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ABSTRACT: The prediction of wintertime extratropical cyclone activity (ECA) on subseasonal time scales by models
participating in the Subseasonal Experiment (SubX) and the Seasonal to Subseasonal Prediction (S2S) is assessed.
Consistent with a previous study that investigated the S2Smodels, the SubX models have skillful predictions of ECA over
regions from central North PaciÞc across North America to western North Atlantic, as well as East Asia and northern and
southern part of eastern North Atlantic at 3Ð4 weeks lead time.SubX provides daily mean data, while S2S provides instantaneous
data at 0000 UTC each day. This leads to different variance ofECA. Different S2S and SubX models have different reforecast
initialization times and reforecast time periods. These factors can all lead to differences in prediction skill. To fairly compare the
prediction skill between different models, we develop a novel way to evaluate the prediction of individual model across the two
ensembles by comparing every model to the Climate ForecastSystem, version 2 (CFSv2), as CFSv2 has 6-hourly output and
forecasts initialized every day. Among the S2S and SubX models, the European Centre for Medium-Range Weather Forecasts
model exhibits the best prediction skill, followed by CFSv2. Our results also suggest that while the prediction skill is sensitive to
forecast lead time, including forecasts up to 4 days old into the ensemble may still beuseful for weeks 3Ð4 predictions of ECA.
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1. Introduction

Extratropical cyclones have large impacts on regional
weather and climate. They also have signiÞcant societal im-
pacts, as these cyclones can bring heavy precipitation, strong
winds, storm surge, and heavy snowfall, especially in winter-
time. Therefore, accurate predictions of extratropical cyclone
activity (ECA) can help to secure life and property against
disastrous events, and provide useful information for decision
makers in transportation, water security, agriculture and en-
ergy. To take multiple extratropical cyclones into account on
weekly to seasonal time scales, the aggregate paths of extra-
tropical cyclones, also referred to as extratropical storm tracks,
are often used to represent ECA. Previous works have exten-
sively studied observational, theoretical, and modeling aspects
of ECA [see the review papers by Chang et al. (2002) and
Shaw et al. (2016)]. Different phenomena can modulate ECA
on various time scales (Chang et al. 2002; Chang et al. 2013;
Stockdale et al. 2010). El Ni ñoÐSouthern Oscillation (ENSO)
signiÞcantly modulates Northern Hemisphere (NH) ECA on
interannual time scales (Straus and Shukla 1997; Zhang and
Held 1999; Eichler and Higgins 2006; Ma and Chang 2017).
During El Ni ño years, an equatorward and eastward shift of
boreal winter ECA is found over the PaciÞc, and ECA over
North America weakens. The MaddenÐJulian oscillation
(MJO) has signiÞcant impact on ECA over the North PaciÞc,

the North Atlantic, and North America ( Zheng et al. 2018;
Deng and Jiang 2011; Lee and Lim 2012; Guo et al. 2017) via
the MJO-induced Rossby waves that propagate into the mid-
latitudes. The quasi-biennial oscillation (QBO) gives rise to
variability of NH ECA as well, especially in the upper tropo-
sphere (Wang et al. 2018a). Note that QBO also modulates the
MJO impact on ECA over the PaciÞc (Wang et al. 2018b). The
polar vortex in the NH stratosphere also has signiÞcant inßu-
ence on ECA (Kidston et al. 2015; Scaife et al. 2012), especially
over the North Atlantic (e.g., Walter and Graf 2005). Through
the ÔÔdownward controlÕÕ mechanism (Haynes et al. 1991), the
midlatitude jet and the North Atlantic Oscillation (NAO) are
modulated by stratospheric wind anomalies, resulting in en-
hanced or suppressed ECA due to stronger or weaker zonal
ßow. The phenomenon mentioned above can be potential
predictors for ECA on subseasonal time scales.

On the weather time scale, the track and intensity of a single
extratropical cyclone can be skillfully predicted with a few days
of lead time (e.g., Froude et al. 2007a,b; Froude 2010). For
longer time scales (more than 2 weeks), due to the chaotic
nature of the atmosphere, a single extratropical cyclone is not
expected to be well predicted (Froude et al. 2007a,b; Froude
2010). Thus, for subseasonal prediction in this study, we will
focus on ECA, which represents the aggregated inßuences
(e.g., pressure, wind, eddy kinetic energy) of multiple extra-
tropical cyclones. There have been two ways to represent
ECA, the Þrst uses cyclone tracks (e.g.,Klein 1957), and the
second uses statistics on gridded atmospheric data, for exam-
ple, using variance of meridional wind or mean sea level
pressure (MSLP) in a frequency band covering the synoptic
time scales (e.g.,Blackmon 1976; Lau 1978; Chang and Fu
2002). As passages of extratropical cyclones close to a given
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location generates pressure perturbations as well as wind
anomalies, temporal variance of pressure or wind at a grid
point can capture the aggregate inßuence of extratropical cy-
clones over time. In this study, we apply a 24-h difference Þlter
(Wallace et al. 1988) onto MSLP data to deÞne ECA:

ECApp 5 [MSLP ( t 1 24 h ) Ð MSLP (t )] 2 , (1)

where t is any time step of Reanalysis or forecast dataset. Hence
ECA is quantiÞed at each grid point by the mean square of the
24-h difference of MSLP. The overbar represents averaging over
time, which can be 1 week, 2 weeks, or 1 month. As shown by
previous studies (e.g.,Chang and Fu 2002;Wallace et al. 1988), the
maxima from this 24-h difference Þlter, lie over locations where
extratropical cyclones preferentially cross (see alsoFig. 1a). Thus,
the variance statistics of MSLP can be a good measure of ECA.

Both cyclone tracks and variance statistics have been used to
evaluate ECA prediction by climate prediction models for
subseasonal to seasonal forecasts.Befort et al. (2019) used
cyclone tracks based on MSLP to assess seasonal prediction of
ECA by the European Centre for Medium-Range Weather
Forecasts (ECMWF) and British Meteorological OfÞce cli-
mate prediction models in terms of ensemble mean cyclone
track density, and found some skill on seasonal time scales over
the North Atlantic, which is related to the North Atlantic
Oscillation. Lukens and Berbery (2019) used cyclone tracks
based on 850-hPa potential vorticity to assess subseasonal
prediction of ECA by the National Centers for Environmental
Prediction (NCEP) Climate Forecasting System, version 2
(CFSv2). They found that the root-mean-square errors in bias-
corrected cyclone frequency and amplitude are close to or
exceed one standard deviation, suggesting little prediction
skill. However, Lukens and Berbery (2019) only used one
single forecast member to estimate the prediction skill on
subseasonal time scales. Usually the skill of an ensemble of

multiple members has higher skill, as averaging over multiple
members reduces the noise in the forecast data.Yang et al.
(2015) assessed seasonal ECA predictions by the Geophysical
Fluid Dynamics Laboratory climate prediction model based on
MSLP variance. They found skill associated with the ENSO out
to lead times of 9 months.Zheng et al. (2019; hereafter Z19) also
used variance statistics based on MSLP to assess predictions of
ECA in subseasonal to seasonal time scale (see below). The
method to deÞne ECA in this study [Eq. (1)] is the same as that in
Z19. Z19 found that models that participated in the Seasonal to
Subseasonal Prediction (S2S) project (Vitart et al. 2017) show
signiÞcant prediction skill over East Asia, the central and eastern
North PaciÞc, the central part of North America, Gulf of Mexico
and the western Caribbean Sea, the central North Atlantic, as
well as Scandinavia and the Norwegian Sea in week 3Ð4
predictions. The sources of predictability are mainly related to
ENSO and the polar vortex. While the MJO can potentially be
an important source of subseasonal predictability, the S2S
models do not accurately capture the MJOÕs impact on ECA.
In addition, Z19 did not Þnd signiÞcant contributions directly
from the QBO to ECA subseasonal predictions.

In this study, methods similar to Z19 will be applied to the
models participating in the Subseasonal Experiment (SubX;
Pegion et al. 2019) to evaluate model prediction skill. In ad-
dition, we will also compare model performance among S2S
and SubX models. ECA is derived from MSLP data in this
study. S2S provides instantaneous MSLP data at 0000 UTC
each day, while SubX provides daily mean MSLP data. This
results in different variability of ECA (see more details in
section 2), which makes it inappropriate to combine the S2S
and SubX models into a larger ensemble. Also, whether this
difference in ECA variability between the SubX and S2S en-
sembles will lead to differences in prediction skill will be ex-
plored in this study. In addition, different models in the
SubX and S2S ensembles perform reforecasts with different

FIG . 1. (a) Climatology of the Northern Hemisphere extratropical cyclone activity (ECA; hPa 2) for 1979Ð2017 winters (DecemberÐ
February) based on all ERA-Interim reanalysis daily mean sea level pressure (MSLP) data. (b) Standard deviation of 7-day running mean
ECA (hPa 2). (c) Standard deviation of 14-day running mean ECA (hPa2).
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initialization times and reforecast periods, which can lead to
different prediction skill ( sections 3and 4). In this study, we
will introduce a method to compare any SubX or S2S model to
CFSv2 in a fair way. As CFSv2 is frequently initialized (every 6 h)
with 6-hourly output available, one can construct a subsample of
CFSv2 reforecasts, which has the same reforecast initialization
time as that of any model. Then this subsample of CFSv2 can be
fairly compared with that model. In this way, CFSv2 provides a
bridge to compare the skill among different models. In section 2,
the datasets and metrics to evaluate ECA predictions will be
introduced. Prediction skill of ECA in SubX models will be
evaluated in section 3. The comparison between SubX and S2S
ensembles will be provided in section 4. The conclusions and
some implications of this study will be discussed insection 5.

2. Data and methods

a. Data

1) SUB X AND S2SMODELS

At the time the analyses were performed, seven models from
six participating modeling groups from the SubX dataset have

available MSLP data with complete wintertime [DecemberÐ
JanuaryÐFebruary (DJF)] reforecasts. We make use of Þve of
the models: ECCC-GEPS5, EMC-GEFS ESRL-FIM, GMAO-
GEOS, and RSMAS-CCSM4 (seeTable 1; we have problems
processing the MSLP data from the other two models in SubX,
see Text S1 in the online supplemental material). These Þve
models have different ensemble sizes, reforecast initialization
frequency, forecast time ranges and resolutions (seeTable 1).
Some of the models have coupled ocean and sea ice compo-
nents, while others do not. We make use of daily MSLP data
on a 18 3 18horizontal resolution grid from the SubX dataset.
The daily MSLP is the mean of 0000, 0600, 1200, and 1800 UTC
of each day. ECA prediction will be evaluated during the
overlapping period of SubX models (from DJF 1999/2000 to
DJF 2015/16; 17 seasons in total).

To compare model prediction skill between SubX and S2S
models, we make use of the six models from the S2S dataset
evaluated by Z19 (CMA, CNR-ISAC, CNRM, ECCC-GEM,
ECMWF, and HMCR; see Table 2). Similar to SubX models,
there are also signiÞcant differences in the setup among the S2S
models. MSLP data are available on a 1.58 3 1.58horizontal
resolution grid at 0000 UTC at each forecast day for S2S

TABLE 1. The description of SubX models that are used in this study. Note that for NCEP-CFSv2, we directly use the NCEP-CFSv2
reforecast and operational forecast, as MSLP is not archived in the SubX website. See main text for ensemble size of NCEP-CFSv2.

Model
Time
range

Atmosphere
model resolution

Reforecast
frequency

Reforecast
period

Reforecast
Sizes

Ocean
coupling

Sea ice
coupling

Environmental and Climate
Change Canada Global
Ensemble Prediction System
(ECCC-GEPS5)

Day 0Ð32 0.458 3 0.458; 40
levels;

Weekly 1998Ð2017 4 No No

National Centers for
Environmental Prediction
(NCEP) Environmental
Modeling Center, Global
Ensemble Forecast System
(EMC-GEFS)

Day 0Ð35 T574L64 for 0Ð8
day and T382
for 8Ð35 day

Weekly 1999Ð2016 11 No No

National Oceanic and
Atmospheric Administration,
Earth System Research
Laboratory, Flow-Following
Icosahedral Model (ESRL-FIM)

Day 0Ð32 ; 60 km; 64
vertical layers;

Weekly 1999Ð2016 4 Yes Yes

National Aeronautics and Space
Administration, Global
Modeling and Assimilation
OfÞce, Goddard Earth
Observing System
(GMAO-GEOS)

Day 0Ð45 GEOS5Ð0.58
horizontal

resolution; 72
vertical layers

Every 5 days 1999Ð2016 4 Yes Yes

National Center for Atmospheric
Research Community Climate
System Model, version 4 run at
the University of Miami
Rosenstiel School for Marine
and Atmospheric Science
(RSMAS-CCSM4)

Day 0Ð45 0.98 3 1.258; L26 Weekly 1999Ð2016 3 Yes Yes

National Centers for
Environmental Prediction,
Climate Forecast System,
version 2 (NCEP-CFSv2)

Day 0Ð45 T126 L64 Every 6 h Ñ Ñ Yes Yes
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models. Z19 evaluated S2S model predictions over their
overlap period from DJF 1997/98 to 2009/10. Here, when
comparing models across SubX and S2S, only reforecasts in
DJF from 1999/2000 to 2009/10 will be evaluated for both
datasets.

CFSv2 (Saha et al. 2014; also seeTable 1) participates in
both the SubX and S2S projects. As MSLP data from CFSv2 is
not archived in the SubX dataset, here we directly use the 6-
hourly MSLP forecast data from CFSv2 reforecasts (1999Ð
2011) and operational forecasts (2011Ð16). These reforecasts
(or operational forecasts) are initialized every 6 h, and MSLP
data are available on a 18 3 18horizontal resolution grid every
6 h. In this study, CFSv2 is combined into both the SubX
multimodel ensemble (MME) and S2S MME. To be con-
sistent with other SubX models, when comparing with SubX
models or constructing the SubX MME, CFSv2 ECA is
calculated by using daily mean MSLP (average of MSLP at
0000, 0600, 1200, and 1800 UTC). Similarly, when compar-
ing with S2S models or constructing the S2S MME, CFSv2
ECA is calculated by using MSLP at 0000 UTC, which is also
regrided from 18resolution to 1.58resolution. As discussed
in the introduction, frequent reforecasts with 6-hourly

output available makes CFSv2 the bridge to compare dif-
ferent SubX and S2S models.

CFSv2 only provides one hindcast at each 6-hourly initiali-
zation time. One common way to combine the CFSv2 members
into an ensemble is to use the lagged ensemble method (e.g.,
Chen et al. 2010, 2013; Riddle et al. 2013; Zhu et al. 2013). Chen
et al. (2013) showed that the optimal number of lagged en-
semble members that should be included in a lagged-ensemble
is determined by a balance between two competing factors:
increase in prediction skill due to a larger ensemble, and deg-
radation of skill due to inclusion of members with longer lead
times. They also showed that the optimal number depends
critically on the variable predicted. Here, we use a 16-member
lagged ensemble of CFSv2 (a lagged ensemble by using all
reforecasts initialized within 4 days) for two reasons. First,
when we construct the SubX or S2S MME, only the reforecasts
initialized within 4 days are included (see more details in
section 2band Z19), the construction of the 16-member CFSv2
lagged ensemble is consistent with the way we construct the
SubX or S2S MME. More importantly, as we will show later,
the weeks 3Ð4 prediction skill of the lagged CFSv2 ensemble is
still marginally increasing as we add members with longer lead

TABLE 2. The description of S2S models that are used in this study. Note that for NCEP-CFSv2, we directly use the NCEP-CFSv2
reforecast and operational forecast. See main text for ensemble size of NCEP-CFSv2. Also note that NCEP-CFSv2 and ECCC-GEPS5 are
not included in the S2S ensemble inZ19. As NCEP-CFSv2 ensemble is ÔÔinitializedÕÕ every day (see main text), we also combine NCEP-
CFSv2 into the S2S MME in this study. As combining ECCC-GEPS5 into the S2S MME will signiÞcantly reduce the number of available
MME cases, ECCC-GEPS5 is not combined into the S2S MME. But we will compare ECCC-GEPS5 prediction skill with individual
models in the S2S ensemble.

Model
Time
range

Atmosphere
model resolution

Reforecast
frequency

Reforecast
period

Reforecast
Sizes

Ocean
coupling

Sea ice
coupling

China Meteorological
Administration (CMA)

Day 0Ð60 T106 L40 Daily 1994Ð2014 4 Yes Yes

Institute of Atmospheric
Sciences and Climate of the
National Research Council
(CNR-ISAC) (model version
date 6 Jun 2017)

Day 0Ð32 0.758 3 0.568L54 Every 5 days 1981Ð2010 5 No No

Météo-France/Centre National
de Recherche
Meteorologiques (CNRM)

Day 0Ð61 T255 L91 4 times a month 1993Ð2014 15 Yes Yes

Environment and Climate
Change Canada Model
(ECCC-GEM) version:
GEM Jan-2016

Day 0Ð32 0.458 3 0.458L40 Weekly 1995Ð2014 4 No No

European Centre for Medium-
Range Weather Forecasts
(ECMWF) Model version:
CY43R3

Day 0Ð46 Tco639/319 L91 Twice a week 1997Ð2016 11 Yes Yes

Hydrometeorological Centre
of Russia (HMCR)

Day 0Ð61 1.18 3 1.48L28 Weekly 1985Ð2010 10 No No

National Centers for
Environmental Prediction,
Climate Forecast System,
version 2 (NCEP-CFSv2)

Day 0Ð45 T126L64 Every 6 h Ñ Ñ Yes Yes

Environment and Climate
Change Canada (ECCC-
GEPS5) Model version:
GEPS5 Sep 2018

Day 0Ð32 0.358 3 0.358L45 Weekly 1997Ð2016 4 No No
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time up to 16 members. Therefore, we believe that it is rea-
sonable to construct the 16-member CFSv2 ensemble for
weeks 3Ð4 prediction of ECA. Given that all other SubX
models used in this study have initialization times that are
separated by more than 4 days (seeTable 1), CFSv2 is the only
model that lagged ensemble is used.

2) REANALYSIS AND OTHER DATASETS

ECA calculated from European Centre for Medium-Range
Weather Forecasts (ECMWF) interim reanalysis (ERA-
Interim; Dee et al. 2011). MSLP is used as the veriÞcation for
ECA hindcasts in this study. When verifying SubX data, daily
averages of MSLP are calculated from 6-hourly ERA-Interim
MSLP on a 0.758 3 0.758grid, and then regrided onto a 18 3 18
horizontal resolution grid. MSLP data at 0000 UTC is regrided
to a 1.58 3 1.58grid when verifying S2S models.

The phase of ENSO is deÞned by the Niño-3.4 index, which
is obtained from the National Oceanic and Atmospheric
Administration (NOAA) Earth System Research Laboratory
(ESRL) website. This index is calculated from the Hadley
CentreÕs Sea Ice and Sea Surface Temperature (SST) dataset
(HadISST1; Rayner et al. 2003).

b. Methods

1) DEFINITION OF ECA

As discussed in the introduction, ECA is deÞned by applying
a 24-h difference Þlter on MSLP data [Eq. (1)]. Daily MSLP is
used for SubX data, while 0000 UTC instantaneous MSLP is
used for S2S data. The winter climatology of ECA, as well as
variability on weekly, and biweekly (week 3Ð4 prediction skill
is evaluated in this study) time scales, are shown inFig. 1. The
variability is deÞned as the standard deviation of weekly or
biweekly ECA during DJF in reanalysis. Figure 1a shows that
ECA and its variability are maximized over the midlatitude
oceanic basins, along a band extending from the western
PaciÞc, across North America, the Atlantic, into northern
Europe. Most of the contribution of ECApp is from extra-
tropical cyclones and anticyclones, with almost no contribution
from tropical cyclones, and the climatological ECApp is very
small in the tropics (Fig. 1a). This is also the case for other
seasons, including summer (not shown). Previous studies have
shown that monthly and seasonal variations in ECA as deÞned
by (1) are well correlated with variations in precipitation and
weather extremes (e.g.,Chang et al. 2015; Yang et al. 2015; Ma
and Chang, 2017) in many midlatitude regions.

Although the climatologies of ECA computed using daily
mean MSLP (Fig. 1a) and 0000 UTC MSLP (Fig. 1a in Z19)
data look very similar, the amplitudes of reanalysis winter bi-
weekly variability, ( Fig. 1c and Fig. S1f in the online supple-
mental material; Fig. S1f is the same as Fig. 1c inZ19) are very
different. The differences in Fig. 1cand Fig. S1f are not due to
the differences in spatial resolution. As shown in Figs. S1c and
S1d, compared withFigs. 1b and 1c(or Figs. S1a,b, which are
the same), ECA variability computed on a 1.08grid and on a
1.58grid are almost identical, which is not surprising since the
two different data resolutions merely represent regridding
from the same original data. Thus, the differences in the

amplitudes of weekly or biweekly variability are due to the use
of daily mean MSLP versus 0000 UTC instantaneous MSLP to
calculate ECA. The reason is that 0000 UTC MSLP is noisier
than daily mean MSLP. Hence the variance of ECA calculated
from 0000 UTC MSLP (Fig. S1f; or Fig. 1c in Z19) is larger than
that calculated from daily mean MSLP (Fig. 1c). As using
0000 UTC MSLP or daily mean MSLP leads to different var-
iability of ECA in reanalysis data, certainly it will also lead to
different ECA variability calculated from S2S and SubX
models. With different amplitude of variability in ECA simply
because of the way MSLP is archived but not because of the
models themselves, it is inappropriate to combine ECA from
SubX and S2S models into a larger ensemble and then calculate
ensemble mean. Also, with the differences in ECA variability,
whether using daily mean MSLP or 0000 UTC MSLP will lead
to differences in the prediction skill of ECA remains unclear.
This will be examined in section 4.

2) CLIMATOLOGY AND ANOMALIES OF ECA

Bias corrections for subseasonal forecasts are important as
the model bias can become dominant on subseasonal time
scales (e.g.,Monhart et al. 2018). For SubX models, a model
climatology that depends on the model initialization time and
forecast day (e.g., forecast day 1, forecast day 2. . .) is deÞned to
correct the model bias of ECApp but not MSLP. Similar to
Z19, all the reforecast of ECA of one single model can be
written as ECApp model(y, d, n, f ), where y is year, d is initiali-
zation day during each year,f is the forecast lead day.n 5 1, . . . ,
N, whereN is the number of ensemble members for each model.
The model climatology at each grid point, which depends on the
reforecast initialization time and forecast day, is obtained by
averaging all the years and removing the Þrst four harmonics of
the annual cycle:

ECApp cli (d, f ) 5
�
y
�
n

ECApp model(y, d,n, f )

N 3 Y
. (2)

Here, Y is the total number of years. Model anomalies are then
deÞned as the deviation from model climatology:

ECApp ano(y, d,n, f ) 5 ECApp model(y, d,n, f ) 2 ECApp cli (d, f ).

(3)

Note that each model has its own climatology ECAppcli(d, f ),
and the anomaly of each model ECAppano is the deviation
from the modelÕs own climatology ECAppcli(d, f ). Following
Z19, ECA model climatology and anomaly for the S2S models
are deÞned similarly. Also, as discussed inZ19, the similar
method can be applied to deÞne reanalysis climatology and
anomalies, except that there is only one ensemble member for
the reanalysis and the reanalysis climatology does not depend
on the forecast day.

3) COMBINING DIFFERENT MODELS INTO AN MME

It has been shown by previous studies that in terms of
prediction skill, a multimodel ensemble (MME) usually
outperforms a single model (e.g.,Hagedorn et al. 2005; Smith
et al. 2013; Becker et al. 2014). In addition, Z19 shows that
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combining S2S models into an MME is beneÞcial to ECA
subseasonal forecast. Here, we also combine the SubX models
into an MME. Since the reforecasts are initialized on different
dates for different SubX models, we follow a procedure similar
to Z19 to construct the MME. During the overlapping winter
seasons of the SubX models (DJF from 1999/2000 to 2015/16),
for every day and every model, we deÞne the lead time of the
reforecast. The lead time at any day of a model forecast is the
gap between this day and the initialization time of the nearest
reforecast earlier than this day. We select the days as day 0 of
the MME if that day satisÞes all the following requirements: 1)
Every model has a lead time less than or equal to 4 days. 2) If
continuous days satisfy the requirement(1), only the earliest
day is selected (to make the lead time smallest). 3) The aver-
aged lead time of the 6 S2S models is smaller than 1.5 days.
There are 182 cases that we can combine the SubX models into
an MME in 17 winter seasons. The procedure here is the same
asZ19, except for the additional requirement 3. This require-
ment is added not only to reduce the lead time of the models
(which is important for the prediction skill, see sections 3 and
4), but also to reduce the MME case frequency from about
twice a week to about once a week. As the reforecasts of four
SubX models are initialized once a week, we want to make the
frequency of MME cases to be about once a week in order to
avoid using one run of any model in multiple MME cases.

4) PREDICTION SKILL OF ECA

We use the anomaly correlation coefÞcient (ACC) to assess
the model prediction skill. The association between the
anomalies in forecast and analysis can be represented by the
ACC. When calculating the ACC, we use the ensemble mean
(EM) of a single model, or the EM of an MME (every model
member is weighted equally). The ACC at any grid point can
be written as
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where ECApp EM
ano(y, d) represents the ensemble mean of

model forecast anomalies, and ECAppobs
ano(y, d) is the anomaly

in the reanalysis data. FollowingZ19, only weekly or biweekly
ACC is calculated. We have also examined the Heidke skill
score, but the results are consistent with those using ACC as
well as the results presented inZ19 and thus are not shown (see
Text S2 in the supplemental material).

5) COMPARISON OF PREDICTION SKILL BETWEEN

CFSV2 AND OTHER MODELS

As the reforecasts are initialized differently among the SubX
models, usually the number of reforecasts and the reforecast
initialization times are different between any of two SubX
models. After combining the SubX models into an MME, the
number of reforecasts is the same. But different models have
different lead time in the MME. As lead time can degrade the
forecast skill (see section 3), it may not be fair to directly
compare the forecast skill of two models using the MME cases.
As CFSv2 ensemble is available every day, here we develop a

way to directly compare CFSv2 versus any other model. For
any model in the SubX ensemble, say EMC-GEFS, we just
use a subsample of the CFSv2 ensemble. We make this sub-
sample of CFSv2 reforecasts have the same reforecast initial-
ization dates as EMC-GEFS. Then the forecast skill calculated
within this subsample of CFSv2 reforecast can be fairly com-
pared with EMC-GEFS, since they are both initialized during
the same dates. Note that here we still use the same method
mentioned above in this section to calculate forecast skill
(ACC), and the bias corrections of each model are still based
on the modelÕs own climatology. This method can show the
forecast skill of any model relative to CFSv2.

3. ECA predictions by SubX models

Weekly ACC for the MME of weeks 1Ð4 is shown in Fig. 2.
The prediction skill decreases from week 1 to 4, as the ACC is
above 0.6 almost everywhere in the midlatitudes in week 1
(Fig. 2a), and the highest ACC during week 4 (Fig. 2d) is only
0.3Ð0.4. Consistent with the S2S models (seeZ19), starting
from week 2 (Figs. 2bÐd), high ACC is found over east Asia,
the central and eastern North PaciÞc, the Bering Sea and
Alaska, central North America, the Gulf of Mexico and
western Caribbean Sea, and the North Atlantic along 308Ð458N
and 608Ð758N. Following Z19, weeks 3Ð4 (week 3 and week 4
combined) prediction will be the main focus here.

Weeks 3Ð4 ECA ACC for several models and the MME are
shown in Fig. 3. Note that as discussed inZ19, models with
small ensemble sizes (e.g., fewer than Þve ensemble members)
generally have relatively low prediction skill. Therefore, the
models with smaller ensemble size in the SubX ensemble,
which are ECCC-GEPS5, ESRL-FIM, GMAO-GEOS, and
RSAMS-CCSM4, are combined into one larger ensemble.
ACC of these four models is shown in Fig. S2. This four-
model ensemble (Fig. 3e; equivalent to Fig. 3b without
EMC-GEFS) with 15 members, has better prediction skill
than the 11-member EMC-GEFS (Fig. 3c), but has lower
ACC than the 16-member CFSv2. CFSv2 has the best pre-
diction skill among the SubX models, in terms of single
model performance. The MME ( Fig. 3a) has better predic-
tion skill than any single model. Combining the models
other than CFSv2 (Fig. 3b), provides similar prediction skill
compared to CFSv2.

Figure 4a shows the ACC averaged over the NH (north of
108N) of individual models and the MME for the 182 MME
cases. Thex axis represents the size of the ensemble, which is
different for CFSv2 and for the other models. For the other
models in Fig. 4a, if the value of the x axis is equal to x, we
selectx members from the total N members randomly for 200
times and use the average ACC of these 200 samples as the
ordinate. For CFSv2, as different ensemble members have
different lead times, we use the ACC of the latest member for
x 5 1, the ACC of the ensemble combining the latest two
members for x 5 2, and so on. Thus, the CFSv2 line (cyan line)
looks noisy as there is less averaging for each point for the line.
Nevertheless, we can see that the prediction skill for CFSv2
generally increases as the number of lagged-ensemble mem-
bers is increased, but the rate of increase slows considerably as
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the number of members reaches 16. Thus a 16-member lagged
ensemble for CFSv2 is appropriate.

The MME without CFSv2 (dashed blue line), which has 26
members, has similar ACC compared to the 16-member
CFSv2. It is quite clear that the MME (dashed red line) has
the best ACC. The Þve SubX models other than CFSv2, have
relatively similar performance, as the red, green, dark green,
purple, and blue solid lines are clustered together. EMC-GEFS
ensemble has high ACC due to larger ensemble size. And these

Þve models have lower ACC than CFSv2. One potential reason
is that with the MME cases here, the Þrst member of CFSv2 has
no lead time (as it is initialized every 6 h), while all members of
the other models generally have nonzero lead times. InFig. 4c,
we use all the available cases in CFSv2 (every day) in DJF and
show the NH averaged prediction skill of CFSv2 ensemble for
lead time from 0 to 3 days. We use the same 16 members at lead
time 0. For lead time 1 only 12 members (the latest 4 members
excluded) are used, and so on. Therefore, the ensemble size is

FIG . 2. (a)Ð(d) Prediction skill [anomaly correlation coefÞcient (ACC)] of multimodel ensemble (MME, 42
ensemble members) of extratropical cyclone activity for week 1Ð4, respectively. The region A (50.58Ð60.58N,
110.58Ð78.58W) is plotted in (d). See Text S3 for deÞnition of region A. For the 182 cases that are investigated here, a
correlation of 0.15 is signiÞcant at 95% level. Note that the average interval between each case is about a week. In
addition, over most of the regions, autocorrelation with 1-week lag of weekly ECA is not signiÞcant at the
95% level.
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