
QC
874.3

 .U63
no.43

NOAA Eastern Region Computer Programs and Problems NWS ERCP - No. 43 f

AEX - Automatic Program Execution

Harold H. Opitz
Ohio River Forecast Center
Cincinnati, Ohio

s

Scientific Services Division
Eastern Region Headquarters
June 1988

U.S. DEPARTMENT OF
COMMERCE

National Oceanic and

Atmoeonenc Aommatrauon
I National Weemer

Service/

NOAA TECHNICAL MEMORANDUM
National Weather Service, Eastern Region Computer Programs and Problems

The Eastern Region Computer Programs and Problems (ERCP) series is a sub­
set of the Eastern Region Technical Memorandum series. It will serve as
the vehicle for the transfer of information about fully documented AFOS
application programs. The format ERCP - No. 1 will serve as the model
for future issuances in this series.

1 An AFOS version of the Flash Flood Checklist. Cynthia M. Scott,
March 1981. (PB81 211252).

2 An AFOS Applications Program to Compute Three-Hourly Stream Stages.
Alan P. Blackburn, September 1981. (PB82 156886).

3 PUPPY (AFOS Hydrologic Data Reporting Program). Daniel P. Provost,
December 1981. (PB82 199720).

4 Special Search Computer Program. Alan P. Blackburn, April 1982.
(PB83 175455).

5 Conversion of ALEMBICS Workblns. Alan P. Blackburn, October 1982.
(PB83 138313).

6 Real-Time Quality Control of SAOs. John A. Billet, January 1983.
(PB83 166082).

7 Automated Hourly Weather Collective from HRR Data Input. Lawrence
Cedrone, January 1983 (PB83 167122).

8 Decoders for FRH, FTJ and FD Products. Cynthia M. Scott, February 1983.
(PB83 176057).

9 Stability Analysis Program. Hugh M. Stone, March 1983. (PB83 197947).
f

10 Help for AFOS Message Comp. Alan P. Blackburn, May 1983. (PB83 213561).

11 Stability and Other Parameters from the First Transmission RAOB Data.
Charles D. Little, May 1983. (PB83 220475).

12 TERR, PERR, and BIGC: Three Programs to Compute Verification Statistics.
Matthew R. Peroutka, August 1983. (PB84 127521).

13 Decoder for Manually Digitized Radar Observations. Matthew R. Peroutka,
June 1983. (PB84 127539).

14 Slick and Quick Data Entry for AFOS Era Verification (AEV) Program.
Alan P. Blackburn, Decenter 1983. (PB84 138726).

15 MDR--Processing Manually Digitized Radar Observations. Matthew R.
Peroutka, November 1983. (P884 161462) (Revised June 1985, PB85-220580/AS)

16 RANP: Stability Analyses Program. Hugh M. Stone, February 1984.(PB84 161447)

17 ZONES. Gerald G. Rlgdon, March 1984. (PB84 174325)

18 Automated Analysis of Upper A1r Soundings to Specify Precipitation
Type. Joseph R. Bocchlerl and Gerald G. Rlgdon, March 1984.
(PB84 174333)

(Continued on Inside Rear Cover)

f

NOAA Eastern Region Computer Programs and Problems
NWS ERCP - No. 43

AEX - Automatic Program Execution

Harold H. Opitz
Ohio River Forecast Center
Cincinnati, Ohio

Scientific Services Division
Eastern Region Headquarters
June 1988

n

F'
US De?

NOV 1 4 1988

LIBRARY

ACKNOWLEDGED NT

The author wishes to greatly acknowledge the following people for
their support and cooperation In the development and implementation of
this program.

I cannot say thank you enough.

Especially to Don Close and the staff at OHRFC

Dr. Charles N. Hoffedltz
Dr. Ward Segutn

Dave Brandon
Bob McLeod

Janet Soslow
Cindy Scott
Steve Hentz
Bill Gery
Steve Todd
Ken Mielke

Harry Lebowltz

AEX - Automatic Program Execution
Harold H. Opitz

Ohio River Forecast Center
Cincinnati, Ohio

The AEX package allows a site to run local applications programs
on a scheduled basis, freeing users for other tasks. It consists of
three programs: AEX.SV (this does the actual schedule monitoring and
program execution), AEXSCHD.SV (used to create and edit the schedule
file) and RBOOT.SV (used by AEX's optional auto-reboot feature). Each
program will be documented separately.

hDL^l'

I. Introduction

A. Purpose of Program

AEX (Auto-E&ecutIon) is an applications program that controls the
execution of other programs, macros and/or RDOS commands according to a
user-created schedule. It also emulates the RDOS Command Line
Interpreter (CLI) to provide normal console Interaction and can
correctly process AFOS ADM RUN: commands as well.

B. Movtivation for Development

NWS operational sites run many applIcations programs, some
routinely, others only under certain weather conditions. AFOS has no
facility for scheduling such activity except the PROCEDURES. These can
only schedule by time. Involve AFOS activity and tie up the ADM where
they are run.

Operational sites also need to keep AFOS up and running. There is
no way for the system to detect problems and take action; human
intervention Is required. This Is a particular problem at part-time
sites.

1

C. Benefits to the User

AEX provides a logical, systematic and flexible means of
schedul'ng background activity. Programs, macros and commands can be
time-scheduled or triggered by the arrival or creation of a new AFOS
product or RDOS file, on any combination of days of the week. Users
can prioritize jobs In the order of their importance and relationship
to an operational scheme. AFOS ADM alerts can be routed to different
Job stations to announce the completion of selected programs. Programs
can still be manually run at either the console or any ADM.

In addition, AEX can monitor AFOS. It can be optionally set to
reboot the entire system automatically If AFOS hangs or crashes
(single-CPU sites only). The optional manual reboot feature also
simplifies manual rebooting.

II. Methodology and Software Structure

A. Program Flow and Description

1. AEX Environment

AEX operates under Data General mapped RDOS In either the
foreground or background memory partition. 24K of memory and about 100
blocks of disk space are required for execution.

Some background Information on RDOS will help explain how AEX
works. RDOS provides 5 levels of program execution, diagrammed In
Figure 1. A program can be suspended and copied to disk while another
executes at a higher level (a PUSH or SWAP). When the second program
completes, the first resumes at the lower level (a POP).

In a standard AFOS setup, normally only the Background Monitor
program BGMON Is active, at level 0. BGMON handles any Input through
the console and also any RUN: commands from AFOS ADM’s. It is a
slightly modified version of the standard RDOS CLI (Command Line
Interpreter) program. When someone executes a program, BGMON is
temporarily suspended and the program executes at level 1. After the
program finishes, BGMON is restored at level 0.

When AEX is started, the same thing happens: BGMON Is swapped out
and AEX occupies level 1. But AEX runs continually, monitoring its
schedule and checking for AFOS RUN: commands and/or console activity.
When it needs to execute something (a console command, for example, or
a job from the schedule), it executes CLI at level 2. (It Is necessary
to use standard CLI Instead of BGMON at level 2 in order to use the AEX
AFOS interface options.) The CLI will handle the console commands; if
a program Is to be run, CLI will execute it a level 3. (This leaves
one more level for any Internal swaps the programs might have.
Programs swapping more than one level will not function under AEX.)
When the program finishes, control returns to the CLI at level 2 and
then back to AEX at level 1.

2

The operator can deliberately execute the CL I at level 2 by using
the AEX command CTRL-P (P for PUSH) and return to AEX with the command
POP. The command CTRL-K will terminate AEX and return control to BGMON
at level 0.

Although the above describes an AFOS system and AEX has many
features designed to work with AFOS, AEX does not require AFOS to
operate. Either standard CL I or BGMON may be used at level 0. Thus
AEX can be used on RFC S/140's.

2. AEX Internal Operation

AEX is a multitasking program written In Data General FORTRAN IV
and Assembly language.

AEX allows the scheduling of "Jobs" for automatic execution. The
program maintains a runtime schedule table containing "triggers" and
their associated command lines. The table can hold a maximum of 102 of
these entries (triggers plus their command lines). The trigger
Indicates what event will automatically queue the associated command
line for execution. This could be the arrival of a new AFOS product,
for instance, or a particular time. The command line may contain any
combination of valid RDOS commands (i.e., programs, macros, CL I
language, etc.) as prescribed in the Command Line Interpreter User's
Manual, but must not exceed 124 bytes in length.

The accessory program AEXSCHD.SV is used to create and edit the
schedule in file AEX.CF. AEX.CF also contains Information about the
system AEX is to run on, as well as user runtime options that determine
AEX's behavior. These options are available:

AFOS monitoring (reboot the system or halt AEX if a problem Is
detected)

manual reboot command (control-B, control-B)

capture of AFOS ADM RUN:'s

Job queueing on AFOS products, RDOS files and/or time

rerun of schedule-initiated Jobs Interrupted by control-A qc a
system crash

disable control-C

In addition a counter must be set to Indicate how long AEX should wait
before taking action after detecting an AFOS problem (for use with the
AFOS monitoring option). For Information on creating the schedule, see
the AEXSCHD documentation. The structure of AEX.CF Is covered in AEX
part I I C.

AEX runs in two modes: CYCLE and WAIT. During CYCLE mode AEX
monitors the schedule and queues Jobs for execution. It also checks

3

for any waiting AFOS ADM RUN: commands every eight seconds and after
every scheduled Job completes. AEX Version 8.6 runs continuously In
CYCLE mode until a carriage return is received from the console. Then
It immediately suspends schedule activity and enters WAIT mode in order
to execute whatever command has been typed there. (Earlier versions of
AEX used a timed alteration between CYCLE and WAIT and would return a
"BUSY" to the console If someone tried to use It during CYCLE.)

Five or six tasks (depending on which runtime options have been
selected) operate during both modes. Figure 3 shows the relationship
among the tasks. Their methodology and function is described below.
Figures 4-7 show the subroutines involved In those tasks calling
subroutines; subroutines are further described in AEX part II D.

IflsJsj__ MAIN

The MAIN task (Figure 4) actually has two functions. The program
begins by first allocating ail I/O channels and loading in the schedule
table. Once the table Is loaded and all the runtime parameters are
set, MAIN queues the remaining system tasks.

The secondary function of the MAIN task is to constantly manage
and monitor the execution paths of all subsequent tasks. All task
states, task flags, Inter-task messages and system interrupt functions
are filtered through MAIN, as well as scheduler execution. This
maintains the integrity of program flow. See Figure 3.

Task. AEXMN

This Is the schedule manager/system state monitor task (Figure
5). It provides the controls for the scheduling and enqueue Ing of jobs
and, if the AFOS monitoring option Is enabled, provides Information on
the status of AEX/AFOS Interground communication. This is used as an
indicator of whether AFOS Is up or down. This task also updates the
current date/time in file AEX.TM every time a program runs or every
minute, whichever Is first. (This file Is used during automatic
reboots.) AEXMN maintains CYCLE mode.

During CYCLE, AEXMN manages the schedule table sequentially and by
priority for automatic Job inltation. Each entry’s schedule data line
includes a Job priority with 0 being the highest and 7 being the
lowest. A pass through the schedule table begins with a sequential
search from the top of the scheduler table at a specific priority.
This priority Is called the reference priority. All jobs are executed,
first, according to their priority and, second, to their sequential
position In the table. If two priority 0 jobs are ready to queue, the
first in the list (closer to top of table) will execute first. (The
second Job will not necessarily be next. In the time It takes the
first to execute, another priority 0 Job ahead of the second job in the
table may become ready.)

4

The first pass looks at triggers for priority 0 only. The second
pass w1 I I look for triggers at priority 0 and 1; a third pass wiI I look
at triggers with priorities of 0, 1, and 2 and so on. At the end of
priority 7, AEX starts over at priority 0 again.

When AEX queues a schedule job, It writes the command data line to
the file CU.CM and invokes CL I. CL I does the actual execution of the
program or command. AEX also writes the job's "label" from the
schedule data line on the console along with a one-letter code
Indicating how the job is scheduled. Possible codes for time-scheduled
Jobs are M (minute intervals), H (hourly Intervals) and D (dally
intervals). T indicates the job runs on the receipt of a new product
or file, while S indicates execution when a product or file exists.
When a scheduled job completes, AEX returns the "R (A)" AEX prompt.
(The "(A)" indicates that AEX is operating and not BGMON/CLI.) For
example. If the job "ROUNDUP" is scheduled to run every hour the
console will show

ROUNDUP H
R (A)

whenever the job runs.

If a Job is automatically initiated, AEX enters re-CYCLE mode
after the job completes. This means that AEX saves its current
reference priority level (e.g., PRI=2) and begins "recycling" through
all higher level priorities before entering Its current reference
level. An example: AEX Is looking for priority 2 and higher Jobs (the
reference priority Is 2). It finds a Job to queue and It executes.
Upon return, AEX will begin searching back at priority 0, then priority
0 and 1, and finally priority 0, 1, and 2 before Incrementing the
reference priority.

In this scheme, the reference priority will not increment until
AEX passes through all re-CYCLE priority levels and the current
reference priority level without Initiating any Jobs. This nearly
ensures a true priority job Initiation scheme.

AEX will enter WAIT mode If a carriage return Is received from the
system console, allowing immediate execution of any manual console
commands.

If the auto-rerun option has been enabled, a scheduled program
that is Interrupted by a manual control-A or a system crash will be
rerun. (In the case of a control-A, any outstanding AFOS RUN:'s will
be executed first.) This also Indicated on the console, for example

ROUNDUP H (RERUN)

would appear If the ROUNDUP job had been interrupted. If the operator
really wishes to cancel a Job, use control-1 (or restart AEX with
AEX/I).

5

Task: RDCRT

This task attempts to emulate CL I and is dormant until WAIT mode
Is established. During WAIT mode, it monitors and reads the console
keyboard for manual command entry and user Interrupts (see Figure 6).
"R (A)" appears once when this task first becomes active when AEX is
started. Keyboard commands such as backspace, character rubouts, full
line deletions (\), command line continuation characters, and the
special AEX command control characters are supported. All commands are
buffered until a carriage return or an AFOS ADM RUN: command Is
captured.

During CYCLE mode, the console Is monitored for carriage returns,
and control-1, control-A and control-C Interrupts. Receiving a
carriage return will put AEX into WAIT mode In order to execute any
console commands that have been typed. A control-1 will also put AEX
Into WAIT. (The duration of WAIT - If no further keystrokes are
received - Is controlled by the first parameter In the AEX.CF .START
line. Minimum WAIT possible Is 10 seconds.) RDOS system control-A and
control-C keyboard interrupts can be entered at any time during program
execution.

The RDCRT task provides 7 AEX user commands. These single stroke
console commands provide a means of executing special AEX runtime
commands. They are Initiated by holding down the CONTROL key and
entering the appropriate character. These commands are valid only
during AEX WAIT mode except for control-1, control-A, and control-C,
which may be entered any time.

Control-B "Bootstrap Initiation. This will perform a manual
Control-B bootstrap from any ground. The command must be

entered as two control-B's In row and will only
work if this option has been enabled. The
bootstrap sequence Is discussed under task AXBT.

Control-1 "Interrupt the current program CYCLE and return
AEX to WAIT mode. AEX WAIT mode permits manual
console keyboard command entry while automatic Job
Initiation Is suspended.

AEX’s console response to Control-I Is:

I NT (A)
R (A)

6

Con+rol-K "K"lll the AEX program and return to level 0
BGMON/CLI. This terminates AEX program
scheduling. Response from AEX at the console will
be:

AEX TERM
R <- from level 0 BGMON/CLI

Control-P "P”ause (or suspend) AEX schedule monitoring
Indef In IteIy at the current reference priority and
start the CL I at level 2. This allows extended use
of CL I; helpful If the operator wishes to perform
extensive manual keyboard command entry or wishes
to temporarily suspend job scheduling. Enter the
RDOS command 'POP* to resume AEX scheduling. "POP”
may be entered regardless of the current directory
location since AEX will return to the directory
current at the time of the previous control-P.
Response from AEX at the console Is:

CLI.SV (A)
R <- from level 2 CL I

Con+rol-R "Rneset the reference priority. This command will
reset the current reference level priority to 0
(zero) regardless of the current reference CYCLE
and re-CYCLE priorities. Response from AEX at the
console will be:

PRIs 0 (A)
R (A)

Control-U "U"pdate some or all schedule trigger entries.
This command will update triggers to the current
system date/time/event In the following sequences
and manners:

(1) With the manually entered control-U, all triggers
will be updated to the current date/time. The
operator will see

UP= ALL (A)
R (A)

at the console during the manual update.event.
This command Is used If AEX has not run for a while
to prevent It from trying to catch up on all the
missed Jobs. It should also be executed as early
as possible In a New Year (like AFOS, AEX does not
keep track of the year). However, one should be
aware of Its consequences: any hourly Jobs queued

7

for the current hour will be reset to the next hour
and will not run until then.

(2) AEXMN's updating mechanism Is also Invoked
Internally after a change has been made to the
schedule. When AEXSCHD is run to change/add/delete
schedule entries, it indicates the changed entries
by setting flags in an update table to -1
(unchanged entries are flagged with 0). Before the
next CYCLE, AEXMN initializes the triggers of the
changed entries only. The initialization gives the
triggers a valid starting point so that AEX can
determine when to execute their associated command
lines. The operator will see

UP= SINGL (A)
R (A)

at the console, which notifies the operator that
AEX is checking the table and updating only those
triggers appropriately flagged.

Control-X E"X”ecute the scheduler program AEXSCHD.SV. AEX
allows the operator to change/add/delete entries in
the schedule table while it is running. The actual
execution Is through CL I using the command
AEXSCHD/(I,0). The schedule table is automatically
reloaded and updated (control-U, option 2)
following a successful run. Response from AEX at
the console will be:

AEXSCHD.SV (A)
R (A)
RELOADED (A)
RESTART (A)

I NT (A)
UP= SINGL (A)
R (A)

After the reload, AEX resumes normal CYCLE and WAIT
mode functions. No further user entry is required.

Task;__ LRUN

The IRUN task Is a user optioned module which communicates with
AFOS and captures AFOS ADM ’'RUN:" commands. IRUN will check for and
execute any waiting "RUN:n,s through CLI (not BGMON) every eight
seconds and after every scheduled job completes, in the order in which
AFOS passes them to AEX. Execution and completion are acknowledged on

8

the console via the .WROPR system call. "R (A)" indicates the return
to AEX. For example:

I IB (AEX) RP PIT/P HTS/P

I IB (AEX) RUN COMPLETE
R (A)

Valid RUN: commands end with a carriage return with a maximum length of
36 bytes. Invalid "RUN:n,s will be Ignored.

ADM-Initiated programs can be Interrupted with control-A or
control-C (unless control-C has been disabled) on the console. Control
will return to AEX at level 1 or BGMON/CLI at level 0, respectively.

Task;__ LNIR

AEX still allows the use of the RDOS program Interrupts
control-A and control-C. The INTR task (Figure 7) accepts and
processes these keyboard entries. Control-I, however. Is handled by
task RDCRT. The following Is an .explanation of the fundamental
differences between control-A/control-C and control-1. For any
keyboard entry requiring a system Interrupt, the highest priority will
be given to control-C, followed by control-A, and last by control-1.

Control-I is captured by RDCRT and flagged In the MAIN task. This
command Is generally used for Interrupting the AEX CYCLE and RECYCLE
modes. MAIN follows by flagging all other tasks to suspend their
current activity. RDCRT will enter WAIT mode and become fully active
and ready to accept keyboard entry and/or will listen for AFOS RUN:
queues. The current priority level will be maintained at the current
reference level.

If a control-A Is received when only AEX Is running (level 1),
INTR takes the following action: all active tasks will be suspended,
any interground communication with AFOS is terminated, the trigger
table is updated and AEX will simply be restarted from level 0 BGMON or
CLI. A full restart will put the program through its Initialization
sequence and subsequently Into CYCLE mode (with the reference priority
at 0, the highest level).

A control-A at level 2 (I. e., CLI has been started with control-P
but no other program Is running) will Just restart level 2 CL I.

If a program Is running (level 3), control-A will, first.
Interrupt the currently executing progam or command. Subsequently, the
system will pass through level 2 CLI ending at level 1 AEX in the
directory where AEX was started. (Unless the executing program was
started from CLI level 2 — on the console after a control-P — In
which case control-A returns the user back to level 2 CLI In the
directory where AEX was started.) Each level of Interrupt wlI I be
acknowledged at the console and, after AEX gains control, AEX execution
will continue from its point of suspension. The console will display:

9

I NT <- level 3 (CLI)

INT (A) <- level 1 (AEX)
R (A)

Unless It has been disabled (see below), the keyboard control-C
command will terminate AEX with the usual foreground/background break
file handling characteristics as prescribed by RDOS.

If only AEX is running (level 1), a control-C will terminate AEX
and return the user to level 0 BGMON/CLI. The console will display:

R (A) <- level 1 (AEX)
R <- level 0 (BGMON/CLI)

A (F)BREAK.SV file will have been written to disk containing the
current level 1 core image.

At level 2 (I. e., CL I started with control-P but nothing else
running), control-C restarts level 2 CLI. The system will produce a
core-image file (F)BREAK.SV.

A level 3 control-C will Interrupt the currently executing program
or command. This Interrupt will bring the user to level 0 BGMON/CLI
ending Id ±hfi directory where the control-C was initiated. (If the
executing program was started from CLI level 2 - on the console after a
control-P - control-C returns the user back to level 2 CLI.) System
BREAK files will be available from both level 3 and level 1. The level
3 core-'mage copy may be found in the disk file XBREAK.SV, while the
level 1 core-image will be In (F)BREAK.SV. This provides a one-stroke
capability for terminating all multi-level executing programs while
maintaining current core-images from different levels on disk. A level
3 control-C interrupt will produce the following console display:

BREAK <- level 3 (program)
BREAK (A) <- level 1 (AEX)

BREAK <- level 0 (BGMON/CLI)
R <- level 0 R-prompt

If the core-Image flies cannot be written to disk, AEX will not
overwrite the disk. It proceeds as If a control-A had been received.

The control-C command may be disabled by setting the appropriate
parameter in the control file AEX.CF. This Is to prevent program traps
(which AEX interprets the same way as control-C) from terminating both
the program and AEX during unattended operation. See the AEXSCHD
documentation for more details.

10

Task:__AXBT (AEX System Bootstrap/Auto-Term Inate Functions)

Manual System Restart

AEX provides an optional mechanism to restart RDOS from a master
directory by-passing the conventional RDOS "FILENANE?" and date/time
queries at the console. This feature will only function If the proper
user runtime options have been enabled. (IMPORTANT USER NOTE: AEX
assumes the system device code for performing a hipboot/bootstrap Is
octal 27.)

AEX invokes the current operating system save file using the form

PARDIR:MDIR:OS.SV

where the terms are defined as:

PARDIR Parent Directory Disk This will always be DZO. It
must be initialIzed.

MDIR Master Directory This can be any
directory/partition and/or
sub-dI rectory/sub-partttion
as long as It is initialized
prior to the AEX system
boot.

OS.SV Operating System Filename The filename of the
currently executing RDOS
operating system. The
operating system must reside
In MDIR (no links to other
locations).

The date/time will be set by the accessory program RBOOT.SV using the
AEX date/time file, AEX.TM. RBOOT will then invoke a locally created
macro, BG.MC, via BGMON/CLI to execute any commands or programs
necessary (restarting AFOS, for Instance).

The entire manual reboot proceeds as follows:

To initiate the manual bootstrap, the user enters control-B, control-B
at the console keyboard. AEX then takes the following steps:

1. If the manual reboot option has not been enabled, AEX returns
the the following message and enters WAIT mode.

MAIN SYS BOOT UNDECLARED
R (A)

If the manual reboot option Is enabled, AEX returns the
following message at the console and Initiates the system
bootstrap (continue to step 2).

11

SYS BOOSTRAP

2. AEX then checks for foreground activity, looking for an
active foreground program three times at 5-second intervals.
If foreground is active, AEX displays this message on the
console after every check:

FG ACTV

(If AEX is running in foreground, it still checks the
foreground, not the background. It will see Itself as
active.)

3. AEX checks the CPU console switch settings for a valid entry
at three 5-second intervals. The valid entries for the CPU
switches are 177777 (-1) or 100027 octal.

If they are not set to 177777 or 100027, AEX will display on
the console:

CPU

In this case, the software still reboots the system but
queries the user for "FILENAME?", date and time in the usual
fashion. RBOOT.SV is not utilized.

If the CPU switch settings are valid, AEX moves to the master
directory and performs the following system file functions:

RESTART.SV --> i s CHATR'd --> -P

RESTART.SV --> is RENAMED --> ARESTART.SV

RESTART.SV —> Is LINKED to --> RBOOT.SV

If AEX cannot perform the following rename/1 Ink commands, the
bootstrap will be cancelled and the error will be reported on
the console. The system will return to level 0 BGM0N/CLI.

5. AEX reboots RDOS. Because of the linking in (4), RDOS will
by-pass the "FILENAfC?" and date/time queries and start
execution of RBOOT.SV. RBOOT.SV reads the system date/time
from AEX.TM but adds a minute to cover the time It takes to
restart RDOS. If the date or time cannot be set for any
reason, the system uses the default values (00:00 on 1/1/68)
and continues. Following the date/time settings, RBOOT
performs the following system file reset function:

RESTART.SV --> Is UNLINKED

12

ARESTART.SV —> is RENANED back to --> RESTART.SV

RESTART.SV —> is CHATR'd —> +P

Last, RBOOT.SV invokes the macro BG.MC, via BGMON/CLI. This
system macro should contain any valid RDOS command(s) and/or
instruction(s) necessary to start the system. For more
details, see the RBOOT documentation.

Automatic System Restart (AFOS only)

AEX can also be set up to perform an automatic bootstrap if it
determines that AFOS Is down. AEX assumes there Is a problem with AFOS
If it cannot receive a response from AFOS when attempting to retrieve
RUN: commands or if it receives an indeterminate error from the BG.LB
KSRCF (key search) library function. The AFOS error return from KSRCF
does not Indicate that AFOS Is totally down/crashed. AFOS may still be
"partially" up (l.e., synch comms, data storage, comms spooler, MCA,
etc.) while other AFOS tasks are "down" (l.e., FICR, asynch queue, ICE,
overlay loading, etc.). But something must be amiss with AFOS and a
fresh restart of RDOS never hurts.

The following illustrates the automatic reboot process:

1. AEX asks for a key record or RUN: command from AFOS. If it
Is unsuccessful, then:

2. AEX will check for AFOS running MODIFY by checking the file
status of MODIFY.DT, MODIFY.AS, AND MODIFY.TX. If these
files are In use, AEX assumes MODIFY is running and will not
reboot the system. AEX displays the following message:

SYS AFOS M

3. If AFOS MODIFY is not running...

a. and the auto reboot function has not been enabled, AEX
will not reboot. The following message will be typed on
the console until AFOS is up and operating.

SYS AFOS N

b. and the function Is enabled, AEX continues to query the
AFOS database once per CYCLE (using only the first
product key that it encounters) for a user-set number of
cycles (specified In AEX.CF). AEX will type on the
console

SYS AFOS §

13

after each unsuccessful try. (# Indicates the cycle
number; It can range from 0 to 7). No RUNs’s or
AFOS-dependent jobs from the table will be queued until
AFOS Is back up.

4. If AEX reaches the user-set maximum number of unsuccessful
tries. It reboots RDOS by the same process as for the manual
reboot above.

5. If the operator needs to cancel the automatic bootstrap
function, one may enter control-A or control-C (1f control-C Is
enabled) at the keyboard. However, If AFOS remains down, AEX will
reboot the system repeatedly.

Automatic Aex Termination

The user may also option AEX to perform an automatic program
termination If It has been determined that AFOS Is down. When AEX
terminates, It will return the system to level 0 BGMON/CLI and prompt.
The same logic Is utilized as In the Automatic System Restart (AFOS
only):

1. AEX will ask for a key record/run: command from AFOS. If an
unsuccessful response Is produced then:

2. AEX will check for AFOS running MODIFY by checking the file
status of MODIFY.DT, MODIFY.AS, AND MODIFY.TX. If the flies
are In use. It Is assumed MODIFY Is running. In this
situation, AEX will display the following message and the
automatic termination will not occur:

SYS AFOS M

3. When AFOS modify Is not running...

a. The following message will appear at the user console If
the auto function Is disabled and will continue to
appear until AFOS Is up and operating (do not proceed
further).

SYS AFOS N

b. If the function Is enabled, an operator message:

SYS AFOS *

will appear at the console where # Is a value from 0 to
7. The # value notifies the operator how many times AEX
has queried AFOS for Information per cycle and has not
received anything.

14

c. No more queries for RUN: will occur until AFOS is up.

d. Product key records will be requested only once from the
first occurence In the trigger table of each cycle.

4. if an unsuccessful response Is still produced, AEX begins
counting the cycle at which the error occured. Since there
are 8 cycles, the maximum number of errors may be 8.

5. The operator specifies via the scheduler how many times (0-7)
AEX is to wait for AFOS before invoking the termination
function. During this period, all Jobs flagged 'AFOS ONLY'
will be held in queue.

6. When the maximum number occurs, AEX terminates and returns
the system to level 0 BGMON/CLI.

B. Equations and Algorithms

AEX does not use any special equations or algorithms.

C. Relationship Among Disk Files (see Figure 2)

AEX uses the control file AEX.CF continuously. This file Is
created and maintained locally using the accessory program AEXSCHD.SV.
If any of the system reboot functions are to be used, another accessory
program called RBOOT.SV Is needed. This program utilizes the AEX.TM
file created and updated by AEX. Finally, AEX requires CLI.SV and
CLI.ER for level 2 execution If It Is to handle AFOS ADM RUN: commands
(BGMON will not work for this).

FILE: AEX.CF

AEX.CF (CF=control file) contains all the entries, command lines,
triggers, runtime options, and system runtime file assignments. AEX
reads the trigger table, file assignments, and runtime options Into
memory when It Is started and periodically updates the trigger table In
order to maintain a current control file. The file is generally
updated when an execution Is to take place, whether It Is a manual or
automatic Initiation. AEX reads the command lines using block I/O when
automatically executing a Job. The AEX.CF fMe has the followIng
structure:

Blocks 0-7

These contain the actual entries, their triggers, and a history
block. The entries may be filenames, AFOS keys or ID labels. An
ID label Is an actual entry but is used for operator
Identification only. Triggers can be events by flle/key time,
events by file/key status or time scheduling. The history table

15

tracks the past 5 trigger events by time and date. The user can
retreive this history information by using AEXSCHD to create the
ASCii fIle AEX.HS.

Blocks 8-33

The command lines are stored In these blocks. AEX computes a
pointer to the desired command using the entry number N (0 > N <
102) In the following equations:

Block Number= ((N-1)/4)+8 (relative block number RB)

Record in RB= (N)-((RB-8)*4) (relative record In block)

Start of com= (record*64)-63 (byte pointer to start of
command)

AEX reads the appropriate command and posts it to the system file
CU.CM for execution via CL I.

Block 34

This block stores all entry pointer update flags. If a user
changed entry has been entered, AEX will automatically "UPDATE"
the trigger to see if it Is time to execute this particular Job.

Block 35

The file’s last block contains the system file assignments. It
describes the type of system AEX Is to execute on; AEX will not
run properly if the file does not contain the correct file
assignments. Please see the AEXSCHD.SV documentation for further
detaiIs.

FILE: AEX.TM

AEX.TM Is always located In the system's master directory. This
file contains the current system time and date for the manual/automatic
bootstrap feature. RBOOT.SV uses this file to set the date and time
when the operating system Is bootstrapped.

Support Program: AEXSCHD.SV

This program Is used to create and edit the AEX.CF control file.
It can be Invoked through AEX (via control-X) as well as separately.

AEXSCHD can also produce an ASCII file equivalent of the control file
(AEX.OT) and a trigger runtime history file (AEX.HS) for management
purposes. See the section on AEXSCHD for further details.

16

Support Program: RBOOT.SV

R30G7.SV is used to bypass the RDOS "Filename?" and system
date/tire inqurles when the user performs either a manual system boot
(control-3 control-B) or AEX initiates an automatic system boot.
RBOOT.SV reads the "old" date/time from AEX.TM, adds one minute and
resets the current system date/time, then initiates a background macro,
BG.MC, via BGMON.SV (or CLI.SV). See the RBOOT documentation for more
information.

D. Subroutine Functional Description

AEXO AEX revision level value.

UTRIG Transfers a 5 word frame to the trigger table and
updates the history time blocks.

DTPAC Packs the system date/time information into AEX
formatting structures. Uses 6 integer words of space.

AKEY Retreives and verifies AFOS key records from DATAKEYO.
Also passes system status information about AFOS.

AEXKL Module will terminate AEX via operator request (CTRL-K)
or by automatic termination flag.

AEXB2 Posts the updated blocks 2-7 Into the AEX.CF file.

AFMOD Checks the status of AFOS MODIFY.

CTRIG Computes the relative block and byte pointers for
command line extraction from AEX.CF file.

RTRIG This module does the Inltal block load of AEX.CF at
runtime and verifies for a valid file assignment block.

AX SYS 6 entry points:

AUTOS Automatic restart of AEX If the task status from I RUN
shows a problem.

STAC Initializes the control-A handler address.
CNTL This module executes when a keyboard control-A Is

entered.
COMLN Posts and Invokes automatic execution via CL I.
AEXTM Encodes and posts the system date/time into the AEX.TM

file.

AXPMT 8 entry points:

PRMTR AEX prompt message to console
PRMTB AEX prompt 'BUSY' message to console.
PRMTI This will display the AEX Interrupt prompt "INT (R)" on

the console.

17

PRMTM Passes a system message to console. The module is
passed a byte pointer and byte count for display.

FGRUN Displays the "I IF (AEX) cmdline" message cn system
console for ADM-Initiated programs.

FGCOM Displays the "I IF (AEX) RUN COMPLETE" message on system
console.

AXTDK Task kill routine via FORTRAN argument list.
AXTDR Readies a task via FORTRAN argument list.

GCAEX 4 entry points

GCONI Determines the system Input console, a I locates a channel
to it and opens the channel.

GCONO Determines the system output console and performs the
same functions as GCONI.

GCRND Deletes/creates a UFD in SYS.DR, allocates a channel and
opens the given "filename".

GCOPN Allocates a channel and opens a given "filename". No
UFD maintenance Is performed In SYS.DR.

III. Cautions and Restrictions

AEX.SV may reside on any Initialized disk directory and/or
partition (dI rectory/partitlon=D/P). A program link is no problem.
The D/P where AEX Is Initiated will become the "AEX" D/P. Any D/P
change, whether manual (DIR USER1) or from a program (CALL DIR), will
not affect AEX since it will automatically return to the "AEX" D/P upon
normal and abnormal system halts. AEX will also return to the "AEX"
D/P following an RDOS CL I "POP" command or from program terminations
such as FORTRAN "CALL EXIT", FORTRAN "STOP" or assembly ".RTN" and
".ERTN" instructions. Iha__exceptions__io__this__ace__system panics.
program TRAP violations and user CL I interrupts (controI-A/controI-C).

AEX has exclusive use of the AEX.CF control file, which must
reside In the "AEX" directory. No links to other directories are
permited. No other access to AEX.CF is permitted: due to the nature
of the Information contained In the control file, absolute file
Integrity must be maintained. Any outside attempt to access AEX.CF
will result in a "FILE IN USE" error message to the user, followed by
an immediate abnormal program termination and return to level 0
BGMON/CLI.

IV. References

Bunevitch, Richard (personal communication).

Data General Corporation, 1975: Eclipse-Line Real Time Disk Operating
System Reference Manual (093-000129-01).

18

-----------------» 1978: RDQ.S/DQS—Command Una Interpreter Users Manual
(093-000!09-01).

-------------1979. Real Time Disk_______Operating__System (RDQS) Reference
Manual (093-000075-08).

-----------------, 1984: RQ&U—QQi and DG/RDOS Command Line Interpreter
(069-400015-01, plus 5/85 Addendum 086-000098-00).

-----------------f 1985: RDQS System Reference (093-400027-01).

19

ERCP #43
June 1988

SCHEDULING BACKGROUND ACTIVITY

EAR! A;___INFORMATION AND INSTALLATION

PROGRAM NAME: AEX AAL ID;
REVISION NO.: 8.61

PURPOSE; AEX schedules background program activity using a schedule file.
Replacing BGMON, It also emulates BGMON at the Dasher so the same CL I
commands can be used. Programs may still be run manually at either the ADMs
or the Dasher. Optionally, It can be set to reboot the system If It detects
that AFOS Is down (automatic system restart) or It detects a CTRL-B CTRL-B
sequence at the Dasher (manual system restart). Or, It can be set to shut
Itself down and return to BGMON If It detects that AFOS Is down.

PROGRAM INFORMATION:

Development Programmer: Maintenance Programmer:
Harold Opltz Harold Opltz

Location: RFC CIN Location: RFC CIN
Phone: (FTS) 684-2871 Phone: (FTS) 684-2871
Language: DG FORTRAN IV/5.20 Type: Multitasking

DG ASSEMBLER

Save File Creation Dates:
Original Release/Version 8.1 08/03/87
Update/Version 8.61 01/08/88

Running Time: Runs contlnously

Disk Space:
Program 42 RDOS blocks
Data 36 RDOS blocks (AEX.CF)

PROGRAM REQUIREMENTS

Program Files:

Name Disk Location Comments
AEX.SV APPL1*
AEXSCHD.SV APPL1 * Creates/maintains schedule file
RB00T.SV SYSZ* Optional, for auto-reboot
BG.MC SYSZ* n it it

CL I.SV,.ER SYSZ* For level 2 execution

20

Data Files:

Name Disk Location R/W Comments
AEX.CF SYSZ* R/W Schedule file created by AEXSCHD
AEX.TM SYSZ* R/W System time/date file for auto­

reboot. AEX creates and updates.

*These locations apply to AFOS; for S/140's AEX.SV can exist in any
directory. AEX.CF must reside In the directory where AEX executes, which
should be the operating directory. The CLI files and. If used, BG.MC and
RBOOT must be placed In the master directory. AEX.TM must remain In the
master directory.

AFOS Products:

IQ Action Comments
none none required, may be used as

schedule triggers

LOAD LINE
RLDR/P/N AEX.SV/S AEX.LS/L AEXMAIN AEX<0 AC 6 7 7A BT 1 2 3 4 5 8 B2 AM TG
RT KL> <FMT BG UTIL FORTAEX SYSAEX>.LB (assumes AFOSE.LB linked to SYS.LB)

PROGRAM INSTALLATION

1. Move AEX.SV and AEXSCHD.SV to APPL1, link to SYSZ. Move the CLI.- files
to SYSZ.

2. If you are going to use any auto-reboot feature, move RBOOT.SV to SYSZ.
Create BG.MC In SYSZ with any commands or programs you want executed after a
reboot (see RBOOT Parts A and B).

3. Create a schedule using AEXSCHD (see AEXSCHD documentation).

4. Add the following CLEAR command to the local SITESTOP (AFOS sites):

CLEAR CL I.<T S C><0 1 2 3> CLI.CM

This will clear the CLI's virtual buffers and the file used to pass command
I 1nes before AFOS comes up. If these files are left open by a system crash,
AEX may not function properly.

5. If desired, edit the @AFOS@ Indirect to start AEX after AFOS. You can
also add a "POP" afterwards to ensure that AEX will start properly no matter
what state It Is In when AFOS is rebooted. For example, AFOS may hang up
while AEX is suspended with CTRL-P (In CLI at level 2). Thinking that AEX is
not running (because of the "R" prompt), someone may just CTRL-F and restart
AFOS. Many error messages will result because some files will not clear
properly and AEX will not execute when it Is already running. But then
@AF0S@ reaches the POP and AEX returns to level 1. The disadvantage Is that

21

If AEX is terminated normally (CTRL-K), you'll get an error message (ATTEMPT
TO RESTORE A NON-EXISTENT IMAGE) when the POP tries to execute at level 0.
This does no iarm.

The last two lines of 6AFOSS would be:
AEX
POP

22

ERCP #43
June 1988

SCHEDULING BACKGROUND ACTIVITY

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: AEX AA1 ID-
REVISION NQ.; 8.61

PROGRAM EXECUTION:

AEX C/U]

1. Start AEX with RUN:AEX or AEX at the Dasher. (Make sure that any
interground communication with AFOS Is complete before starting - this means
any product storage from a program or any SAVEs from AFOS ADMs.) AEX can be
executed automatically by adding AEX as the last command In SAFOSg, etc.

2. To start AEX and update the schedule queue use AEX/U instead. (Useful If
AEX has not run for a while, for example If a program hung while the system
was unattended).

3. Terminate AEX using CTRL-K at the Dasher. CTRL-A will m± stop AEX, only
reset It. If a program Is running, CTRL-C will stop both It and AEX In one
shot. Effects of CTRL- commands:

CTRL-B CTRL-B Reboots system If auto-
reboot Is enabled.

CTRL-1 Interrupt a CYCLE mode (I.
e., "BUSY" at Dasher).

CTRL-K Stop AEX and return to BGMON.

CTRL-P Execute CLI at level 2; for
prolonged Dasher use. AEX
Is suspended, POP to return.

CRTL-R Reset the reference priority.

CTRL-U Update the schedule to current
date/time.

CTRL-X Execute AEXSCHED to create or
change schedule.

CTRL-A Resets AEX. If a program Is
running, halts program and
returns to AEX.

continued...

23

CTRL-C Shuts down any program running
and AEX with break files.

4. END-OF-YEAR action required: The dates of AFOS products are Julian dates
(number of '"'ays since the beginning of the year) so there Is no way to tell
In what year a product orlgnated. When Jobs are scheduled on the receipt of
a new version of a product, AEX compares Its date/time with the date/time of
the version It last processed to determine If the product Is new. A January
date will not register as new If the previous date was In December.
Therefore, CTRL-U as early as possible In the new year to update all the
schedule entries to the current date and time.

ERROR CONDITIONS

Messages from ADM Meaning

none

Dasher Messages Meaning

E=AEXCF Can't access schedule control
file. AEX.CF must reside In
the directory where AEX executes.
Linking Is not permitted. Also,
size must be 36 blocks.

U=AEXCF The schedule control file Is In
use, and/or you tried to operate
AEX on more than one system
level.

E=AEXTM The system date/time file Is In
use, and/or you tried to operate
AEX on more than one system
level.

E=SYS BLOCK UNDECLARED The control file does not contain
a system declaration block. Redo
schedule. See AEXSCHD Part B.

E=AF0S DIR No AFOS directory specified In
AEX.CF. Redo schedule.

E=AEX DIR The AEX directory specifier has
been lost. Terminate AEX and
restart It.

24

VI. Figures and Program Flow

start AEX

Ini flat* a Progr
or CL I Command

or CTRL-P

PUSH

CL I Runs Progr

Laval 3 Progr
Swaps

CTRL-K

Program Complatas
or Command Exacutas

ac POP

POP

Program Complatas

Laval 4 Progr*
Complatas

Figure 1

Levels of Execution

25

RUN:
\

Program AI arts

UFD Searches

Con+roI File Current Date/Time

Figure 2

Relationships between AEX Files

26

AEXMN Figure 3
Task program flow

MA

RDCRT

•I RUN

•AXBT

■INTR

AlI Inter-task messages must pass through
the Main task.

MAIN

—GCOPN

—RTR1G Task

—GCON1 MAIN
task

—GCRND

—COMLN

—PRMTR

—AXTDR

—AXTDK

—AUTOS
I
I —CNTL

Flgure
MAIN program f

4
ow/support modules

provides program Initialization and
management.

27

AEXMN

—PRMTM

—DTPAC
Figure 5

Task: AEXMN program flow/support modules.

—UTRIG This task provides CYCLE/system state
management (schedule maintenance).

—AEXB2
I
I —AEXTM

—AKEY

—AFMOD

—CTRIG

—AEXKL
I
I—PRMTM
I
I —AEXB2

I
I —AEXTM

RDCRT

—PRMTI

—PRMTB
Figure 6

Task: RDCRT program flow/support modules

—AEXKL This task Is the CL I emulation task.
I It also provides for AEX special
I—AEXB2 command entry Including the processing
I I of the AEX control-I Interrupt.
I I—AEXTM

—PRMTM

—PRMTM

—RTRIG
I
I—AEXB2

I
I—AEXTM

28

I NTR
I
I —CNTL Task

Figure 7
INTR program flow/support modules

INTR Is the control-A/controI-C Interrupt
hand Ier.

29

AEXSCHD

I. Introduction

A. Purpose of Program

AEXSCHD.SV is an utility program used to maintain the AEX
control file (AEX.CF).

B. Movtlvation for Development

The binary AEX.CF file Is essential to AEX operation and Its
integrity must be preserved, yet users need an easy way to create
and edit this file. They also need to extract information from It
In order to manage AEX.

C. Benefits to the User

Users can easily add/delete/change AEX.CF runtime parameters
and schedule entries using the ASCII file AEX.IN. AEXSCHD then
takes AEX.IN as input, checks It for errors and transfers the
information (if correct) to AEX.CF. If errors are found, the
program flags them on the Dasher and disregards the parameters
and/or entries In question.

AEXSCHD also provides users with two kinds of optional
external files for reference. The file AEX.HS displays historical
runtime Information stored Inside the control file. The file
AEX.OT is a user-readable reference/backup file that contains a
duplicate ASCII image of the AEX.CF control file. Specialized
versions of AEX.OT containing only those schedule entries of a
specified priority or that are empty can also be created.

II. Methodology and Software Structure

A. Description of Program

AEXSCHD.SV is written In Data General FORTRAN IV and executes
under a mapped RDOS system in either ground. 24K of memory are
requI red.

When AEX is first installed, AEXSCHD is run once using global
/D (for system declaration) to create AEX.CF and post the system
declaration parameters to it. After Installatlon, AEXSCHD has two
distinct uses and program paths. One, the data input mode, allows
the user to add, delete or change Information in the control
file. The other, data output mode, extracts Information from the
file for operator reference.

30

System Declaration

Tits first step In creating the A EX control file Is to run
AEXSCHD/T. This creates the 36-block random file AEX.CF In the
current directory and posts the system declaration parame+ers to
block 36 (last block) of the file.

Data INPUT Mode

The user creates/changes the schedule Information in the
ASCII file AEX.IN. This file can be created/edited using AFOS
message composition, the AFOS file editor (M:/F) or any of the
RDOS text editors. After creating/editing the file, the command
AEXSCHD/I (input) will write the Information to AEX.CF. Samples
of AEX.IN files appear In Figure 8 (AFOS) and Figure 9 (non-AFOS).

AEX.IN has three major parts: (1) the START line, which marks
the start of the schedule and also contains the runtime parameters
and system Information, (2) the schedule Information Itself, which
consists of schedule data lines and command data lines, and (3),
the END line, which marks the end of the schedule. All data
entries to AEX.IN are free format. Each entry requires a minimum
of one space (octal 40) between commands or parameters with a
maximum 78 characters total per line.

The START Line

The START line contains four user parameters and must always
be present In the Input file. This line marks the beginning of
the schedule Information. AEXSCHD will Ignore any comments before
this IIne.

• START paM par2 par3 par4

.START The .START command must always begin In column 1. It
determines the starting point of the schedule. Any
comments before this command are Ignored.

pari Parameter 1 specifies the length of the AEX WAIT mode In
seconds. WAIT mode starts when a carriage return or
CTRL-1 Is typed at the Dasher. If no additional
keystrokes (any key) occur before the pari time elapses,
AEX will return to CYCLE. Parameter 1 must be an
Integer value from 10 to 9999. The minimum value Is 10
seconds.

par2 Parameter 2 contains 11 sub-parameters. These
are user runtime options that can either be enabled
(turned on) or disabled (turned off). Parameter 2 will
contain a string of contiguous E's (for "EBnabled) or

31

D's (for "D”I sab led) except for the last sub-parameter
which Is an integer value from 1-7. Each sub-parameter
has the following function(s):

s-par1 AEX System Bootstrap. Enable this if you want
to be able to reboot RDOS using CTRL-B CTRL-B
and/or want the automatic RDOS bootstrap on
detection of AFOS crash and/or want the
Auto-Term 1nate function.

s-par2 AFOS Auto System Boostrap. If this is enabled
AEX will reboot RDOS from any ground or program
level when interground communications fall
between AEX and AFOS. Sub-parameter 1 must
also be enabled for this to work.

s-par3 Manual System Boostrap. If this Is enabled,
AEX will reboot RDOS from any ground/program
level when the AEX control command CTRL-B
CTRL-B is typed at the Dasher. Sub-parameter 1
must also be enabled.

s-par4 Enable/Disable CTRL-C. When applications trap,
AEX interprets It as a CTRL-C and halts. If
this happens frequently enough to be a problem,
CTRL-C can be disabled.

s-par5 AFOS "RUN:". This must be enabled to have AEX
handle AFOS ADM "RUN:" commands. Disable for
non-AFOS use.

s-par6 Enable/Disable the AFOS KEY Triggers. Enable
this to use the receipt/creation of AFOS
products as Job triggers in the schedule. If
this Is disabled, such triggers will be
ignored. Enable It If AFOS Is being used.

s-par7 Enable/Disable RDOS FILE Triggers. Enable this
to use the receipt/creation of RDOS files as
Job triggers In the schedule. If disabled,
such triggers will be Ignored. Generally
enab1ed.

s-par8 Enable/Disable INTERVAL Scheduling. Enable
this to time schedule Jobs. Such jobs (labeled
"INTERVAL" in the schedule) will be ignored if
this is disabled. Generally enabled.

s-par9 AEX Auto-Terminate. If this Is enabled, AEX
will terminate Itself and return to level 0
BGMON or CL 1 If Interground communications fail
between AEX and AFOS. Saves the operator from
having to issue a CTRL-K to stop AEX when AFOS
has to be restarted (and manual bootstrap Is

32

not being used). Similar to sub-parameter 2
except there is no RDOS reboot. Sub-parameter
1 must also be enabled for this to work.

s-par10 AEX Auto-Rerun. With this sub-parameter
enabled, AEX will re-run a program that has
been Interrupted (by CTRL-A, CTRL-C or a crash
other than a panic 6) after first running any
ADM RUNr's received after the Interrupted
program started. The re-run can be averted
with CTRL-1 (or by restarting AEX with the
global I-switch) or aborted with CTRL-A (AEX
will only re-run a program once).

s-par11 AEX/AFOS System (Boostrap/Auto-Termlnate)
Counter. This Indicates the number of times
AEX should recheck Interground communications -
after first detecting a problem - before
Initiating an automatic RDOS reboot (If
sub-parameter 2 is enabled) or AEX automatic
termination (If sub-parameter 9 Is enabled).
An Integer value from 1-7 must be entered (even
If both sub-parameters are disabled).

par3 This specifies the master disk directory/partition
specifier for AFOS. (Currently this will be SYSZ.) The
user must enter this specifier if any AFOS options are
to be used. An abnormal program termination will occur
If It Is unspecified. For a non-AFOS setup, specify a
value of -1.

par4 Parameter 4 Is the last parameter. You do not need to
enter anything because It Is completed by the scheduler
software. It displays the system's master directory
specifier and Is Intended only for the operator's
reference.

Thfl Schedule (SCHEDULE DATA LINES AND COMMAND LINES)

The schedule consists of a maximum of 102 entries. Each
consists of a scheduler data line that defines the job "trigger"
and one or more command Iines which define the job.

.pari par2 par3 par4 par5 par6 par7 par8 <-- SCHEDULER DATA LINE
command llnejcommand llnejcommand line <-- COMMAND LINE STRING
command llnejcommand line; <-- COMMAND LINE STRING

33

The scheduler data line has eight parameters:

pari The first parameter must always begin in column 1 with a
period followed by an Integer value from 1-102. The
Integer value denotes an entry’s sequential position In
the schedule table.

This sequential position must be considered when
specifying the execution priority of an entry (see par5,
below). For example. If job number 7 and Job number 12
are both priority 0 Jobs and are both ready to queue,
the lowest one In the schedule table will execute
first. Additionally, by the time Job 7 finishes,
another priority 0 job lower than 12 may be ready to
queue, and Job 12 will have to wait some more. In
general, the more Important the program the lower Its
priority and table position should be.

par2 Parameter 2 contains a "label” consisting not more than
11 ASCII characters Including any period. The label may
be used to trigger Jobs or Just as an indicator on the
Dasher (see par3 and par4).

Valid label examples:

NMCGPHPOA 9 total characters
PLOTPOA.MC 10 total characters
PLOTALLMAPS 11 total characters
BG.MC 5 total characters

Invalid label examples:

PLOTALLMAPS. 12 total characters
PLOT.ALLMAPS 12 total characters

par3 This parameter Identifies the "type” of label found
under parameter 2. There are only 3 "types” of label:
KEY, FILE or INTERVAL. A fourth permitted entry,
"ERASE", Is used In editing the schedule.

KEY Specifies par2 Is an AFOS key. Therefore the
allowable maximum character count Is 9.

FILE Specifies par2 Is an RDOS filename. The
maximum character count Is 11 Including any
period. The filename must also follow the
standard RDOS filename naming conventions.

INTERVAL Specifies a time scheduled event. In this
case, parameter 2 Is used solely as an
Identification label to the operator at the

34

output console. The maximum character count
will be 11 Including any period.

ERAL'E This Is actually a command. It Is used to
delete a current entry from the schedule. If
used, no further scheduler line parameters are
needed.

par4 Parameter 4 specifies the actual trigger mechanism
employed on the entries given In par2 and par3.

For par3=KEY the valid triggers are:

TIME Queue the job If (1) DATAKEYO contains a valid
key record and (2) the creation time of the current
product Is later than that of the previous
version. (The previous version time Is recorded In
the AEX control file, AEX.CF.)

STATUS Queue the Job If the product exists In the
database. If the product Is purged, then no queue
will be estabI I shed.

For par3=FILE the valid triggers are:

TIME Queue the job If the file's UFD creation time
In SYS.DR Is later than the UFD creation time
stored In the AEX control file. AEX maintains a
record of the UFD file creation time.

STATUS Queue the Job If a valid UFD exists in SYS.DR
for a particular filename. A job queue will not
will occur If the UFD has been deleted from
SYS.DR. (NOTE: No job queue will occur If the
SYS.DR UFD flags a "FILE IN USE" and/or the file
use-count Is greater than 0.)

For par3=INTERVAL, the user will enter one of three time
schedule designators. All times should be In whatever time
Is used for the system, since AEX checks schedule entries
against the system date and time.

M**** Minute Intervals. This specifies a Job will
be queued every *»#» minutes. The Intervals start
from whenever AEX Is started; there Is no fixed
starting point. The minute value can be an Integer
from 1 to 1440. M33 will queue a Job every 33
minutes, M124 will queue a job every 124 minutes,
etc.

35

H** Hour intervals. A job will be queued every **
minutes past the hour, I.e., H45 will queue a Job
every 45 minutes past the hour; 1:45, 2:45, 3:45,
and so on.

D**** Daily intervals. Jobs may be queued once a
day at a specified hour. D1230 will queue a job
once a day at 1230Z; D2344 will queue at 2344Z,
etc., assuming that the system runs on Z time.

par5 This parameter is the job queue priority and Is an
Integer value from 0 to 7. 0 Is the highest priority
and 7 is the lowest. Higher priority Jobs will execute
before lower priority Jobs. Within the same priority,
schedule entry order determines execution (see pari,
above).

par6 Day-of-Week specifier. AEX can be set up to queue a Job
every day or only on the specified day(s) of the week.
Parameter 6 applies to all trigger types In parameter
3. Enter one of the following specifier types:

ALL Job will queued every day, Sunday through Saturday

DD Jobs may be queued only on certain specified days.
days. To do this simply enter all the days a job
Is to be queued (using the day of week
abbreviations) Into a single, contiguous word.
Days do not have to be In order. The abbreviations
are:

SU for Sunday
MO for Monday
TU for Tuesday
WE for Wednesday
TH for Thursday
FR for Friday
SA for Saturday

Therefore, to have a job queued on Monday,
Wednesday and Friday you must enter: MOWEFR. For
Sunday, Monday, Tuesday and Saturday enter:
SUMOTUSA.

par7 Par7 is an AFOS dependency flag. If "AFOS" appears
here, AEX will not queue the Job If AFOS Is down. The
job will be held indefinitely until AFOS is back up.
(Any program accessing the database, for example, needs
this flag since It will not run properly if AFOS is
down.) If AFOS Is not required, enter nothing for this
parameter.

36

par8 The last parameter Is an AFOS console ID. This Is a
value from 0 to 15 that specifies the AFOS ADM console
to which any alert messages generated by the Job will be
sent. (To determine the value, use the GCID command at
the desired ADM.) If you don't want any alerts
returned, enter -1 for par8. Par7 must be labeled
"AFOS" to use this option.

Command data lines contain the actual commands that AEX will
execute If the conditions In the scheduler data line are met. The
commands are executed In the order they appear In the command data
lines. The commands may consist of CL I commands, macros, or
programs - anything the CL I Itself would accept. There are two
restrictions on command lines:

(1) The total command line string may not be longer than 124
bytes. This Includes all entered characters.

(2) The last, and only the last, command line In the entire
command line string must absolutely end with an ASCII
semi-colon (octal 73) and an ASCII carriage return (octal
15). Otherwise the entire schedule entry will be Ignored.
Semi-colons can be used within lines to separate commands,
and carriage returns can end lines within the entire command
strIng.

Examples of command data lines:

Example 1

PLOTPOA
SAODECODER.SV; <— last line must end with ;

Example 2

PLOTPOA.MC;BG.MC;GTOD;DIR DPO <— NOT last llne/entry, no ;
CLEAR/D;DIR *LDIR*; <— last line must end with ;

Example 3

DIR APPL1;CLEAR/D/A <— NOT last llne/entry, no ;
IN IT DZ0:APPL1 <— NOT last llne/entry, no ;
WXR/R/D ADE/F NMCGPHCIN/P/F <— NOT last llne/entry, no ;
DIR *MDIR*;GTOD;LIST/A PLOT; <— last line must end with ;

37

The END Lina

AEX.iN must terminate with an ".END" command always starting
with the period In column 1. AEXSCHD will stop reading at this
point. Any characters/comments after this command will be
ignored.

AEX.IN is also used to add, delete or change schedule entries
In an existing AEX.CF. Only the START and END lines and the
entries being added, deleted or changed need to be entered In this
case. To add an entry, type It In using a currently empty entry
number. To delete an entry, use "ERASE" for the label type
(par3). To change an entry, Just type In the new information.
The runtime parameters may also be changed by editing the START
line. Figure 3 shows an AEX.IN with changes to be made to the
schedule in Figure 1. After the new AEX.IN Is stored, implement
the changes by rerunning AEXSHCD/I (or. If AEX is running. Just
type CTRL-X).

It is possible to set up two schedules and switch between
them (normal versus severe weather, fqr Instance). They should be
set up carefully so that all the unwanted entries in one are
erased or changed by the other. They can be linked to the alias
AEX.IN for use. For example, to change to another schedule first
stop AEX (CTRL-K) and execute the following:

UNLINK AEX.IN (link to current schedule)
LINK AEX.IN APPL1:SCHD2 (the alternate schedule)
AEXSCHD/I (write new data to control file)
AEX (restart AEX)

It's also possible to Just unlink and relink and then CTRL-X.
Some manual Input Is always required, a safety feature to protect
the local schedule(s).

Data OUTPUT Mode

AEXSCHD's data output mode produces two type of files. Both
contain Information from the AEX.CF control file translated Into
ASCI I text.

The first type contains schedule Information. The AEX.OT
output file Is a direct ASCII translation of the control file and
Is nearly Identical In format to the AEX.IN Input file. The
purpose of the output file is two-fold. Its main purpose Is to
serve as a runtime reference file for the operator, displaying the
actual current contents of the control file In ASCII text. In
addition to the scheduler Information, AEX.OT contains "last"
runtime statistics of all the current entries In the comment
section at the end of each entry line. These statistics are
useful for determining the current status of any scheduled Job.
AEX.OT's format Is also compatible with that of the input file

38

The command to create the AEX.OT file Is:

AEXSCHD/O

The same type of file can be generated for specific priority or
empty entries only. This Is done by adding the priority value as a
local argument to the command line. For example:

AEXSCHD/O 2

will output a file AEX.2 that contains all the priority 2 entries In
AEX.CF. The command:

AEXSCHD/O E

will output a file AEX.E that lists all the entries which are empty (or
"ERASED").

The AEXSCHD.SV program can also produce a history file named
AEX.HS. This file contains the 6 latest runtime statistics for each of
the schedule entries. The Information can be useful for assessing the
punctuality of all scheduled Jobs by cpmparlng the Job's trigger to the
times It actually was executed. This file Is strictly Informational In
content and cannot be used as an AEX.CF backup since the command line
strings are omitted. The command for assembling the AEX.HS history
file Is:

AEXSCHD/H

Both types of files may be assembled while AEX Is running. Even
though AEX.CF Is exclusively opened by AEX, the RDOS system "FILE IN
USE" and SYS.DR UFD use-count value returns do not affect execution of
AEXSCHD.

B. Equations and Algorithms

AEXSCHD does not use any special equations or algorithms.

C. Relationships between Disk Files

See Figure 12.

D. Subroutine Functional Description (see also Figure 13)

SCHDI This module provides the logic path for data Input to the
AEX.CF control file and for the system declaration.

SCHDO This Is the output path module. It posts ASCII text versions
of the AEX.CF control file (AEX.OT, AEX.#, the history file
AEX.HS

39

CVINT Converts numeric integer values to unpacked ASCII format.

DYMN Translates time to day-minutes. (0-1440 minutes)

CTRIG Supports the output path module by computing and loading the
requested command block from the control file.

FILAS Posts a user-requested system declaration file block
assignment to the control file. This block Is hard-coded In
the AEXSCHD.SV program. Determines the type of system AEX.SV
Is to operate on (l.e., S230+AF0S, S140+DATACOL, foreground,
background partitions, etc).

SCHDM This module determines the system's master directory
specifler.

SCHDA This module assembles the AFOS MODIFY filename specifiers as
determined by the AFOS directory specifier.

DAWK Computes a numerical day-of-week value.

QCHK The code determines the current queue status of the control
file.

III. Cautions and Restrictions

The AEXSCHD.SV scheduler utility program may reside In any
initialized disk directory and/or partition. A program link will
not affect program execution. Links to either the AEX.IN input
file and AEX.OT/AEX.I/AEX.HS output files are permitted. However,
the control file, AEX.CF, may not be accessed via link.

The AEX.CF control file should be established In the current
operating directory. AEXSCHD.SV will create one If a control file
does not exist. The Initial run of the scheduler program must be
a user SYSTEM DECLARATION (AEXSCHD/D) before any further accesses
are allowed to the control file.

Errors found In the parameters for the .START line will void
only that particular parameter. The current value(s) In the
control file for those parameters In error will remain Intact.

Errors found In the parameters for either the scheduler data
line or command string IIne(s) will void the entlre scheduler data
line/command string llne(s) for the particular entry. The current
entry In the control file will be unaffected until the error Is
corrected and AEXSCHD Is rerun.

40

ERCP #43
June 1988

AEX SCHEDULE MANAGER

PART A;___ INFORMATION AND INSTALLATION

PROGRAM NAME; AEXSCHD AAL IP):
REVISION NO.: 8.60

PURPOSE; AEXSCHD Is a utility used to create and maintain the schedule
control file used by AEX.

PROGRAM INFORMATION:

Development Programmer: Maintenance Programmer:
Harold Opltz Harold Opitz

Location: RFC CIN Location: RFC CIN
Phone: (FTS) 684-2371 Phone: (FTS) 684-2371
Language: DG FORTRAN IV/5.20 Type: Normal

Save File Creation Dates:
Original Release/Version 8.1 08/03/87
Update/Verston 8.6 01/08/88

Running Time: variable, from 5 to 60 seconds

Disk Space:
Program 43 RDOS blocks
Data 36 RDOS blocks (AEX.CF only)

PROGRAM REQUIREMENTS

Program FIles:

Name Disk Location Comments
AEXSCHD.SV APPL1 * Link to SYSZ.

Data FIles:

Name Disk Location R/W Comments
AEX.CF SYSZ* R/W Schedule control file, contai­

ning the triggers, schedule and
history Information for program
execution.

AEX.SC SYSZ* W Backup copy of current AEX.CF
made by AEXSCHD before It makes
new changes.

41

AEX.IN SYSZ* R Input - ASCII schedule created
via M:F/ or text editor.

AEX.OT SYSZ* W ASCII replica of current AEX.CF.
Also contains "last" runtime
statistics, useful for determi­
ning state of queues. Can be
used as a backup AEX.IN since
format is simllar.

AEX.# SYSZ* W # Is a number from 0 to 7. Lists
only priority # entries.

AEX.E SYSZ* W Lists only "ERASED” entries.

AEX.HS SYSZ* w History file containing the six
latest runtime statistics for
each entry In schedule. Useful
In comparing when jobs actually
ran to when they were scheduled.

* These locations apply to AFOS; for S/140fs AEXSCHD can exist In any
directory. AEX.IN, AEX.OT and AEX.HS can be accessed through links. AEX.CF
must reside In the same directory In wh Ich AEXSCHD executes, which should be
the operating directory.

AFOS Products:

IQ Act Jon Comments
none

LOAD LINE
RLDR/P/N AEXSCHD.LS/L AECSCHD AEXSCHDCOD SCHD<R CH I 0 P S M A Y Z>
<BG UTIL FORTAEX SYSAEX>.LB

PROGRAM INSTALLATION

1. Move AEXSCHD.SV to APPL1 and link to SYSZ.

42

ERCP #43
June 1988

AEX SCHEDULE MANAGER

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME; AEXSCHD AAL ID;
REVISION NO.: 8.60

PROGRAM EXECUTION:

AEXSCHD/[D,1,0,0 *,H]

When Installing AEX for the first time:

1. Create the schedule input file AEX.IN according to the instructions In
ERCP #43.

2. Run AEXSCHD/D to create the control file AEX.CF with system Information.

3. Then run AEXSCHD/I to enter all the schedule Information.

To change the schedule:

1. Edit AEX.IN (E:F/ or text editor).

2. Rerun AEXSCHD/I or. If AEX Is running, CTRL-X at the Dasher. CTRL-X will
also produce an AEX.OT file. (As a safety feature, this AEX.OT Is produced
before the schedule triggers are updated. If disaster strikes and the
schedule Is destroyed, it can serve as a backup. But the "last run" section
will not reflect the subsequent update.)

UtI Ity options:

1. To create the output file AEX.OT (ASCII duplicate of the current AEX.CF),
run AEXSCHD/0. You can also run AEXSCHD/0 *, where * Is a number from 0-7 or
the letter E, to list only entries of priority 0-7 (output In file AEX.0-7)
or only the "ERASED" entries (output In In file AEX.E).

2. To create the history file AEX.HS, run AEXSCHD/H.

All may be executed on the ADM (RUN:) or the Dasher, except CTRL-X which must
be done on the Dasher. AEXSCHD requires one (and only one) switch.

43

ERROR CONDITIONS

Messages from ADM Meaning

none

Dasher Messages Meaning

System Errors:

E=UNSPECIF1 ED OPERATION No switch used; rerun with
appropriate global switch.

E=SYS BLOCK UNDECLARED Incorrect system declaration.
Check system Info In AEX.IN

ERR=F1LAS/W Error writing the file assign­
ment block for entering the
system declaration word.

ERR=F1LAS/R Errror reading the file assign­
ment block where the system
declaration word Is located.

EM=MD1R/R Error reading file assignment
block where the system master
directory specifier Is located.

EM=fC 1R AEXSCHD can't determine the
system master directory spe­
cifier.

EM=MD1R/W Error writing file assignment
block for entering the system
master directory specifier.

EA=M0D/R Error reading the file assign­
ment block where the AFOS
directory specifier Is located.

EA=M0D/W Error writing the file assign­
ment block where the AFOS
directory specifier Is located.

nput Errors:

ERR= OPT DEFAULT The runtime option parameters In
the .START line (par2) are In­
consistent or Incorrect. The
default values were loaded.

ERR= AFOS DIR The entry In par3 (AFOS direc-

44

tory) Is InvalId.

ERR= XXX There Is an error In schedule
entry XXX (XXX ranges from 0 to
102). The command line for this
entry was Ignored, all others
were processed.

ERR= XXX COM LIN There Is an error In the command
line of schedule entry XXX (XXX
ranges from 0 to 102). Make
sure the command line ends with a
semicolon. Other entries were
processed.

ERR= *«* Numeric overflow. An Illegal
Integer has been processed, check
the parameter value.

ERR= CHAR Illegal character In parameter.

ERR= IDLE WAIT mode value Is not between 0
and 9999. Lowest value may be -1
but the runtime default Is 15
seconds.

ERR= TERM The termination time in the .END
line is Invalid. Valtd values
range from -1 to 2359. Default
Is -1, continuous operation.

EI=AEXCF AEX.CF (AEX control file) must
reside In SYSZ. It cannot be
accessed through a link.

EI=AEXCF SIZE AEX.CF Is not 36 blocks long or
a system block was not declared
on the Initial run.

EI=AEXSC AEXSCHD can't establish a backup
scratch file.

EI=COPY ERROR AEXSCHD can't copy some/a I I of
the control file to the scratch
file.

EI=AEXIN Can't find AEX.IN (schedule Input
file).

EI=C0N Can't establish output console.

45

Output Errors:

E0=AEXCF Can’t read AEX.CF (control file).

E0=AEX0T Can’t create AEX.OT (output file)
or AEX.HS (history file)

46

VI. Figures

•START 30 EEEEEEEEDD3 SYSZ <—
.1 cccSAOxxx KEY TINE 0 ALL AFOS 3 <—
SAOCK;
.2 ROUNDUP INTERVAL H15 1 ALL AFOS -1 <—
RWR/E/H/B ALL/A;
.5 NMCPLTPOA KEY TIME 1 ALL AFOS 2 <—
PLOTNA;
.10 TTBBD INTERVAL D0210 1 ALL AFOS 1 <~
TTBBD;
.11 TTBBD INTERVAL D1410 1 ALL AFOS 1 <~
TTBBD;
.15 FILNAM.TX FILE TINE 2 ALL AFOS 1 <—
RP ALB/P ACY/P
THTE ALB/S ACY/S; <—
.20 cccFRHT61 KEY TIME 3 ALL AFOS 2 <—
FRHPLOT LGA/N
.25 MEF INTERVAL D1145 3 ALL AFOS -1 <—
TIMCHEK cccMEFxxx/J 350/N ADM1/S;
.26 MEF INTERVAL D2040 3 ALL AFOS -1 <~
TIMCHEK cccMEFxxx/J 350/N ADM1/S;
.28 VERIFY INTERVAL D1240 3 ALL AFOS 2 <—
VERIFY
VERBU;
.29 VERIFY INTERVAL D0045 3 ALL AFOS 2 <—
VERIFY
VERBU;
.35 cccVERxxx KEY TINE 4 TUSA <—
VERDAT;
.50 CLEANUP INTERVAL D2340 5 ALL <—
CLEANDSK;
.END

AFOS running in SYSZ; 30 sec WAIT
Highest priority Job, msgs to ADM 3

RWR runs every hour at H+15, AFOS
dependent but no console alert
PLOTNA macro runs when a new plot-
file Is received; msgs to ADM 2
Runs TTBBD at 021OZ; msgs to ADM 1

Same as above but for 12Z run

Runs two programs whenever there
Is a new FILNAM.TX (from TTBBD)
Last line must end with semi-colon
Runs when new FRH received, lower
priority Job
Runs TIMCHEK to check If MEF has
been f11 led out
Same as above but for 12Z run

Runs VERIFY and backup macro dally

Same as above but for 12Z run

Keys on VERIFY completion but wilI
only run Tuesday and Saturday
Daily disk cleaning macro - low
priority and not AFOS dependent

Figure 8

Short example of an AFOS—related AEX.IN file using a variety of trigger types.
All options are enabled except auto-term Inate and auto-rerun. The counter is
set to 3, so AEX will check Interground communications three times after it
detects a problem before Initiating automatic reboot. (Some entries from
William Gery and Steve Hentz.)

47

.START 30 EDEDDDEEDD7 -1

.1 CLERR1CLE FILE TIME 2 ALL
CLE.MC;
.17 CHIRR2CHI FILE TIME 2 ALL
CHI2.MC;
.40 G0ES00 INTERVAL D0105 6 ALL
LOO.MC
8ALLG0ES8;
.53 WEEKEND INTERVAL D1700 4 SUSA
NSTG/C/Y;
.54 CRWWRKLKH FILE STATUS 0 ALL
DELETE CRWRVFLKH
RENANE CRWWRKLKH LKH
NSTG/Y
XFER CRWRVFLKH $AFOS
DELETE LKH.SF
APPEND LKH.<SF SI 1> QUM3;
.83 DISK INTERVAL D1005 0 ALL
DIR DZ0:PR0D1
DELETE -.<5 6 8> <PROFJCL MAINJCL>.-/N;
.95 AEXSCHD INTERVAL M0030 0 ALL
AEXSCHD/O
AEXSCHD/H
I NIT DZOrARCDATA;
.END

<— No AFOS directory, 30 sec WAIT
<— Runs CLE.MC on receipt of new

RR1 file every day
<— Similar to above, runs CHI2.MC

when new RR2 file arrives
<— Runs daily at 105Z at prl 6

<— Only on Saturday and Sunday
at 1700Z

<— Initiated by the existence of file
The file Is renamed so the job does
not run continuously.

<— Runs everyday at 1005Z

<— CLl command nesting is allowed
<— Run dally every 30 minutes

Figure 9

This Is a non-AFOS example of an AEX.IN Input file. Note that the START line
contains -1 for an AFOS directory specifier. The manual bootstrap, RDOS file
trigger and Interval scheduling (time trigger) options are enabled, but CTRL-C,
all the AFOS-related options, auto-term Inate and auto-rerun are disabled. The
counter Is set to 7 (even though both options It relates to are disabled, a
number must still be entered).

48

.START 40 EEEDEEEEDD1 SYSZ <--

.2 ROUNDUP INTERVAL HI2 1 ALL AFOS -1 <--
RWR/E/H/B ALL/A;
.8 UAPLTS INTERVAL D0225 1 ALL AFOS 1 <~
PLOTUA;
.9 UAPLTS INTERVAL D1425 1 ALL AFOS 1 <--
PLOTUA;
.25 MEF ERASE <—
.26 MEF ERASE <—
.END

40 sec WAIT, CTRL-C off, counter=1
Change to run at H+12

Add Job to plot upper-alr data

Same as above but for 12Z run

Delete MEF check Job for 00Z
Delete MEF check job for 12Z

Figure 10

Example of an AEX.IN file containing changes that could be made to the schedule
created from the AEX.IN Input In Figure 8. These are: Increasing WAIT to 40
seconds, disabling CTRL-C and reducing the counter to 1 (START line); adding
two new Jobs to plot the upper-alr plotflles (entries #8 and #9); and removing
the MEF check jobs (entries #25 and #26). Entries not appearing In this file
will not be changed.

49

.START Cl 20 EE EEEEEED03 SYSZ SYSZ ;RUN«03/23 2C:42Z

.1 cccSAOxxx KEY TIS€ 0 ALL AF0S 3;RUN*03/23 19:52Z

.2 ROUNDUP INTERVAL H0015 1 ALL AF0S -1 ;RUN=03/23 20:15Z
RWR/E/H/B ALL/A;
. 3 ENTRY ERASED ;RUN* NONE
.4 ENTRY ERASED ;RUN« NONE
.5 NMCPLTP0A KEY Tl*€ 1 ALL AF0S 2;RUN»03/23 19:03Z
PL0TNA;
. 6 ENTRY ERASED ;RUN« NONE
. 7 ENTRY ERASED ;RUN* NONE
.8 ENTRY ERASED ;RUN- NONE
.9 ENTRY ERASED ;RUN« NONE
.10 TTB8D INTERVAL D0205 1 ALL AF0S 1;RUN-03/23 02:05Z
TTBBO;
. 11 TTBBO INTERVAL D1430 1 ALL AF0S 1;RUN-03/23 14:30Z
TT8BD;
.12 ENTRY ERASED ;RUN- NONE
. 13 ENTRY ERASED ;RUN- NONE
.14 ENTRY ERASED ;RUN» NONE
.15 FIINAM.TX FILE TI^C 2 ALL AF0S 1;RUN-03/23 14:38Z
RP ALB/P/ ACY/P
THTE ALB/S ACY/S i
.16 ENTRY ERASED ;RUN- NONE
.17 ENTRY ERASED ;RUN» NONE
.18 ENTRY ERASED ;RUN- NONE
.19 ENTRY ERASED ; RUN” NONE
.20 CCCFRHT61 KEY Tl»€ 3 ALL AF0S 2;RUN-03/23 18:08Z
FRHPLOT LGA/N; »

.21 ENTRY ERASED ;RUN- NONE

.22 ENTRY ERASED ; RUN* NONE

.23 ENTRY ERASED ;RUN- NOSE

.24 ENTRY ERASEO ;RUN- NONE

.25 »€F INTERVAL Dll45 3 ALL AFOS -1;RUN-03/23 11:45Z
Tl MCHEK ccc«Fxxx/J 350/N A0M1/Sj
.26 MEF INTERVAL D2045 3 ALL AF0S -1;RUN-03/23 0O:00Z
Tl MCHEK ccc«Fxxx/J 350/N ADM1/Sj
.28 VERIFY INTERVAL D1240 3 ALL AFOS 2;RUN-03/23 12:41Z
VERIFY
VERBU;
.29 VERIFY INTERVAL 00040 3 ALL AFOS 2;RUN-03/23 00:00Z
VERIFY
VERBUj

.35 cccVERxxx
VERDAT

KEY TIME 4 TUSA ;RUN*03/23 11:23Z SKIP

.50 CLEANUP
CLEANOSKj

INTERVAL D2340 5 ALL ;RUN-03/23 00:00Z

^END

Figure 11

Sample AEX.OT (ASCII duplicate of the schedule created from the Input In Figure
8). Second SYSZ (Inserted by AEXSCHD) and AEXSCHD timestamp appear In START
line. After the semicolon In each entry's schedule data line AEXSCHD writes
the date and time the Job last executed (except for dally Jobs that have not
yet executed: their times are entered as 00:00). If It's past the time for an
dally Job and It has not yet executed, the entry Is marked "QUED". If the time
passes Into the next day and the Job has still not run. It's marked ''LATE''.
"SKIP" Indicates that the trigger conditions were met but the Job wasn't
scheduled to run on the current day (entry #25).

50

AEXSCHO.SV

ASCI I DUPLICATE

OF CONTROL FILE

(SUBSET - AEX.#>

ASCII HISTORY FILE

Figure 12

Relationships between AEXSCHD files

51

The MAIN logic will only pass through the
INPUT or OUTPUT paths. The two paths
function Independently.

MAIN
I I
I I
I |------------------SCHDI DATA INPUT MODE/SYSTEM DECLARATION paths.
I
I----------------------SCHDC DATA OUTPUT MODE path.

SCHDI
I
I—FI LAS
I I
I I —SCHDM
I
I—SCHDA
I
I —CVI NT
I
I—CTRIG

The INPUT program path converts the
AEX.IN text and posts the Information
to the AEX.CF control file.

SCHDO
I
I—CVINT The OUTPUT program path translates the
I AEX.CF control file Into ASCII text and
I —DYMN posts It to AEX.OT or AEX.HS.
I
I--DAWK
I
I--QCHK
I
I—CTRIG

Figure 13

AEXSCHD logic flow

52

RBQQT

I. Introduction

A. Purpose of Program

RBOOT Is an AEX utility program used to eliminate operator
Intervention (entering time and date at the console) during a system
bootstrap (slngle-CPU sites only).

B. Movtlvatlon for Development

At part-time sites, AFOS may hang or crash while unattended. This
results In loss of Incoming data and output from scheduled programs.
AEX can detect that AFOS is non-operative and can Initiate a system
reboot, but the normal RDOS reboot requires that an operator enter the
date and time at the console.

C. Benefits to the User

RBOOT.SV takes advantage of Inherent RDOS features to bypass
manual Intervention In a system reboot. Thus AEX can fully restore
AFOS operation unattended. RBOOT.SV Is Intended for this use only.

II. Methodology and Software Structure

A. Program Flow and Description

RBOOT.SV Is an applications program that operates under the Data
General mapped RDOS operating system. It Is written In Data General
Assembly language and will always execute In background. The program
requires 2K of memory.

RBOOT Is Initiated (indirectly) by AEX. If the AFOS auto-reboot
option has been selected, AEX periodically checks for foreground
response. If It detects a problem (and determines that MODIFY is not
running), It types "SYS AFOS 0" on the console and then retests
foreground response once per cycle. The number of retests is
determined by the number entered In parameter 2, sub-parameter 11 of
the AEX.CF START line. On each unsuccessful try, AEX types "SYS AFOS
/" on the console, where # Is the number of the try. All schedule Jobs
requiring AFOS are held.

If the foreground does not respond within the allotted number of
tries, AEX begins the reboot process. First It checks the CPU
switches. If they are set to either 177777 or 100027, AEX removes the
Permanent attribute from the existing RDOS file RESTART.SV, renames It
ARESTART.SV and then links the alias RESTART.SV to RBOOT.SV. (If any
errors are encountered, AEX restores these files to their original

53

state and terminates itself. Control returns to BGMON. The files are
also restored to their original state should the rebooting process be
Interrupted at this point by CTRL-A.) If the switches are not set
properly, AEX types "CPU" on the console and no renaming or relInking
takes place, but the reboot continues.

At this point, AEX executes a .BOOT RDOS system call. .BOOT
restarts the system and executes RESTART.SV.

If AEX's relinking was successful, RBOOT will execute via the link
and reads AEX.TM for the date and time. (AEX maintains the current
date/time In this file, updating it after every cycle throught the
schedule and before and after any program is run.) RBOOT Increments
this date/time by one minute, and sets the system's date and time to
the new values. If AEX.TM cannot be read or the system date/time
cannot be reset, RBOOT will bring the system up on the default time of
00:00:00 on 1/1/68. RBOOT then unlinks RESTART.SV, renames ARESTART.SV
back to RESTART.SV and replaces the Permanent attribute. Last, RBOOT
starts BGMON/CLI and through it the macro BG.MC (If it exists). This
locally-created optional macro may contain any combination of valid
RDOS system commands (as specified by the Command Line Interpreter
manual) necessary to fully restore the.system after an RDOS reboot.
(AF0S sites will want to restrart AFOS, for example.)

If the switches were not set properly’and the original RESTART.SV
Is executed, the system will ask the operator for the date and time at
the Dasher, and the reboot will end with the BGMON R-prompt. BG.MC
will not execute.

The rebooting process can also be initiated manually by entering a
CTRL-B, CTRL-B sequence at the Dasher (manual auto-reboot). If this
option has been enabled. This makes manual rebooting simpler.

Figure 14 shows a sample Dasher printout of an unattended reboot.

B. Equations and Algorithms

There are no special equations or algorithms used by the RBOOT.SV
program.

C. Relationship Among Disk Files (see also Figures 15 and 16)

RBOOT.SV requires the AEX.TM file for resetting the system date
and time values. This file Is updated constantly by AEX.SV on every
CYCLE and before all manual or schedule Initated program execution.
The file contains the system date and time In the following format:

54

bits 0 12 3 4 5678 9 10 11 12 13 14 15 word 1
day month year

b l+s 0 12 3 4 5 6 7 8 9 10 11 12 13 14 1? word 2
hour minute not used

AEX.TM is always 4 bytes long and will always be located In the system
master directory.

D. Subroutine Functional Descriptions

RBOOT does not call any subroutines.

III. Cautions and Restrictions

RBOOT.SV must reside In the master directory. The program should
not reside In any other sub-directory or sub-partition since these
areas may not be properly Initialized during reboot.

AEX can only Initiate a reboot for "soft" crashes (foreground hung
or down) on sing I e-CPU systems. In a hard crash (no Dasher response,
no CPU activity, panic) the system must be rebooted manually with the
CPU switches. Since AEX will not have been able to rename or relink
anything, rebooting will proceed as always. The operator enters the
date and time and starts AFOS manually.

A system panic 13 will occur If, for whatever reason, RBOOT.SY
takes an error return (.ERTN system call: return to the next higher
level program). The panic occurs because CLI will not be the next
higher level program (level 0) since RBOOT was started via a chain from
RDOS. RBOOT Itself starts CLI via a chain. The solution Is to restart
the system with the CPU data switches set to -1. RDOS will query the
user with "FILENAME ?" In the usual manner and RBOOT will not be
utlIIzed.

The data switch register on a Data General S/140 computer Is
located In virtual memory cell 11A. One may enter a system "BREAK"
keyboard character to access the cell via virtual console during
runtime. Return to the system by entering "P <CR>" and the system will
resume execution at the current Interruption point. Caution should be
exercised when performing this procedure.

National Weather Service AFOS management policy may restrict the
use of RBOOT on AFOS to certain sites only.

IV. References

Data General Corporation, 1980: Eclipse S/140 Field Engineer**;
Maintenance Manual (015-000104-00).

55

> 1984: RDQS-.—DOS__and__DG/RDQS Command Line 1 nterpreter
(069-400015-01, plus 5/85 Addendum 086-000098-00).

--------------- t 1985; RDQS System Reference (093-4000027-01).

56

ERCP #43
J un*3 1988

V.

RDOS RESTART

P-ART A;___ INFORMATION AND INSTALI AT I ON

PROGRAM NAME: RBOOT AAL ID:
REVISION NO.: 8.60

PURPOSE; RBOOT brings up RDOS without operator Intervention. If the CPU
switches are set to either 177777 or 100027, It bypasses "FILENANE?" and sets
system date/ttme from the file AEX.TM (maintained by AEX). (100027 Is the
normal switch setting, 177777 has all the switches up.) RBOOT then chains to
BGMON (CLI.SV on non-AFOS systems) and executes the flleBG.MC, If It
exists. (RBOOT.SV Is not needed If you are not using any of the auto-reboot
functions of AEX.)

PROGRAM INFORMATION:

Development Programmer; Maintenance Programmer:
Harold Opltz Harold Opltz

Location: RFC CIN Location: RFC CIN
Phone: (FTS) 684-2871 Phone: (FTS) 684-2871
Language: DG Assembler Type: Chain

Save File Creation Dates:
Original (test) Release/Version 8.1 08/03/87
Update/Revision 8.60 01/08/88

Running Time: .75 seconds

Disk Space:
Program 6 RDOS blocks
Data 1 RDOS block

PROGRAM REQUIREMENTS

Program Flies:

Mama Disk Location Comments
RBOOT.SV SYSZ* In SYSZ, AEX will rename the

RDOS system file RESTART.SV and
then link RESTART.SV to RBOOT.SV
when executing any restart.
RBOOT will undo these changes
after RDOS comes up.

BG.MC SYSZ* Optional; executes after BGMON

57

Data FIles:

Name Disk Location R/W Comments
AEX.TM SYSZ R Holds system date/time for reboot

Created and maintained by AEX.

* Locations for AFOS sites; elsewhere, RBOOT.SV and BG.MC must exist In the
master directory.

AFOS Products:

IQ Action Comments
none

LOAD LINE
RLDR/P/N RBOOT.SV/S RBOOT.LS/L RBOOTMA1N FORTAEX.LB SYSAEX.LB

PROGRAM INSTALLATION

1. Move RBOOT.SV to SYSZ. This file must reside In the master directory.

2. Create the macro BG.MC to execute whatever commands or programs you want
on rebooting. AFOS sites can start AFOS. A very simple BG.MC would contain:

@AF0S«

to restart AFOS automatically when RDOS Is rebooted. To prevent the CLI.T<0
1 2 3> and CL I.S<0 1 2 3> flies from being left open after a reboot, CLEAR
them In either BG.MC or 6AF0S8 (before the foreground Is started). You may
also want to restart AEX.

4. If you are Installing RBOOT on an S/140, you must change 10 locations In
RBOOT.SV with the octal editor OEDIT:

loc S/230 S/140

650 40506 41514
651 47523 44456
652 27123 41515
653 52000 00000
654 00000 00000

664 41107 41514
665 46517 44456
666 47056 51526
667 51526 00000
670 00000 00000

All values are In octal.

58

ERCP #43
June 1^98

RDOS RESTART

EART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: RBOOT.SV AAL ID:
REVISION NO.: 8.60

PROGRAM EXECUTION;

RBOOT is executed Indirectly through AEX if either the AFOS auto-reboot or
manual auto-reboot options Is enabled. Before rebooting RDOS, AEX links the
alias RESTART.SV to RBOOT.SV if the CPU switches are set to the normal
position 100027 or 177777 (-1, all up). After the reboot, RDOS chains to
RBOOT.SV via the link. RBOOT reads the date and time from the file AEX.TM,
sets the system date and time (bypassing the Dasher questions) and then
undoes the RESTART.SV link. RBOOT then-chains to BGMON (or CL I on non-AFOS
systems) and executes BG.MC.

CAUTION: If AEX.TM is not available for some reason, the default date/time
of 00:00:00 on 01/01/68 Is used. You will have to reset the date and time
manually (SDAY/STOD on ADM; remember to disable archiving first).

ERROR CONDITIONS

Massages from ADM Meaning

none

Dasher Messages Meaning

FILE DOES NOT EXIST AEX.TM not available, date/
time of 00:00:00 on 01/01/68
was used. Reset manually.

System Panic 13 Unknown system/RBOOT program
error. Set CPU switches to
anything but -1 and manually
reboot.

59

VI. Figures and Program Flow

o r p >
cpUGPU* T
*cc revr cpqhq•

9 f 9 >
f ip pv.ap.pq rfff.rrwr oupcp rv

cvc arnc a

cvc arnc f

cvp onnrc^PdP

07 PC™
rc arrr/
rc <arrf/

wacrrp near re pcf_ra<rrn

wapocn rr^rpcr /c^jtp> arnc nepernu r / pnn<t peit f ?<»
yrc [haneb

eraoTTHt; pevuru uen pen* pr a?.-4*.a? pe-ip-p?

(V eppen *rrr
*ik**kh trm
ri’r^pcn *TT»
rrrppcn «rr»
r[r^prn r^>»
rf’capcn ev« n»
crn#
ri_ cdprn »rrr
cl§**£P trm
r^rpperr trm
r[eapen #rr»
Ci cap£f> »'7P»
cipppp5 ev< r»f
CL £A#f9 *rrr"
CL trm
CL£«»S trm
CLfa*€TJ trm.
rf £*#ro Kvm
CL£**CT srt.o*
CLStWD rrrj.
Cl£4*€U trm
CL £V3*ffP trm.
CIEPPFQ *TTf
CL£qp*V *CT*»
CL£**£9 ?v? n*
Ciepprn »^r.- eppr^ tmj

trm

Figure 14

Sample Dasher Output from AFOS Automatic Reboot

60

RDOS
1

level 0
1

RBOOT—CLl/BGMON
1

Return to CLl/BGMON
1

I eve I 1
1
1- - BG .MC (User

1
specified operations) —

I eve I 2 Thls level aval table
i
for

>
user program execution.

I eve I 3 Th I s level aval lable for user program execution.

level 4 This level aval table for user program execution.

Figure 15

System Logic Macroview

61

Figure 16

Relationship Among Flies

62

NOTE

Due +o the volume of documentation, source code has not been Included
in this ERCP. Requests for source code should be addressed to ERH SSD
or to the author, Harold Opltz (OHRFC).

63

Eastern Region Computer Programs and Problems (Continued)

19 Verification of Asynchronous Transmissions. Lawrence Cedrone,
March 1984. (PB84 189885)

20 AFOS Hurricane Plotter. Charles Little, May 1984. (P884 199629)

21 WARN - A Warning Formatter. Gerald G. Rlgdon, June 1984. (P884 204551)

22 Plotting TOL Coastal Wind Forecasts. Paula Severe, June 1984 (Revised)
(PB84 220789)

23 Severe Weather Statistics STADTS Decoder (SWX) and Plotter (SWY).
Hugh M. Stone, June 1984. (PB84 213693)

24 WXR. Harold Opitz, August 1984. (PB84 23722) (Revised August 1985,
PB84 100815/AS)

25 FTASUM: Aviation Forecast Summaries. Matthew Peroutka, August 1984.
(PB85 112977)

26 SAOSUM: A Short Summary of Observations. Matthew Peroutka, October 1984.
(PB85 120384)

27 TRAJ - Single Station Trajectory Plot. Tom N1z1ol, December 1984.
(PB85 135002)

28 VIDTEX. Gerald G. Rlgdon, February 1985. (PB85 175669/AS)

29 Isentroplc Plotter. Charles D. Little, February 1985. (PB85 175651/AS)

30 CERR: An Aviation Verification Program. M. Peroutka, April 1985.
(PB85 204824/AS)

31 Correlation and Regression Equation - REGRS. Hugh M. Stone, May 1985.
(PB85 213353/AS)

32 Scatter Diagram and Histogram Program - SCATR. Hugh M. Stone, May 1985.
(PB85 213346/AS)

33 TIMCHEK. Gerald G. Rlgdon, June 1985. (PB85-221257/AS)
34 A MOS Temperature - PoP Forecast Plot. William C. Randel, October 1985.

(PB86 120029/AS)
35 ROTODRAW. Thomas Nlziol, November 1985 (PB86 131828/AS)
36 LAWEB: Data Processing for the Great Lakes. William C. Randel and

Matthew R. Peroutka, March 1986. (PB86 176658/AS)
37 Convective P?rameters & Hodograph Program - Convect. Hugh M. Stone,(Revised) January 1988. (PB88 1&7259/AS)
38 DWXR - SHEF Product Compression Program. Harold H. Opitz,

September 1986.
CRASHQ: Listing Products Being Transmitted At the Time of a Crash 39 William C. Randel, January 1987 (PB87-151890/AS)
AVGPLOT and AVGCLIM. Alan Blackburn, March 1987 (PB87-180626/AS)40

41 Severe Weather Potential (SPOT) Plotfile Generator. Ken LaPenta,
July 1987. (PR87 217717/AS)

42 COARS Family of Programs. Lawrence Cedrone, November 1987 (PB88-131602)

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS
Thr National Oceanic and Atmospheric Administration was established as part of the Department of

Commerce on October 3.1970. The mission responsibilities of NOAA are to assess the socioeconomic impact
of natural and technological changes in the environment and to monitor and predict the state of the solid
Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa­
tion in the following kinds of publications:

PROFESSIONAL PAPERS—Important defini­
tive research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS—Reports
prepared by contractors or grantees under NOAA
sponsorship.

ATLAS—Presentation of analysed data generally
ia the form of maps showing distribution of rain­
fall, chemical and physical conditions of oceans and
atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS—Re­
ports containing data, observations, instructions,
etc. A partial listing includes data serials; predic­
tion and outlook periodicals; technical manuals,
training papers, planning reports, and information
serials; and miscellaneous technical publications.
TECHNICAL REPORTS-Joumal quality with
extensive details, mathematical developments, or
data listings.
TECHNICAL MEMORANDUMS—Reports of
preliminary, partial, or negative research or tech­
nology results, interim instructions, and the like.

n

Information on availability of NOAA publications can bo obtained from:

NATIONAL TECHNICAL INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE

9285 PORT ROYAL ROAO
SPRINGFIELD, VA 2216 1

	Structure Bookmark
	QC874.3.U63no.43

