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Abstract: Reservoir management is a critical comporéiitood management, and information
on reservoirinflows is particularly essential for reservoir managers to makenedlecisions
given thatflood conditions change rapidhhis study’s objectivés to build reattime data-
drivenservices that enable managtrsapidly estimate reservoir inflows from available data
and modelsWe.have tested the services using a case siuithe Texas flooding evenits the
Lower Colorado River Basin in Nember2014 and May 2015, which involvedsudden switch
from drought to flooding. We have constructed two prediction modedatistical moddbr

flow prediction anda hybrid statistal and physics-based modkeé&t estimates errors in thew
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predictionsfrom a physics-based moddlhe study demonstratése statisticalflow prediction
modelcan be automated apdovidesacceptably accurate shderm forecastsHowever, for
longertermprediction(2 hours or more}he hybrid modefits the observations more closely
than the purelgtatisticalor physicsbasedorediction models alon®oth the flow and hybrid
prediction medels have been publisizsdWeb services throudlticrosoft's Azure Machine
Learning (Azur®lL) serviceand areaccessible through a browdsased Web application

enabling easeof use by both technical and non-technical personnel.

(Key Terms: flooding; datadriven modekervices; AzureML,; reservoinflow.)

INTRODUCTION
In this paper we demonstraenew frameworkor reattime flood management through data-
drivenservices to rapidly estimate reservoir inflows from available aadamodelsPhysics-
based models are widely used in reserm@nagement~or example, th&lational Weather
Service (NWSYiver forecast centers use physised models for daily forecasts. These models
often requirerextensive manual effort for calibration that can makémeablipdates difficult.
Datadriven'moded, such as statisticalr machine learning modelgse historical data t@apidly
learn a funetional mapetween concurrent input and output variables. Large and growing
volumes.and varieties ofata can be retrieved to derive these types of modeigdata services
from sensors, satelliteand other data sourc&atadriven models can be coupled with physics
based models by fitting a data-driven model to the residual error from the pbgsex$model,
thereby reducingny persistent bias in the physbased modd|Singh & Woolhiser, 2002)This
paper explores these alternative approaches fotinealflood management and implements the
resulting models as retime services using the AzureMEersice More background for each of

these componesgis gven below.

Traditional hydrologic modelsave evolved from lumped conceptual models to physased
distributed.models where approximatiaighe partial differential equation or empirical
equationsareapplied (Abbott et al., 1986b). ddelsof the physical processes employ
mathematical functionthatsimulatehydrologic processes amdually involve complex

nonlinear processes with high spatial variability atithsin scaléSingh & Woolhiser2011).
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Data sources for physicallyased models can bemplex and limitedand calibration can be
difficult and time consuming.

Datadriven modding is an alternative approach ttaliows rapid construction of complex
models to_estimate outcomieasedon past experiences and historical eveldidadriven
models analyzeelationships between concurrent input and output time s&wodsnfatine and
Ostfeld, 2008).and can be applied either alone (using a purely statistical modetpojuinction

with physiesbased models, which use mathematical equations derived from the physical

processes‘(creating a hybrid model). Machine learning methods are a type of statistical approach

that can be fit rapidly and automatically to represent highly complex relapsn3ine popular
data-driven machine learnimgethods used in river systems include artificial neural nesvork
(ANN), fuzzy rulebased systemand support vector machines (SVM), among others.
Hybrid models often use machine learning approaches todit mwdels to the residual errors in
a physics-based forecasting model. Gragne et al. (2015) implemented a filter updating
procedures to update error forecast to improve reservoir inflow forecasts. @tayn@015)

proposed anrerror model to improve hourly reservoir inflow forecasts over one day ahead.

Many applications of ANN focus on rainfallnoff modelqe.g., Sharma et al., 2008brahart et
al., 2007,.de Vos and Rientjes, 2007, Nourani et al., 26@00fdl is acommoninput feature
for data-driven models of river systems. Many reservoir inflow prediction staldeely
mainly on"ANN and rainfall dat&oulibaly et al(2000)first used an ANN to forecast daily
reservoir inflowanda multilayer feedforward neural network (FNN) with an early stopped
training appreach (STA) to improve prediction accur&dyShafie et a(2007) usedistorical
reservoir inflow and ANN to predict monthly reservoir inflolBse et al. (2007) implemented
Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict monthly dam inflow using past
observed data.and future weather forecasting information. Zhand20@®) implemergd
multilayer perceptron artificial neural networks (MHANNS) using observed precipitation and
forecasted. precipitation from QPF to predict daily reservoir infeama and Chowdhury
(2011) reviewed static and dynamic ensemble methods in probalés#coir system
forecasting modslto reduce structural errordothiprakash and Magar (2012) preddbdaily
and hourly intermittentainfall andreservoir inflowusingANN, an adaptive neuro-fuzzy
inference system (ANFISand linear genetic programming (GLP). Valipour (20d@ypare
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autoregressive moving avera@eRMA) and autoregressive integrated moving averggieIMA)
usingincreasing number of parameters with static and dynamic artificial neural networks. With
historical time series data as inpthieydemonstratethat static and dynamic autoregressive
ANNSs perform best in forecastingonthly reservoir inflow. Kumar et al. (2015) developed an
ensemble medel based on neural networks, wavelet anagsidootstragata samplingo

generate aange of forecast instead of point predictions for reservoir inflow.

Theseprevious'studies have focused on fiaear regression models and the predictive
performance is/good when compareith other statistical modelglthoughprevious studies
have focusedrepredicting reservoir inflow fromainfall andhistorical reservoir inflow data
they have not incorporatexil moistureas an input featurdoukourou et al. (2010) shadthat

rainfall and soilimoisture data are the major relevant varidtesservoir inflow.

As described abovéyrtificial Neural Network (ANN) is &commonly used data-driven approach
in hydrologyséee als®owden et al., 2012, Abrahart et al., 2012, Maier et al., 2010), but the
convergenee speed is low and training can require significant time that may be anthemier
nearreaktime model updating is required (e.g., Jain et al., 1PBfer & Dandy, 2000)This
studyuseshoosted regression trees (BRA9 function approximatorQur early tests showed that
BRT has advantages ifastertraining and higbar accuracythanANN for this application Others
have recently shown thBRT is effectiveas an ensemble machine learning apprdach
hydrology sErdabnd Karakurt (2013) have applied BRT as an ensemble learning method, which
performedwell’in predicting a monthly streamflow forecast. Snelder et al. (B@08)used BRT
to map the flow regime class by predicting the likelihood of the class of gaugestzsed on
watershed characteristicBRT has theadvantages of regression tréeficharebased on
decision trees.and built on a process of recursive partdaimhpoosting methedcreating
ensembls,of multiple models thatombine fast butveak learners tareatea strong leaner)rhe
approactcombiresmultiple simple trees intan additive regression model to improve predictive
performanceElith et al. 2008).

The data-driven models in this stuagredeveloped usingzureML StudioPredictive

Analytics a Aoud-hoseduserfriendly software toolkitthat allowsgraphical construction of
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data analysis steps (“workflows”) suchdega requestditting datadriven models, and data
visualization(AzureML team Microsoft2015). Thedatadrivenmodels built in AzureML
Studio carbepublished as Web servicea theAzure Cloud, providing scalability and high

softwareayailability and reliability as well agasy integration into modern software systems.

This study’s purposeés toinvestigate the feasibility and accuracy of e datadriven
services'to'estimate reservoir inflows from availald&éa The Texas flooding events in the
Lower Colorado River Basin iNovember2014 and May 2015, which involved a sudden switch
from draught to flooding, are used ascase studylhe Lower Colorado River Authority

(LCRA), whichvis responsible for reservoir management in this basies the physidsased
Hydrologic*Engineering Center’s Hydrologic Modeling System (HB@S) in the CorpsVater
Management System (CWMS3JEC-HMS predicts reservoir inflows from retime data

including precipitation, reservoir information, and other hyaheteorological data.

Currently k€RAuUsesa HEGHMS rainfall-runoff model to predict reservoir inflovtkatdoes
not consider 'soil moisture as an input dataset. The observed streamflow and soiendaist
are used-only to calibrate reservoir inflows manualbjl Boisturemay be anmportantfactor
for predictingreservoir inflowgKang et al., 2015) and a data-driven approach would allow
LCRA reservoir managets automaticallyupdatethe reservoiinflows as these conditions
change Inthis studywe explore a workflow approach thallows the model setip process to
be completed enly once by a technical analyst andekecutedy technical or nomechnical
users through-a Web browser. A workflow is a collection of tdsktuild an automated
pathway for heterogeneous modelstgps.

The performance of data-driven modeling approaches, including both statistical and hybrid
(coupling statistical and physitmsed) models is also assessed usiugted regressidnee
modulesfrom AzureML to predict reservoir inflows from reéime and hstorical precipitation

andsoil moisture dataThe models can be connected with other data services to obtain the input

data.The system ismplemenedas Web servicesn AzureML, which do not require any

software instalitionand can be rapidly updated as new data are obtaihedatadriven

This article is protected by copyright. All rights reserved



O 00 N o U A W N R

W W N N N NN NNDNNNNNPR R R R R R R p RB R
P O W 0O N O 1 B W N P O O O N O U1 B W N P O

services allow useand water managets automatically fitmodel parameters, compute data-
driven models, and retrieve reservoir inflow information through a Web browser.
METHODOLOGY
Figure 1 shows thgeneraldatadriven framework developdd this study to support reservoir
managements:, T he framework consist$vad main componentdl) algorithms and tools from
Azure PredictiveAnalytics toolkit and 2) Web applicatioizure Predictive Analytics
(predictiveanalytics is @ommercial term fomachine learning) is a machine learning platform
thatallowsrapid'training ofstatistical model$o describdéhe relationships between inputs

(“features?) and outputs (“targets’\yith execution on remote servers (in the “Cloudis first

componentomprisedata preparation, data preprocessing, and model development. The input

datasetswhichrincludefeature datasetnd target valuesre firstuploaded into AzureML
Studio.

For this studya wavelet analysis filter method &pplied for data preprocessingrénlucedata
noise,sincenoise orerrorsin the measured datasetsy mask important features in the data.
BoostedRregressioriree modulesn AzureML arethen employedo statistically model the
reservoirinflows usinglatadriven models. These model execution stepge beeronstructed
as workflows in AzureML, and flow prediction models and hylprieldiction modelsiave been
implementecasmodules in a workflow to prediceservoir inflow AzureML has significant
advantages in publishing the construatexkflows as Web services. A Web applicatiarhich
is Web browser-basedoftwarefor executing the built modelbas beembuilt that enables users
to execute thelata-driven modalsing Web service® predict reservoir inflowgnamediowin in
this study).

Datadriven models use historical data to learn a functional map between input and output
variables that.can be used to predict future output variables. Given inputsiduaiseclude
input features and output target values from historical data, a mapping can be fmeittict
future outputs,from known future input featurbitChell, 1997). For instancg=1f(x) is a
mapping (training model) between input variabdesd output variablg. Once the future input
variablesk are available, the future outpgtan be predicted using the training modtiekthis

study, wedevelop two types of data-driven models. The first ig@epurely data-driven
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statistical prediction modglatis used to directly predict reservoir inflows from soil moisture,
precipitation, upstream reservoir outflow, and historical reservoir infléve.SEcond type of
model is a hybrid prediction model, which corrects the results of phyagzd models that
predict reservoir inflow$rom weather, runoff, and streamflow predictions. The hybrid
prediction medel applies the available input features to predict differences between the physics
based modebredicted results and the obserdeada

[Insert Fig 1 here]

Data Preprocessing Using Wavelet Analysis

Wavelet analysis igsed to filter theeservoir inflowdatainto trend and noise partghis step is
necessarybecauteere are no direct measures of reservoir infldReservoir inflows are
derived from reservoir storage afhdwout (the flow out from the reservojrnvhichare subject to
fluctuations that may be caused by wave action when winds are high during storms or by
measurement errors of the sensarthe gauging stations (Tao, 1998)e use wavelet functions
to decomposerthe original data imigh-pass filterdetails)and lowpass filter(trend)
components (Valens, 1999, Polikar, 2001, Okkan, 2012).

Maximal.OverlapDiscreteWaveletTransform (MODWT) is a linear filtering operation that
produces time-dependent wavelets and scalagficients(Cornish& Percival 2005). It

performs better thaother methods such dsscrete wavelet transform (DWT) in fitting all
sample sizesince DWT requires sample size to be a multiple’oft®ere J is the decomposition
level (Cornish«& Percival2005). In addition, MODWT is independent of the starting point of
thetime serieswhichmeans that MODWT is not affected by circular shifting of the input time
series (Percival.and Walden, 2000).

The wavelet coefficient generated by a hp#ss filteris defined as
Li—1 ~
Wie =2Ly hjuXem (1)
The wavelet coefficient generated by a{pass filter is defined as

Li—1 _
Vie =22y GjiXe-t (2)
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wherej is the level of decompositioh,is the width of thg=1 base filter, {Ej,l} and {g; }are

wavelet and scaling filters respectively.

The decomposition press is shown iRigure 2. Take the decomposition level = 3 as an

example. lneach level, the original dataséis decomposed as treidand residuagrrorW. In

the first levelXis.decomposed ag andW;. The level 2 decomposition is based\an which

is the trend component from the last leW#l.is discarded. The decomposition continugasl

the defined decomposition levielreachedThe level of filtering selected for thparticular case

study (in this case, level 2) is then selected based on best professional judgment of the reservoir
operators;

[Insert Fig 2 here]

Prediction Medeling Using Boosted Regression Tree (BRT)
Datadrivensprediction models are computed using a boasg@ssion tree modeathichis an
ensemble/modehat integrates multiple singtegressiornrees Regression tree models use
recursive binary splits to predict the target varigglgh et al., 2008). Figure 3 demonstrates a
simple regression tree example. A tree model is built by splitting the input datasets into subsets
based omachselected input featuguch asc,, x,, x5, x4, x5). Thebestpartition(e.g.,x; <V,
andx; = 1) is computedrom each derived subset (called recursive partitionioghaximize
improvement.in,the model prediction. This process continues urftirtieer splitting improves
the predictions:\Boosting is an adaptive method of combining simple motieéssinglestrong
learnerto improve model performance. Pseudo cfmdeBRT has beemcludedin the appendix
of the paperKey features are the ability to ibmplex nonlinear models and high accuracy
(Elith et ak, 2008, Caruana & Niculescu-Mizil, 2006).

[Insert Fig 3 here]

Performanece Metrics
We use five performance metrics to evaluate the developed nfodpledicting current and
future reservoir inflows

a. Mean Absolute Erro(MAE)

1 ~
MAE = - i=1l¥: = il 3)
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wherey; is the prediction angl;is the true valueMAE averages abf the errors in the
model. When MAES closer to zero, the model fitgtter.
b. Root Mean Squared Error (RMSE)

1 ~
RMSE = (151,05 - 0 @)
wherey; is the prediction ang;is the true valueRMSEis a measurement of the average

of the.sgquares of the errors. RMSE=0 means a perfect fit of the model.
c. Relative-Absolute ErrofRAE)

Y-yl
ByE = T alyi-yl ®)

wherey; Is the predictiony;is the true value ang = %Z}Ll y;. RAE measures the
percentage of error over the true value. RAE = 0 if there is a perfect fit.

d. Relative'Squared ErrdRSE)

Y Pi-y)?
RSE ===t - 6
Z?=1(yi_3_’)2 ( )

wherey; is the predictiony;is the true value, ang = %Z?zlyi IS the mean true value

e. Coefficient of DeterminatiofR?)

RZ — ( Zi=1(37_i_37)(J’i_37) )2 (7)
[EA 05 2, )2

A~

wherey; is the predictiony;is the true valuey = % n Ly andy = % n9. R
measures how close the data are to the fitted regressioAfif.of 1 indicates a

perfect fit of the regression linand an Rof 0 indicates that the line does not fit the data

at all

Web Application

AzureML is aCloud servicdor machine learning experiments. The workflows are constructed
as directed aeyclic graphs (DAGS) in a \AlEsed graphical user interfabat enablesnodue
operations:en datasg&zureML team Microsoft2015).AzureML includesmachine learning
librariesfrom open source languagesch afk and Python, in addition to librarie$ statistical
methods and other data processing operations. In addition, Azuedids connections to

otherinfrastructure such as database sertehandle large amounts of data.
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Machine learning models can be manipulated as data workflows by joining moduleseMAzur

Studio as shown in Figure 4. Such data workflows, including data preprocessing, model building,

and resultyisualization are more natural and intuitive than stsigNontechnical users can
implement and updatbée data-driven approach without requiring advanced machine learning
skills or computing expertiségzureML team Microsoft2015).After the complete workflow is
built in AzureML Studio,it can be published as a Web service and shared with otherlassers

Web application.

A Web application builds the connection between client and server to enableb@krdivVeb
servicedo executehrougha simple Web interfacé&or instance, a modeling Web application
can be built as ‘an automated modeling system (workflow) that inaliadesccess, model
execution and output visualization. Swcklystem can be publishad Web service#\ custom
WebUser Interfacell) is thenbuilt to allow nontechnical users to access the Web senaoes

view the output directly through the Web browser.

In AzureMl, a [ython Application Programming Interface (API)sovided to easily access
AzureML.Web servicesA custom Ulallows users to download input data and execute the
prediction modelswith the results made available througk Ul. Reservoir managers who are
not familiar with machine learning and dataven aproachesnd aranterested in machine
learning approaches can use the \&@pplicationto predict reservoir inflow and compase
incorporateesultsfrom physicsbased modelsShe Web services provide a rapid approach for
reservoir managers tnderstand near-term impacts of current conditiongsearvoir inflowand
providesa proof of conceptor a reaitime Cloudbased system for reservoir management.

[Insert Fig 4 here]

CASE STUDY
Lake Travisis.in Travis County,located upstream of Lake AustitMansfield Dam operated by
LCRA, creats Lake Travis which serves to contain floodwaters and helps to manage flooding
downstream. The floodgate release is operated by LCRA under the directiotudbtfagmy
Corps of Engineers. The amount of release depends on weather and flood cosdtivas, the
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water level othe reservoir and downstream flow. Understandingthdictedreservoir inflow
during flooding eventkelps reservoir managers operdle dammore effectivelybased on such
information and their operating experience (Mateo et al., 2014).

[Insert Fig 5 here]

Datasets

The case studfpcuses on Texas flooding events in the Lower Colorado River Basin in
November2014 and May 2015, using the input and output data given in FigBred@pitation

and soil moisture input dateere collected fron31 grid pointsin Lake Travis Basin in the

upstream of MansfidlDam as shown in Figure 5.b. The precipitation becomes direct runoff and
the soil moisture affects surface runoff by reducing infiltration, which phygiatitcts

reservoir inflow:Other input featuieare the flow out of theupstream reservoBtarcke Dam
(flowout) and the premusflowin to Mansfield Dam as shown ifrigure 5a.

[Insert Fig 6 here]

The precipitatiordata(in kg/nf) weredownloaded from Phase 2 of the North American Land
Data AssimilatiorSygem (NLDAS2). NLDAS-2 forcing dataare derived from: (1poppler

radar datawhichareused in national weather foreca@ittp://radar.weather.gov/), (2) CPC
MORPHing (CMORPH)Technique, which produces global precipitation data at a high spatial
and temporal resolution

http: //www.epemncep.noaa.gov/products/janowiak/cmor ph_description.html), and(3) HPD

(Hourly Preeipitation Datasets) ddtatp://www.srh.noaa.gov/ridge2/RFC_Precip/). The data
arein 1/8"degree grid spacing (Rui & Mocko, 2013e soil moisture datan units ofkg/nt,
reliedon theNoahland surface model (Noah soil moisture 0-100 cm). Data from both models
can be downloadeda Web applicatiooy providingspatialcoordinatesnd specific time

periods.

The reservoir;hourly data were collectsdLCRA from Novemberl, 2014, 00:00t0 De@mber
3, 2014, 23:00, anflom May 1, 2015, 00:00to June 4, 2015, 23:00, whigtere the recent time
periods with severe flooding the Lower Coloraddriver Basin These data were retrievBdm
the LCRA databaséor this study. The two flooding datasets were concatenated togathrar. F
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theavailable datasstthefirst 85%(from Nov 1, 2014 00:00 to May 2&015 15:00) were
considered athetrainingdataset to train the moddihe remaining 15% (from May 26th 2015
16:00 to June 4th 2015 23:00) were used for testimyaluatehe model predictiong o ensure

that thevalidation and training datasetvereinterchangeableé80% ofthe training dataset was
designated.as.training and 20% as validation. The purpose of such splits is to keep the model
fitting completely separate from the validation so that the model is not overfit to this particular

dataset?

Model Implementation
Waveletianalysisto filter data noise.
Wavelet analysis ismitendedo smooth the fluctuationa the reservoir inflow datand keep the
trend. The decamposition lev@igure 2)is a key element to choose in wavelet analysis.
Nourani et al(2008)estimate the optimum decomposition level for DWT using the following
equation:
L= int[log,o (N)] 8

wherelL is therdecomposition levahdN is the number of data values.

In this study, the number of time series data is 1656. Based on Equation 8, the decomposition
levelL = int[log(1656)] = 3.To select the best decomposition level, Figushowdlowin after
each level. At level 1, the dataset still has signifi¢luctuaions and the noise removal is
insufficientAtilevel 3, the dataset is smooth thet peak flow is significantlyruncatedLCRA
staff advisedhat Figure7.b, with level 2 noise removakpresents the best data filteritige
dataset isismootind the peals notexcessivelyruncatel. Figure 8 shows the original reservoir
inflow versus the filtered reservoir inflow.

[Insert Fig 7 here]

[Insert Fig 8 here]

Correlation.

To assess appropriate time lags for inclusion in the madads correlation was performed and
the results arehown in Figure 9. The figugresentsherespectivecorrelatiors between soil
moisture andeservoirinflow, precipitation andeservoirinflow, andflowout from the upstream

reservoir andhe downstreameservoirnnflow.
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[Insert Fig 9 here]

Figure 9.a showthat the correlation between soil moisture and reservoir inflow reaches the
highest paint at lags0ndicatingthat the soil moisture at times correlated most stronglyith
the resevoir.inflow at timet. Figure 9.ldemonstrates that the precipitation at tirdehour
affects theyreservoir inflow mqgsds the precipitation in the past hour usually has the largest
influence on'the reservoir inflow. THi@wout of the upstreanreservoir(Lake Marble Falls at
Starcke Damat'timet-2 hoursis correlated most stronglyith the reservoir inflowconsistent
with LCRA’s assessment thibw typically requireswo hoursto travel fromthe upstream

reservoir te thelownstreameservoirnnflow at Mansfield Dam

A flow prediction model to predict reservoir inflow.
To developghe BRT modeldifferent combinations of feature inputs were testeidentify
which combinations of variables are most predictive. The variables used in tipetbesning
models wererthose that decreased errors the rAttlibugh the crossorrelation results
identifiedthelags corresponding to the strongestrelation experimentation with different
combinations ofime lags is still neede assure théest performance. Seven experinsanere
conducted:
1) soil moisture at timéand precipitation at timel atall 31 grid pointsflowout from
upstream reservoir at timte€2, and reservoir inflow at time1,;
2) soilsmoisture at time t and precipitation at titne at the grid point that is closest to the
reservair flowout from upstream reservoir at tinke, and reservoir inflow at time1;
3) soil moisture at timé-1 and precipitation at timel at the grid pmt that is closest to the
reservolirflowout from upstream reservoir at tink, and reservoir inflow at timel,
4) soilmoisture at time-2 and precipitation at timelt-at the grid point that is closest to the
reservoirflowout from upstream reservoir at tim&tand reservoir inflow at time1;
5) soil.moisture at time-8 and precipitation at timelt-at the grid point that is closest to the
reserveir flowout from upstream reservoir at timetand reservoir inflow at time1l;
6) soil moisture at time t;1, and t2 and precipitation at timelt at the grid point that is
closest to the reservoftpwout from upstream reservoir at timet and reservoir inflow

at time t1; and
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7) soil moisture at time t;1, and t-2 and pregitation at time t,-l, and t2 at the grid point
that is closest to the reservdigwout from upstream reservoir at timet and reservoir

inflow at time t1 and t-2.

Since early.tests indicated that the precipitation and soil moisture at the plusesd the
reservoir were.more predictive of the reservoir inflow, most experimesTes conducted using

data from'the"closest point to the reservoir.

AzureML facilitates ease of implementation of these alternative models using graphical
workflowsgshewn in Figure 1@or data manipulation, regression models, training modeltsre
models and‘other machine learning-related modiiles.boosted regression tree moduale
AzureML wasused withthe following settingsmaximum number of leaves per tree§@;

minimum number of samples per leafde = 10, and learning rate = OThe sweep parameter
modulein AzureML was used teelectthe number of trees constructed. Users provided a range
of values forthe number of trees ([5, 10, 15, 20, 30, 40, 50, 60, 7id, B} case) anche

module buildgraining modeldor eachvalueand selects the best (20 in this ca$ég criteria to
choose the.best number of trees Wwased oithe MAE of the validation dataset.

Figure 1l.shows the structure of one examgigession tree in the BRThe algorithm takes

the entire data set as an input and then splits the dataset at the value of one feature variable
(“node”) that maximizes the “separation” of the dataSeparation is measured by the variance
reduction, shoewn in Equation (9), which measures the total reduction in variance opitlte out
variable duesto'the split of the node (Timofeev, 2004, Breiman, 1984). Selecting the featur
variable with the largest variance reduction minimizes the model error at esa¢hispfeev,
2004). The dataset is then split into two parts based on this value (in Figure 11lu¢hi®nvtdie

first split is.flowin_lag< 36965 at the root node). Similar splitting continues, as shown in Figure
11, until the.stepping criterion (the mimmum number of leaves per tree=10 in this case) is met.
Finally, a prediction value of the output is obtained at each leaf node of the tree. &wrangt

the flowin_lag.>36965 and smLoc24>357.4, the prediction value is 4469.

1 1 ~ 1 1 ~ 1 1 ~
Iy(N) = @Ziesg(yl' — Gp)? — (WZiEStE(yi — )+ |S_f|22iesf§(yi - &)? 9)
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whereSis the original datasge§, andS;are the split datasetndc,, ¢;, ¢; represent the
estimate of the average of output label in the respective dataset.

[Insert Fig 10 her¢]

[Insert Fig 11 here]

A hybrid prediction model to predict residual error between observed reservoir
inflow and the predicted inflow from physics-based model.
Figure 12shows theplot of theresidualerrors whichwerecalculatedasthefiltered observed
reservoir inflow' minus theredictedreservoir inflowfrom the HEC-HMS model HEC-HMS is a
lumped parameter watershed model that simulates watershed response to precipitation and
predicts flows througbut the watershedncluding reserveiinflows (Hydrologic Engineering
Center, 2011). Based on the flow information, LC&Aff simulate reservoir operation using the
HEC Reservoir. System Simulation (HEResSim) in CWMS, assess the impacts of the
operationswusingiEC Flood Impact Analysis (HEC-FIA), and make decisitorsreservoir
managemente.g., determine reservoir releases to meet reservoir and downstream operational
goals).The same input features as the abitse predictionmodel were applied her&€he ®ven
experiments,desibed above wereepeated for thaybrid model, with the best-performing
experiment selected.

[Insert Fig 12 her¢g]

RESULTS
Physics-based*Model Performance
Figure 13shows thepredicted reservoir inflodrom the physics-based moddEC-HMS in
CWMS andTable 1 shows the performance metricstifi@ physicdased modelThe results
show that.the.physics-based mofitsl thegenerakrend of the reservoir inflows but a residual

errorremains-that can be fitith the hybrid model.

[Insert Fig 13 her¢]
[Insert Table 1 here]

Data-Driven Flow Prediction Model
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Table 2 showde performance dhedata-driven flow prediction model for the seven
experiments. Experiment #4oil moisture at timé-2 at the reservoir-located grid point,
precipitation at timé-1 at the reservaoilocated grid pointflowout at timet-2, andflowin at time
t-1) demonstrates the best performance metitscan see thahéflow prediction shown in
Figure 14js.close to the real reservoir inflpwith the predictiorcapturingboththe general
trend of the reservoir inflo@nd closely matahg the peak values

A comparison‘of experiment #1 and experiment #2 showshbatosest soil moisture estimate
(experiment #2) is more effective than all 31 available estimates ar¢agexperiment #1),
indicatingthatssome input features are maproving predictions ofeservoir inflow.
Experiments #2 through #5 demonstrate ¢éhtine lagof 2 hours forsoil moistureinput
(experiment #4js the best optigrdespite theorrelation results showing a time lag of zero
having maximum correlation. Experiment #&s similaiperformance to that of experiment #6,
possibly becaustne additioal input vaiables inexperiment #{precipitation at timé-2 and

reservoir inflow at time-2) providetrivial information to improve the prediction performance.

We also eonduct experiments to predegervoir inflowl to 9 hours ahead using the same input
variables.in"Table 2 and 3. Figure 15 showse RMSE of futurgredictiors fromthe data-
driven flow prediction model. After 1 hour, the RM8treases sharplyhen fluctuates,
indicating that whilehe flow prediction model can be used to predict reservoir inflow one hour
aheadlaterperformancalrops offsignificantly.

[Insert Table 2 hereg]

[Insert Fig 14 her¢]

[Insert Fig 15 her¢]

Hybrid Prediction Model

Thehybrid predictionmodel isused to predict the residuadror [residual(t)peween observed
flowin and predicted reservoir inflow frothe physicdhased modekhown in Figure 12. The
predictedreservoir inflowis thencalculated using the predictedidksal errorplus the predicted
reservoir inflow fromthe physics-based mod@lable 3summarizeshe performance of the
hybrid modeffor each of the seven experimenising thesameinput variables atr the flow
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prediction modelThe best performance comes frexperiment #2, followd by that of
experiment #6Since thenybrid model is intended t@pidly enhancéhephysicsbased model’s
performance, it makes sense ttiet model includingoil moisture has the best performance
since CWMSdoes not consider soil moisture as an input (Hydrologic Engineering Center, 2011)
Figure 16shews the performance tife physics-based model, the hybrid prediction model, and
the observedlowin for Experiment #2. The hybridrediction model improvesponthe
performance ofithe physics-based model in terms of the peak value prediction, but does not

perform as well'as the datkiven modein the short ternfFigure14).

Figure 17 shows the future prediction performance of the hybrid model. Within four hours, the

RMSE curve flictuates undé0 ni/s. However, after four hours, the model’s performance

begins tadrop off.
[Insert Table 3 hereg]
[Insert Fig 16 her¢]
[Insert Fig 17 her¢]
Web I nterface

In AzureMiz;"the built workflows were published as Web services using “Set Up Web Service”
function. The Uniform Resource Locator (URL) and Application Prognang Interface (API)
Web Servickeyswere generated.nEresulting datadrivenservices allow users and water
managersto-automatically fit model parameters, computeddian models, and retrieve
reservoir inflew information through a Web browsen\&bapplication was bitithatenables
users to give input parameters and retrieve oifgtre B). Figure B.a shows the user
interface. The models can be executed in AzureML by filling the input parameter boxes and
selectinghe“Compute” buttonthe result (the value of the predicted reservoir inflow) is
retrieved and.shown in the Web interfa€he input parameters include the “StartTime” and
“EndTime”which will automatically download precipitation and soil moisture from NLDAS2
as well agloweut (which is theflow exiting the upstream reservoir) afhdwin_lag (which is the

reservoir inflow in thgrevioustime step).
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Figure 18.b shows a prototype Web application @llatvs users to see threservoir inflow
predictionbased on the prediction moddlisers carprovidea prediction stanmg timeand a
future prediction steps to examine hpredictions compare with the measured data in the recent
past which will provide a sense for potential errorghe predictedeservoir inflovs. In the
future, when.predictesoil moisture, precipitation and upstream reserffowout are available,

such datacanbe incorporated into theredidion model to improve performance.

Furthermare;the Web application can be extended to other river basins. For instaang, f
ungauged basin, users only need to upload the longitude and latitude of grid points affecting
reservoir iflowsto Azure ML These points are then used to automatically download
corresponding“precipitation and soil moisture data from NLDAS2 using our workflow in
AzureML. Thenwusers can predict reservoir inflows based on the start timemnendawin_lag,
and flow_out, as shown in Figure 18Using this interface, the Web application provides an
easy wayfor reservoir operators to forecast reservoir inflows and explore multiple scenarios
without madelingor computational expertise.

[Insert Fig 18 here]

DISCUSSIONAND CONCLUSIONS
In this study, we proposa datadriven frameworKor reattime reservoir inflowprediction using
a serviceoriented approach that enables ease of access through a Web btatstical and
hybrid modelsare developetb predictflow and residuakerrorsfrom a physicdased model
respectively\We createda workflow in Microsoft AzureML, a machine learning studio, for end-
to-end downloadingf thedata, executinghe models and visualizinghe resultsAzure ML
provides fast and easy implementation of the whole workflow as well as publishivey of t
workflow as Web services. In addition, the input datasets and work#owe updated when
new data are.availabl®ne of the workflows that predicts reservoir inflow has been published
at https://gallery.cortanaintelligence.conVExperiment/Predict-Reservoir-Inflow-1. Users who

wants to use AzureML to predict reservoir inflow can update the input dathemodewill

beautomatically updatedithout manual calibradin or tuningof modelparameters.

This article is protected by copyright. All rights reserved


https://gallery.cortanaintelligence.com/Experiment/Predict-Reservoir-Inflow-1�

O 00 N o Uu B~ W N R

W W N N N N NN NNNDNRR P R R R R R R R
P O W 0 N O U1 B W N P O O 0 N O U1 M W N L O

The framework was implemented and tested in the Lower Colorado River Basin. The results
show that he statisticalflow prediction modeis more accuratir shortterm forecastshan the
hybrid predictionmodel, while the hybrid model perforrhstter for longeterm prediction (2

hours or more)asit considers forecasts fromphysicsbhased model

Theflow prediction model has a peak prediction value close ta¢helvalue. Of the set of
experiments'shown in Table 2, experiment #4 has the best performance. Using soil moisture a
time t-2 at'thereservoilecated grid point, precipitation at tintdl at the reservoir-located grid

point, flowout at'timet-2, andflowin at timet-1 will lead to the best prediction Bbwin at timet.

From a physical process perspects@] moisture affects surface runoff by reducing infiltration.
When flooding happens, infiltration has reached a saturated Tdwarkefore high soil moisture
conditions are indicative of wet conditions that are well correlated with high reservoir inflows

and ardehus useful for prediction.

Thehybridpredictionmodel improves upon the performance of the physics-based rBadekd
on the setef experiments shown in Tablexperimen® gives the best performance. Using soll
moisture.attime at the reservoitocated grid point, precipitation at tintdl at the reservoir
located grid pointflowout at timet-2, andflowin attime t-1 will lead to the best prediction in
flowin at timet. The hybrid model's shotermperformance is worse thamat of theflowin
prediction model. The hybrichodel is affected by complex processesshown by the high
fluctuationssinsFigurd 2, and available data to build the modedlimited to just two flooding
events. With more flooding events availainiehe future the incorporation of more daall

likely improve the modés performance.

In considering longeterm predictios, the hybridoredictionmodel is letter than thelata-driven
flow prediction modein terms of RMSKEFigure 19) Theflow prediction model'RMSEis
lower thanthat,ofthe hybrid prediction model one hour ahead. Later, the flow prediction
model’sRMSE s higher than that of the hybmmtedictionmodel, indicatinghat tieflow
prediction model’s performanakeclinesafter two hoursBecause thaybrid prediction model’s
performanceemains reasonably higithin thefollowing five hours,in the futurethe Web
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applicationcould allow the user to create a combined prediction model that uses tiukidera
model for the first two hours and the hybrid prediction modetifoe stepsurtherin the future.

Further research is neededetxplorehow these findings generalize to other locations and storms.
The models.and tools developed in this work can be generalized to other resgrupidaiting

the input data in the workfloW:he workflowcanalsobe combined with other modeliisgrvices
requesting th&/ebservice using URL and API keys, as mentioned previously.

[Insert Fig 19 here]

In thefuture, the hybrid prediction model féong-term prediction willneed to be improved.
Currently the only available CWMS forecastsm the LCRA database wenewcasts (forecasts
for the current time period only). If longegrm CWMS predictiors could be obtainedhen the

hybrid model might perform better for longerm forecasts.

In additionsthercurrent Web application is a prototypefartierusercentered design and
developmentis necessargfore the systershould be adopdfor operationateservoir
management. Feedback from LCRA'’s testing and evaluation of the Web applozatibe used

to improvethe interface and add more features@asded to support effective decision making.
Moreover, when more flooding datae availablethe data-driven and hybridodels can readily
be updated and improved using the AzureML framewoepl&ting historical data for soill
moisture, precipitatiorand upstream reservdiowout with model predictions might improve
reservoirinflew predictionin later time periodsFor instance, the precipitation might be replaced
by the Quantitate Precipitation Forecast (QPHdcal LCRA rain gauge data. In the future,
other data. preprocessiagproaches such as partial information approach [Sharma & Mehroma,
2014, Sharama, et al., 2Qi®uld also be implemented antomaticallychoose thdestinput

parameters for.datdriven models to improve reservoir inflow forecast.

Thefindings:clearly indicat@romise for this type of approach and potent&le in making
datasets and model forecastore readilyavailable in real time to support such analyses.
addition to reservoir inflow forecastintihie frameworkcan be extested toother water resources
applications witlrich data sets using the AzureML framework
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APPENDIX
Algorithm (Friedman 2001, Hastie & Friedman, 2008)
Input: training datas€i(x;, y;)}i=,; wherex; represents input datasets (‘features’) and
represents.eutput dataset (‘targets’), number of iterations.
Algorithm;

1. Initializé"model with a constant value

Fo(x) = argmin )" L(yy F(x)
i=1

2. For'eachiteration:

a. Compute pseudoesiduals:

[6L(J’LF(xl)] fori=

, N
OF (x;)

Yim =
b...Fit a decision tree learngr(x) to pseudo-residuals using the training dataset.
€. Add f;(x) to the modeF;(x) = F;_,(x) + €f;(x) , wheree is called stegsize or
shrinkage. In this study, it was set to 0.1 to prevent overfitting by not doing a full
optimization in each step.

3. QutputF;(x)
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TABLES
TABLE 1. Performance Metrics of Physibased Model

Mean Root M ean Relative ) o
Relative Coefficient of
Absolute Squared Error Absolute o
3 3 Squared Error | Determination
Error/(m-/s) (m°/s) Error
67.677 130.541 0.381 0.282 0.718

TABLE 2/Performance Metrics for Flow Predicted Model

Performance
: Output Mean Root Mean | Relative | Relative o
Input Variables ) Coefficient of
Variable | Absolute Squared Absolute | Squared o
3 5 Determination
Error(m’s) | Error(m/s) Error Error
SM(t)s1; Precip(i1)5,
©:4 '_O( Jan flowin(t) 28.883 60.032 0.167 0.061 0.939
flowout(t-2), flowin_lag(t1)
SM(t Precip(t1
(Deiseff '_D( Jeoses flowin(t) 28.600 66.545 0.165 0.075 0.925
flowout(t-2), flowin_lag(t1)
SM(t-1 Precip(tl
(tL)eodl .p( Jeoses flowin(t) 26.873 48.705 0.155 0.040 0.960
flowout(t=2)»flowin_lag(t1)
SM(t-2 Precip(t1
(+2) i _p( Jeoses flowin(t) 23.984 46.723 0.139 0.037 0.963
flowout(t-2)mflowin_lag(t1)
SM(t-3 Precip(tl
(+3)oiosgg ,p( Joesest flowin(t) 27.269 50.404 0.157 0.043 0.957
flowout(t-2), flowin_lag(t1)
SM(t)cIosesi SM(t'l)closest
SM(t-2) giosess PFECIP(EL)giosess | flowin(t) 24.607 50.121 0.142 0.042 0.958
flowout(t-2), flowin_lag(t1)
SM(t)closesiSM(t'l)closestSM(t'
2)ciosesi Precip(tyosesiPrecipt | flowin(t) 27.666 52.953 0.160 0.048 0.953
1)closesi PreCip(tz)Closesi
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flowout(t-2), flowin_lag(t1),
flowin_lag(t-2)

TABLE 3./Perfermance Metrics for Hybrid Prediction Model

Performance
Root
Mean ) ]
] Output Mean Relative | Relative o
Input Variables ) Absolute Coefficient of
Variable Squared | Absolute | Squared o
Error Determination
3 Error Error Error
(m7/s) 3
(m7/s)
SM(t)s;, Precip(#l)s;, flowout(t
Ban F,)( a1 ( residual(t) | 81.836 167.636 | 0472 0.475 0.525
2), flowin_lag(t1)
SM(t Precip(t1
Dol '_O( Jetoses residual(t) | 57.200 97.976 | 0331 0.163 0.838
flowout(t-2), flowin_lag(t1)
SM(t-1 Precip(t1
(+L)closes .p( Jocsess residual(t) | 71.925 121.196 | 0415 0.249 0.751
flowout(t-2), flowin_lag(t1)
SM(t-2 Precip(tl
(+2)cioes _p( Jaoses residual(t) | 80.986 146.398 | 0.467 0.362 0.638
flowout(t-2), flowin_lag(t-1)
SM(t-3 Precip(t1
(+3)ecy _p( Joosess residual(t) | 69.943 138.186 | 0.404 0.322 0.678
flowout(t-2);flowin_lag(t1)
SM(t)closesi SM(t'l)cIosesi SM(t'
2)closéss Precip(tl)ciosest residual(t) 69.659 108.170 0.403 0.197 0.803
flowout(t-2), flowin_lag(t1)
SM(t)closest SM(t'l)closesi SM(t'
2)closesi P rECip(t):losesi Preci p(t
1) closdsi Precip(t2)ciosest residual(t) 68.527 112.984 0.396 0.216 0.784
flowout(t-2)»flowin_lag(t1),
flowinzlag(t-2)
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