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Abstract 36 

The justification for incorporating environmental effects into fisheries stock assessment 37 

models has been investigated and debated for a long time. Recently, a state-space age-38 

structured assessment model which includes the stochastic change in the environmental 39 

covariate over time and its effect on recruitment was developed for Southern New England-40 

Mid Atlantic yellowtail flounder (Limanda ferruginea). In this paper, we first investigated 41 

the correlations of environmental covariates with Southern New England-Mid Atlantic 42 

yellowtail flounder recruitment deviations. The covariate that was most strongly correlated 43 

with the recruitment deviations was then incorporated into the state-space model and 44 

alternative effects on the stock-recruit relationship were estimated and compared. For the 45 

model that performed best as measured by Akaike information criterion, we also compared 46 

the estimates and predictions of various population attributes and biological reference 47 

points with those from an otherwise identical model without the environmental covariate in 48 

the stock-recruit function. We found that the estimates of population parameters are similar 49 

for the two models but the predictions differed substantially. To evaluate which model 50 

provided more reliable predictions, we quantitatively compared the prediction skill of the 51 

two models by generating two series of retrospective predictions. Comparison of the 52 

retrospective prediction pattern suggested that from an average point of view, the 53 

environmentally-explicit model can provide more accurate near-term recruitment 54 

predictions especially the one-year ahead recruitment prediction. While for a specific near-55 

term recruitment prediction from the environmentally-explicit model, the accuracy of 56 

which is largely determined by the accuracy of the corresponding environment prediction 57 

the model provides. 58 

Key Words: state-space model; Gulf Stream Index; recruitment; stock assessment; 59 
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INTRODUCTION 62 

Whether we should incorporate environmental drivers explicitly into fisheries stock 63 

assessment models has been investigated and debated for a long time (Walters & Collie, 64 

1988, Haltuch & Punt, 2011, Punt et al., 2014, Szuwalski & Hollowed, 2016). Several 65 

recent studies have shown that the environment cannot be ignored to better understand 66 

some of the factors influencing changes in stock productivity of many fish populations 67 

(Vert-pre et al., 2013, Essington et al., 2015, Szuwalski et al., 2015), but incorporating 68 

environmental drivers into stock assessment models remains elusive. However, Miller et al. 69 

(2016) recently developed a state-space age-structured assessment model that allows for 70 

environmental covariates in the stock-recruit function. According to model fit and 71 

retrospective pattern, they concluded that incorporating the effect of Mid-Atlantic cold pool 72 

dynamics on Southern New England-Mid Atlantic (SNEMA) yellowtail flounder 73 

recruitment can improve model performance. 74 

The physical environment in the SNEMA region is highly dynamic owing to variability 75 

in both atmospheric and oceanographic processes. The North Atlantic Oscillation or NAO 76 

is an atmospheric process known to have a profound effect on water temperature, storm 77 

tracks and northern North Atlantic ecosystems (Drinkwater et al., 2003). The NAO has a 78 

lagged effect on surface and bottom water temperature in the Northeast US as the signal 79 

propagates from the Labrador Sea (Mountain, 2012, Xu et al., 2015). In the Northeast US, 80 

two current systems collide where cold water emanating from the Labrador Current to the 81 

north and warm water moving from the south and east in the Gulf Stream meet (Greene et 82 

al., 2013). The position of the north wall of the Gulf Stream is the best leading indicator of 83 

the relative strength of cold Labrador slope water and warm subtropical water and is highly 84 

correlated with temperature on the shelf (Nye et al. 2011). In the SNEMA region, the Mid-85 

Atlantic cold pool is a distinct remnant cold winter water at depth occurring from late 86 

spring to early fall, formed as a result of the strong seasonal thermocline in the SNEMA 87 

region (Houghton et al., 1982). 88 

Determining the cause of the low recruitment since the 1990’s was argued to be one of 89 

the main sources of uncertainty in the most recent SNEMA yellowtail flounder benchmark 90 

assessment (NEFSC, 2012). The persistent low recruitment since the 1990’s resulted in the 91 
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exploration of two recruitment scenarios in the benchmark assessment to account for the 92 

notable drop in stock productivity. The first scenario assumed that unfavorable 93 

environmental conditions reduced stock productivity significantly since the 1990’s such 94 

that the stock was considered rebuilt (albeit at a low level) and not overfished. By contrast, 95 

the second scenario also accounted for greater historical recruitments prior to the 1990’s 96 

such that the stock was considered overfished. Therefore, making clear what processes are 97 

responsible for the recruitment drop since the 1990’s will be invaluable to improving 98 

current understanding of the population dynamics and determining the stock status of 99 

SNEMA yellowtail flounder. 100 

Recruitment of SNEMA yellowtail flounder may be dependent on temperature 101 

condition during the early life stages. SNEMA yellowtail flounder usually spawn in spring 102 

and early summer, with a peak in May (NEFSC, 2012). Their fertilized eggs float at the 103 

surface for about 2 months, then larvae metamorphosis occurs and juveniles settle to the 104 

bottom of the continental shelf (Sullivan et al., 2000). Both field observations (Sullivan et 105 

al., 2005, Sullivan et al., 2000) and modeling studies (Miller et al., 2016) have shown that 106 

recruitment of SNEMA yellowtail flounder is closely related to the dynamics of the Mid-107 

Atlantic cold pool. In the field, Sullivan et al. (2000) found that the SNEMA stock heavily 108 

relies on the cold bottom water in the Mid-Atlantic cold pool as a thermal refuge in summer 109 

when water temperature reaches the annual maximum. Later on, Sullivan et al. (2005) also 110 

found that stronger young-of-the-year cohorts were observed with colder and longer-lasting 111 

Mid-Atlantic cold pools. 112 

Based on the survey evidence from the field, incorporating the Mid-Atlantic cold pool 113 

dynamics in SNEMA yellowtail flounder stock assessment model was investigated in the 114 

last benchmark assessment, attempting to explain the low productivity level since the 115 

1990’s (NEFSC, 2012). The Cold Pool Index (CPI), defined as the first principle 116 

component of the Mid-Atlantic cold pool temperature and area matrix, was chosen in the 117 

study to represent the thermal condition in the Mid-Atlantic cold pool. A negative 118 

correlation was found between the CPI and the recruitment deviations from the Beverton-119 

Holt stock-recruit function. Also,the CPI-incorporated Beverton-Holt stock-recruit function 120 

was found to fit data better than the traditional Beverton-Holt stock-recruit function without 121 
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any environmental covariate. Although this preliminary analysis demonstrated the negative 122 

effect of cold pool temperature on SNEMA yellowtail flounder recruitment, the CPI was 123 

not accepted in the baseline run in the last benchmark assessment as the low productivity 124 

level since 1990 could not be fully explained by the CPI alone (NEFSC, 2012). 125 

After the last benchmark assessment, the effect of CPI on SNEMA yellowtail flounder 126 

recruitment was further investigated in a new state-space age-structured assessment model 127 

(Miller et al., 2016). State-space models have the advantage of separately modeling time-128 

varying stochastic processes and observation errors, and have recently become increasingly 129 

popular due to the developments of software packages that can efficiently handle such 130 

models (Nielsen & Berg, 2014). This state-space assessment model allows CPI effects on 131 

recruitment, and assumes stochastic changes of the CPI over time and accounts for errors in 132 

the annual CPI observations (Miller et al., 2016). Comparison of the state-space models 133 

with and without CPI effects on recruitment indicated that the former had lower AIC and 134 

provided less retrospective patterns (Mohn, 1999) in terminal year estimates of population 135 

attributes. This study further emphasized the importance of the environment in modulating 136 

SNEMA yellowtail flounder recruitment.  137 

In addition to understanding stock productivity and determining stock status, another 138 

goal in fisheries stock assessment is to predict stock biomass trajectories under various 139 

harvest scenarios (Quinn & Deriso, 1999, Haddon, 2010). Prediction skill is a term 140 

popularly used in climate science referring to the ability of a model in predicting climate 141 

variables (Boer et al., 2013). It is usually assessed by generating a series of historical 142 

climate predictions and comparing them with the corresponding observations (Meehl et al., 143 

2009). Although a good prediction skill in historical predictions does not necessarily 144 

guarantee a good prediction skill for the future, the historical prediction skill can inform us 145 

about the uncertainty in model predictions for the future. In fisheries stock assessment, 146 

retrospective analysis is often done to evaluate the systematic bias in population estimates 147 

in the terminal year when additional years of data are added (Mohn, 1999). Borrowing the 148 

idea of model prediction skill from climate science, a series of retrospective prediction can 149 

also be generated in a similar way for fisheries stock assessment models to evaluate the 150 

skill of models in predicting population attributes. Indeed, Brooks and Legault (2015) 151 
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recently have used the idea of the retrospective prediction to evaluate the predictive 152 

performance of New England groundfish stock assessment models, although their 153 

retrospective prediction scheme is different from that typically used in climate science.  154 

The first objective of this paper was to examine the correlation of various atmospheric 155 

and oceanographic covariates with SNEMA yellowtail flounder recruitment deviations. 156 

Until now, the examples of incorporating environmental effects directly into fisheries stock 157 

assessment and management are still very limited (but see Schirripa, 2007, Hill et al., 2011, 158 

and Miller et al., 2016). Thus, our second objective was to comprehensively compare the 159 

estimates and predictions from the state-space assessment models with and without the 160 

most strongly correlated climate process in the stock-recruit function. This comparison 161 

provided suggestions for future fisheries studies that incorporate environmental effects into 162 

stock assessment models.  163 

 164 
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DATA AND METHODS 165 

The correlation of various large-scale atmospheric and oceanographic climate indices with 166 

annual deviations in recruitment for the SNEMA yellowtail flounder stock were examined. 167 

Hydrology and ecosystem dynamics on the Northeast US Continental Shelf have been 168 

known to be affected by the NAO - the dominant and most influential atmospheric 169 

oscillation mode in the North Atlantic (Drinkwater et al., 2003, Mountain, 2012). The NAO 170 

index represents the scaled pressure difference between the two pressure centers of the 171 

NAO, namely the Azores high (AH) pressure center and the Icelandic low (IL) pressure 172 

center (Hameed & Piontkovski, 2004).  The large-scale atmospheric indices investigated in 173 

this study include the winter NAO index from 174 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) as well as the 175 

pressures, latitudes, and longitudes of the IL pressure and AH pressure centers from 176 

Hameed and Piontkovski (2004). In this study, the reason for including various indices 177 

related to the two NAO pressure centers instead of only considering the NAO index is that 178 

treating the two pressure centers as two separate systems can potentially explain a larger 179 

portion of the NAO-induced variance (Hameed & Piontkovski, 2004). The oceanographic 180 

indices investigated in this study include two Gulf Stream related indices (Joyce & Zhang, 181 

2010, Taylor & Stephens, 1998) and the previously investigated CPI. The two Gulf Stream 182 

related indices are 1) the Gulf Stream Index (GSI), calculated by using water temperature at 183 

200 m depth (Joyce & Zhang, 2010); and 2) the Gulf Stream North Wall (GSNW), 184 

calculated by using sea surface temperature observation (Taylor & Stephens, 1998). The 185 

two indices differ in the data source but both quantify the latitudinal position of the Gulf 186 

Stream: one at the surface and one at 200 m depth. Particularly, the GSI was shown to be a 187 

good indicator of bottom temperature condition in the SNEMA region (Nye et al., 2011). 188 

Assuming that the recruitment deviations from fitting to the Beverton-Holt stock-recruit 189 

function are at least partially related to environmental processes, the Pearson cross-190 

correlations between the recruitment deviations in log-space and environmental indices that 191 

lead recruitment by zero to two years were calculated. The lead time was designed to 192 

account for the delayed effects of some large-scale climate processes on the local 193 

environment in the SNEMA region. The recruitment and spawning stock biomass (SSB) 194 

time series used to fit  to the Beverton-Holt stock-recruit function were extracted from the 195 
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baseline run in the most recent benchmark assessment (NEFSC, 2012). Recognizing that a 196 

significant correlation does not necessarily indicate causation (Hilborn, 2016) and the time 197 

series used in the correlation analysis are from stock assessment models which are subject 198 

to various sources of uncertainty and bias (Brooks & Deroba, 2015), we also incorporated 199 

the most significantly correlated environmental indices internally in the state-space 200 

assessment model to compare model performance with respect to AIC and retrospective 201 

bias. Following the method in Burnham and Anderson (2002), the Akaike weight was also 202 

calculated for each model using AIC. 203 

As in Miller et al. (2016), the environmental covariate (�) at time � is modeled as a 204 

random walk for � > 2: 205 ��|��−1 ~ N (��−1,��2)   (1) 

and the observation of which is 206 ��|�� ~ N ��� ,��2�   (2) 

Essentially, the incorporated environmental covariate is a random walk process with white 207 

noise. In this state-space assessment model, the environmental covariate can be 208 

incorporated into the stock-recruit function and therefore adjust the expected recruitment at 209 

time �: 210 �����,1|��−1, ����−1 ~ N ��,��12 �   (3) 

where � is an environmentally-explicit Beverton-Holt stock-recruit function. Throughout 211 

this paper, recruitment (��,1) is used to refer to the abundance of age-1 fish unless 212 

otherwise noted. The environmental covariate (�) and abundance-at-age (�) are both 213 

random-effect variables and estimated in ADMB based on empirical Bayes (Fournier et al., 214 

2012). The state-space assessment model fitted to the data between 1973-2011, including 215 

three abundance indices from bottom trawl surveys, two spawning stock indices from 216 

ichthyoplankton surveys, commercial catch, and annual age composition observations from 217 

the three bottom trawl surveys and the commercial catch (see Miller et al. 2016). 218 

Miller et al. (2016) found that performance of the state-space assessment model was 219 

improved by including CPI effect on recruitment. As the CPI was hypothesized to affect the 220 
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carrying capacity for pre-recruits, CPI was modeled as a “limiting factor” in the Beverton-221 

Holt stock-recruit function (see Iles and Beverton 1998). However, Iles and Beverton (1998) 222 

also considered effects of the environment on spawner density and(or) mortality 223 

(controlling factor) and on pre-recruit mortality and(or) growth (masking factor) (Fry, 1971, 224 

Neill et al., 1994). To evaluate the sensitivity of the state-space assessment model to the 225 

form of the environmentally-explicit Beverton-Holt stock-recruit function, we also 226 

incorporated the most strongly correlated environmental covariate into the Beverton-Holt 227 

stock-recruit function as a controlling and masking factor. 228 

After finding the best fitting environmentally-explicit stock-recruit function for 229 

SNEMA yellowtail flounder, we compared the estimates and predictions of three 230 

population attributes (recruitment, SSB, and fully -selected fishing mortality (F)) and two 231 

biological reference points (maximum sustainable yield (MSY) and SSBMSY) provided by 232 

the two models with and without the environmental effect on recruitment. Both models 233 

made five-year predictions for years 2012-2016 under the assumption that future F is at the 234 

level that produce the MSY (FMSY

In fisheries stock assessments, assessing model performance by generating a series of 238 

retrospective assessments is not a new idea. Terminal year population estimates are of key 239 

importance to stock status determination and harvest management, but are usually subject 240 

to retrospective bias (Mohn, 1999, Legault, 2009). Retrospective bias arises due to 241 

misspecification in stock assessment models (Legault, 2009) and is usually evaluated in the 242 

corresponding retrospective pattern generated through refitting the model to the data after 243 

removing (peeling) its terminal year sequentially for several times (Mohn, 1999). Similar to 244 

assessing the retrospective bias by generating a series of retrospective peels, the prediction 245 

skill of stock assessment models can also be assessed by generating a series of retrospective 246 

predictions using the “true” F during the prediction years and then comparing the 247 

retrospective predictions of population attributes with the corresponding “true” values. The 248 

“true” values in this paper are defined as the estimates from the assessment using the full 249 

data from 1973 to 2011. The “true” F rather than “true” catch was specified in predictions 250 

). To evaluate which model can provide more reliable 235 

population predictions for 2012-2016, the prediction skill of the two models were compared 236 

by generating a series of retrospective predictions for each model.  237 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

considering that the “true” catch can exceed the estimated population biomass and result in 251 

negative population abundance (Brooks & Legault, 2015). As this paper is focused on 252 

understanding environmental effects on SNEMA yellowtail flounder recruitment, we chose 253 

recruitment as the target population attribute in retrospective predictions. For each model, 254 

13 retrospective three-year predictions were generated in a way similar to retrospective 255 

peeling: first, the state-space model fitted to the data between 1973-2008 with three years 256 

(2009-2012) recruitment predicted; then, the state-space model fitted to the data between 257 

1973-2007 with three years (2008-2011) recruitment predicted; repeated this process in the 258 

same manner until the state-space model fitted to the data between 1973-1996 with three 259 

years (1997-1999) recruitment predicted. The mean relative difference (MRD) and mean 260 

absolute relative difference (MARD) of the 13 retrospective recruitment predictions from 261 

the “true” recruitment were calculated for each prediction lead time (from one year to three 262 

years) to quantitatively compare the retrospective prediction skill among the candidate 263 

models. The MRD and MARD for prediction lead year t were calculated as 264 

MRDt =
1

13
� ��,� − ��+���+�2008

�=1996    (4) 

MARDt =
1

13
� |��,� − ��+�|��+�2008

�=1996    (5) 

respectively. ��,� is the tth

 267 

 recruitment prediction from the state-space model fitted to the 265 

data up to year i, and ��+� is the corresponding “true” recruitment the full data in year � + �. 266 

RESULTS 268 

Environmental drivers of recruitment deviations 269 

While the correlation of recruitment deviations with the CPI was significant and stronger 270 

than with any atmospheric indices, the strongest correlations were observed with the two 271 

Gulf Stream related indices, especially the GSI (Table 1; Fig. 1). The GSI and recruitment 272 

deviations were negatively correlated with a lag of one year (Table 1). In other words, the 273 
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latitudinal position of the Gulf Stream negatively impacted the abundance of age 1 fish one 274 

year later.  275 

The GSI and CPI were then separately incorporated in the state-space assessment model 276 

in the Beverton-Holt stock-recruit function either as a limiting, controlling, or masking 277 

factor. Based on AIC, the GSI-incorporated models performed better than the CPI-278 

incorporated models (Table 2), which is in agreement with the stronger correlation of GSI 279 

with recruitment deviations. Moreover, among the GSI-incorporated models, the one with 280 

GSI assumed to be a limiting factor performed best and more than two times more likely to 281 

be the best model than is the second-best one with GSI assumed to be a controlling factor. 282 

Myers (1998) noticed that only 1 out of 47 environmental-recruitment correlations was 283 

used in routine stock assessments at the time of his study, and moreover, most 284 

environmental-recruitment correlations broke down when more years of data were added. 285 

As another measure of model performance, we compared the retrospective AIC values from 286 

the best model above and from the best model Miller et al. (2016) found (with the CPI 287 

assumed to be a limiting factor). Consistently in all seven peels, the GSI-incorporated 288 

model had smaller AIC values than the CPI-incorporated model (Table 3), indicating that 289 

the GSI-incorporated model consistently outperformed the CPI-incorporated model over 290 

time. The retrospective estimates of the environmental link parameter showed that the sign 291 

and degree of the GSI effect on recruitment were also consistent as addition years of data 292 

were included (Table 3). The two models were also compared with respect to the Mohn’s �, 293 

which was defined in this study as the mean of the seven relative differences in each 294 

terminal year. Compared to the CPI-incorporated model, the GSI-incorporated model had 295 

larger Mohn’s � for all three population attributes while the differences in Mohn’s � are 296 

negligible for SB and F (Table 4). 297 

 298 

Effects of the GSI on predicting recruitment 299 

The estimated stock-recruit function in the two models with (R(SSB&GSI)) and without 300 

(R(SSB)) the GSI effect on recruitment was first compared. When recruitment is solely a 301 

function of SSB, the recruitment expected from a given SSB is always constant. However, 302 

when recruitment is also a function of environment and the environmental effect is strong, 303 
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recruitment can vary dramatically with the environment (Fig. 2). Given that R(SSB) and 304 

R(SSB&GSI) differ in the stock-recruit function, the estimates and especially predictions of 305 

population attributes and biological reference points provided by the two models are 306 

expected to be different. It is important to note that R(SSB) was treated as a base model in 307 

this study to evaluate the consequences of incorporating an environmental covariate into a 308 

stock assessment model, it however was not considered in the last benchmark assessment 309 

because the stock-recruit relationship was not used (NEFSC, 2012). 310 

As for recruitment, R(SSB) and R(SSB&GSI) provided similar estimates before 2011 311 

(except in some individual years such as 1975-1980) but notably different five-year 312 

predictions for 2012-2016 (Fig. 3a). Although under the same harvest scenario, R(SSB) 313 

predicted that future recruitment will be increasingly higher while R(SSB&GSI) predicted 314 

that future recruitment will  be persistently lower than that estimated in the terminal year. 315 

The SSB estimates provided by the two models were also similar and the SSB predictions 316 

provided by the two models were also notably different (Fig. 3b). Specifically. R(SSB) 317 

provided higher SSB predictions than R(SSB&GSI), primarily due to higher recruitment 318 

predictions from R(SSB). The recent unfavorable environmental conditions negatively 319 

affected recruitment and resulted in a decreasing stock size is predicted by R(SSB&GSI) 320 

for the next five years. By contrast, the higher SSB predicted by R(SSB) provides an 321 

optimistic view that the stock size will slowly rebuild over the next five years. Same as 322 

recruitment and SSB, F was also estimated to be similar in R(SSB) and R(SSB&GSI) (Fig. 323 

3c). 324 

While R(SSB) and R(SSB&GSI) provided similar F estimates, the estimated FMSY from 325 

the two models were notably different (Fig. 3c). Specifically, the FMSY estimate from 326 

R(SSB) is very close to the reference point from the most recent benchmark assessment 327 

(F40%), but notably smaller than that from R(SSB&GSI). Both MSY and SSBMSY in this 328 

state-space assessment model are functions of the incorporated environmental covariate, so 329 

their estimates from R(SSB&GSI) varied annually with the GSI. The MSY estimates from 330 

R(SSB&GSI) were relatively low since the 1990’s (Fig. 3d) as unfavorable environmental 331 

conditions (indicated by high GSI values) were more frequent during that time (Fig. 1). 332 

Note that the MSY estimates from R(SSB) is time-invariant also due to the fact that the 333 
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terminal year weight-at-age and selectivity were used in the calculation of MSY for all 334 

previous years. In this case, only using a constant set of values for these allows us to look at 335 

how MSY varies annually just due to the annual fluctuation in the environment. As for 336 

log(SSB/SSBMSY), both the estimates and predictions from the two models differ 337 

substantially (Fig. 3e). When the GSI values were low (i.e., environmental conditions were 338 

favorable) before 1990, the stock was estimated to be more productive and therefore 339 

log(SSB/SSBMSY) was estimated to be lower from R(SSB&GSI) than from R(SSB). 340 

Conversely, when the GSI values were high (i.e., environmental conditions were 341 

unfavorable) after 1990, the stock was estimated to be less productive and therefore 342 

log(SSB/SSBMSY

Overall, both models over-predicted recruitment after 1996, except in a few years 344 

between 2003-2006 (Fig. 4). The recruitment predictions from R(SSB&GSI) were 345 

generally higher than those from R(SSB) when the terminal year GSI values were lower 346 

than the long-term average and vice versa, as a result of the negative correlation between 347 

the GSI and recruitment deviations. As expected, the recruitment predictions from either 348 

model become more biased (larger MRD) and less accurate (larger MARD) as prediction 349 

lead time increases (Table 5). Generally speaking, incorporating the GSI into the stock-350 

recruit function improved the accuracy of recruitment predictions as suggested by a smaller 351 

MARD for R(SSB&GSI). Also, it reduced the bias in recruitment predictions as suggested 352 

by a smaller MRD for R(SSB&GSI). The importance of the incorporation to recruitment 353 

predictions is most pronounced in the first prediction year and finally becomes negligible in 354 

the third prediction year. 355 

) was estimated to be higher from R(SSB&GSI) than from R(SSB).  343 

We compared each retrospective prediction pair from the two models and found that the 356 

relative performance of the two models in predicting recruitment had dramatic year-to-year 357 

fluctuations and neither model consistently outperformed the other in predicting 358 

recruitment (Fig. 4). Although both MRD and MARD are smaller for R(SSB&GSI), the 359 

comparison indicates that R(SSB&GSI) fails to provide better recruitment prediction in all 360 

13 retrospective prediction cases. Because the GSI is modeled as a random walk, the best 361 

future prediction is the same as the estimate in the last observed year of data. However, the 362 

GSI had very large interannual fluctuation relative to the long-term average, so the annual 363 
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GSI prediction could be very different from the “true” GSI. As a consequence, the 364 

recruitment predictions from R(SSB&GSI) could also be very different from the “true” 365 

recruitment. For example, if the GSI did not change notably in the three prediction years 366 

(e.g., 2000-2002), the GSI and its effect on recruitment were found to be more accurately 367 

predicted by R(SSB&GSI). In this case, the recruitment predictions from R(SSB&GSI) (the 368 

bold solid line starting in 2000) were more similar to the “true” recruitments than the 369 

predictions from R(SSB) which did not account for the unfavorable environmental 370 

conditions (the bold dashed line starting in 2000). In contrast, if the GSI changed 371 

dramatically in the three prediction years (e.g., 2006-2008), the GSI and its effect on 372 

recruitment were poorly predicted by R(SSB&GSI). In this case, the recruitment 373 

predictions from R(SSB&GSI) (the bolded solid line starting in 2006) were further from the 374 

“true” recruitments than the predictions from R(SSB) (the bold dashed line starting in 375 

2006). 376 

DISCUSSION 377 

This paper uses the state-space age-structured assessment model from Miller et al. (2016) to 378 

explore other environmental covariates to explain SNEMA yellowtail flounder recruitment 379 

variability and builds on it to evaluate alternative effects of environmental covariates within 380 

the Beverton-Holt stock-recruit relationship. Furthermore, we explore the ability of 381 

environmental covariates to improve prediction of future recruitments. Specifically, we 382 

incorporated indicators of climate variability directly into the stock-recruit function as a 383 

limiting, controlling, and masking factor, respectively. Compared to the model without any 384 

environmental covariate, the model with GSI as a limiting factor performed better with 385 

respect to AIC and provided recruitment predictions that were closer to the “true” 386 

recruitments estimated from the full data with respect to both MRD and MARD. However, 387 

the recruitment predictions provided by the model with GSI were not closer to the “true” 388 

recruitments in every single retrospective prediction case. Indeed, we found that 389 

recruitment predictions from the model with GSI can be further from the “true” values 390 

when GSI predictions from that model are far away from the “true” GSI. Therefore, we 391 

suggest to treat the environmentally-explicit model as an alternative model, instead of the 392 

best and only model, to be considered in population prediction and stock management. The 393 

model with GSI as a limiting factor strongly suggested that the recent low productivity of 394 
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the SNEMA yellowtail flounder can be explained by the unfavorable environmental 395 

conditions result from a northward shift of the Gulf Stream, and also, the stock has been 396 

rebuilt relative to the current productivity level. 397 

Many environmental indicators including the CPI were correlated with the recruitment 398 

deviations taken from the stock assessment, but the correlation was strongest for the GSI. 399 

The CPI is a local-scale environmental index representing bottom temperature condition in 400 

the Mid-Atlantic Cold Pool (NEFSC, 2012) while the GSI is a basin-scale environmental 401 

index representing the latitudinal anomalies of the Gulf Stream path (Joyce & Zhang, 2010). 402 

Comparison of model fits suggests that local bottom temperature in the Mid-Atlantic Cold 403 

Pool should not be the only environmental factor affecting SNEMA yellowtail flounder 404 

recruitment. Indeed, the basin-scale GSI also indicates some other shelf physical/biological 405 

conditions that potentially affect the recruitment: (1) shelf SST condition (Gawarkiewicz et 406 

al., 2012), which affects the physiology of SNEMA yellowtail flounder during the early 407 

pelagic phase; (2) shelf current and eddy conditions, which affect larval transport and 408 

retention on the continental shelf (Hare & Cowen, 1996); and (3) shelf primary production 409 

condition in spring (Saba et al., 2015), which affects food availability to the larvae. Hallett 410 

et al. (2004) argued that large-scale climate indices contain information on several local 411 

processes, so potentially they could better predict ecological processes compared to local 412 

weather conditions when a mechanistic understanding of how local environment influences 413 

a biological process is lacking. We hypothesize that the better performance of the GSI than 414 

the CPI in explaining SNEMA yellowtail flounder recruitment is due to the aggregation of 415 

factors beyond the bottom temperature in the Mid-Atlantic cold pool that affects 416 

recruitment. 417 

Of the alternative type of environmental effects in the Beverton-Holt stock-recruit 418 

function, we found the “limiting factor” assumption where the carrying capacity of pre-419 

recruits is regulated by the GSI to perform best for SNEMA yellowtail flounder (Iles & 420 

Beverton, 1998, Neill et al., 1994). We noticed that the differences in AIC between the 421 

models with different forms of the stock-recruit functions (limiting, controlling, or masking 422 

factor) were smaller than those between different environmental covariates incorporated in 423 

the stock-recruit function (GSI or CPI). The retrospective AIC pattern showed that the GSI-424 
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incorporated model was consistently better than the CPI-incorporated model in all seven 425 

retrospective peels. According to Mohn’s � , another important metric of model 426 

performance, the retrospective biases in the estimates of recruitment, SSB, and F from the 427 

GSI-incorporated model were minimally larger than those from the CPI-incorporated model. 428 

Even though the GSI provided a lower AIC than the CPI, it is important to also assess 429 

how the inclusion of GSI impacts model estimates and predictions. Comparison suggested 430 

that R(SSB) and R(SSB&GSI)  provided similar estimates of recruitment, SSB, and F, but 431 

distinct estimates of biological reference points and predictions of recruitment and SSB. 432 

Indeed, the GSI affected the expected recruitment from the stock-recruit function. Although 433 

recruitment estimates from the two models were similar, R(SSB&GSI) still had a much 434 

smaller AIC as the deviations between the estimated and expected recruitment were 435 

generally closer to zero when the GSI effect on recruitment was included. When there are 436 

catch and survey data, recruitment estimates are informed by them and are also constrained 437 

by a penalty term to not be far from the stock-recruit function expected. However, in the 438 

prediction period when no fisheries data are available, the best recruitment predictions are 439 

from the stock-recruit function. Specifically, recruitment predictions from R(SSB) are 440 

based solely on SSB while those from R(SSB&GSI) are also profoundly affected by year-441 

to-year fluctuations in the GSI. Since the only difference between R(SSB) and R(SSB&GSI) 442 

lies in the stock-recruit function, whether includes GSI effects on recruitment prediction is 443 

the only possible source responsible for the large differences between the predictions of 444 

recruitment and SSB from the two models.  445 

In the first prediction year (i.e., 2012), the SSB predictions from R(SSB) and 446 

R(SSB&GSI) are not differentiable, although the recruitment predictions from R(SSB) and 447 

R(SSB&GSI) have been notably different. Since few SNEMA yellowtail flounder can be 448 

mature at age 1, recruitment minimally impacts SSB in the first prediction year. In the 449 

second prediction year (i.e., 2013), the difference in recruitment prediction propagates to 450 

age 2 at which maturity reaches 0.5, leading to divergent SSB predictions from the two 451 

models. This divergence in SSB predictions then propagates back to recruitment one year 452 

later (i.e., 2014) through the stock-recruit function, resulting in an even lower recruitment 453 

prediction from R(SSB&GSI), as the high predicted GSI has already led to a lower 454 
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recruitment prediction in 2014. The increasingly different predictions of recruitment and 455 

SSB from the two models clearly show the importance of selecting the most appropriate 456 

stock-recruit function to near-term population predictions. 457 

Interesting enough, a higher FMSY was estimated by R(SSB&GSI) than R(SSB) and the 458 

recruitment estimates (when GSI equal 0) from R(SSB&GSI) were also higher than from 459 

R(SSB). It indicates that the stock was estimated to be more productive at low SSB levels 460 

when the GSI effect is included in the stock-recruit function. The reason for which, we 461 

suspect, is that the recent low recruitments from R(SSB&GSI) were partly attributed to 462 

unfavorable environmental conditions, instead of being solely attributed to reduced SSB as 463 

those from R(SSB). In other words, when environmental conditions are neutral, the 464 

productivity and consequently FMSY

As shown earlier, the five-year recruitment predictions from R(SSB) and R(SSB&GSI) 468 

differ substantially. To evaluate which model can provide more reliable recruitment 469 

predictions, we generated 13 retrospective predictions for each model and then compared 470 

those predictions with the “true” recruitments which were defined in this study as the 471 

estimates from the full data. Generally speaking, the differences between the predicted and 472 

“true” recruitments are smaller in R(SSB&GSI), especially in the first prediction year in 473 

which recruitment prediction is a function of the relatively reliable GSI observation in the 474 

last year of observations. The second and third recruitment predictions are functions of the 475 

increasingly unreliable GSI predictions from R(SSB&GSI), so the inclusion of GSI effect 476 

on recruitment leads to relatively small improvement in those recruitment predictions. As 477 

expected, comparison of either MRD or MARD indicated that incorporating the GSI into 478 

the stock-recruit function cannot reduce the difference between the predicted and “true” 479 

recruitment beyond a lead time of two years. In addition, we also made year-by-year 480 

comparison of the retrospective recruitment predictions from the two models to evaluate 481 

whether R(SSB&GSI) consistently outperformed R(SSB) over time in predicting 482 

recruitment. The year-by-year comparison suggested that the accuracy of recruitment 483 

predictions from R(SSB&GSI) is largely dependent on the accuracy of those years’ GSI 484 

 of SNEMA yellowtail flounder estimated from 465 

R(SSB&GSI) should be higher than R(SSB) in which the environmental effect on 466 

recruitment is not included. 467 
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prediction from R(SSB&GSI). Because the GSI had large interannual fluctuations relative 485 

to the long-term average, its predictions from a random walk model in R(SSB&GSI) could 486 

be considerably biased. If it happens, the recruitment predictions from R(SSB&GSI) are 487 

also expected to be considerably biased, albeit in the opposite direction. However, if the 488 

environmental covariate incorporated into the stock-recruit function is a low-frequency 489 

decadal oscillation such as the Pacific Decadal Oscillation, the random walk model is more 490 

likely to provide reliable near-term predictions for the environmental covariate. However, 491 

another problem can arise when incorporating a low-frequency decadal oscillation into the 492 

stock-recruit function. Haltuch and Punt (2011) found that when fisheries data are relativity 493 

short in time compared to the period of the incorporated decadal oscillation, stock 494 

assessment models are not able to correctly tell whether the incorporated environmental 495 

process has a significant effect on recruitment or not. 496 

This study evaluated the skill of the state-space assessment model in predicting 497 

recruitment via implementing the retrospective prediction scheme that is popularly used in 498 

the climate science community. However, the skill of an assessment model in predicting 499 

recruitment needs to be interpreted differently from that of a climate model in predicting 500 

climate variables. Generally speaking, the predicted climate variable such as sea surface 501 

temperature can be observed through either in situ or remote sensing method. Therefore, 502 

the prediction skill can be evaluated by comparing model predictions with the 503 

corresponding observations that are relatively credible. By contrast, some population 504 

attributes predicted (e.g., recruitment and SSB) by stock assessment models are inherently 505 

unobservable in the field. This study evaluated the skill of the state-space model in 506 

predicting recruitment by comparing model predictions with the corresponding estimates 507 

from the full data, which are model output and less accurate than direct climate 508 

observations. As a result, a good skill in predicting recruitment does not necessarily equals 509 

accurate recruitment predictions. For instance, a high prediction skill can possibly exist 510 

when retrospective recruitment predictions and recruitment estimates from the full data are 511 

both systematically biased in the same direction to a large extent. Thus, like Mohn’s �, the 512 

retrospective prediction skill is only one metric of model performance and should be 513 

evaluated together with other model diagnostics.  514 
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In brief, this paper provides two major suggestions for future fisheries studies that 515 

incorporate environmental effects into stock assessment models. First, care should be taken 516 

even when the model with an environmental covariate fits data better. When the 517 

environmental covariate is poorly predicted, the model with that environmental covariate 518 

can provide less accurate predictions than the model without any environmental covariate. 519 

In future work, alternative time series models for an environmental covariate should also be 520 

considered in the state-space model to potentially improve its predictive performance. For 521 

instance, a stationary autoregressive process of order greater than 1 has been found to be 522 

robust in predicting the GSI and its effect on silver hake distribution for the near-term 523 

(Davis et al., 2017). Second, analyzing the retrospective prediction pattern to quantitatively 524 

evaluate model prediction skill is recommended before making management decisions 525 

based on model predictions, in the same way that retrospective pattern is analyzed as a 526 

regular procedure in stock assessments to evaluate the biases in terminal year model 527 

estimate. 528 
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 648 

 649 

TABLES  650 

 651 

Table 1. The Pearson correlation coefficients between SNEMA yellowtail flounder 652 

recruitment deviations and various environmental indices with a lag of one to three years. 653 

Positive lags mean the environment leads the recruitment. IL stands for Icelandic low and 654 

AH stands for Azores high. Only correlations that are significant at the 95% confidence 655 

level are shown and the coefficient marked in bold represents the correlation is significant 656 

at the 99% confidence level.  657 

Environmental index Lag 1 Lag 2 Lag 3 

IL Pressure 0.38   

IL Longitude    

IL Latitude    

AH Pressure    

AH Longitude   -0.36 
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AH Latitude   -0.38 

NAO  -0.37 -0.38 

GSI -0.52   

GSNW -0.41   

CPI -0.39   

 658 
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Table 2. The fits of the state-space assessment model with different environmentally-659 

explicit stock-recruit functions. These fits are compared according to AIC and Akaike 660 

weight, which are shown in column three and four, respectively.  661 

Model Stock-recruit function ∆AIC � (AIC) 

R(SSB) 
���� + ���� 13.89 0.00 

R (CPIlimiting
���� + ��������� , SSB) 

5.40 0.04 

R (CPImasking
��������� + ���� , SSB) 

4.53 0.06 

R (CPIcontrolling
���� + ���� ����� , SSB) 

3.93 0.08 

R (GSIlimiting
���� + ��������� , SSB) 

0.00 0.55 

R (GSImasking
��������� + ���� , SSB) 

4.94 0.05 

R (GSIcontrolling
���� + ���� ����� , SSB) 

1.67 0.24 

 662 

 663 
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Table 3. The retrospective difference in AIC between the model with the GSI as a limiting 664 

factor and that with the CPI as a limiting factor (column 2) as well as the retrospective 665 

estimates of the environmental link parameter and the associated standard deviation from 666 

the model with the GSI as a limiting factor. Positive difference in AIC corresponds to the 667 

GSI-incorporated model outperforms the CPI-incorporated model and vice versa. 668 

Peel AIC(CPI) - AIC(GSI) c (sd) 

0 5.40 1.53 (0.37) 

1 5.17 1.52 (0.37) 

2 5.48 1.53 (0.37) 

3 5.55 1.51 (0.36) 

4 7.31 1.50 (0.34) 

5 12.08 1.46 (0.29) 

6 10.51 1.51 (0.32) 

 669 
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Table 4. The Mohn’s � of SSB, F, and recruitment from the state-space assessment model 671 

with and without environmental (GSI or CPI) effect on recruitment. A smaller Mohn’s � 672 

(absolute value) corresponds to less retrospective bias and consequently better model 673 

performance. 674 

Model � (SSB) � (F) � (R) 

R(SSB) 0.11 -0.14 0.24 

R (CPIlimiting 0.11 , SSB) -0.14 0.22 

R (GSIlimiting 0.14 , SSB) -0.16 0.36 

 675 
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Table 5. The mean relative difference and mean absolute relative difference in the near-677 

term recruitment predictions from R(SSB) and R(SSB&GSI). 678 

Prediction lead time 1 year 2 years 3 years 

MRD -  R(SSB) 1.23 1.53 1.68 

MRD -  R(SSB&GSI) 0.89 1.26 1.59 

MARD - R(SSB) 1.45 1.73 1.76 

MARD - R(SSB&GSI) 1.04 1.50 1.77 

 679 

FIGURE CAPTIONS 680 

 681 

Figure 1. Compare the natural log of SNEMA yellowtail flounder recruitment with the two 682 

most related environmental indices (GSI and CPI). The recruitment time series is from the 683 

baseline run in the most recent benchmark assessment (NEFSC, 2012) and the CPI is scaled 684 

to have the same variance as the GSI for easier comparison. Both environmental indices in 685 

this figure have been shifted one year backward to account for the one-year lag between 686 

them with recruitment. 687 

 688 

Figure 2. The estimated Beverton-Holt stock-recruit function from R(SSB) (dashed line) in 689 

comparison to those from R(SSB&GSI) (solid lines) under various GSI values. 690 

 691 

Figure 3. The first row shows the estimated and predicted recruitment (a) and SSB from the 692 

two comparing models under the FMSY harvest scenario. The second row shows the 693 

estimated F and FMSY (c) and the estimated MSY (d) from the two comparing models. The 694 

third row shows the estimated and predicted log (SSB/SSBMSY) from the two comparing 695 

models under the FMSY

 699 

 harvest scenario (e). In this figure, the color dashed lines and 696 

vertical error bars represent the 95% confidence interval, and the black vertical dashed lines 697 

mark last year of data. 698 
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Figure 4. The retrospective prediction patterns from R(SSB) (dashed lines) and 700 

R(SSB&GSI) (solid lines). The two black lines represent the “true” recruitment from each 701 

model, i.e., the recruitment estimates when performing the assessment on full data. The 702 

dots are the terminal year recruitment estimates and color of lines and dots represents the 703 

last year of data available for each retrospective prediction, from dark blue (1996) to dark 704 

red (2008). The two pairs of recruitment predictions mentioned in the discussion are 705 

highlighted as bold color lines.  706 
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