remainder of this section will
discuss the vehicle software components in the base layer.

Communication
hardware

Low-level
control

Actuator
hardware

lat,lon

speed, headingspeed

Navigation

desired hdg, speed, depth

communication data packets

Autonomy

roll, pitch, hdg

depth

Navigation
sensors roll, pitch, hdg

depth, GPS

Adaptive control
of morphing fins

Morphing fin
mechanism

Communication
processing

Hardware Embedded software

Morphing
fin drivers

Comms
drivers

Actuator
drivers

rudder, elev,

propeller cmd

Sensor
drivers

Fig. 5. A high-level overview of the hardware and software components
of the Morpheus AUV, together with the data fow among them. The
components that belong to the base layer are flled in blue, while those
belong to the specialized layer (i.e. the components related to morphing
fns) are flled in green.

The base software layer, shown in Figure 5 with blue flled
blocks, is responsible for all the essential functionalities of
a vehicle that transforms the hardware package into an au-
tonomous platform. This includes navigation, autonomy, low-
level control, communication and interfacing with related
sensor and actuator hardware.

As seen from Figure 5, the sensor-to-actuator data fow
begins with navigation sensor drivers, which communicate
with external navigation sensor hardware, and provide raw
sensor data to the vehicle’s navigation system. The navi-
gation software is responsible for estimating the vehicle’s
position (i.e. the latitude, longitude of the vehicle where it
thinks it is at), depth, speed and attitude (roll, pitch and
heading angles), while on the surface as well as underwater.
The autonomy software is responsible for guiding the vehicle
to the intended target location while avoiding no-go zones
and obstacles in order to accomplish the mission tasks. The
autonomous helm typically digests the navigation solution,
and continually produces decisions on the desired heading,
desired speed and desired depth commands that the vehicle
needs to follow in order to achieve mission objectives. The
low-level control software is responsible for executing the
desired heading, speed and depth commands instructed by
the autonomy system. This is achieved by controlling the
actuators of the vehicle (e.g. propeller speed and control
surface angle of attacks) to maintain the desired commands
to the best of its ability. The actuator drivers then communi-
cate these commands to the external actuator hardware; for
example, using PWM, GPIO, and controller area network

(CAN) bus commands.
With respect to our base vehicle software design, the com-

ponents shown in Figure 5 are subdivided into three modular
sub-systems. The primary software hub, which is referred to
as the MITFrontseat, includes low-level sensor and actuator
drivers, low-level control system, higher-level mission and
safety management processes. The MITFrontseat outsources
the navigation task to a specialized navigation engine –
named HydroMAN 2.0, which provides the vehicle’s position
estimate (i.e. navigation solution) to MITFrontseat. The
vehicle autonomy is either handled within MITFrontseat, or
can also be outsourced to a user’s own payload autonomy
software system. Each sub-component outlined in this para-
graph are further explained in the following sections.

A. Middlewares – inter-process and inter-system communi-
cation

As visualized in Figure 5, the base vehicle software
is composed of a number of distributed components; e.g.
low-level interfaces, navigation, autonomy and low-level
control modules. Hence, using a suitable middleware, or a
combination of several middlewares, to glue the software
components together is important [33], [34]. There are a few
different choices of middleware typically used by the marine
robotics community, such as, common object request broker
architecture (CORBA) [35], mission oriented operating suite
(MOOS) [36], data distribution service (DDS) [37], robotics
operating system (ROS) [38], Goby3 [39], lightweight com-
munications and marshalling (LCM) [40], etc. In this work,
we primarily use MOOS as the middleware for inter-process
communication within the software sub-systems. In addi-
tion, a standardized interface that exchanges pre-defned,
encoded google protocol buffer (protobuf) [41] messages
over the TCP communication architecture is also used for
inter-system communications; for example, between MIT-
Frontseat and HydroMAN 2.0, and between MITFrontseat
and payloads. This architecture was chosen to ensure the
independence of each sub-system from others, and the ability
to re-use these sub-systems in different frameworks, even if
they use non-MOOS middleware. This is further discussed
in Sections III-D.1 and III-I.

B. Embedded computing system

Figure 6 illustrates the complete base-vehicle software
diagram of the Morpheus AUV. In this work, we developed
a boilerplate frontseat software stack, referred to as the
MITFrontseat, that is suffciently modular and generic to
be utilized as a base-vehicle frontseat software for other
types of AUV designs as well. As seen from Figure 6,
the MITFrontseat stack handles both low-level routines such
driving low-level hardware (i.e. driving and communicating
with sensors and actuators), while also handling higher-level
processes such as navigation, autonomy, control and vehicle
safety management. Typically, a micro-controller is used to
handle low-level routines, which is interfaced with a single
board computer that runs higher level processes. In this work,
however, we have used a BeagleBoard single board computer

5

[31] as the main vehicle computer. It contains an ARM
processor [32] that runs Linux operating system, as well as
two PRUs, which are independent of the ARM processor;
therefore, are capable of quickly responding to inputs and
produce very precisely timed outputs, such as PWM motor
control outputs, similar to a micro-controller. Thus, both low-
level routines as well as higher-level processes were able to
be run on a single computer, reducing the complexity and
saving physical space that is precious for A-sized AUVs.

Since the main vehicle computer also handles low-level
hardware, the MITFrontseat included an array of MOOS
drivers for various sensors and actuators that are typically
used in micro AUVs. One of the drawbacks of this ar-
chitecture is that some of these MOOS drivers are only
supported for BeagleBoard computers; hence, if one an-
ticipates to run MITFrontseat on a different single board
computer board, these low-level drivers may required to be
modifed accordingly. That said, all the higher level processes
(i.e. navigation, autonomy, control and vehicle and missions
safety algorithms) are agnostic to the computer board.

C. Sensor software drivers within MITFrontseat

As seen from Figure 6, an array of MOOS drivers were
developed to communicate with various hardware sensors
and actuators used in the vehicle via various hardware
interfaces available onboard the BeagleBoard. Each sensor
driver publishes the raw sensor data to the MOOS database
of the MITFrontseat MOOS community.

1) Depth sensor driver (iBlueRoboticsDepth):
The depth of the vehicle was obtained by measuring the

external hydrostatic pressure, and converting it to a corre-
sponding depth value, accounting for the water temperature
and density. The Morpheus vehicle was equipped with a Blue
Robotics depth sensor [29] that housed an MS5837-30BA
pressure sensor [30]. The pressure sensor was connected to
the I2C bus of the BeagleBone Blue embedded computer
using its JST connectors.

A MOOS driver application, iBlueRoboticsDepth,
was developed to read the external pressure and temperature
measurements from the Blue Robotics pressure sensor, and
to compute the corresponding vehicle depth, using a pre-
confgured water density. The calculated depth was then
fltered with an outlier rejection scheme – if a depth reading
that suggests a depth rate of over 5 m s−1 (pre-confgurable)
was observed, it is rejected since a 5 m s−1 depth rate
is unrealistic. Upon the outlier rejection scheme, a moving
average flter with a window size of 20 samples (pre-
confgurable), which results in a time interval of around 2
seconds, is also applied to smoothen the data. Filtered depth
value is fnally published to the MOOS database.

2) IMU sensor driver (iBBBlue and iXsensMTi):
The attitude (i.e. the roll, pitch and heading angles) of

the vehicle was measured using an InvenSense MPU-9250
[42] micro-electromechanical system (MEMS) 9-axis inertial
measurement unit (IMU), embedded in the BeagleBone Blue
computer board, which is routed to the I2C bus.

An existing, thirdparty MOOS driver application,
iBBBlue [43] was used to read data from the IMU. The
iBBBlue application utilizes several functions given in the
Robot Control Library [44] to conduct tasks such as reading
IMU data from the I2C bus, IMU calibration correction
and fusion of acceleration, angular velocity and magnetic
intensity data to compute the roll, pitch and heading of the
sensor. These raw data are then published to the MOOS
database.

For applications that require more accurate attitude and
heading information as compared to the InvenSense MPU-
9250 [42] sensor, an external IMU sensor can be utilized,
together with a MOOS driver for the sensor. An example is
the Xsens MTi-3 [45] IMU unit, which can be connected to
the BeagleBone using the UART interface. A MOOS driver,
iXsensMTi, was created to read fused attitude data from
the sensor, and publish them to the MOOS database.

3) GPS and cellular modem driver (iAdafruitFona):

An Adafruit FONA cellular breakout board [46], which
contains a SIM5320 cellular module with an integrated GPS
receiver [47] was used as the GPS and cellular modem
of the vehicle. This module is connected to the vehicle’s
BeagleBone Blue computer using the UART interface. A
MOOS driver application, iAdafruitFona, was devel-
oped to publish raw GPS data to the MITFrontseat MOOS
database. This application also acts as a service that sends
and receives short message service (SMS) text messages.
Any incoming SMS messages from allowed phone numbers
(pre-confgured) are published to the MOOS database with
the message content and sender’s phone number. Any ap-
plication within the MITFrontseat community can publish
a specifc MOOS variable to the database, containing the
message content and phone number to forward the message
to an outside phone number. For example, this service can
be used to send an SMS to the vehicle operator’s phone
number with the GPS coordinates, upon mission completion
and surfacing.

While the SIM5320 module also has the internet tethering
capability, which could enable remote login to the Beagle-
Bone Blue computer via the cellular network, this was not
implemented in this work.

4) Battery and power management system driver
(iBBBlue):

A custom battery and power management system was
developed and integrated to monitor the main motor current
draw and main battery voltage. The current and voltage
values are provided to the BeagleBone Blue via its analog-to-
digital converters (ADC). The iBBBlue reads these values
are publishes them to the MITFrontseat MOOS community,
which is used by pFrontseatManager for vehicle safety
management.

5) Monitoring the internal pressure:
Typically, the air inside the vehicle pressure hull is par-

tially pumped out through a vacuum port (see Section II-
A) upon vehicle assembly. Once the air is pumped out, the
vacuum port is closed, leaving a low pressure zone inside

6

Desired heading, speed & depth

Hardware based on BeagleBoard

BeagleBoard single board computer

Embedded IMU
& barometer

PWM ports

ADC ports

UART ports

I2C ports

wifi module

External IMU

(if available)

Depth sensor

GPS/GSM
module

Stern servos

Morphing servos

Main motor

Battery/current
management

LED indicators

GPIO ports

Depth sensor driver

(iBlueRoboticsDepth)

BBBlue IMU driver

(pBBBlue)

GPS/GSM driver

(iAdafruitFona)

Battery manager driver

(pBBBlue)

Servo driver

(iServo)

Main motor driver

(iProp)

LED indicator driver

(iLEDs)

External IMU driver

(iXsensMTi)

Low-level controller

(pControlEngine)

Mapping control correctives
to actuators

(pActuatorMap_morpheus)

Mission management

(pFrontseatMissionManager)

MOOS-IvP helm

(pHelmIvP)

Passive helm

(pHelmPassive)

Interface to VECTORS
(iVECTORS_MITFrontseat)

Interface to HydroMAN 2.0
(iHydroMAN_MITFrontseat)

Gateway to payload
(iMITFrontseat_Gateway)

MITFrontseat MOOS community (running in BeagleBoard's CPU)

Gateway to VECTORS
(iVECTORS_Gateway)

Configurable, universal
UUV simulator

(uSimUnderseaVehicle)

GPS sensor simulator

(uSimGPS)

DVL/ADCP simulator

(uSimDVL)

IMU sensor simulator

(uSimIMU)

Bathymetry simulator

(uSimBathy)

Power/elec. simulator

(uSimElectrical)

Depth sensor simulator

(uSimDepth)

Ocean current
simulator

(uSimOceanCurrent)

HydroMAN MOOS community
(navigation engine)

Gateway to HydroMAN 2.0
(iHydroMAN_Gateway)

Embedded vehicle model

(pHM_BasicModel)

Model calibration algorithm

(pHM_ModelCalibrator)

LBL data pre-processor

(pHM_LBLProcessor)

DVL data pre-processor

(pHM_DVLProcessor)

Sensor fusion algorithm

(pHM_SensorFusion)

Navigation system
manager

(pHM_Manager)

VECTORS MOOS community
(Virtual Environment)

Interface to MITFrontseat

Autonomy helm

(only if payload includes

autonomy)

Mission Manager

(only if payload includes

autonomy)

Process 1 Process 2

Process 3 Process n

Additional payloads (e.g. payload
autonomy, acoustic target emulators,
etc.)

Raw sensor output

N
avigation

solution

Higher-level decisions

Control correctives

PID gain updates

Actuator commands

Ground truth pose of the UUV

Bathy

response

Current

response

Raw sensor
output

Actuator
data

Fig. 6. A complete

the hull. If the hull is watertight, the internal pressure will
be holding. A raise in the internal pressure indicates a leak
in the pressure hull.

In the base vehicle, the air pressure inside the pressure
hull is measured using the barometer embedded in the
BeagleBone Blue computer. The barometer reading can be
monitored upon vehicle assembly using functions and scripts
given in the Robot Control Library [44].

D. Navigation software - HydroMAN 2.0
In our software architecture, the MITFrontseat outsources

the navigation task to an independent navigation engine,
similar to most commercial AUVs (i.e. most AUVs rely
on commercially available INS units for navigation – an
INS is a combination of an IMU and a computer running
a ‘black-box’ navigation fusion algorithm that fuses the
IMU measurements with external sensors such as GPS,
DVL, depth, USBL, etc. [48]–[50]). In this work, we utilize
HydroMAN 2.0 as the navigation engine.

HydroMAN (stands for hydrodynamic model aided nav-
igation) is a self-learning, independent underwater navi-
gation engine [51]–[56]. The HydroMAN 2.0 synthesizes
raw measurements from sensors such as IMU, DVL, CVL,
LBL/USBL, terrain-aided navigation and GPS into its self-
calibrating vehicle fight dynamic model to compute the
navigation solution, with the use of an array of sensor pre-
processors and a layered extended Kalman flter based fusion
algorithm. When accurate sensor measurements are avail-
able; for example, DVL bottom-lock and/or acoustic position
updates, the HydroMAN self-calibrates the vehicle model to
the local operating environment, largely compensating for
the navigation drift provided by underwater currents and the

fight dynamic model’s own error estimate. The calibrated
vehicle model is then utilized for navigation aiding when
accurate sensors are unavailable, or turned off in order to
save power.

Expensive tactical and navigation grade INS units and
DVLs are infeasible for low-cost micro-AUVs that are lim-
ited by the cost, such as Morpheus. Therefore, they typically
rely on inexpensive MEMS IMUs and an RPM-to-speed
table for dead-reckoning based navigation, resulting in poor
navigation performance. For such vehicles, HydroMAN uses
a pre-identifed vehicle fight dynamic model to estimate
the vehicle velocity in surge, sway and heave directions, by
using a combination of input variables such as the propeller
speed, control surface angles and the rates of changes of
roll, pitch and heading angles. As shown in [56] and [55],
the vehicle dynamic model is capable to improving the
navigation accuracy by orders of magnitude as compared to
traditional RPM-to-speed curve based dead-reckoning. In the
meantime, HydroMAN also provides the possibility to extend
the base vehicle with additional navigation sensors if one
anticipates to, without requiring changes to the navigation
software stack.

HydroMAN is comprised of a number of MOOS applica-
tions as described in this companion paper [51]. Following
subsections briefy summarize key functionalities of these
sub-component:

1) The interface to the HydroMAN MOOS community
(iHydroMAN Gateway):

The HydroMAN version 2.0 is an independent navigation
engine that interfaces with client systems (i.e. MITFrontseat
in this case) using a TCP network connection. Therefore,

7

the front-end of HydroMAN 2.0 is similar to internal fusion
engines of tactical and navigation grade INSs – the client
system can send external raw sensor data to HydroMAN; and
HydroMAN will provide the fused, model-aided navigation
solution. Hence, the HydroMAN is independent of the client’s
software architecture.
iHydroMAN Gateway application runs within the Hy-

droMAN MOOS community, serving as the gateway to
HydroMAN. All incoming messages to HydroMAN (e.g.
raw sensor data) and outgoing messages from Hydro-
MAN (e.g. fnal navigation solution) are handed over by
iHydroMAN Gateway. It runs a TCP server, which al-
lows the client system’s HydroMAN driver (in this case,
iHydroMAN MITFrontseat MOOS application that runs
within the MITFrontseat MOOS community) to connect
as a TCP client, and exchange messages using a google
protocol buffer based standardized message defnition. This
standardized message defnition and server-client architecture
ensures the independence of HydroMAN; i.e., the client
system’s HydroMAN driver does not necessarily need to be
a MOOS application.

2) Vehicle fight dynamic model (pHM BasicModel):
As virtual navigation aiding sensor, an embedded AUV

fight dynamic model, based on the principle of conservation
of energy [55] is used in HydroMAN to estimate the linear
velocities of the AUV (i.e. u, v and w). While the actual
structure of the vehicle dynamic model varies from vehicle to
vehicle, Equations 1-3 demonstrate how the propeller speed
(RP M(t)), measured vehicle angular velocities (p(t), q(t)

and r(t)), and the linear velocities estimated at the previous
timestamp (u(t−1), v(t−1) and w(t−1)) are used to derive the
vehicle velocities at the current timestamp (i.e. u(t), v(t) and
w(t)) for an example vehicle:

 u(t) = α1RP M(t) + α2RP M2 2
(t) + α3q(t)p +

2 α 2
4r(t)v(t−1) + α5q(t)w(t−1) + α p2 2

6 (t) + α7q(t)+ (1)

α 2 2
8r(t) + α9p(t)r(t) + α10z(t)

v 2 +
(t) = β1q(t)p(t) β p2 2

2 (t) + β3r(t)u(t−1)+
 (2)

β4q
2

(u 2 2 2
t) (t−1) + β5q(t) + β6r(t) + β7p(t)r(t) + β8z(t)

w = γ r u2
(t) 1 (t) (t−1) + γ2q(t)u

2 2
(t−1) + γ3q(t)p(t)+

2 2 2 γ 2
(3)

γ4p(t) + γ5q(t) + 6r(t) + γ7p(t)r(t) + γ8z(t)

where αn, βn, and γn are AUV-dependent fight dynamic
model parameters that were estimated using a real-time
recursive least squares system identifcation algorithm. The
derivation of the dynamic model, model optimization and
parameter estimation procedures are beyond the discussion
of this paper, and further details are given in [55].

The velocity and position estimated by the fight dynamic
model are relative to the water column (i.e. νmodel

(auv|water)

and xmodel (auv|water)) since the model excludes water currents.
Therefore, the error sources of the model-based velocity and
position estimates include the drift due to water currents

and the uncertainty of the model [55], [56], which are
counteracted by the self-adaptation of the fight dynamic
model

3) Self-calibration of the fight dynamic model to the
operating environment (pHM ModelCalibrator):

The uncertainty of the dynamic model, and water cur-
rent velocity (ν(water|earth)) are estimated on-the-fy within
pHM ModelCalibrator when accurate sensor measure-
ments such as DVL bottom-lock and/or acoustic navigation
updates are available. These estimates are used to convert the
model-based velocity from water reference to earth reference,
as detailed in Equation 4:

adaptM model adaptM adaptM ν(auv|earth) = ν(auv|water) + ν(water|earth) + σ
νmodel (4)

Two self-calibration strategies are available within
pHM ModelCalibrator: (a) using acoustic position up-
dates and (b) using the bias error of the model-based velocity
(i.e. bias error estimated by the error-state extended Kalman
flter (EKF) of the fusion algorithm). Further details on these
algorithms are given in [51].

4) DVL pre-processor (pHM DVLProcessor):
This MOOS application processes raw sensor measure-

ments from velocity aiding sensors such as DVL and CVL.
By considering the confgured orientation of the sensor, the
velocity measurements are transformed to the HydroMAN
standard axis convention. An orientation mismatch detection
mechanism is implemented to warn the operator and/or
execute vehicle safety protocols if the confgured sensor
orientation is detected to be not accurate.

In under-ice operations, if the sensor is in an upward-
facing confguration, measuring the velocity of the AUV
relative to surface ice, pHM DVLProcessor is capable of
counteracting the velocity for potential drifts in the surface
ice (i.e. surface ice in the Arctic is translated and rotated
by wind and current forcing [57], and this ice drift velocity
can be up to around 1 m s-1, which can cause considerable
navigation drift [58]). pHM DVLProcessor can be aided
with ice drift velocity information obtained from actual
measurements (e.g. measured by a GPS unit located on the
surface, and transmitted down to the vehicle via an acoustic
link) or from modeling approaches [59].

5) LBL pre-processor (pHM LBLProcessor):
Navigation aiding information provided in the form of

position updates; for examples, acoustic position updates
from LBL/USBL/SBL systems, terrain-aided navigation up-
dates, etc. are pre-processed by the pHM LBLProcessor
application.

Some types of acoustic position updates (e.g. two-way-
travel-time systems) can typically be outdated by more than
20 s when the position update is received by the AUV (i.e.
t − tN , where t is the current timestamp). A 20-second
time-lag could develop a position error of up to around 32
m (assuming a speed of 1.6 m s-1); hence, are typically
rejected by most commercial INS sensor fusion algorithms.
pHM LBLProcessor contains an algorithm to extrapolate

8

such position updates to the current timestamp using the self-
adapting vehicle fight dynamic model as given in Equation
5:

� �
lbl lbl adaptM adaptMx = x + x −(t) (t

N) x (t) (tN) (5)

where adaptMx(T) is the vehicle position from the self-adapting
fight dynamic model at timestamp T . The current timestamp
is given by t and the LBL timestamp is given by tN .

This pre-processor allows HydroMAN to effectively utilize
navigation updates that are time-lagged by large time periods
(i.e. more than 5-minutes).

6) Sensor fusion engine (pHM SensorFusion):
The sensor fusion application consists of two EKFs: (a) the

error-state EKF that estimates the bias errors of the sensors,
and (b) main-state EKF that fuses the bias error corrected
measurements to obtain the fnal navigation solution.

The error-state EKF computes a running estimate of the
bias errors of velocity sensors (e.g. DVL, CVL, etc.) and
fight dynamic model in a layered pattern, in the hierarchy
of the accuracy of the sensor. That is, the outlier removed
acoustic position updates are frst used to compute the
bias error estimate of the DVL sensor, which is used to
correct the DVL measurements. The bias error corrected
DVL measurements are then used to compute the bias error
of dynamic model, and other velocity aiding sensors, in
a hierarchical order. Since the variation of bias error is
generally a slowly changing function, this method allows
HydroMAN to maintain a good navigation accuracy by using
bias corrected dynamic model, even in events where the DVL
drops out or turned off for a long period of time.

The main-state EKF included six states — the three
dimensional velocity and position vectors. These states were
estimated by fusing the bias corrected DVL, fight dynamic
model and other velocity measurements together with the
depth and position based navigation updates. More informa-
tion regarding this layers sensor fusion approach is given in
[51].

7) Navigation manager (pHM Manager):
The HydroMAN system consists of a number of naviga-

tional safety management systems; e.g. EKF re-initialization
when large navigation drifts are detected, executing safety
protocols in situations where the flter is diverging due to
faulty sensors, etc. The pHM Manager application manages
these features and publishes the fnal navigation solution.

E. Autonomy software

Unlike unmanned sea-surface, ground, and aerial vehicles,
AUVs cannot be remotely controlled due to the low band-
width in acoustic communications; they must make decisions
autonomously. Remote control, or teleoperation, in land, air,
or surface vehicles may be viewed as a means to allow
conservative, risk-averse operation with respect to the degree
of autonomy afforded to the vehicle. In underwater vehicles,
similar conservative tendencies are realized by scripting the
vehicle missions to be as predictable as possible. Missions

typical of early-model UUVs were composed of a preplanned
set of waypoints accompanied by depth and perhaps speed
parameters. The onboard sensors merely collected data that
were analyzed after the vehicle was recovered from the water.
However, improved sensor processing methods, embedded
computing power, underwater navigation performance and
adaptive and collaborative autonomy technology has enabled
advanced autonomy for AUVs [60].

The base vehicle software stack that we developed car-
ries several autonomy capabilities of several fdelity levels:
(1) primitive missions with scripted decision outputs; (2)
autonomous decision making with MOOS-IvP behavioural
helm that runs on the MITFrontseat MOOS community;
and (3) payload autonomy where the MITFrontseat ingests
decision commands from thirdparty payload-based autonomy
systems.

1) Higher level autonomy management
(pFrontseatManager):

The autonomy helm of the vehicle, regardless of the
fdelity level, sits beneath and bound by a safety envelope
set by this mission management application. In addition to
enforcing safety rules, this application is also responsible for
executing and switching autonomy behaviors with the use of
a state machine.

The frontseat mission manager enforces vehicle-dependant
and cruise-dependant safety rules, set by the operator dur-
ing pre-launch mission confguration. The vehicle-dependent
rules ensure the integrity of structural and electrical com-
ponents and water-tightness of the vehicle by administering
variables such as the maximum vehicle diving depth, min-
imum operating battery voltage, maximum operating motor
current, maximum internal pressure. When a specifc rule is
violated, the vehicle mode will be autonomously switched
to an orchestrated safe mode, depending on the violated
rule. The cruise, or mission dependent rules include: (a)
mission start time – the main motor start time could be
delayed by a pre-confgured time period since the mission
launch; (b) mission end time – the mission manager leases
the vehicle’s control authority to the autonomy helm only
for a pre-confgured temporary time period; beyond which,
the mission ending mode is executed; (c) maximum cruise
depth – if the maximum safe operating depth for the cruise
region is below the maximum diving depth of the vehicle.

When MOOS-IvP helm is run within the MITFrontseat
MOOS community, the frontseat mission manager functions
as a mission commander that carries out on-board command
and control of mission behaviors. That is, with the use of
a state machine, this application controls which IvP helm
behaviors are spawned at a given time [60] and how they are
switched between. The switching of IvP behaviors is either
conducted completely autonomously, or manually triggered
via communication methods detailed in Section III-F.

2) Passive helm (pHelmPassive):
The passive helm allows scripting of a timetable of pre-

defned helm decisions (i.e. desired speed, desired heading,
desired depth and vehicle mode command); each against
a corresponding execution time (i.e. mission legs). During

9

the mission, pHelmPassive reads the pre-confgured helm
decisions from the confguration block, and posts to the
MOOS database. Therefore, this primitive helm can be run
without a vehicle navigation solution, making it a useful tool
for preliminary testing of the vehicle.

Another key use case of the passive helm is for tuning of
the vehicle’s low-level control system. Most AUVs still use
proportional-integral-derivative control systems for their low-
level control; and fne-tuning them, which is typically done
trial-and-error, is rather dull process. During this process,
the autonomy system is required to frst command a con-
stant heading, speed and depth; followed by a step-change
command in the either heading, speed or depth, depending on
which degree-of-freedom is being tuned. The passive helm
is an ideal tool for such simple, pre-dictated missions. In
addition, passive helm also allows the users to confgure PID
gain changes during legs, which is ingested by the control
engine as runtime PID gain updates. This functionality allows
the operators to test multiple PID gain settings during a
single mission, expediting the time consuming tuning process
by orders of magnitude. Listing 1 shows a sample mission
confguration block of pHelmPassive, where the P-gain
of the vehicle’s heading controller is updated during the third
leg.

1 ADD_LEG: start_time=120, heading=180,
speed=1.5, depth=1.5

2 ADD_LEG: start_time=240, heading=250,
speed=1.5, depth=2.0

3 ADD_LEG: start_time=410, heading=250,
speed=1.5, depth=2.0, heading_kp=0.8

4 ADD_LEG: start_time=420, heading=180,
speed=1.5, depth=2.0

5 ADD_LEG: start_time=600, heading=250,
speed=1.5, depth=1.5

Listing 1. A sample mission confguration block of pHelmPassive. This
primitive mission updates the proportional gain of the vehicle’s heading PID
controller during the third leg.

3) MOOS-IvP autonomy helm (pHelmIvP):
The MOOS-IvP helm runs as a single MOOS application

and uses a behavior-based architecture for implementing
autonomy. Behaviors are distinct software modules that can
be described as self-contained mini-expert systems dedicated
to a particular aspect of overall vehicle autonomy. The helm
implementation and each behavior implementation expose
an interface for confguration by the user for a particular
set of missions. This confguration often contains particulars
such as a certain set of waypoints, search area, and vehicle
speed. It also contains a specifcation of mission modes that
determine which behaviors are active under which situations
and how states are transitioned. When multiple behaviors are
active and competing for infuence of the vehicle, the IvP
solver is used to reconcile the behaviors. More information
regarding MOOS-IvP can be found from [60] and [61].

The Morpheus base vehicle software stack allows the
users to run MOOS-IvP autonomy from within the MIT-
Frontseat MOOS community. In this architecture, required
behaviors are loaded to the mission confguration block, and

the pFrontseatManager application acts as the mission
commander in-charge of spawning and switching between
behaviors.

4) Payload autonomy:
The main idea in the payload autonomy paradigm, or the

backseat driver is the separation between vehicle control
and vehicle autonomy. The vehicle control system runs on a
platform’s main vehicle computer, and the autonomy system
runs on a separate payload computer. This separation is also
referred to as the mission controller – vehicle controller
interface. A primary beneft is the decoupling of the platform
autonomy system from the actual vehicle hardware [60],
[62]–[67].

The payload autonomy capability is built-in to the Mor-
pheus base vehicle software stack through the development
of a standard payload interface. This interface allows to
forward any information posted in the MITFrontseat MOOS
community to a payload computer via a TCP connection,
using a standard protobuf message scheme; and the payload
autonomy system is able to send autonomy commands (e.g.
desired heading, desired speed and desired depth commands)
back to the MITFrontseat via the same interface. More
information regarding the interface is given in Section III-
I. Hardware-wise, the payload autonomy system could run
either on the same main vehicle computer or on a separate
autonomy computer. In the case of Morpheus, the payload
autonomy system was also run on the same main vehicle
computer (i.e on the BeagleBone Blue) in order to conserve
space inside the vehicle.

In the payload autonomy mode, as discussed in Section III-
E.1, the pFrontseatManager leases the command of the
vehicle to the payload autonomy system for a pre-confgured
time period. However, the payload autonomy system is still
bound by the safety envelope set by the frontseat manager. If
one anticipates to take unconditional control of the vehicle,
this can be done by turning off safety parameters within
pFrontseatManager.

F. Communication software

Communication of low-cost, micro AUVs such as Mor-
pheus can be generally classifed into three categories: (1)
short-range surface communication; (2) long-range surface
communication; and (3) underwater acoustic communication.

Short-range surface communication is generally via a wif
network connection with the topside network. Morpheus
vehicle achieves this using the BeagleBone Blue computer’s
embedded wif modem. The computer’s network settings are
confgured such that it connects to a specifc wif network
whenever the vehicle is in range. This network is typically
used to access the vehicle computer in order to conduct oper-
ations such as system testing, launching missions, debugging,
data transfer, etc.

In Morpheus vehicle, long-range surface communication
is achieved via the cellular network; with the use of SMS
messages with a dedicated topside cellular phone. Very basic
command and control, and vehicle status monitoring can
be achieved with this service (e.g. this service is typically

10

confgured to send an SMS to the topside phone with the
GPS coordinates, upon mission completion and surfacing).
We expect to expand the long-range surface communication
capability by establishing a remote connection between the
topside computer and vehicle with the use of cellular internet
tethering for more advanced surface command and control,
and telemetry monitoring; though the use of Goby-Acomms
library [68], [69] for marshalling and dynamic priority queu-
ing; and Goby liaison as the command and control GUI [70].

At the time of writing, the Morpheus vehicle is not
equipped with an acoustic modem that enables transmission
of datagrams while underwater. However, the piUSBL sys-
tem in the Perseus payload allows very basic underwater
command and control by switching the transmitter between
various broadcast linear frequency-modulated chirps; each
corresponding to different pre-defned vehicle autonomy be-
haviors [27]. In the future, we plan to expand the electronics
stack of the vehicle with a small acoustic modem (e.g. [71]–
[73]) for more advanced underwater command and control,
and telemetry; through the use of Goby-Acomms library,
which will also be used for long-range surface communi-
cation.

G. Low-level control software

The low-level control software is responsible for exe-
cuting the decisions commanded by the autonomy system;
such as, desired heading, desired speed, desired depth and
desired glide angle (i.e. in the case for gliding vehicles)
commands. The vehicle control system executes such com-
mands by controlling the vehicle-specifc actuators such as
the propulsion thrusters, control surfaces, buoyancy engines
and weight shifting mechanisms, etc. Hence, the low-level
control system of an AUV is generally platform-dependant.
In MITFrontseat, we have generalized the control system
by sub-dividing it to three components as shown in Figure
7: (1) a platform-independent control engine that produces
control correctives in roll, heading, speed, and pitch; (2) a
platform-dependant actuator mapper application that maps
the control engine outputs to the actuator confguration of a
specifc vehicle; and (3) actuator drivers that produces low-
level signals such as PWM, GPIO and CAN bus messages
that drive the actuators.

1) Control engine (pControlEngine):
The low-level control engine of MITFrontseat consists

of a set of single loop (i.e for heading, speed and roll
sub-systems) and multi-loop (i.e. for the depth sub-system)
PID control blocks that produce control corrective outputs.
Control corrective outputs are essentially in the same order
as actuator commands; e.g. control surface angle commands.
In order to ensure the platform-independence of the control
engine, PID outputs are published as control correctives; and
the mapping of control correctives to actuators of a specifc
vehicle is conducted in a separate MOOS application.

For some vehicle hardware designs, there could be an
offset between the IMU mount axis and vehicle axis. In
MITFrontseat, this offset correction is carried out in the
control engine. The axis offset correction for heading is done

by pointing the vehicle’s nose towards north, and poking
a given MOOS variable. Similarly, roll and pitch offsets
are corrected by keeping the vehicle at zero roll and pitch,
and poking two separate MOOS variables. These offsets are
written to a confguration text fle, which is read on start-up
to correct the IMU offset.

The control engine contains three independent single-loop
PID control blocks for heading, speed and roll sub-systems.
They ingest the difference between the desired and actual
values (i.e. for example, the heading error), and compute a
PID corrective that would attempt to minimize the error, with
the use of confgured PID gains.

For under-actuated vehicles such as fying type AUVs,
the depth DOF cannot be directly controlled; and is rather
controlled by varying the pitch angle of the vehicle. Thus,
a two-loop PID controller is implemented for the depth
sub-system. As seen from Figure 7, the depth PID control
block produces a depth control corrective, which becomes
the desired pitch input for the pitch PID control block. The
latter then computes the pitch control corrective, which is
sent to the actuators that control the pitch DOF of the vehicle
(e.g. elevators). However, for gliding vehicles, the optimized
desired glide angle (i.e. desired pitch value) is provided by
the autonomy system. For such vehicles, the control engine
by-passes the depth PID block; and the pitch PID block uses
the desired glide angle as the desired pitch value.

The MITFrontseat is compatible for vehicle with multiple
modes; for example, for hybrid gliders that has both pro-
pelled and gliding modes; and for amphibious vehicles that
are capable of operating in-water as well as ashore. For such
multi-mode vehicles, multiple control settings are typically
required; for instance, in the case of hybrid vehicles, one PID
setting for the propelled mode (i.e. regulating the propeller
and control surface angles to control the speed, pitch and
heading), and another PID setting for the gliding mode (i.e.
regulating the buoyancy engine and battery-pack position to
control the same variables). As shown in Figure 7, the control
engine handles this by dynamically creating an ‘N’ number
PID controller sets during start up, each set corresponding
to a vehicle mode. When the autonomy system switches to a
specifc vehicle mode, the control engine also switches itself
to the corresponding PID controller and gain setting.

2) Mapping control correctives to vehicle actuators
(pActuatorMap morpheus):

In this framework, as shown in Figure 7, the platform-
independent control correctives produced by the control
engine are converted to actuator commands of a given
vehicle by a platform-dependent MOOS application; for
instance, in the Morpheus AUV, this is carried out by
pActuatorMap morpheus. As outlined in Section II-
B, the Morpheus class vehicles are equipped with four
independently actuated stern control surfaces (i.e. upper
rudder, lower rudder, port elevator and starboard elevator),
two vertical forward morphing fns and a propeller at the
stern end.

The heading and pitch correctives are frst mapped out
to corresponding stern rudder and elevator angles. If the

11

roll PID

heading PID

speed PID

depth PID pitch PID

-

+

-

+

IMU axis
correction

cfg.txt

navigation
System

autonomy
System

AUV-glider
switch

-

+

-

+

-

+

Vehicle
mode

switching

IMU roll

IMU heading

IMU pitch
speed

depth

desired roll

desired heading

desired speed

desired depth

desired pitch
vehicle mode 1
vehicle mode 2
vehicle mode n

hdg corrv 2
rudder

spd corrv 2
motor

pitch corrv 2
elevator

roll corrv
mixer

roll
compensator

main
motor
driver

servo driver

morphing
argument

roll corrective

heading corrective

speed corrective

pControlEngine pActuatorMap_morpheus

desired glide angle

Fig. 7. The low-level control system of MITFrontseat has been semi-generalized by sub-dividing it to three components: (1) a platform-independent control
engine (pControlEngine) that produces control correctives in roll, heading, speed, and pitch; (2) a platform-dependant actuator mapper application
(e.g. pActuatorMap morpheus) that maps the control engine outputs to the actuator confguration of a specifc vehicle; and (3) actuator drivers that
produces low-level signals such as PWM, GPIO and CAN bus messages that drive the actuators.

vehicle is at zero roll angle (or if the roll control subsystem
is deactivated), these commands will be the fnal rudder and
elevator commands. However, in situations where the vehicle
is rolled, as shown in Figure 8, the zero position of all
four stern control surfaces will be offset by a small angle
(the maximum defection limit is typically confgured as 5
degrees), attempting to create a righting moment to zero out
the roll angle.

roll

angle

Fig. 8. Roll correction – Left: when the AUV is at zero roll, the control
surfaces are at their neutral positions. Right: when the vehicle is rolled, the
zero position of all four control surfaces are offset by a small angle, creating
a righting moment to correct the vehicle roll angle back to zero.

As shown in Figure 9, when the vehicle is at non-zero
roll angles, a rudder defection will not only create a heading
change, but will also create an unintended pitching moment,
and vice versa. Thus, the vehicle will have unintended
depth fuctuations during turns, and heading fuctuations
during depth changes. The roll compensation system within
pActuatorMap morpheus attempts to mitigate this by
accordingly defecting the opposing control surfaces to can-
cel out the unintended moment as given in Equations 6 -
9; for instance, defecting the elevators to cancel out the
unintended pitching moment created by the rudders.

 ψcorr uppr rudd = cos ϕ − θcorr sin ϕ + ϕcorr (6)

 lowr rudd = ψcorr cos ϕ − θcorr sin ϕ − ϕcorr (7)

 port elev = ψcorr sin ϕ + θcorr cos ϕ − ϕcorr (8)

 stbd elev = ψcorr sin ϕ + θcorr cos ϕ + ϕcorr (9)

where, ϕcorr , θcorr and ψcorr are roll, pitch and heading
correctives, and ϕ, θ and ψ are roll, pitch and heading angles
of the vehicle, respectively. Note that equations 6 - 9 assume
that all four stern control surfaces are equal in size and shape.

roll

angle

Fig. 9. Roll compensation – Left: when the AUV is at zero roll, heading
correction is simply mapped out to a rudder defection. Right: when the
AUV is rolled, however, a simple rudder defection will not only create
a heading change, but also will create an unintended pitch change. Roll
compensating system will attempt to mitigate this by accordingly defecting
the elevators to cancel out the pitching moment created by the rudders, and
vice versa.

12

In pActuatorMap morpheus, the forward located
morphing fns are controlled according to the magnitude of
the heading error. The fns were deployed if the heading error
(i.e. the difference between the desired and current vehicle
heading) is larger than 30◦ . Once deployed, the fns were
actively controlled with an equal but opposite angle to the
rudder defection. When the heading error reduced to less
than 5◦ , the morphing fns were retracted.

All fnal control surface angles are fnally published to the
MOOSDB as angle as well as normalized commands, which
are to be read by the actuator drivers. The speed correctives
are also mapped out and published as percentage thrust and
normalized thrust commands.

H. Actuator software drivers

A set of MOOS drivers were developed to communicate
with various hardware actuators of the vehicle via hardware
interfaces available onboard the BeagleBoard computer. Each
driver reads corresponding commands from the MOOSDB,
and drives the hardware by providing relevant GPIO, PWM
and I2C commands.

1) Main motor driver (iProp):
The main motor MOOS driver handles main motor and

its related circuitry. Main motor propeller is a hazardous
sub-system; hence is protected by an electrical gate that
needs to be triggered in order to switch the propeller
on. During the mission envelope (which is dictated by
pFrontseatManager), The main motor driver triggers
the gate by sending a GPIO signal. Subsequently, the relevant
PMW signal is sent to the motor, according to the percentage
thrust commanded by pActuatorMap morpheus.

2) Servo motor driver (iServo):
The servo MOOS driver is responsible for driv-

ing the servo motors to the positions commanded by
pActuatorMap morpheus. Servo driver achieves this by
providing PWM signals (i.e. via the BeagleBoard’s PWM
channels) that incrementally changes the servo position until
it arrives to the commanded position.

3) LED strobe driver (iLED):
The LED MOOS driver handles the circuitry related

to the vehicle’s mast LED strobe. In this framework, the
pFrontseatManager posts various different LED pattern
commands, each corresponding to the current mode of the
vehicle. For instance, four different LED blinking patterns
were confgured to indicate: (1) a mission has been launched
and waiting till the actuator-engage-time, (2) the mission
clock is within 10-seconds to the actuator-engage-time, (3)
mission is currently being executed and actuators are en-
gaged, and (4) mission has ended and actuators are secured.
The LED driver reads these LED commands and sends
corresponding GPIO signals to the LED driving circuitry.

I. Software extension for additional payloads and payload
autonomy systems (iMITFrontseat Gateway)

The base AUVs are typically extended with additional
payloads according to its application [74], [75]. To ensure
this extendability, the hardware as well as the software of

the base vehicle should include boilerplate hooks to interface
with additional payload sensors, actuators and processes [74].

The iMITFrontseat Gateway is a such boilerplate
hook that allows payloads (i.e. including payload autonomy
systems) to connect to MITFrontseat and exchange infor-
mation. Similar to the iHydroMAN Gateway discussed
in Section III-D.1, this application creates a TCP server,
which allows payload systems to connect as a TCP client,
and exchange MOOS messages wrapped around a google
protocol buffer based standardized message defnition. This
interface allows payloads to read and publish any MOOS
variable to the MITFrontseat MOOS community. The stan-
dardized message defnition and TCP server-client architec-
ture ensures the independence of payload systems; i.e., the
payload system does not necessarily need to be a MOOS
based system. Multiple payload systems can be connected
to MITFrontseat at a given instance by spawning multiple
instances of iMITFrontseat Gateway application.

IV. MORPHING FIN PAYLOAD DESIGN

The stability and maneuverability indices of a torpedo-
shaped vehicle can be dynamically altered using different
modes of retractable fn implementations [11]. In this work,
we implemented forward located morphing fns, where the
stability of an originally stable vehicle can be decreased by
deploying the fns; increasing the maneuverability, similar to
tuna’s dorsal fns. As shown in Figure 10A, the morphing
fns were usually retracted during straight runs in order to
increase the stability. When the vehicle is required to make
a quick heading change, the morphing fns were deployed,
as shown in 10B, to destabilize the body, increasing the
maneuverability. In addition, the morphing fns were able
to be articulated, as shown in Figure 10C, providing a
turning moment, to further increase the turning rate. The
theoretical derivations of stability-maneuverability criteria,
and the mathematical representation of forward-located mor-
phing fns were presented in-detail, in our prior work [11];
therefore, a concise summary is given here in Appendix A.

The morphing payload module was developed as an in-
dependent section, that can be outftted to any place within
the mid-body of the base vehicle. Our previous work [11]
investigated the variation of the stability index with the
location of morphing fns; concluding that a larger stability
index variation can be achieved when the fns were located
closer to the nose-tip of the vehicle. Thus, in both the
Morpheus and Perseus vehicles, we placed the morphing fn
payload module immediately after the nose-cone.

A. Morphing fn hardware design

The morphing fn hardware design, as shown in Figures
10D - 10F, consists of two morphing fns that were driven in
and out of the hull through fn cutouts by push rods. The push
rods and their mounting arms were in turn driven by a 32
pitch gearwheel and an oil-flled micro-servo. The fns and
rods moved in unison, providing symmetric deployment and
retraction. The range of the fn movement was such that when
fully retracted, just a few millimeters of fn protrudes from

13

morphing fins
retracted

morphing fins deployed

morphing fins articulated

morphing
mechanism

free-flood
section

watertight cabling channel

top fin

bottom fin

deploying
gear

servo one

servo two

fairing
(A)

(B)

(C)

(D)

(E)

(F)

Fig. 10. The morphing fn payload module was placed immediately
after the nose-cone of the AUV in order to obtain the maximum stability-
index variation. The morphing fns can be (A) retracted, (B) deployed
and (C) articulated up to a 20 degree angle of attack. (D) The morphing
mechanism was housed inside a free-food chamber within the module. (E)
Two watertight channels were located on either sides of the chamber to run
electrical cables across the morphing fn module. (F) The two morphing
fns were driven in and out of the hull through fn cutouts by a servo-driven
push rods mechanism, which was placed on a carriage that can be rotated
using another servo, providing fn articulation.

the hull, while when fully deployed the fn bottom clears the
hull, allowing for articulation.

The deploying mechanism was mounted on a carriage with
ability to swing approximately 20 degrees to either side,
thereby resulting in fn articulation. A 3D-printed rack on
the carriage was driven by a 32 pitch gearwheel and an oil-
flled articulation micro-servo. Similar to deployment action,
the articulation of the fns was also symmetric.

The morphing mechanism was nested into a free-food hull
chamber. Watertight channels were designed on either sides
of the chamber, providing watertight wiring channels to run
electrical cables across the morphing fn module.

B. Morphing fn software design

As discussed in Section III-G.2 and illustrated in Figure 7,
the platform-independent control correctives produced by the
pControlEngine were converted to actuator commands
of the Morpheus vehicle in pActuatorMap morpheus.
The adaptive morphing argument was also embedded within
this application.

The morphing fns were controlled according to the mag-
nitude of the heading error. The fns were deployed if the
heading error (i.e. the difference between the desired and
current vehicle heading) is larger than 30◦ . Once deployed,
the fns were actively controlled with an equal but opposite
angle to the rudder defection. When the heading error
reduced to less than 5◦ , the morphing fns were retracted.

V. RESULTS AND DISCUSSION

The original MIT-EMATT base vehicle, the optimized
base vehicle and Morpheus AUV were all extensively feld
tested in-water in the Charles river, Massachusetts, USA by
conducting hundreds of hours of operations over a period of
two years (see Figure 11). In this section, we present in-water
test results from a set of randomly picked missions.

(A) (B)

(C) (D)

Fig. 11. In-water deployments were conducted in the Charles river,
Massachusetts, USA, adjacent to the MIT Sailing Pavilion. Field deployment
photos of (A) MIT-EMATT AUV, (B) Morpheus AUV, and (C-D) Perseus
AUV.

The vehicle tracks shown in this section were produced
using the HydroMAN navigation solution. The base vehicles
and Morpheus AUV were limited to a depth sensor and
an IMU. Therefore, the HydroMAN navigation engine was
heavily relying on its embedded vehicle fight dynamic
model. The HydroMAN navigation engine requires an initial
vehicle motion response dataset to identify the parameters
of the vehicle fight dynamic model [51], [56]. In this work,
we used the Perseus vehicle confguration (shown in Figure
1E), which was outftted with the piUSBL payload, to obtain
the parameter estimation dataset. The piUSBL system was
confgured as a long baseline (LBL) system, and followed
the same methodology as [56] to estimate the vehicle fight
dynamic model. Figure 12 compares the HydroMAN nav-
igation solution against the LBL-based navigation solution,
for validation and verifcation purposes.

A. In-water tests of the MIT-EMATT base vehicle

Figure 13 shows a typical control response plot of the
original MIT-EMATT base vehicle from an example zig-
zag mission. The top subplot shows the desired and actual
heading responses of the vehicle together with the rudder
commands. As discussed in Section II-B, the original MIT-
EMATT base vehicle tail-cone had a solenoid-driven rudder
and elevator that only allowed bang-bang control. Therefore,
as seen from Figure 13 top subplot, the rudder commands
had only three positions; i.e. hard-to-port, hard-to-starboard
and neutral. This resulted in around 5-10 degree amplitude
oscillations in the heading response.

Figure 13 middle subplot shows the desired and actual
pitch responses of the vehicle, together with bang-bang
elevator commands. As discussed in Section III-G.1, the
desired pitch was computed by the depth control loop within
pControlEngine; attempting to maintain the vehicle
depth at the desired depth command. A constant roll angle

14

Fig. 12. Comparison of the HydroMAN navigation solution, which was
limited to the depth sensor, IMU and the embedded vehicle fight dynamic
model, against the navigation solution obtained from an LBL system.

of around 20 degrees was generally observed; primarily
as a result of propeller torque. The original MIT-EMATT
did not have split rudders or split elevators that allowed
implementation of active roll control. We addressed this
drawback in the optimized vehicle by having individually
controlled split rudders and split elevators. In addition, we
also included fxed fns with a 3-degree constant angle of
attack to counteract the rolling effect due to propeller torque.

Figure 13 bottom subplot illustrates the desired and actual
depth responses of the vehicle, which had an oscillation of
around 0.2 - 0.4 m amplitude. This is primarily due to the
band-bang control strategy and external disturbances.

Fig. 13. A control response plot from one of the PID tuning runs conducted
with the original MIT-EMATT base vehicle, with a solenoid-driven, bang-
bang controlled rudder and elevator. The top subplot shows the desired
and actual heading responses of the vehicle together with bang-bang rudder
commands. Middle plot shows the desired pitch (i.e. the output produced by
the depth control loop) and actual pitch responses with bang-bang elevator
commands. The roll response is also shown. The bottom plot illustrates the
desired and actual depth responses.

Figure 14 shows the vehicle navigation tracks of the
original MIT-EMATT base vehicle from three identical zig-
zag missions, conducted at different thrust percentage val-
ues for PID tuning. These missions were conducted using

pHelmPassive, which publishes pre-scripted, time trig-
gered desired heading and desired depth commands. Such
simplifed missions were used during PID tuning and heading
performance evaluation stages.

Fig. 14. Tracks of the original MIT-EMATT base vehicle conducting
three identical zig-zag pattern missions using pHelmPassive at various
propeller thrust percentages.

B. In-water tests of the Morpheus AUV

Similar to the MIT-EMATT base vehicle, both the opti-
mized base vehicle and Morpheus AUV were intensively
tested in-water for PID tuning and maneuverability-stability
evaluations. Figure 15 shows the vehicle navigation track
of the Morpheus AUV for two identical zig-zag missions;
one with morphing fns engaging according to the argument
discussed in Section IV-B, and the second without engaging
morphing fns. As seen, both runs provide small turning radii,
with the run that engaged morphing fns outperforming the
other.

Figure 16 illustrates a comparison of the starboard turns of
the same runs. In addition, it also includes a similar turn of
the original MIT-EMATT base vehicle. The Morpheus vehicle
provided a turning radius of around 2.5 m when morphing
fns were not engaged. The morphing fns were able to further
reduce the turning radius down to approximately 1.5 m. In
comparison, the turning radius of the original MIT-EMATT
vehicle was limited to around 10 m. As seen, a signifcant
turning rate improvement was obtained through the use of
morphing fns.

Figure 17 shows the turning rate responses of the Mor-
pheus AUV for six different example runs, both with and
without engaging morphing fns. When comparing top and
bottom subplots, the starboard turns always had a signif-
icantly higher turning rate as compared to port turn (i.e.
approximately 10 deg s−1 higher). We believe that this was
as a result of the propeller torque favoring the starboard turns.

As seen from Figure 17, the Morpheus AUV was able to
showcase an exceptional turning rate of around 25-35 deg

15

Fig. 15. Tracks of the Morpheus AUV conducting two identical zig-zag
missions using pHelmPassive, with and without employing morphing
fns.

Fig. 16. A visual comparison of the turning radii between the original MIT-
EMATT vehicle (i.e around 10 m), Morpheus without engaging morphing
fns (i.e around 2.5 m), and Morpheus with morphing fns (i.e around 1.5
m).

s−1 . A maximum turn rate improvement of around 35% -
50% was gained through the use of morphing fns.

VI. CONCLUSIONS

We designed and constructed an A-sized base AUV, aug-
mented with a stack of modular and extendable hardware and
software, including navigation, autonomy, control and high
fdelity simulation capabilities. The base vehicle developed in
this work was a derivation of the EMATT vehicle hullform,
designed and produced by Lockheed Martin Corporation.
During the frst iteration, we used the original EMATT shell,
including the original nose-cone, main-motor bay, and a free-
food tail-cone with solenoid-driven control surfaces; aug-
mented with our own electronics and software stacks. In the
second iteration of the base-vehicle, we hydrodynamically

Fig. 17. The heading rate responses of the Morpheus AUV observed during
a set of randomly picked (upper) starboard and (lower) port turns; with and
without engaging morphing fns.

optimized nose and tail cones. The optimized nose-cone
included an embedded GPS antenna, LED strobes, external
pressure sensor and vacuum port; and the optimized tail-cone
included four individually controlled, servo-based control
surfaces.

Subsequently, we extended the optimized base vehicle
with a novel tuna-inspired morphing fn payload module (re-
ferred to as the Morpheus AUV), to achieve good directional
stability and exceptional maneuverability; properties that
are highly desirable for rigid hull AUVs, but are presently
diffcult to achieve because they impose contradictory re-
quirements. The morphing fn payload allows the base AUV
to dynamically change its stability-maneuverability qualities
by using morphing fns, which can be deployed, defected
and retracted, as needed.

The original MIT-EMATT base vehicle, the optimized
base vehicle and Morpheus AUV were all extensively feld
tested in-water in the Charles river, Massachusetts, USA by
conducting hundreds of hours of operations over a period of
two years. The Morpheus vehicle provided a turning radius
of around 2.5 m when morphing fns were not engaged. The
morphing fns were able to further reduce the turning radius
down to approximately 1.5 m. In comparison, the turning
radius of the original MIT-EMATT vehicle was limited to
around 10 m. The Morpheus AUV was able to showcase
an exceptional turning rate of around 25-35 deg s−1 . A
maximum turn rate improvement of around 35% - 50% was
gained through the use of morphing fns.

ACKNOWLEDGMENT

This work was funded by a grant from Lockheed Martin
Corporation; equipment were provided by the Naval Under-
sea Warfare Center (NUWC).

We greatly acknowledge Sekhar Tangirala, Stephen Bethel
Jr., and Philip Nicolescu at Lockheed Martin Corporation,
and Russell Sylvia (now at NUWC) for their technical
discussions and continued support for this work. We also
acknowledge Prof. Henrik Schmidt at MIT for his autonomy
mission manager concept that was adapted to our system;
and developers of open source libraries that were used in

16

this work: Dr. Toby Schneider at gobysoft for NETSIM
TCP library; Pierce Nichols for pBBBlue MOOS application;
and Strawson Design for the BeagleBone Robotics Cape
and robot control library. Many thanks to Emily Mellin,
Nikolai Gershfeld, Suparnamaaya Prasad, Tyler Paine and
Mike DeFilippo at MIT Sea Grant AUV Laboratory, Dr. Nick
Rypkema at WHOI and MIT Sailing Pavilion staff for their
support in feld trials.

A. APPENDIX – MATHEMATICAL REPRESENTATION OF
MORPHING FINS

Utilizing the hydrodynamic coeffcient representation of
vehicle motion, Triantafyllou et al. [9] provides the theo-
retical derivation of the stability criterion for underwater
vehicles, and how the stability-maneuverability is affected
by the stern control surfaces and forward morphing fns. In
this section, we summarize the theory given in Triantafyllou
et al. [9], and further extend the derivation to show how
the stability-maneuverability is affected by the size of stern
control surfaces, forward morphing fns, and shroud. The
body-fxed axes system and notations utilized in this article
is shown in Figure 18.

Surge,
u, X

Sway, v, Y

Yaw, r, N
Roll, p, K

Pitch, q, M

Fig. 18. The body-fxed reference frame used in this article. X , Y , Z
and K, M , N are the body-fxed forces and moments along/around the
surge, sway and heave axes of the AUV, respectively. The linear and angular
velocities along/around the surge, sway and heave axes are u, v, w and p,
q, r.

A. Directional stability versus maneuverability

Utilizing the hydrodynamic coeffcient representation of
vehicle motion [76], the linearized Heave, wequations , Z of sway and
yaw motion of a torpedo-shaped vehicle, decoupled from
surge, heave, roll and pitch motion, can be written as given
in Equations 10 and 11.

Y = (m − Yv̇)v̇ +(mxG − Yṙ)ṙ − Yvv +(mU − Yr)r (10)

N = (Izz − Nṙ)ṙ +(mxG − Nv̇)v̇ − Nvv +(mxGU − Nr)r
(11)

where, m is the mass, Izz is the moment of inertia about
the origin, xG is the longitudinal location of the center of
gravity, U is the forward speed of the vehicle, v and v̇ are the
sway velocity and acceleration, r and ṙ are the yaw velocity
and acceleration. The hydrodynamic coeffcients −Yv̇ and
−Yṙ denote the added mass in sway due to swaying and
yawing acceleration, respectively. −Nv̇ and −Nṙ denote the

added moment of inertia due to sway and yaw acceleration.
Yv and Yr are the linear resistance force in sway due to sway
and yaw velocities, and Nv and Nr are the linear resistance
moments in yaw due to sway and yaw velocities.

When the rudder is defected to an angle δ, after the
transients die down and a steady turning at forward velocity
U, yaw rate r, and side velocity v is achieved, the acceleration
terms can be dropped. Then, Equations 10 and 11 become
Equations 12 and 13, respectively:

−Yvv + (mU − Yr)r = Yδδ (12)

−Nvv + (mxGU − Nr)r = Nδδ (13)

where, Yδ and Nδ are the linear hydrodynamic coeffcients
of the rudder. Note that the rudder forces are taken to be a
linear function of the rudder angle within this section.

Thus, the yaw rate, r can be written as:

Yδ δ
r = (NvYδ − YvNδ) (14)

C

where, the denominator C can be shown to be the dynamic
stability index, C, as given in Equation 15 [76].

C = −Yv (mxGU − Nr) + Nv(mU − Yr) (15)

If C > 0, the body is directionally stable, otherwise, it is
linearly unstable. Equation 15 can be recasted as:

C = −Yv (mU − Yr)(xr − xAC) (16)

where,

xr
mxGU − Nr

=
mU − Yr

(17)

Nv
xAC = (18)

Yv

xr is the distance of the Center of Rotational motion (CR)
from the origin, i.e. the location where the side force acts
when the body performs a pure rotation at constant speed
U and (small) angular velocity r, and v = 0. xAC is the
distance from the origin to the Aerodynamic Center (AC),
i.e. the location where the side force acts when the body
performs a steady translation at forward velocity U and side
velocity v, while r = 0 (what is referred to, also, as sideslip
velocity).

As noted by [9] [9], the aerodynamic center is a critical
quantity in determining the body stability. Since Yv is always
a negative quantity [76], and (mU − Yr) > 0, as mU is a
large positive quantity, the stability criterion can be recast
as:

xr > xAC (19)

As the difference between these two values increases, the
linear stability of the vehicle increases while the maneuver-
ability decreases as shown from equation (14).

17

B. Presence of stern control surfaces

The effects of the rudder are next added to the equations of
motion, with the subscript b corresponding to the bare body
coeffcients. Following [9] [9], the updated hydrodynamic
coeffcients are:

Yδ
Yv = Yv,b + (20)

U
Yδ

Yr = Yr,b − xR (21)
U
Yδ

Nv = Nv,b − xR (22)
U

2 YδNr = Nr,b − xR (23)
U

where xR = Nδ/Yδ is the location where the force acts on
the rudder and Yδ and Nδ are defned earlier.

The stability index is now updated to take into account
the effect of the rudder. Plugging the updated hydrodynamic
coeffcients into Equation (15) and denoting the stability
index of just the bare body by Cb leads to the following
updated stability index:

C = Cb −A(mxGU −Nr,b −Yv,bξ2−Nv,bξ +(mU −Yr,b)ξ)
(24)

which reduces to:

C = Cb−A[−Yv,bξ(xAC,b+ξ)+(mU−Yr,b)(xr,b+ξ)] (25)

where
Yδ Lrudder

A = = < 0 (26)
U U
ξ = −xR > 0 (27)

The yaw rate from Equation (14) is calculated within linear
theory as:

r A
= Yv,b(x AC,b + ξ) (28)

δ CU
C. The size of stern control surfaces

The lift generated by the stern control surfaces contributes
to the hydrodynamic coeffcients, as shown in Equations 20-
23. To estimate how much lift is generated by the rudder,
the general form for lift is used:

1 Lrudder = ρCL(2Srudder)U
2 (29)

2
where CL is the coeffcient of lift and Srudder is the area of
one of the two rudders.

As [9] [9] concluded, the addition of these stern control
surfaces can stabilize an initially unstable vehicle, as long
as it is above a threshold value that provides stability.
Rearranging Equation 25 determines what this threshold
value for A should be in order to bring the stability index C
from a negative to a positive value. Since A is determined
by the amount of lift generated for a certain speed, the size
of the rudder is what keeps this value close to the threshold
value. If the size of the rudder increases, resulting in an
increase in A, the vehicle surpasses the stability threshold,

becoming more stable and reducing the turning rate of the
vehicle. The value of C should remain close to this stability
transition in order for the rudder to have a signifcant effect
on the turning rate.

D. The presence of forward morphing fns

The addition of forward morphing fns to an underwater
vehicle has also an effect on the stability and maneuver-
ability of the vehicle. The hydrodynamic coeffcients from
Equations 20-23 are updated to take into account the forward
morphing fn following a similar process used for the rudder
[9]:

Yδ Yfδ
Yv = Yv,b + + (30)

U U

Yδ Yfδ
Yr = Yr,b − xR − xf (31)

U U

Yδ Y
 fδ

Nv = Nv,b − xR − xf (32)
U U

Y Y
Nr = Nr,b − x2 δ 2 fδ

R − xf (33)
U U

where xf = Nfδ /Yfδ is the location where the force acts
on the vehicle, Yfδ is the fn force per unit rudder angle and
Nfδ is the moment per unit angle. Once again, the stability
index in Equation 25 is updated to refect the effects of the
forward morphing fn:

C = Cb− A[(xr + ξ)(mU − Yr,b) − Yv,bξ(xAC + ξ)]

−B[(xr − η)(mU − Yr,b) − Yv,bη(η − xAC)]

+2AB(η2 + ξ2) (34)

with B = Yfδ < 0 and η = xf U .
Hence, the yaw rate in Equation 28 can be calculated with

the updated stability index, C, that takes into account the
effects of both the rudder and forward morphing fn. The
values of mU − Yr,b > 0 and −Yv,b > 0 require that η >
xr and η < xAC . In other words, the forward morphing
fn needs to be positioned ahead of the bare body center
of rotational motion and behind the bare body aerodynamic
center of the vehicle, requiring that the bare body vehicle be
initially directionally unstable. For a given stable vehicle and
rudder confguration, the main way to increase the turning
rate is to decrease the stability parameter.

E. The size and angle-of-attack of forward morphing fns

A fsh bends its body when it initiates a turn [9]. Since
the forward morphing fns are located ahead of the center of
gravity, the fns defect in the opposite direction of the rudder.
This can be adapted to the coeffcients derived so far for the
case when δf = −δ, the magnitude of the forward morphing
fn and rudder angles are equal but in opposite directions. The
defection does not affect the stability criterion. The turning
rate for a vehicle with both rudder and forward morphing
fns is:

18

r 1
= [(−A)(−Yv,b)(xAC + ξ) +

δ CU
(−B)(−Yv,b)(η − xAC)

+2(−A)(−B)(η + ξ)] (35)

where η = xf is the fn position, ξ = −xR is the rudder
position, Yδ and YA = B = fδ

U U . The last term in the equation
contributes the strongest increase in the turning rate since
−A > 0, −B > 0, and −Yv.b > 0 [9]. In order to increase
the rate of turning of the vehicle, the forward morphing fns
should have a comparable size and lift generation as the
rudder.

REFERENCES

[1] H. Eda, “Directional stability and control of ships in waves,” Journal
of Ship Research, vol. 16, no. 03, pp. 205–218, 1972.

[2] N. Minorsky, “Directional stability of automatically steered bodies,”
Journal of the American Society for Naval Engineers, vol. 34, no. 2,
pp. 280–309, 1922.

[3] A. Maki, T. Tsutsumoto, and Y. Miyauchi, “Fundamental research on
the maneuverability of the underwater vehicle having thrust vectoring
system,” Journal of Marine Science and Technology, vol. 23, no. 3,
pp. 495–506, 2018.

[4] K. R. Armo, “The relationship between a submarine’s maximum speed
and its evasive capability,” The Naval Postgraduate School, Monterey,
California, Tech. Rep., 2000.

[5] A. Jones, “The effect of submarine maximum speed on the hit
probability of an air-launched torpedo,” The Admiralty Underwater
Weapons Establishment, Portland, Tech. Rep., 1973.

[6] P. R. Bandyopadhyay, “Maneuvering hydrodynamics of fsh and small
underwater vehicles,” Integrative and comparative biology, vol. 42,
no. 1, pp. 102–117, 2002.

[7] S. Ziaeefard, B. R. Page, A. J. Pinar, and N. Mahmoudian, “A novel
roll mechanism to increase maneuverability of autonomous underwater
vehicles in shallow water,” in OCEANS 2016 MTS/IEEE Monterey.
IEEE, 2016, pp. 1–5.

[8] K. S. Varyani, P. Krishnankutty, and R. McGregor, “Effect of rudder
size and location on the turning performance of a high speed swath
ferry,” IFAC Proceedings Volumes, vol. 36, no. 21, pp. 61–66, 2003.

[9] M. S. Triantafyllou, N. Winey, Y. Trakht, R. Elhassid, and D. Yoerger,
“Biomimetic design of dorsal fns for AUVs to enhance maneuverabil-
ity,” Bioinspiration & biomimetics, vol. 15, no. 3, p. 035003, 2020.

[10] M. Bettle, “Validating design methods for sizing submarine tailfns,”
Proceedings of warship, 2014.

[11] S. Randeni, E. M. Mellin, M. Sacarny, S. Cheung, M. Benjamin,
and M. Triantafyllou, “Bioinspired morphing fns to provide optimal
maneuverability, stability, and response to turbulence in rigid hull
AUVs,” Bioinspiration & Biomimetics, vol. 17, no. 3, p. 036012, 2022.

[12] A. Phillips, S. Turnock, and M. Furlong, “The use of computa-
tional fuid dynamics to aid cost-effective hydrodynamic design of
autonomous underwater vehicles,” Proceedings of the Institution of
Mechanical Engineers, Part M: Journal of Engineering for the Mar-
itime Environment, vol. 224, no. 4, pp. 239–254, 2010.

[13] R. A. Holler, “The evolution of the sonobuoy from world war II to the
cold war,” Navmar Applied Sciences Corporation, Tech. Rep., 2014.

[14] Lockheed-Martin, “MK39 expendable mobile ASW training
target and feld programmability system (EMATT).” [On-
line]. Available: https://www.lockheedmartin.com/en-us/products/a-
size-autonomous-underwater-vehicles.html

[15] P. W. Webb, “Form and function in fsh swimming,” Scientifc Amer-
ican, vol. 251, no. 1, pp. 72–83, 1984.

[16] F. E. Fish and A. J. Nicastro, “Aquatic turning performance by the
whirligig beetle: constraints on maneuverability by a rigid biological
system,” Journal of Experimental Biology, vol. 206, no. 10, pp. 1649–
1656, 2003.

[17] X. Li, “Hydrodynamic analysis for the morphing median fns of tuna
during yaw motions,” Applied Bionics and Biomechanics, 2021.

[18] M. S. Triantafyllou, “Tuna fn hydraulics inspire aquatic robotics,”
Science, vol. 357, no. 6348, pp. 251–252, 2017.

[19] F. E. Fish and G. V. Lauder, “Control surfaces of aquatic vertebrates:
active and passive design and function,” Journal of Experimental
Biology, vol. 220, no. 23, pp. 4351–4363, 2017.

[20] S. Du, Z. Wu, J. Wang, S. Qi, and J. Yu, “Design and control of
a two-motor-actuated tuna-inspired robot system,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2019.

[21] D. Matthews and G. V. Lauder, “Fin-fn interactions during locomotion
in a simplifed biomimetic fsh model,” Bioinspiration & Biomimetics,
2021.

[22] P. Han, G. V. Lauder, and H. Dong, “Hydrodynamics of median-
fn interactions in fsh-like locomotion: Effects of fn shape and
movement,” Physics of Fluids, vol. 32, no. 1, p. 011902, 2020.

[23] C. H. White, G. V. Lauder, and H. Bart-Smith, “Tunabot fex: a
tuna-inspired robot with body fexibility improves high-performance
swimming,” Bioinspiration & Biomimetics, vol. 16, no. 2, p. 026019,
2021.

[24] F. E. Fish, “Advantages of aquatic animals as models for bio-inspired
drones over present AUV technology,” Bioinspiration & biomimetics,
vol. 15, no. 2, p. 025001, 2020.

[25] A. Phillips, M. Haroutunian, S. Man, A. Murphy, S. Boyd, J. Blake,
and G. Griffths, “Nature in engineering for monitoring the oceans:
Comparison of the energetic costs of marine animals and AUVs,”
2012.

[26] N. R. Rypkema, E. M. Fischel, and H. Schmidt, “Closed-loop
single-beacon passive acoustic navigation for low-cost autonomous
underwater vehicles,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 641–648.

[27] N. R. Rypkema, H. Schmidt, and E. M. Fischell, “Synchronous-clock
range-angle relative acoustic navigation: A unifed approach to multi-
auv localization, command, control and coordination,” arXiv preprint
arXiv:2110.13825, 2021.

[28] E. M. Mellin, “Using biomimetics to improve the maneuvering perfor-
mance of the expendable mobile antisubmarine warfare training target
(EMATT),” Ph.D. dissertation, Massachusetts Institute of Technology,
2021.

[29] Blue-Robotics. (2021) Bar30 high-resolution 300m depth/pressure
sensor. [Online]. Available: https://bluerobotics.com/store/sensors-
sonars-cameras/sensors/bar30-sensor-r1/

[30] TE-Connectivity-Sensors, MS5837-30BA Ultra-small, gel-flled, pres-
sure sensor with stainless steel cap, TE-Connectivity-Sensors, 2019.

[31] R. Grimmett, BeagleBone Robotic Projects. Packt Publishing Ltd,
2013.

[32] S. Furber and A. Wilson, “The acorn risc machine - an architectural
view,” Electronics and Power, vol. 33, no. 6, pp. 402–405, 1987.

[33] M. Astley, D. C. Sturman, and G. A. Agha, “Middleware,” Commu-
nications of the ACM, vol. 44, no. 5, p. 99, 2001.

[34] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics:
A survey,” in 2008 IEEE Conference on Robotics, Automation and
Mechatronics. Ieee, 2008, pp. 736–742.

[35] A. Watson, “Omg (object management group) architecture and corba
(common object request broker architecture) specifcation,” in IEE
Colloquium on Distributed Object Management. IET, 1994, pp. 4–1.

[36] P. M. Newman, “MOOS - mission orientated operating suite,” 2008.
[37] G. Pardo-Castellote, “Omg data-distribution service: Architectural

overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[38] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[39] T. Schneider, “Goby3: A new open-source middleware for nested
communication on autonomous marine vehicles,” in 2016 IEEE/OES
Autonomous Underwater Vehicles (AUV). IEEE, 2016, pp. 236–240.

[40] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
communications and marshalling,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 4057–
4062.

[41] Google-Developers. (2022) Protocol buffers. [Online]. Available:
https://developers.google.com/protocol-buffers

[42] InvenSense, MPU-9250 Product Specifcation, InvenSense Inc., 2016.
[43] P. Nichols. (2020) Third party software

MOOS-IvP extensions - Project Ladon: pBB-
Blue. [Online]. Available: https://oceanai.mit.edu/moos-
ivp/pmwiki/pmwiki.php?n=Manifest.PBBBlue

19

https://oceanai.mit.edu/moos
https://developers.google.com/protocol-buffers
https://bluerobotics.com/store/sensors
https://www.lockheedmartin.com/en-us/products/a

[44] Strawson-Design. (2020) Robot control library. [Online]. Available:
http://www.strawsondesign.com/docs/librobotcontrol/index.html

[45] Xsens, MTi 1-series User Manual, Xsens, 2021.
[46] Adafruit-Industries, Adafruit FONA 3G Cellular + GPS Breakout,

Adafruit Industries, 2022.
[47] SimCom, SIM5320 Hardware Design V1.07, Sim Com, 2012.
[48] GD-MS. (2016) Bluefn uuv dives deep into

the arctic at u.s. navy exercise. [Online]. Avail-
able: https://gdmissionsystems.com/articles/2016/09/16/news-2016-
bluefn-uuv-goes-deep-/into-the-arctic-at-icex-2016

[49] ISE. (2017) International submarine engineering explorer autonomous
underwater vehicle. [Online]. Available: https://ise.bc.ca/wp-
content/uploads/2017/12/Explorer SpecSheet.pdf

[50] Teledyne-Gavia. (2018) Teledyne gavia releases ixblue phins compact
c3 module. [Online]. Available: http://www.teledynemarine.com/press-
releases/teledyne-gavia-releases-ixblue-/phins-compact-c3-module

[51] S. Randeni, T. Schneider, E. Bhatt, O. A. Vı́quez, and H. Schmidt,
“A high-resolution AUV navigation framework with integrated com-
munication and tracking for under-ice deployments,” Journal of Field
Robotics, 2022.

[52] S. Randeni, T. Schneider, and H. Schmidt, “HydroMAN 2.0: An
environmentally adaptive, self-learning UUV navigation engine,” in
PMS 406 Workshop on Improving Autonomous Systems for Next-
Generation UUVs. United States Navy, March 2022.

[53] S. Randeni, M. Menjamin, M. Triantafyllou, and H. Schmidt, “A
software toolkit for rapid development of AUVs – using MOOS-IvP
with MITFrontseat, HydroMAN and VECTORS,” in MOOS Develop-
ment and Applications Working Group. Massachusetts Institute of
Technology, August 2022.

[54] S. Randeni, T. Schneider, and H. Schmidt, “Construction of a high-
resolution under-ice AUV navigation framework using a multidisci-
plinary virtual environment,” in 2020 IEEE/OES Autonomous Under-
water Vehicles Symposium (AUV)(50043). IEEE, 2020, pp. 1–7.

[55] S. Randeni, E. M. Fischell, and H. Schmidt, “An AUV dynamic model,
based on the conservation of energy, for underwater navigation aiding,”
IEEE Journal of Oceanic Engineering (Under Review), 2020.

[56] S. A. T. Randeni, N. R. Rypkema, E. M. Fischell, A. L. Forrest,
M. R. Benjamin, and H. Schmidt, “Implementation of a hydrodynamic
model-based navigation system for a low-cost AUV feet,” in IEEE
OES Autonomous Underwater Vehicle Symposium, 2018.

[57] M. G. McPhee, “An analysis of pack ice drift in summer,” Sea ice
processes and models, pp. 62–75, 1980.

[58] C. Kaminski, T. Crees, J. Ferguson, A. Forrest, J. Williams, D. Hopkin,
and G. Heard, “12 days under ice–an historic AUV deployment in the
canadian high arctic,” in 2010 IEEE/OES Autonomous Underwater
Vehicles. IEEE, 2010, pp. 1–11.

[59] T. Mo-Bjørkelund, P. Norgren, and M. Ludvigsen, “Simulation and
forecasting of ice drift as a tool for autonomous under ice operations,”
in 2020 IEEE/OES Autonomous Underwater Vehicles Symposium
(AUV)(50043). IEEE, 2020, pp. 1–6.

[60] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard,
“Nested autonomy for unmanned marine vehicles with moos-ivp,”
Journal of Field Robotics, vol. 27, no. 6, pp. 834–875, 2010.

[61] M. Benjamin. (2022) Moos-ivp home page. [Online]. Available:
http://www.moos-ivp.org/

[62] A. Balasuriya, S. Petillo, H. Schmidt, and M. Benjamin, “Behavior-
based planning and prosecution architecture for autonomous underwa-
ter vehicles in ocean observatories,” in OCEANS’10 IEEE SYDNEY.
IEEE, 2010, pp. 1–5.

[63] D. P. Eickstedt and S. R. Sideleau, “The backseat control architecture
for autonomous robotic vehicles: A case study with the iver2 AUV,”
in OCEANS 2009. IEEE, 2009, pp. 1–8.

[64] O. A. Viquez, E. M. Fischell, N. R. Rypkema, and H. Schmidt,
“Design of a general autonomy payload for low-cost AUV r&d,” in
2016 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE,
2016, pp. 151–155.

[65] J. E. Naglak, B. R. Page, and N. Mahmoudian, “Backseat control
of sandshark AUV using ROS on Raspberry-pi,” in OCEANS 2018
MTS/IEEE Charleston. IEEE, 2018, pp. 1–5.

[66] J. Hwang, N. Bose, G. Millar, A. B. Gillard, H. D. Nguyen, and
G. Williams, “Enhancement of AUV autonomy using backseat driver
control architecture,” International Journal of Mechanical Engineering
and Robotics Research, vol. 10, no. 6, pp. 292–300, 2020.

[67] A. Underwood and C. Murphy, “Design of a micro-auv for autonomy

development and multi-vehicle systems,” in OCEANS 2017-Aberdeen.
IEEE, 2017, pp. 1–6.

[68] T. Schneider and H. Schmidt, “Goby-acomms: A modular acoustic net-
working framework for shortrange marine vehicle communications,”
URL http://gobysoft.com/dl/goby-acomms1.pdf, 2012.

[69] T. E. Schneider and H. Schmidt, “Goby-acomms version 2: extensible
marshalling, queuing, and link layer interfacing for acoustic telemetry,”
IFAC Proceedings Volumes, vol. 45, no. 27, pp. 331–335, 2012.

[70] T. Schneider, Goby Underwater Autonomy Project: User Manual
for Version 3.0.12., GobySoft, 2022. [Online]. Available:
https://gobysoft.org/dl/goby3-user-manual.pdf

[71] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball,
“The whoi micro-modem: An acoustic communications and navigation
system for multiple platforms,” in Proceedings of OCEANS 2005
MTS/IEEE. IEEE, 2005, pp. 1086–1092.

[72] T.-H. Won and S.-J. Park, “Design and implementation of an omni-
directional underwater acoustic micro-modem based on a low-power
micro-controller unit,” Sensors, vol. 12, no. 2, pp. 2309–2323, 2012.

[73] B.-C. Renner, J. Heitmann, and F. Steinmetz, “ahoi: Inexpensive, low-
power communication and localization for underwater sensor networks
and µauvs,” ACM Transactions on Sensor Networks (TOSN), vol. 16,
no. 2, pp. 1–46, 2020.

[74] P. E. Hagen and J. Kristensen, “The HUGIN AUV “plug and play”
payload system,” in OCEANS’02 MTS/IEEE, vol. 1. IEEE, 2002, pp.
156–161.

[75] R. Camilli, B. Bingham, M. Jakuba, H. Singh, and J. Whe-
lan, “Integrating in-situ chemical sampling with AUV control sys-
tems,” in Oceans’ 04 MTS/IEEE Techno-Ocean’04 (IEEE Cat. No.
04CH37600), vol. 1. IEEE, 2004, pp. 101–109.

[76] M. S. Triantafyllou and F. S. Hover, Maneuvering and Control of
Marine Vehicles. MIT Press, Cambridge, MA, 2002.

20

https://gobysoft.org/dl/goby3-user-manual.pdf
http://gobysoft.com/dl/goby-acomms1.pdf
http://www.moos-ivp.org
http://www.teledynemarine.com/press
https://ise.bc.ca/wp
https://gdmissionsystems.com/articles/2016/09/16/news-2016
http://www.strawsondesign.com/docs/librobotcontrol/index.html

	Morpheus: An A-sized AUV with morphing fns and algorithms for agile maneuvering
	Abstract
	I. INTRODUCTION
	II. BASE VEHICLE HARDWARE DESIGN
	III. BASE VEHICLE SOFTWARE DESIGN
	IV. MORPHING FIN PAYLOAD DESIGN
	V. RESULTS AND DISCUSSION
	VI. CONCLUSIONS
	ACKNOWLEDGMENT
	A. APPENDIX – MATHEMATICAL REPRESENTATION OFMORPHING FINS
	REFERENCES

