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A new semi-parametric method for autocorrelated age- and
time-varying selectivity in age-structured assessment models
Haikun Xu, James T. Thorson, Richard D. Methot, and Ian G. Taylor

Abstract: Selectivity is a key parameter in stock assessments that describes how fisheries interact with different ages and sizes
of fish. It is usually confounded with other processes (e.g., natural mortality and recruitment) in stock assessments and the
assumption of selectivity can strongly affect stock assessment outcome. Here, we introduce a new semi-parametric selectivity
method, which we implement and test in Stock Synthesis. This selectivity method includes a parametric component and an
autocorrelated nonparametric component consisting of deviations from the parametric component. We explore the new
selectivity method using two simulation experiments, which show that the two autocorrelation parameters for selectivity
deviations of data-rich fisheries are estimable using either mixed-effect or simpler sample-based algorithms. When selec-
tivity deviations of a data-rich fishery are highly autocorrelated, using the new method to estimate the two autocorrelation
parameters leads to more precise estimations of spawning biomass and fully selected fishing mortality. However, this new
method fails to improve model performance in low data quality cases where measurement error in the data overwhelms the
pattern caused by the autocorrelated process. Finally, we use a case study involving North Sea herring (Clupea harengus) to
show that our new method substantially reduces autocorrelations in the Pearson residuals in fit to age composition
data.

Résumé : La sélectivité est un paramètre clé des évaluations de stocks qui décrit comment les pêches interagissent avec
différents âges et différentes tailles de poissons. Elle est habituellement confondue avec d’autres processus (p. ex. mortalité
naturelle et recrutement) dans les évaluations de stocks, et l’hypothèse de la sélectivité peut avoir une importante incidence sur
le résultat de l’évaluation de stocks. Nous présentons une nouvelle méthode de sélectivité semi-paramétrique que nous appli-
quons et validons dans Stock Synthesis. Cette méthode de sélectivité comprend une composante paramétrique et une com-
posante non paramétrique autocorrélée qui est constituée d’écarts par rapport à la composante paramétrique. Nous explorons
la nouvelle méthode de sélectivité en utilisant deux expériences de simulation qui montrent que les deux paramètres
d’autocorrélation pour les écarts de sélectivité de pêches pour lesquelles les données sont abondantes peuvent être estimés en
utilisant des algorithmes à effets mixtes ou des algorithmes plus simples basés sur les échantillons. Quand les écarts de
sélectivité d’une pêche aux données abondantes sont fortement autocorrélés, l’utilisation de la nouvelle méthode pour estimer
les deux paramètres d’autocorrélation produit des estimations plus précises de la biomasse reproductrice et de la mortalité par
pêche entièrement sélectionnée. Cette nouvelle méthode n’améliore toutefois pas la performance des modèles dans les cas de
faible qualité des données pour lesquels l’erreur de mesurage dans les données masque le motif résultant du processus
autocorrélé. Enfin, nous utilisons une étude de cas du hareng (Clupea harengus) de la mer du Nord pour démontrer que notre
nouvelle méthode réduit sensiblement les autocorrélations dans les résidus de Pearson dans des données ajustées à la compo-
sition par âge. [Traduit par la Rédaction]

Introduction
In stock assessment models, selectivity is usually referred to as

the combination of contact selectivity and population selectivity.
It describes how relative fishing effectiveness varies with the age
or size of the fish. Selectivity is perhaps the most crucial fisheries
process that affects the age or size composition of fish we mea-
sure, as it directly controls how fisheries interact with different
ages or sizes of fish (Maunder and Piner 2017). However, the exact
form of selectivity is generally difficult to estimate due to the
complexity of the factors that modulate selectivity (Maunder et al.

2014). Specifically, selectivity changes from year to year as a result
of changes in fishing gear, fishing behavior, and spatiotemporal
distribution of the fish of interest (Maunder et al. 2014; Francis
2017). Moreover, misspecifying fisheries selectivity in an assess-
ment could result in serious consequences such as large retrospec-
tive pattern in critical population attributes such as spawning
biomass (Stewart and Martell 2014), unrealistic weighting for compo-
sition data (Francis 2017), data conflict (Maunder and Piner 2017), or
substantially biased model estimates (Stewart and Monnahan 2017).
Therefore, selectivity is a key process in fisheries stock assessments
and improving the parameterization of selectivity has been an im-
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portant research topic in the stock assessment community (Maunder
et al. 2014).

Selectivity is commonly estimated using a simple parametric
function that is constant over time. In practice, however, selectiv-
ity often deviates from this pattern and deviations are autocorre-
lated in both time and age (Sampson and Scott 2012). The
deviations in selectivity can be autocorrelated for various reasons.
For example, they can be autocorrelated across age because some
age-specific factors (e.g., spatial distribution) that influence selec-
tivity variation are likely to be similar between adjacent age
groups. In fact, autocorrelated selectivity variation among age
groups has been found in some European fisheries stock assess-
ments conducted using a state-space model that allows process
error in selectivity (Nielsen and Berg 2014). In addition, they can
be autocorrelated across years, as some factors (e.g., fishing gear
and behavior) that influence selectivity variation are likely to be
similar between adjacent years. A unique characteristic of age-
structured models is that the population signal in a specific age
group and year will propagate to the next age group 1 year later.
The propagation can link the two dimensions (age and year)
together (Butterworth et al. 2003), potentially leading to two-
dimensional autocorrelated variation in selectivity.

No model formulation to date, however, can account for the
among-age and among-year autocorrelations in selectivity devia-
tions simultaneously. In a previous study by Martell and Stewart
(2014), a bicubic spline penalty term was included in the objective
function to smooth the variation in selectivity over both age and
time, but the levels of variation and smoothness in selectivity
associated with the penalty term had to be prespecified on an ad
hoc basis. Stock Synthesis (Methot and Wetzel 2013), a widely used
stock assessment package in the United States and worldwide,
assumes that age or size composition data follow a multinomial
distribution that allows only negative and weakly correlated re-
siduals between two age bins (Francis 2011). A logistic-normal dis-
tribution, an alternative likelihood for composition data, was
recently advocated by Francis (2014) due to its capacity of account-
ing for positive among-age autocorrelation in residuals for com-
position data. However, the logistic-normal distribution cannot
deal with the among-year autocorrelation in residuals for compo-
sition data (Francis 2017; Thorson et al. 2017). Except for developing a
more appropriate likelihood form to replace the multinomial dis-
tribution, adding process errors to selectivity under the increas-
ingly popular mixed-effect model framework (Gelman 2005) is
another feasible method to deal with autocorrelated residuals for
composition data (Francis 2017).

In this paper, we introduce a new semi-parametric selectivity
method to account for two-dimensional autocorrelated deviations
in selectivity. More specifically, we calculate the selectivity of a
fishery as the product of a parametric form and a deviation term
that is treated as a process error. For the selectivity deviation
term, we adapt a multivariate likelihood function that allows the
model to estimate and account for the among-age and among-year

autocorrelations in selectivity deviations simultaneously. We
evaluated the performance of the new semi-parametric selectivity
method in estimating spawning biomass (SB) and fully selected
fishing mortality (F), which in this study is defined as the fishing
mortality at fully selected ages (i.e., the expected selectivity at age
is 1). In the first section, two simulation experiments were con-
ducted to answer three key questions. (1) How well can the levels
of selectivity variation and autocorrelation be estimated? (2) When
selectivity of the fishery is highly autocorrelated among ages and
years, does accounting for selectivity autocorrelation result in less
biased and more accurate estimates of SB and F than ignoring
autocorrelation or variation in fishery selectivity? (3) If the answer
to the question above is true, how does the improvement by ac-
counting for selectivity autocorrelation change under various lev-
els of selectivity autocorrelation?

In the second section, we implemented the new semi-parametric
selectivity method in Stock Synthesis and evaluated the perfor-
mance of the new Stock Synthesis feature using the real data set
for North Sea herring (Clupea harengus) as a case study.

Methods and data
We construct a simulation–estimation model to examine the

performance of our new semi-parametric selectivity method in an
age-structured population dynamics model. The two simulation
experiments are conducted based on the age-structured simulation–
estimation package CCSRA by Thorson and Cope (2015). This pack-
age uses Template Model Builder (TMB) (Kristensen et al. 2015) to
implement mixed-effect parameter estimation, so we can com-
pare estimation performance when implementing either sophisti-
cated (mixed-effect) or simplified (penalized likelihood) approaches
to estimating semi-parametric selectivity.

We first introduce our new semi-parametric age- and time-
varying selectivity approach and describe a simulation experi-
ment that consists of an operating model (OM) simulating the true
population dynamics, a sampling model (SM) generating data from
the true population dynamics, and an estimation model (EM) fitting
to the generated data. The performance of the EM in simulation
experiments is evaluated by comparing the estimates the EM pro-
vides with the corresponding true values generated by the OM.

We then describe our implementation of the semi-parametric
age- and time-varying selectivity option in the common Stock
Synthesis software (Methot and Wetzel 2013) and a case study
involving data for North Sea herring. We use this case study to
compare the performance of the estimation model where age- and
time-varying selectivity is ignored, estimated separately for each
age and year, or estimated using our proposed semi-parametric
age and time selectivity smoother.

Operating model in simulation experiments
The OM and EM in the simulation experiment are both age

structured and have the same population dynamics. The abun-
dance of fish in age a and year t (t � {1, 2, …, T}) is

(1) Na,t � �Rt if a � 0
Na�1,t�1 exp(�Sa,t�1Ft�1 � M) if a � {1, 2, …, A � 1}
NA�1,t�1 exp(�SA,t�1Ft�1 � M) � NA,t�1 exp(�SA,t�1Ft�1 � M) if a � A

where Rt is recruitment in year t, Sa,t−1 is fishery selectivity in age
a and year t − 1, and M is natural mortality rate that is the same for
all ages and years. A = 15 is the plus group for both the OM and EM.
Recruitment is from the steepness parameterization of the bias-
corrected Beverton–Holt stock–recruit function and is assumed to
have stochastic lognormal deviations:

(2) ln(Rt) � N�ln� 4hR0SBt

SB0(1 � h) � SBt(5h � 1)� �
�R

2

2
, �R

2�
while specifying that the magnitude of variability in recruitment
�R = 0.4 and unfished recruitment R0 = 109. Steepness (h) quantifies
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the magnitude of density dependence in recruitment and SBt is
spawning biomass in year t:

(3) SBt � �
a�0

A

wamaNa,t

where wa and ma are mass at age and maturity at age, respectively.
The OM includes one fishery fleet and the catch (in numbers) in
age a and year t is calculated from the Baranov catch equation:

(4) Ca,t � Na,t

Sa,tFt

Sa,tFt � M
(1 � e�Sa,tFt�M)

The total catch (in biomass) in year t is the sum of element-wise
product of Ca,t and wa and is assumed known without error. The
initial abundance at age is assumed to be lognormally distributed
with mean derived from an approximately unfished state:

(5) ln(Na,1) � N�ln�R0e
�aM� �

�R
2

2
, �R

2�
The OM has one fishery, the selectivity (S) of which in age a and
year t is

(6) Sa,t �
1

1 � e�Sslope(a�S50)
× e�a,t

where �a,t is simulated as a two-dimensional (2D) AR(1) process:

(7) vec(�) � MVN�0, �S
2Rtotal�

such that the first multiplicand in eq. 6 represents a parametric

selectivity form � 1

1 � e�Sslope�a�S50��, while the second multiplicand

(e�a,t) represents nonparametric deviations from this parametric
form. We call this product of nonparametric and parametric com-
ponents a “semi-parametric” age- and time-varying selectivity
model (Shelton et al. 2014; Thorson and Taylor 2014). We fix the
standard deviation of selectivity (�S) at 0.4 for representing a case
with a moderate level of selectivity variation. The correlation
matrix Rtotal is equal to the kronecker product (�) of the two
correlation matrices for the among-age and among-year AR(1) pro-
cesses:

(8) Rtotal � R � R̃

(9) Ra,ã � �a
|a�ã|

(10) R̃t,t̃ � �t
|t�t̃|

where �a and �t are the among-age and among-year AR(1) coeffi-
cients, respectively. When both of which are zero, R and R̃ are two
identity matrices and their Kronecker product, Rtotal, is also an
identity matrix. The 2D selectivity random field was simulated
using the “mvrnorm” function in the MASS package in R (R Core
Team 2015). Considering that estimating �a,t is usually difficult for
the youngest and oldest age groups due to most limited composi-
tion data, we assume that �a,t = �2,t for a < 2 and �a,t = �7,t for a > 7.
Thus, vec(�) in eq. 7 is defined as

(11) vec(�) � (�2,1, …, �2,T, �3,1, …, �3,T, … …, �7,1, …, �7,T)
′

Following Thorson and Cope (2015), Ft was derived stochastically
from the effort-dynamics model:

(12) Ft � Ft�1�SBt�1

�SB0
�	

where we specify that acceleration rate 	 = 0.2 and the ratio of
equilibrium SB to unfished SB � = 0.35 (Thorson et al. 2013). This
effort-dynamics model is used to generate contrast in F while also
ensuring that F is correlated with process errors affecting biomass
(e.g., total biomass, exploitable biomass, or SB). Here we choose SB
as the population attribute driving the dynamics of F but other
choices give similar time-series characteristics to F. Under this
fishing behavior, SBt tends to decrease from the approximately
unfished initial value (SB1) towards the equilibrium level �SB0

over time and the rate of the decrease in SBt is controlled by 	
(examples of SBt trajectory can be found in Fig. 1 in Thorson and
Cope 2015).

Two types of life history are investigated in the two simulation
experiments. The first one represents a “slow” or “periodic” type
of life history, roughly based upon Pacific hake (Merluccius productus),
and the second one represents a “fast” or “opportunistic” type of
life history, roughly based on Pacific sardine (Sardinops sagax). The
definition and value of all of the life history parameters for the
two fishes are shown in Table 1 and a detailed description of how
the life history parameters are derived can be found in Thorson
and Cope (2015). For each replicate, the population dynamics of
the slow and fast species is simulated by the OM for 20 years (T =
20). The parametric fishery selectivity form and the associated
selectivity variability for the two fishes are compared in Fig. 1.

Sampling model in simulation experiments
Age composition is sampled by the fishery every year from the

simulated population, assuming a multinomial distribution with
a constant sample size of ncomp:

Table 1. Comparison of the parameters for the two types of life history (fast and slow) investigated in
the two simulation experiments.

Parameter name Symbol Pacific hake Pacific sardine

Natural mortality rate M 0.386·year−1 0.552·year−1

Length at age 0 L0 1 cm 1 cm
Asymptotic maximum length Linf 90 cm 30 cm
Von Bertalanffy growth coefficient k 0.20·year−1 0.30·year−1

Log maximum annual spawner per spawner LMARR 2 1
Age at 50% selection in the fishery S50 5.44 3.55
Rate of change in selectivity at age Sslope 1 1
Age at maturity amat 5.44 3.55
Steepness of the Beverton−Holt SR function h 0.83 0.55

Note: We used Pacific hake (Merluccius productus) and Pacific sardine (Sardinops sagax) to represent the fast and
slow types of life history, respectively.
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(13) At � Multinomial(Ca,t, ncomp)

The fishery also provides an index of abundance It for every year in
the modeled period. It is drawn from a lognormal distribution
with coefficient of variation of CVabund (where the value of CVabund

varies among different simulation scenarios) and constant catchabil-
ity of q = 0.0001:

(14) ln(It) � N�log(qBt), ln �1 � CVabund
2 ��

where Bt represents the exploitable biomass in year t:

(15) Bt � �
a�0

A

Na,twaSa,t

Estimation model in simulation experiments
We compare the performance of five EMs under autocorrelated

deviations in age- and time-varying fishery selectivity.

EM1 (“constant selectivity”)
The first EM ignores the variation in fishery selectivity, which is

a common practice in stock assessments. Selectivity in this EM is
a logistic function of age:

(16) Ŝa �
1

1 � e�Ŝslope(a�Ŝ50)

This function is the same as the parametric part of the true selec-
tivity shown in eq. 6.

EM2 (“IID deviations”)
The second EM assumes that the variation in fishery selectivity

is independent of age and time. More specifically, fishery selectiv-
ity in this EM is assumed to be a product of the true parametric
function for selectivity and a deviation term having a lognormal
distribution with log mean of 0 and log standard deviation of �̂S:

(17) Ŝa,t �
1

1 � e�Ŝslope(a�Ŝ50)
× e�̂a,t

(18) �̂a,t � N�0, �̂S
2�

where �̂S is estimated via the iterative approach proposed by
Methot and Taylor (2011). Particularly, �̂S in this EM is iteratively
tuned to match the relationship within an accuracy of 0.01:

(19) �̂S
2 � SD(�̂)2 �

1
6T �

a�2

7

�
t�1

T

SE(�̂a,t)
2

where SD��̂� is the standard deviation of �̂ and SE��̂a,t� is the stan-
dard error of �̂a,t that is estimated from the inverse Hessian. We
use

(20) b � 1 �

1
6T�a�2

7 �t�1

T
SE(�̂a,t)

2

�̂S
2

as a measure of how informative each simulation replicate is
regarding estimating �̂.

EM3 (“2D AR deviations”)
The third EM also has the true parametric selectivity function

for selectivity but specifies that the deviations in fishery selectiv-
ity are autocorrelated among both ages and years and thereby
follows a multivariate normal distribution (see eqs. 6 and 7). In
this EM, �̂S is fixed at the value that EM2 provides and �a and �t are
fixed at the values externally estimated from samples. In detail,
we extract �̂ estimates from EM2 and then estimated �a and �t by
fitting a stand-alone model to the extracted �̂ samples. In the
stand-alone model, the extracted samples are assumed to follow
the multivariate normal distribution described in eq. 7. Based on
that assumption, the only two estimable parameters (�a and �t)
in the stand-alone model are estimated simultaneously via the
maximum likelihood approach. This method is similar to the “ex-
ternal” method that Johnson et al. (2016) investigated to estimate
recruitment autocorrelation in integrated assessment models.
Johnson et al. (2016) found that the “external” method can provide
an adequate estimate of recruitment autocorrelation when more
than 40 years of recruitment estimates are available, although it
has not previously been tested for use when estimating two auto-
correlation parameters (as we do here).

EM4 (“REML estimation”)
The fourth EM is the same as EM3 except that the three hyper-

parameters for age- and time-varying selectivity are fixed at the
values internally estimated using the restricted maximum likeli-
hood (REML) (Harville 1974). This EM includes two steps: first, the
three hyper-parameters are estimated by treating all other esti-
mated parameters as random effects (while specifying an im-
proper, uniform prior on all fixed effects) and second, the EM is
rerun to estimate all parameters other than the three hyper-
parameters by fixing the three hyper-parameters at the values
estimated from the previous step.

EM5 (“perfect information”)
The last EM is the same as the previous two EMs except that the

three hyper-parameters (�̂S, �a, and �t) for semi-parametric age-
and time-varying selectivity are fixed at the true values that are
used to generate the autocorrelated age- and time-varying selec-
tivity in the OM. This EM cannot be implemented in practice
(because we never know the true value of these parameters except
in a simulation study) and is included as a reference to demon-
strate the ideal performance of EM3 and EM4 when the three
externally or internally estimated hyper-parameters are the same
as the truth.

Within the five EMs considered here, EM3–5 implement our
new semi-parametric selectivity method. Unless otherwise noted
(i.e., step 1 in EM4), R0, Sslope, S50, and Ft were estimated as fixed

Fig. 1. Comparison of the parametric fishery selectivity for the two
types of life history as a function of age. The shaded areas show the
±1 standard deviation range of selectivity variation that is induced
by the nonparametric deviation term. The vertical broken lines
denote the age at 50% selection in the fishery. [Color online.]
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effects and �̂ (in EM2–5) and Rt were estimated as random effects.
The estimates of the three hyper-parameters (�̂S, �a, and �t) for age-
and time-varying selectivity vary among EMs. All other parame-
ters are fixed at the true values, so the difference in EM perfor-
mance is determined by how selectivity is parameterized and how
well the three hyper-parameters can be estimated. In EM3 and
EM4, �a and �t are constrained to be bounded by 0 and 1 through a
logit transformation. In TMB, the marginal likelihood of fixed-
effect parameters is calculated using the Laplace approximation
to integrate across random effects (Kristensen et al. 2015), and
fixed-effect parameters are then estimated via maximizing the
marginal likelihood within the R computing environment (R Core
Team 2015). The “nlminb” function is used in R to minimize the
negative of the marginal log-likelihood, and after that, TMB pre-
dicts random effects using empirical Bayes (Kristensen et al. 2015).
We implement a bias-correction algorithm to correct for differ-
ences between the median and mean of the lognormal recruit-
ment as a function of the amount of the uncertainty within and
variability among the estimated recruitment deviations based on
the method introduced by Methot and Taylor (2011).

Simulation experiments
Two simulation experiments are conducted in this study. The

first experiment is designed to evaluate the performance of the
five EMs in accounting for autocorrelated deviations in age- and
time-varying selectivity under three qualities of fishery data. Three
cases corresponding to high-quality (ncomp = 200 and CVabund = 0.1),
medium-quality (ncomp = 50 and CVabund = 0.2), and low-quality
(ncomp = 15 and CVabund = 0.3) data from the fishery are investi-
gated for each type of life history. Highly autocorrelated devia-
tions in age- and time-varying selectivity are generated by the OM
where both �a and �t are fixed at 0.8 and �S is fixed at 0.4. Two
hundred simulation replicates with randomly generated process
errors (in recruitment and selectivity) and observation errors (in
age composition and index of abundance) are generated for each
case, and each replicate then fits to the EM1–5. The five EMs are
compared with respect to the interquartile range (IQR) of the
relative error, RE = (
̂–
)/
, in F and SB. Particularly, the estimates
of F and SB in the terminal year of the assessment are important to
stock status determination, so the five EMs are also compared
using measures of mean relative error, MRE = mean(RE), and root

mean square error, RMSE � 	mean�RE2�. MRE and RMSE mea-
sure the accuracy and precision of model estimates in the termi-
nal year of the assessment, respectively.

The second simulation experiment is designed to evaluate the
importance of the semi-parametric age- and time-varying selectiv-
ity method under various levels of selectivity autocorrelations (�a

and �t). While �̂S is the same across OMs, �a and �t are fixed at
either 0.8 or 0.4, generating four OMs from the 2 × 2 factorial
combination of two levels of autocorrelation for age and year
(Fig. 2). Two hundred simulation replicates with randomly gener-
ated process errors (in recruitment and selectivity) and observa-
tion errors (in age composition and index of abundance) are
generated by each OM under the high-quality data case (ncomp =
200 and CVabund = 0.1), and each replicate then fits to the five EMs
individually. Again, performance of the five EMs is compared
based on the IQR of relative error in the estimates of F and SB, and
the terminal year estimates of F and SB are also compared based
on MRE and RMSE.

Case study application in Stock Synthesis
Finally, we implement the semi-parametric age- and time-

varying selectivity method in Stock Synthesis (V3.30). The imple-
mentation is designed to be highly flexible in its interaction with
existing Stock Synthesis features. In detail, users can specify
(1) which parametric selectivity option to use (including any of the
existing selectivity options in Stock Synthesis), which defines the
selectivity in cases where deviations are estimated to be zero (i.e.,
�̂a,t � 0), (2) the minimum and maximum age to use for selectivity
deviations (the “age range”), and (3) the minimum and maximum
year to use for selectivity deviations (the “year range”).

We demonstrate this new Stock Synthesis feature using a real-
world data set for North Sea herring. It should be noted that we
did not use the same data and assumptions as in the official ICES
stock assessment (ICES 2017). In this case study application, we
apply the semi-parametric age- and time-varying selectivity op-
tion for the fishery in ages 1–8 and years 1947–2011 and specify
that the parametric component follow a logistic selectivity at age
curve (as parameterized in Stock Synthesis):

Fig. 2. An example of the simulated selectivity deviation pattern (�̂) from each OM investigated in the second simulation experiment. �a and
�t represent the among-age and among-year AR(1) coefficient for �̂, respectively. [Color online.]
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(21) Ŝa,t �
1

1 � e�ln(19)(a�p1)/p2
× e�̂a,t

where p1 and p2 determine the age at inflection and width for 95%
selection of the parametric component of selectivity, respectively.
In this case study, we compare three Stock Synthesis configura-
tions in which the assumptions for �̂a,t distribution corresponded
to EM1–3. Other than that, the three runs, referred to as SS-EM1,
SS-EM2, and SS-EM3 hereafter, have the same configuration. The
configuration for REML estimation (EM4) is not investigated in
this case study because estimating the three hyper-parameters
using REML is not currently feasible using Stock Synthesis, which
is written in ADMB (Fournier et al. 2012).

The data for this case study include (1) total catch from the
fishery (CV = 0.05), (2) three indices of abundance from surveys
(CV = 0.2), (3) age composition data from the fishery (input sample
size = 65) and from one survey (input sample size = 15), and
(4) empirical mass at age. The three surveys that provide the indi-
ces of abundance to the assessment model are the acoustic survey
in the North Sea (HERAS), the international bottom trawl survey
for young-of-the-year herring abundance index (IBTS_Age1), and a
survey for the spawning component abundance index (SCAI). In
addition to the index of abundance, HERAS also provides age
composition information to the assessment model. The temporal
range of each data set above are shown in Fig. A1 and more details
about the data can be found in ICES (2017). We assume a Beverton–
Holt curve for the stock–recruit relationship and M is known
without error. The effective sample size for the fishery age com-
position data is estimated using the Dirichlet-multinomial
weighting method (Trenkel et al. 2012; Thorson et al. 2017). In this
case study, catchability, fishing mortality, the deviations in re-
cruitment and fishery selectivity, the parameters for the stock–
recruit function, and the parametric selectivity function for the
fishery are the variables estimated by Stock Synthesis using max-
imum likelihood.

Results

Performance of the five EMs given autocorrelated
deviations in selectivity

We first evaluated how informative the fishery data were in
terms of estimating �̂ for hake and sardine life histories. As ex-
pected, b (see eq. 20) was positively associated with the quality of
fishery data (Fig. A2). While large variability existed in b, the me-
dian values for both hake and sardine were larger than 0.5 in the
high-quality case, close to 0.3 in the medium-quality case, and
close to 0.2 in the low-quality case.

We then examined how well the levels of selectivity variation
(�̂S) and autocorrelations (�a and �t) can be estimated by using the
external method from 2D AR deviations (EM3) and the internal
method from REML estimation (EM4). Estimates of the three
hyper-parameters from EM4 were relatively accurate, as there was
a small difference between each median estimate and the corre-
sponding true value from the OM (Fig. 3). Not surprisingly, the
higher the quality of fishery data, the more precise the three
hyper-parameters from EM4. The lowest precision of the estimate
of the three hyper-parameters from EM4 was found in the low-
quality case for sardine. In general, EM3 was less accurate but
more precise than EM4 in terms of estimating �̂S, and it tended to
underestimate the two AR(1) coefficients, �t and especially �a, in all
three data quality cases.

No matter whether and how the EM accounted for autocorre-
lated deviations in age- and time-varying selectivity, the estimates
of F and SB generally had greater imprecision than bias (Table 2).
In the high-quality case, constant selectivity (EM1) corresponded
to the least precise estimates of F and SB over the entire time
assessment period for both hake and sardine (Fig. 4, left column).
In terms of SB, while IID deviations (EM2) corresponded to more

precise estimates than constant selectivity, it was still less precise
than 2D AR deviations (EM3) and REML estimation (EM4) where
the autocorrelations in age- and time-varying selectivity were es-
timated. REML estimation (EM4) and perfect information (EM5)
differed minimally regarding estimation precision (i.e., IQR) be-
cause the three hyper-parameters were accurately estimated us-
ing REML (Fig. 3). The estimates of the three hyper-parameters
from 2D AR deviations (EM3), however, were all biased towards
zero, so EM3 was less precise (wider IQR) than EM4 for both hake
and sardine. In terms of F, EM2–5 (time-varying selectivity) had
very similar precisions but they were all pronouncedly more pre-
cise than EM1 (constant selectivity). It is worth noting that when
data quality was high, EM was more precise (in terms of estimat-
ing terminal year SB) than an otherwise identical model without
among-age autocorrelation in selectivity (Fig. A3). However, the
improvement in model precision was marginal, since EM3 under-
estimated �a to a large extent.

In the medium-quality case, performance of the five EMs in
accounting for autocorrelated deviations in age- and time-varying
selectivity ranked in the same order as in the high-quality case,
but the difference among the five EMs was notably smaller than in
the high-quality case (Fig. 4, middle column). 2D AR deviations
(EM3) and REML estimation (EM4) were still more precise than IID
deviations (EM2) and constant selectivity (EM1) in terms of SB, but
the five EMs were already not differentiable with respect to the
precision of F estimates. In the low-quality case, while EM1 was
still least accurate and precise among the five EMs in term of SB,
the other four EMs had similar bias and imprecision in terms of
both F and SB (Fig. 4, right column). Therefore, both EM2 and EM3
were sufficient to account for autocorrelated time- and-age-
varying selectivity in the low-quality case, even when �a and �t
were both high (0.8).

We also compared the estimates of F and SB in the terminal year
of the assessment. The degree to which the precision of terminal
year F and SB increased from EM1 and 2 to EM3 and 4 was largely
affected by data quality rather than life history (Table 2). Given
that the true �a and �t were both high, improving stock assess-
ments by using 2D AR deviations (EM3) or REML estimation (EM4)
was most likely to occur in cases with high-quality fishery data.
Here we used IID deviations (EM2) as a reference for performance
comparison across the investigated EMs. In the high-quality case
for hake, the RMSEs of SB estimates from EM3 and EM4 were 31%
and 46% smaller than hose from EM2, respectively, indicating that
model performance was improved by accounting for the autocor-
relations in selectivity deviations. The two percentages dropped to
19% and 28% in the medium-quality case and to two negligible
values in the low-quality case, indicating that the improvement in
model performance became increasingly small as the quality of
fishery data decreased.

In terms of F, the RMSEs for EM3 and EM4 were similar to those
for EM2 in all three data cases. A similar RMSE pattern was found
for sardine (Table 2). In the high-quality case, the RMSEs of SB
estimates from EM3 and EM4 were 30% and 48% smaller than
those from EM2. In contrast, the two percentages dropped to 15%
and 24% in the medium-quality case to two negligible values in the
low-quality case, also suggesting that the improvement in model
performance was positively associated with the quality of fishery
data. With respect to the MREs of terminal year SB and F, includ-
ing the autocorrelations in selectivity deviations (EM3–5) mini-
mally improved model performance in comparison with the
reference model (EM2), probably because the MREs for EM2 were
already very small (generally <0.08).

Interestingly, whether higher data quality led to more precise
estimates in the terminal year of the assessment was influenced
by the method EM used to deal with autocorrelated age- and time-
varying selectivity. Given that the deviations in age- and time-
varying fishery selectivity were highly autocorrelated, EM1 and 2
(constant selectivity and IID deviations) failed to provide the most
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precise terminal year estimates for hake and sardine in the high-
quality case (Table 2). In terms of SB, the RMSEs for EM1 (0.41) and
EM2 (0.39) in the high-quality case were even slightly larger than
those for EM1 (0.39) and EM2 (0.36) in the medium-quality case.
Hence, the assessments assuming constant selectivity (EM1) or IID
deviations (EM2) could not benefit at all (in terms of the precision
of SB) from high-data quality when the true deviations in selectiv-
ity were highly autocorrelated in both dimensions. However,
when 2D AR deviations (EM3) or REML estimations (EM4) were
used in the assessment to account for autocorrelated deviations in
age- and time-varying selectivity, higher data quality was always
associated with more precise estimates of terminal year F and SB.
This association was particularly strong for EM4 where the three
hyper-parameters could be more accurately and precisely esti-
mated using REML (Table 2).

Importance of the semi-parametric selectivity method
under various levels of autocorrelation

In the first simulation experiment, we found that account-
ing for autocorrelated deviations in selectivity substantially im-

proved EM performance in the high-quality case, given that �a and
�t were both high (0.8). Here, we conducted another simulation
experiment to evaluate the performance of the semi-parametric
age- and time-varying selectivity method (in the high-quality case)
under three other selectivity autocorrelation patterns. Particu-
larly, the three selectivity autocorrelation patterns corresponded
to the cases where the deviations in age- and time-varying selec-
tivity were weakly (0.4) autocorrelated among ages, years, or both
ages and years.

No matter the levels of among-age and among-year autocorre-
lations in selectivity deviations were weak or strong (0.4 or 0.8),
the three hyper-parameters (�S, �a, and �t) for semi-parametric
age- and time-varying selectivity were accurately and precisely
estimated using REML (Fig. 5). Consequently, REML estimation
(EM4) and perfect information (EM5) performed similarly in terms
of both F and SB (Fig. 6). Regardless of the level of autocorrelation
in selectivity deviations, the estimates of �t and especially �a from
2D AR deviations (EM3) were consistently biased towards zero (i.e.,

Fig. 3. Boxplots for the estimates of the three selectivity hyper-parameters (�a, among-age autocorrelation; �t, among-year autocorrelation;
�S, variance) that EM3 (2D AR deviations) and EM4 (REML) provided for Pacific hake (Merluccius productus) (top two rows) and Pacific sardine
(Sardinops sagax) (bottom two rows) in the first simulation experiment. The lower and upper hinges mark the first and third quantiles and the
two whiskers extend to the value no further than 1.5 interquartile range from the corresponding hinge. The three columns correspond to the
three data quality cases. The y-axis shows the ratio of estimated to true hyper-parameter values, so horizontal broken lines represent unbiased
estimation. [Color online.]
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Table 2. Metrics mean relative error (MRE) and root mean square error (RMSE) of the terminal year estimates of attributes F and SB in the first
simulation experiment.

High data quality Medium data quality Low data quality

F SB F SB F SB

MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE

Pacific hake (Merluccius productus)
EM1 0.02 0.18 0.07 0.41 0.02 0.23 0.09 0.39 0.03 0.27 0.11 0.43
EM2 0.02 0.13 0.06 0.39 0.03 0.22 0.06 0.36 0.07 0.27 0.02 0.37
EM3 0.02 0.12 0.02 0.27 0.03 0.20 0.02 0.29 0.07 0.26 0.00 0.34
EM4 0.01 0.11 0.00 0.21 0.03 0.19 0.00 0.26 0.06 0.25 0.02 0.36
EM5 0.01 0.11 0.00 0.20 0.02 0.19 −0.01 0.24 0.05 0.25 0.02 0.35
Pacific sardine (Sardinops sagax)
EM1 0.00 0.20 0.11 0.50 0.01 0.22 0.09 0.45 0.00 0.27 0.21 0.51
EM2 0.02 0.13 0.07 0.44 0.03 0.19 0.04 0.41 0.07 0.32 0.05 0.41
EM3 0.01 0.11 0.04 0.31 0.02 0.19 0.03 0.35 0.06 0.30 0.04 0.38
EM4 0.02 0.11 0.00 0.23 0.03 0.19 0.02 0.31 0.06 0.30 0.05 0.45
EM5 0.02 0.11 0.00 0.22 0.02 0.17 0.02 0.30 0.04 0.27 0.06 0.38

Note: The three columns correspond to the three data quality cases and EM1−5 are the five estimation models compared in the first simulation experiment.

Fig. 4. The interquartile range of relative error in the estimates of F and SB for Pacific hake (Merluccius productus) (top two rows) and Pacific
sardine (Sardinops sagax) (bottom two rows) in the first simulation experiment. The three columns correspond to the three data quality cases
and EM1–5 are the five estimation models compared in the first simulation experiment. [Color online.]
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underestimated) (Fig. 5), whereas EM4 only slightly outperformed
EM3 regarding estimating F and SB (Fig. 6). Generally speaking,
constant selectivity (EM1) was by far the worst-performing model
and accounting for autocorrelated selectivity deviations using
EM3 or EM4 resulted in more precise SB estimates, especially
when �t was high (Fig. 6). However, IID deviations (EM2) seemed to
perform well enough in terms of the precision of F estimates, and
the improvement in precision (in terms of estimating F) from EM2
to EM1 was positively related to the value of �a (Fig. 6).

Similar to the first simulation experiment, we also evaluated
the performance of the semi-parametric age- and time-varying
selectivity method based upon the estimates of F and SB in the
terminal year of the assessment. The estimates of F and SB had
much greater imprecision than bias (Table 3), so we chose RMSE as
the primary metric assessing EM performance. 2D AR selectivity
(EM3) and REML estimation (EM4) had very similar performance
and both outperformed IID deviations (EM2) and especially con-
stant selectivity (EM1) in the cases where the deviations in age- and

time-varying selectivity were weakly autocorrelated in at least one
dimension (Table 3). Understandably, the importance of account-
ing for autocorrelated age- and time-varying selectivity (by using
EM3 or EM4) was more pronounced when the true �a or/and �t

was/were high (0.8).

Case study application in Stock Synthesis
We further evaluated the performance of our semi-parametric

selectivity approach in Stock Synthesis using a real-world data set
for North Sea herring, finding that SS-EM3 (2D AR deviations)
outperformed the other two SS configurations due to the autocor-
related selectivity of the North Sea herring fishery. Selectivity
deviations from SS-EM2 had a strong 2D pattern, suggesting that
they were likely to be autocorrelated in both dimensions and
selectivity was misspecified in SS-EM2 (Fig. 7a). The deviations in
selectivity were generally positive before 1977 and negative be-
tween 1977 and 1997. While the deviations in selectivity were still
predominantly negative after 1997, they were much closer to zero

Fig. 5. Boxplots for the estimates of the three hyper-parameters (�a, among-age autocorrelation; �t, among-year autocorrelation; �S, variance)
that EM3 and 4 provided for Pacific hake (Merluccius productus) (top two rows) and Pacific sardine (Sardinops sagax) (bottom two rows) in the
second simulation experiment. The lower and upper hinges mark the first and third quantiles and the two whiskers extend to the value
no further than 1.5 interquartile range from the corresponding hinge. The three columns correspond to the three selectivity autocorrelation
scenarios (from left to right: �a = 0.8 and �t = 0.4, �a = 0.4 and �t = 0.4, �a = 0.4 and �t = 0.8). The y-axis shows the ratio of estimated to true
hyper-parameter values, so the horizontal broken lines represent unbiased estimation. [Color online.]
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than between 1977 and 1997. Using the tuning method that we
developed (eq. 19), �̂S was iteratively tuned to be 1.04 in SS-EM2. A
very high value of b (0.9) was found for the North Sea herring
fishery, indicating that the age composition data that the fishery
provided were very informative regarding estimating semi-
parametric age- and time-varying selectivity. We then fixed �̂S at
1.04 and externally estimated �a (0.51) and �t (0.79) using the selec-
tivity deviation samples from SS-EM2.

Estimates of the three hyper-parameters suggested that selec-
tivity of the fishery was highly variable (large �̂S) and the devia-
tions were highly autocorrelated among both ages and years
(large �a and �t). With all three hyper-parameters being fixed at
the estimated values above, SS-EM3 (2D AR deviations) provided
smoother estimates of selectivity deviation on the age–year sur-
face (Fig. 7b). While �̂S was fixed at the same value in the two EMs,
the estimates of selectivity deviations from SS-EM3 were obvi-
ously larger (in absolute) than those from SS-EM2. It was because
the penalty term for selectivity deviations in SS-EM2 served to pull
the deviations towards zero but in SS-EM3 served to pull the se-

lectivity deviations towards the values at adjacent ages and years
when both �a and �t were positive and large. As the reference value
for this penalty term changed from zero (SS-EM2) to those at ad-
jacent grid points (SS-EM3), the peaks and valleys of the selectivity
deviation surface from SS-EM3 can be farther away from zero.

Inspecting residual patterns is another basic way of evaluating
model performance. Large residuals are indicative of a lack of fit
and temporal trends in residuals are indicative of model mis-
specification. The Pearson residuals in fit to the fishery age
composition under IID selectivity deviations (SS-EM2) were
smaller (maximum 1.23) than those under constant selectivity (SS-
EM1, maximum 4.45), but they still had groups of positive or neg-
ative estimates across both age and year (Figs. A4 and A5). This
systematic pattern in residuals implied that the assumption of
independent selectivity deviations was violated. In contrast, the
Pearson residuals in fit to the fishery age composition under 2D
AR deviations (SS-EM3) were even smaller (maximum 0.98) and
moreover distributed more randomly because of the among-age
and among-year autocorrelations in selectivity deviations being

Fig. 6. The interquartile range of relative error in the estimates of F and SB for Pacific hake (Merluccius productus) (top two rows) and Pacific
sardine (Sardinops sagax) (bottom two rows) in the second simulation experiment. The three columns correspond to the three selectivity
autocorrelation scenarios (from left to right: �a = 0.8 and �t = 0.4, �a = 0.4 and �t = 0.4, �a = 0.4 and �t = 0.8). EM1–5 are the five estimation
models compared in the first simulation experiment. [Color online.]
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accounted for (Fig. A6). As such, applying the semi-parametric age-
and time-varying selectivity method for the fishery of North Sea
herring resulted in both improved fit and reduced model mis-
specification.

Lastly, we compared the estimates of F and SB that the three
runs provided for North Sea herring (Fig. 8). Before 1975 and after
1995, the three runs provided similar F estimates but the associ-
ated uncertainties in SS-EM2 and SS-EM3 were notably larger than
in SS-EM1 (Fig. 8a). During 1975–1995 when the deviations in se-
lectivity abruptly changed from positive to negative (Fig. 7), how-
ever, SS-EM2 and especially SS-EM3 provided profoundly lower F
estimates than SS-EM1. SB estimates from the three runs also
differed notably but the largest differences occurred in the initial
and terminal years of the assessment instead (Fig. 8b). More spe-

cifically, SS-EM3 provided 27% lower and 20% higher initial year SB
estimates than SS-EM2 and SS-EM1, respectively. For the terminal
year, SS-EM1 and SS-EM2 provided negligibly different (within 3%)
SB estimates, which, however, were 12% lower than SS-EM3 pro-
vided. We also found that the estimates of F and SB from SS-EM2
and SS-EM3 had a notably larger level of uncertainty than those
from SS-EM1. In summary, accounting for autocorrelated selectiv-
ity (SS-EM3) improved model fit, reduced the 2D pattern in the
Pearson residuals for the fishery, and had a noticeable effect on
the estimates and the associated uncertainty of critical popula-
tion attributes.

We acknowledged that at least two obvious differences existed
between the configuration of simulation experiments and that of
the case study. First, the effective sample size was unknown and

Table 3. Metrics mean relative error (MRE) and root mean square error (RMSE) of the terminal year estimates of attributes F and SB in the second
simulation experiment.

�a = 0.4 and �t = 0.4 �a = 0.4 and �t = 0.8 �a = 0.8 and �t = 0.4

F SB F SB F SB

MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE

Pacific hake (Merluccius productus)
EM1 0.00 0.17 0.04 0.28 −0.02 0.16 0.08 0.34 0.02 0.24 0.05 0.32
EM2 0.01 0.10 0.02 0.23 0.00 0.11 0.05 0.30 0.02 0.13 0.04 0.31
EM3 0.01 0.10 0.00 0.20 0.00 0.11 0.02 0.24 0.01 0.11 0.01 0.25
EM4 0.01 0.10 −0.01 0.20 0.00 0.11 0.01 0.23 0.01 0.11 0.00 0.23
EM5 0.01 0.10 0.00 0.19 0.00 0.11 0.01 0.22 0.01 0.11 0.00 0.22
Pacific sardine (Sardinops sagax)
EM1 0.01 0.20 0.08 0.30 −0.01 0.17 0.07 0.32 0.02 0.24 0.02 0.29
EM2 0.01 0.12 0.03 0.25 0.02 0.11 0.02 0.27 0.03 0.14 0.00 0.30
EM3 0.00 0.11 0.03 0.23 0.02 0.11 0.00 0.22 0.03 0.13 0.00 0.26
EM4 0.00 0.11 0.03 0.23 0.02 0.11 −0.01 0.22 0.02 0.12 0.00 0.25
EM5 0.00 0.11 0.02 0.22 0.02 0.11 −0.01 0.21 0.02 0.12 0.00 0.25

Note: The three columns correspond to various levels of among-age (�a) and among-year (�t) autocorrelations in selectivity deviations and EM1−5 are the five
estimation models compared in the second simulation experiment.

Fig. 7. Estimated selectivity deviation pattern (�̂) for the North Sea herring (Clupea harengus) fishery from (a) SS-EM2 and (b) SS-EM3 in the case
study. [Color online.]
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estimated in the case study but was assumed known without error
in the simulation experiments. Second, the level of selectivity
variation (1.04) in the case study was estimated to be much larger
than that (0.4) assumed in the simulation experiments. Estimat-
ing the effective sample size in the case study induced additional
uncertainty and bias in model estimates, and a large increase in
the level of selectivity variation underlined the importance of
accounting for age- and time-varying selectivity. To evaluate
whether the rank of model performance in the two stimulation
experiments was also robust for the case study, we conducted two
sensitivity tests regarding data weighting and level of selectivity
variation under high data quality (ncomp = 200 and CVabund = 0.1)
and high autocorrelations (�a = 0.8 and �t = 0.8) in selectivity
deviations. As expected, the precision of SB estimates decreased
when the effective sample size was estimated inside the model in
comparison to being fixed at the true value (Fig. A7, middle col-
umn). However, 2D AR deviations (EM3) still had pronouncedly
higher precision than either constant selectivity (EM1) or IID de-
viations (EM2). Moreover, this pattern was found to be more dra-
matic when the level of variation in selectivity was higher (Fig. A7,
middle column). As such, accounting for the highly autocorre-
lated (�a = 0.51 and �t = 0.79) and variable (�̂S � 1.04) selectivity of
the North Sea herring fishery (via our new semi-parametric selec-
tivity method) was expected to be critical.

Discussion
This paper provides a new semi-parametric method to account

for autocorrelated age- and time-varying (termed “2D autocor-
related”) selectivity in age-structured assessment models. This
method includes a parametric selectivity form and nonparamet-
ric process errors that can be autocorrelated among ages and
years. We conducted a simulation experiment to evaluate the
performance of this new method and found that it resulted in an
increased precision of F and SB estimates for both hake and sar-
dine, given that the deviations in selectivity were highly autocor-
related. Moreover, the degree to which the precision increases
was positively related to the quality of fishery data and the accu-
racy of estimates of the three hyper-parameters (�̂S, �a, and �t) for
semi-parametric age- and time-varying selectivity. We conducted
another simulation experiment to evaluate the importance of the
semi-parametric selectivity method under various levels of auto-
correlation in selectivity deviations. Given that the quality of
fishery data is high, the EMs that used the new semi-parametric
method to account for autocorrelated deviations in selectivity (2D
AR deviations, REML estimation, and perfect information) outper-
formed the other EMs (constant selectivity and IID deviations) in
terms of the precision of SB estimates, especially when the devia-
tions in selectivity were highly autocorrelated. Regardless of data
quality and selectivity autocorrelation, REML estimation (EM4)
was more accurate than sample-based estimation (EM3) in esti-

Fig. 8. The estimates of North Sea herring (Clupea harengus) F and SB from the three Stock Synthesis runs in the case study. The shaded areas
show the 95% confidence intervals of the estimates. [Color online.]
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mating the three hyper-parameters. Consequently, REML estima-
tion (EM4) was more precise than sample-based estimation (EM3)
with respect to estimating both F and SB. However, the REML
method involves estimating random effects, so it cannot be used
in ADMB-based assessment packages (e.g., Stock Synthesis).

Not surprisingly, the 2D autocorrelated selectivity method was
more important to the assessments that have high-quality age
composition data. A larger number of effective samples per year
corresponds to more informative age composition data and
thereby more accurate estimates of the two autocorrelation coef-
ficients (�a and �t). It also corresponds to a larger weight for age
composition data in the objective function. When the likelihood
term for age composition data makes a more significant contribu-
tion to the objective function, model estimates are expected to be
more sensitive to how selectivity is parameterized in the EM.
Thus, accounting for autocorrelated deviations in age- and time-
varying selectivity was found to be most crucial to the high-
quality (large b) data case.

For the high-quality data case, we conducted another simulation
experiment to evaluate the importance of the 2D autocorrelated
selectivity method under three other levels of autocorrelation
in selectivity deviations. Results suggested that the semi-parametric
selectivity method was more important in terms of the precision
of F estimates when the true deviations in selectivity were highly
autocorrelated among ages and was more important in terms of
the precision of SB estimates when the true deviations in selectiv-
ity were highly autocorrelated among years. In an additional sim-
ulation that we introduced, we also found that the importance of
accounting for autocorrelated selectivity deviations (in terms of
the precision of SB estimates) was positively related to the level
of variation in the corresponding selectivity (�̂S).

Maunder (2011) found that estimating the effective sample size
may lead to more accurate recruitment estimates when the EM
ignores the large variation in selectivity. Real-world age composi-
tion data are likely correlated rather than independent due to, for
example, age-specific aggregation or schooling (McAllister and
Ianelli 1997). The positive among-age correlation in residuals for
composition data results in overdispersion, i.e., the effective sam-
ple size is smaller than the actual sample size (Maunder 2011;
Francis 2014; Thorson et al. 2017). The simulation experiment con-
ducted by Maunder (2011) suggested that estimating the effective
sample size could improve estimation performance when the ef-
fective sample size is less than one fifth of the actual sample size.
We therefore recommend that future research examines (1) how
the ratio of effective to actual sample size is affected by the level of
autocorrelation in age- and time-varying selectivity and (2) the
consequences of ignoring the overdispersion in composition data
under various levels of autocorrelation in selectivity deviations.
We believe that both topics will be feasible to explore using the 2D
autocorrelated selectivity function to generate data.

We also implemented the 2D autocorrelated selectivity method
in Stock Synthesis to evaluate the performance of the new Stock
Synthesis feature using real data set for North Sea herring. We
found that the age composition data from the fishery was very
informative (b = 0.9) regarding estimating selectivity deviations.
Moreover, selectivity of the fishery was highly variable (�̂S � 1.04)
and the deviations were highly autocorrelated among ages (�a =
0.51) and years (�t = 0.79). Thus, as expected, SS-EM3 (which imple-
mented 2D autocorrelated selectivity) fitted the data better and
provided more randomly distributed Pearson residuals of the
fishery catch than the other two runs (which ignored selectivity
variation or assumed independent selectivity deviations). It is im-
portant to note that the age- and time-varying selectivity feature
increased not only model fit but also computation time. On a
laptop with a four-core Intel processer, turning on the new selec-
tivity feature in the North Sea herring case study increased the
computation time from less than 1 min (SS-EM1) to more than

3 min (SS-EM2 and SS-EM3) due to the estimation of additional
520 (65 years × 8 ages) selectivity deviations for the fishery.

As an example of a case that might benefit from this new ap-
proach, a recent assessment of Pacific hake (Berger et al. 2017)
found that the parameterization of time-varying selectivity in-
duced profound uncertainty to terminal year estimates of SB and
a better way to parameterize selectivity of the fishery was highly
recommended by both the assessment authors and the reviewers.
The parameterization in Stock Synthesis used in this assessment
treats fishery selectivity as a time-varying process by adding an-
nual deviations to the time-invariant selectivity parameters, each
of which represents a change in selectivity from one age to the
next (up to age 6, beyond which selectivity is assumed to be con-
stant). The resulting selectivity, including annual deviations, is
rescaled to sum to 1 in each year. Although the deviations are
treated as independent of age and time, the parameterization
introduces negative correlations among the deviations within
each year, as the combination of the offset setup and the rescaling
will cause a positive deviation in the parameter for any one age to
reduce the selectivity for all other ages unless it is offset by a
negative deviation for some other age. The hake assessment relies
on MCMC sampling of the parameter space, so unnecessary pa-
rameter correlations reduce the sampling efficiency and lead to
long run times (Berger et al. 2017). The 2D autocorrelated selectiv-
ity may overcome some of the challenges faced in the hake assess-
ment by representing the variation over time as independent of
the time-invariant selectivity (rather than rescaling the combina-
tion of the two factors) and by explicitly modeling the autocor-
relation in age and time, rather than assuming independent
deviation.

Before estimating the two autocorrelation coefficients (�a and
�t) for selectivity deviations, we recommend checking the esti-
mate of b from SS-EM2 to estimate the quality of age composition
data regarding estimating �̂ as well as the two autocorrelation
coefficients. If the value of b is large (close to 1.0) and the Pearson
residuals for the fishery have an obvious pattern across ages or
years, then analysts could explore using the 2D autocorrelated
selectivity method in Stock Synthesis. The choice of the age and
year range over which selectivity is assumed to be time varying
should depend upon the distribution of the quality of age compo-
sitions. We recommend focusing on only the data-rich age and
time period when exploring the 2D autocorrelated selectivity
method in Stock Synthesis. If the age and year range chosen for
the semi-parametric selectivity method is too large (e.g., including
the poor-sampled initial years and oldest age groups), the data
may not be informative enough to estimate �̂ and the two auto-
correlation coefficients with reasonable accuracy and precision.
Moreover, care should be taken when using b as a measure of the
composition data quality because b is conditional on how properly
the corresponding age composition data are weighted. In the sim-
ulation experiments, b was iteratively tuned based on the assump-
tion that the effective sample size of the age composition data is
known without error. If the effective sample size in a real-world
assessment is over- or underestimated to a large extent, the calcu-
lation of b could be biased and uninformative.

Different from previous simulation studies where the standard
deviation of a random effect was typically assumed known with-
out error (Haltuch and Punt 2011; Johnson et al. 2016), we instead
specified EM2–4, which estimate �̂S, so that the simulation corre-
sponds more closely to a real-world assessment process. The
choice of the constraint imposed upon the magnitude of selectiv-
ity variation (�̂S in this case) could affect the estimates of impor-
tant parameters and derived quantities (Francis 2011). Decisions
regarding the value of �̂S were often subjective in past studies
(Butterworth et al. 2003; Maunder et al. 2014; Punt et al. 2014), but
we have evaluated both simple (penalized likelihood, EM2) and
advanced (REML, EM4) approaches to uniquely estimate its value.
The fact that �̂S was accurately and precisely estimated by EM2
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in all three data quality cases provides additional credibility for
implementing and exploring the semi-parametric selectivity
method in Stock Synthesis for real-world stock assessments, in
which the truth �̂S of any selectivity is not known. While �S cannot
be estimated as a fixed-effect parameter in Stock Synthesis while
treating �̂ as a random effect, the Methot–Taylor tuning method
serves as a feasible and reliable alternative to provide objective �S
estimation.

Although the semi-parametric age- and time-varying selectivity
approach allows us to estimate the level of variation in selectivity
(�̂S) iteratively, care should be taken when applying this approach
to real-world data sets. Acknowledging that this iteration algor-
ism could be less efficient or even problematic in assessments
when more than one �̂S needs to be tuned at the same time, we
therefore recommend restricting the application of the semi-
parametric age- and time-varying selectivity method to the most
important fishery fleet(s). As for weighting composition data for
the fleet to which the semi-parametric age- and time-varying se-
lectivity approach is applied, we recommend using the Dirichlet-
multinomial method (Thorson et al. 2017) rather than the more
widely used iteration-based methods (McAllister and Ianelli 1997;
Francis 2011). In comparison with those methods, the Dirichlet-
multinomial method weights composition data inside the model
based on maximum likelihood and thus gets rid of the interaction
between the iteration for �̂S and that for effective sample size.

We are aware a caveat regarding the 2D AR(1) approach to ac-
count for age and time autocorrelated deviations in selectivity.
This approach is treated as a first-order approximation of the
complex 2D selectivity variation, which arises often due to a com-
bination of several factors such as cohort strength, fishing gear,
and behavior as well as the spatiotemporal distribution of the fish
population. While some factors like fishing gear and behavior
tend to be autocorrelated across time, some other factors like
cohort strength are not necessarily being autocorrelated across
time. It is important to note that the 2D AR(1) approach is not
designed to deal with cohort-specific selectivity, but that is a topic
that could be considered in future research. Ageing imprecision
could be another important contributor to observed autocorrela-
tion in age composition data. However, it is still unclear whether
the inclusion of autocorrelated selectivity in the assessment
model can reduce the ageing-caused biases in assessment out-
comes.

Another caveat regarding the 2D AR(1) approach is that only
positive correlation is allowed in selectivity deviations from two
age bins. That constraint could be problematic, as selectivity de-
viations at two distant ages could be negatively correlated (e.g.,
Fig. 1A in Francis 2017). We recommend future research develop-
ing advanced AR structures to deal with more types of among-age
correlation pattern for selectivity deviations. We acknowledge
that the Pearson residuals for catch at age data from our approach
are larger than those from the state-space approach that ICES
used in the North Sea herring stock assessment (ICES 2017). The
difference in fit between the two approaches is possibly due to the
fact that the state-space model is more flexible than Stock Synthesis,
as it also allows a random effect on survivorship.
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Appendix A
Appendix Figs. A1–A7 appear on the following pages.

Fig. A1. The temporal coverage of the data included in the North Sea herring (Clupea harengus) case study. [Color online.]

282 Can. J. Fish. Aquat. Sci. Vol. 76, 2019

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
06

/0
5/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfas-2013-0280
http://dx.doi.org/10.1139/cjfas-2013-0280
http://dx.doi.org/10.1016/j.fishres.2016.06.005
http://dx.doi.org/10.1016/j.fishres.2016.06.005
http://dx.doi.org/10.1139/f2012-103
http://dx.doi.org/10.1139/f2012-103


Fig. A2. Boxplots for b (see eq. 20) from the three data cases. b is a scaler (between 0 and 1) quantifying the richness of the fishery
composition data in terms of estimating semi-parametric age- and time-varying selectivity. The lower and upper hinges mark the first and
third quantiles and the two whiskers extend to the value no further than 1.5 interquartile range from the corresponding hinge. The three
columns correspond to the three data quality cases. [Color online.]

Fig. A3. The interquartile range of relative error in the estimates of F (top) and SB (bottom) for Pacific hake (Merluccius productus) in the additional
simulation experiment (under the high data quality and selectivity autocorrelation case). EM6 is the same as EM3 except the among-age selectivity
autocorrelation (�a) was fixed at 0. The three columns correspond to the three OMs with different qualities of fishery data. [Color online.]

Xu et al. 283

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
06

/0
5/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Fig. A4. The Pearson residuals in fit to the North Sea herring (Clupea harengus) fishery age composition from SS-EM1.

Fig. A5. The Pearson residuals in fit to the North Sea herring (Clupea harengus) fishery age composition from SS-EM2.
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Fig. A6. The Pearson residuals in fit to the North Sea herring (Clupea harengus) fishery age composition from SS-EM3.

Fig. A7. The interquartile range of relative error in the estimates of F (top) and SB (bottom) for Pacific hake (Merluccius productus) in the
sensitivity simulation test (under the high data quality and selectivity autocorrelation case). The three columns correspond to the base case in
the simulation experiments (left), the effective sample size of the fishery age composition data are estimated (middle), and the true level of
selectivity variation is doubled (�s = 0.8) compared with the base case (right). [Color online.]
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