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Abstract

The justification for incorporating environmentatdfects into fisheries stock assessment
modelshas been investigated and debated for a long time. Recently, -@satage-
structuredassessment modelhich includesthe stochastic change in the environmental
covariate over time and its effect on recruitment was develop&bidaherrNew England
Mid Atlantic yellowtail flounder(Limanda ferruginea). In this paper, we first investigated
the correlatiors of environmental covariates with Southern New Englstid Atlantic
yellowtail flounder recruitmentleviations The covariatethat wasmost stronglycorrelated
with the recruitmentdeviations vas then incorporated ito the statespace model and
alternative effects on the stoogcruit relationshipvere estimated and compared. For the
model thatperformed best as measuredkgike informationcriterion, we also compared
the estimates angredictiors of various populatiorattributes and biological reference
points with those from an otherwise identical model without the environmentalateva
the stockrecruit function. We found that the estimates of populgterametes are similar
for the twa modelsbut the predictiors differed substantially To evaluatewhich model
provided=more reliable predictionse quantitatively compared thagredictionskill of the
two modelsby generatingtwo series of retrospectiveredictiors. Comparison of he
retrospectiveprediction pattern suggestedthat from an average point of viewthe
environmentallyexplicit model can provide more accuratenearterm recruitment
predictiors especiallyhe oneyearahead recruitment predictiowhile for a specificnear
term recruitment prediction from the environmentalhgexplicit mode] the accuracy of
which isslargely determinedby the accuracy othe correspondingnvironment prediction

the model-provides.

Key Words. state-space model; Gulf Stream Index; recruitment; stock assessment;
Southern..New England-Mid Atlantic yellowtail flounder; retrospective prediction;
predictionsskill
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INTRODUCTION

Whether we should ncorporate environmentadrivers explicitly into fisheries stock
assessm@ models has been investigated and debated for a long\akers & Collie,
1988, Haltuch & Punt, 2011, Punt et al., 2014, Szuwalski & Hollowed, 2@&E)eral
recentstudies haveshownthat the environment cannot be ignored to better understand
some ofuthe factors influencing changes in stock productivity of manypbglulations
(Vert-pre et al., 2013, Essington et al., 2015, Szuwalski et al., 2015), but incorporating
environmentadriversinto stock assessment models remains elubigeever Miller et al.
(2016) recently devebped a statspace agstructured assessment model that allows for
environmental covariates ithe stockrecruit function According to model fit and
retrospective pattermhey concludedhat incorporatinghe effect of MidAtlantic cold pool
dynamics on Southern New Englanilid Atlantic (SNEMA) vyellowtail flounder

recruitment.cammprove model performance.

The physical environmeim the SNEMA regionis highly dynamic owing teariability
in bothatmaspheric andceanographiprocessesThe North AtlanticOscillationor NAO
is angatmespheric process known to have a profound effect on water temperature, storm
tracks andnorthernNorth Atlantic ecosystem@rinkwater et al., 2003)The NAO has a
lagged effect on surf@ and bottom water temperaturethe Northeast US as the signal
propagate$rom the Labrador Se@Mountain, 2012, Xu et al., 2019y the Northeast US
two current systemsollide wherecold water emanating from the Labrador Current to the
north and warm water moving from the south and east in the Gulf Sineat(Greene et
al., 2013)-Fhe position of the ndntwall of the Gulf Stream is the best leading indicator of
the relativesstrength of cold Labrador slope water and warm subtropicalamdtes highly
correlated"with temperature on the st{dlye et al. 2011)In the SNBMA region, he Mid-
Atlantic coldjpool is a distinct remnant cold winter water at deqtturring from late
spring to early fall formed as a result of the strong seasonal thermocline ISNIEA
region.(Houghton et al., 1982).

Determining the cause of the low recruitmeimice the 1990’svasargued to be one of
the mainsource of uncertaintyin the most recerSNEMA yellowtail flounderbenchmark
assessmerfNEFSC, 2012)The persistent low recruitment sinitee 1990’s resulted in the

This article is protected by copyright. All rights reserved



92  exploration of tworecruitmentscenariosn the benchmarkassessmerto account forthe

93 notable drop instock productivity. The first scenarioassumedthat unfavorable

94  environmental conditions reduced stopkoductivity significantly sincahe 1990s such

95 that the stock wasonsidered rebuilt (albeit at a low level) and not overfisBgdcontrast,

96 the second,scenargsoaccounted fogreaterhistorical recruitments prior to the 1990’s

97 such thathestockwasconsidereverfisred Therefore, mking clear what processes are

98 responsible“for the recruitment drop sinte 1990s will be invaluable to improving

99  current*understanding of the population dynamics and determining the stock status of

100 SNEMA yellowtail flounder.

101 Recruitment of SNEMA yellowtail flounder may bedependent on temperature
102 conditionduring the early life stageSNEMA yellowtail flounder usually spawim spring
103 and early._ summer, with a peak in MEYEFSC, 2012). Theifertilized eggs float at the
104  surfacesforabout2 months,thenlarvae metamorphosis occurs and juveniles settle to the
105  bottom'of‘the continental shelf (Sullivan et al., 20@)th field observationgSullivan et
106  al., 2005, Sullivan et al., 200@nd modeling studie@liller et al., 2016)have shown that
107  recruitmentof SNEMA yellowtail flounderis closely related tethe dynamicof the Mid

108  Atlantic coldypool.In the field,Sullivan et al. (2000joundthat theSNEMA stock heavily
109 relies’onsthescold bottom water in the Midlantic cold pool as a thermal refuge in summer
110  when water temperatureaclesthe annual maximumLater on Sullivan et al. (2005also
111 foundthat'stronger youngf-theyear cohorts werebserved witfcolder and longelasting
112 Mid-Atlantic cold pools.

113 Based orthe survey evidenckgom the field incorporating the MigAtlantic cold pool
114  dynamics"inNSNEMA yellowtail flounder stock assessment model was investigatéuke
115 last benchmark assessment, attemptmgexplain thelow productivity levelsince the
116  1990s (NEFSC, 2012). The Cold Pool Index (CPI), defined as the first principle
117 componentsof the Mid\tlantic cold pool temperature and area matrix, was chosen in the
118  study toyrepresentthe thermal conditionin the Mid-Atlantic cold pool. A negative
119  correlation was found beeen the CPI and the redmentdeviationsfrom the Beverton-
120  Holt stockrecruit function Also,the CPlincorporatedBevertonHolt stockrecruit function

121 was found to fidata better than the traditiorBé&vertonHolt stockrecruit functionwithout
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122 anyenvironmental covariatédlthough ths preliminary analysis demonstrated the negative
123  effect of cold pooltempeature onSNEMA yellowtail flounderrecruitment the CPIl was
124  not accepted in the baseline run in the last benchmark assessrttemni@sg productivity

125 level since 1990 could not be fully explained by the CPI a{bii=SC, 2012)

126 After the'last benchmark assessment, the effe€iRdfon SNEMA yellowtail flounder
127  recruitmentwas further investigatechia newstatespace agstructured assessment model
128  (Miller et al., 2016) Statespace modslhave the advantag# separately modelingme-
129  varying stochastiprocesseand observatioerrors and have recently become incrieasy
130 populardue’to the developments of software packages that can efficiently handle such
131  models(Nielsen & Berg, 2014)This statespace assessment mod#bws CPI effects on
132 recruitment, and assumes stochastic changes of theveéPtimeand accounts for errors in
133  the annual CPI observatioii®liller et al., 2016) Comparisorof the statespace models
134  with and"withoutCPI effects on recruitmntindicatedthat the formeihad lower AlCand
135  providedlessretrospective pattern®lohn, 1999)in terminal year estimates of palation
136  attributes.This studyfurtheremphasizedhe importancef the environment in modulating

137  SNBMA yellowtail flounderrecruitment

138 In addition to understanding stopkoductivity anddeterminingstock statusanother

139 goal in fisheries stock assessmasatto predict stock biomasgrajectoriesunder various
140  harvesty scenariogQuinn & Deriso, 1999, Haddon, 2010prediction skill is a term
141 popularlyused in climate science referring to the ability of a modptadicing climate

142  variables(Boer et al., 2013)It is usually assessed by generating a series of historical
143 climatepredictiors and comparing them with the correspondibgervationgMeehl et al.,

144  2009)"Althougha good prediction skill in historical predictiors does not necessarily
145  guarantee good predictiorskill for the future, the historicagdredictionskill can inform us

146  aboutthe ungertaintyin model predictiondor the future.In fisheries stock assessment,
147  retrospective’analysis is often done to evaluate the systematic Ipi@gulationestimates
148 in theterminal year when additianyears of data are addé@dohn, 1999). Borrowing the
149  idea of modepredictionskill from climate science, a series of retrospectikedictioncan

150 also be generateid a similar wayfor fisheries stock assessment models to evaluate the

151  skill of modelsin predicing populationattributes Indeed, Brooks and Legault (2015)
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recently have used the idea othe retrospectiveprediction to evaluate thepredictive
performance of New England groundfish stock assessment models, although their

retrospectivgredictionscheme is different from that typically used in climate science.

The'first.0bjective othis paperwas toexaminethe correlation of various atmospheric
and oceanographicovariates with SNEMA yellowtail flounder recruitmedeviations
Until now,the"examples ahcorporating environmental effects directly irfiigheries stock
assessment and managemnaat still very limitedbut seeSchirripa, 2007Hill et al., 2011,
and Miller et al. 2016).Thus, ar second objective wa® comprehensivg comparethe
estimates.angredictiors from the statespace assessment models with and witlbet
most strongly correlated climate process the stockrecrut function. This comparison
providedsuggestions for futuréssheriesstudies that incorporate environmental effects into

stock assessment models
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DATA AND METHODS

The correlation of varioukrgescale atmospheric and oceanographic climate indices with
annual deviations in recruitment for the SNEMA yellowtail flounder stock wenmiera
Hydrology and ecosystem dynamics on the Northeast US Continental Shelbéawe
known to“be affected byhe NAO - the dominant and most influential atmospheric
oscillation-mode in the North Atlant{®rinkwater et al., 2003, Mountain, 2012). The NAO
index represents the scaled pressure difference between the two pressure centers of the
NAO, namely the Azorekigh (AH) pressurecenter and the Icelandlow (IL) pressure
center(Hameed & Piontkovski, 2004)The largescale atmospheric indices investigated in
this study include the winter NAO index from
(http://www.cpcncep.noaa.gov/products/precip/CWlink/pna/nao.shtmf) well as the
pressures, latitudesna longitudes of thdlL pressureand AH pressve centers from
Hameed«and Piontkovski (2004). In this study, the reason for includirigus indices
related tosthe two NAO pressure centestead ofonly consideringhe NAO index is that
treating the two pressure centers as two separate systems can potexpiain a larger
portion of the NAGinduced variancéHameed & Piontkovski, 2004 he oceanographic
indices investigated in this study include two Gulf Stream related indices (Jo¢bardy,
20104 Taylor & Stephens, 1998hd the previouslinvestigated CRIThe two Gulf Stream
related indices arg) the Gulf Stream Indef§GSl), calculated by using water temperature at
200 m.depth (Joyce & Zhang, 201@nd 2) the Gulf Stream North Wall (GSNW)
calculated by using sea surface temperature observVdiaytor & Stephens, 1998)he
two indices differ inthe data sourcdut both quantify the latitudinal position of the Gulf
Stream: one at the surface and one at 200 m degtticulaty, the GSlwas showrto be a

good indicator obottom temperatureondition in the SNEMA region (Nye et al., 2011).

Assuming thathe recruimentdeviationsfrom fitting to the BevertorHolt stockrecruit
function are_at leastpartially related to environmental process#se Pearson cross
corréelatiors betweertherecruitmentdeviationsn log-spaceand environmental indicebat
lead recruitment by zero to two yeargre calculated.The lead time was designed to
account for the delayed effects of some lesgale climate processes on thaal
environment in theSNEMA region. The recruitment andgpawningstock biomass3SB

time serieused tofit to the BevertorHolt stockrecruit functionwere extracted from the
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196  baseline run inhe most recentenchmarkassessmefNEFSC, 2012). Recognizirtpata

197  significantcorrelation does not necessarily indicataisationHilborn, 2016)and the time

198  series used in the correlation analysis are from stock assessment models which are subject
199  to various sources of uncertairapd biagBrooks & Deroba, 2015we also incorporated

200 the mostsignificantly correlated environmentaindices internally in the statspace

201  assessment‘mod& comparemodel performancevith respect teAIC and retrospective

202  bias.Following the method in Burnham and Anderson (2002), the Akaike weight was also
203  calculatedfor each modaking AIC.

204 As inuMiller et al. (2016) the environmental covariatéc) at timet is modeledas a

205 random walkior t > 2:

Xe|xe—1 ~ N (xe_q, Up?) (1)

206 and the.ebservation of which is

Velxe ~N (xt' 033) (2)

207  Essentially,"the incorporated environmental covariate is a random walk process with white
208 noise.In"this statespace assessment model, the environmental coveaiatee
209 incorporated into the stoalecruit functionand therefore adjust the expected reonaittat

210 timet:
logN¢1|x¢—1,S5Bt—1 ~ N (9' (71\211) )

211 whereg isqan environmentalkgxplicit BevertonHolt stockrecruit function. Throughout
212 this paper, recruitmeniVf ;) is used to refer tthe abundance of adefishunless

213 otherwisenoted The environmental covariafe) and abundancatage(N) are both

214  randomeffect variables andstimatedn ADMB based on empirical BayéBournier et al.,
215  2012).Thesstatespaceassessment model fittéol thedatabetween 1973-2011, including
216 three abundance indices from bottom trawl surveyssfvaavning stock indicefsom

217  ichthyoplankton surveysommercial catchand annuahge compositioobservations from

218 the three bottom trawl surveys atig commercial catclisee Miller et al. 2016)

219  Miller et al. (2016)found thatperformance of the statgpaceassessment model was
220 improved by includingCPl effecton recruitmentAs the CPI was hypothesized to affect the
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carrying capacity for preecruits, CPl wasnodeledas a “limiting factor” in the Beverten
Holt stockrecruit function (see lles and Beverton 1998). Howelles, and Beverton (1998)
also considered effects of the environment on spawner damsi{gr) mortality
(controllingfactor) and on preecruit mortality and(or) growth (masking factéfry, 1971,
Neill et al:1994). T@valuatethe sensitivity of the state-sgpaassessment modelthe

form of the environmentallgxplicit Beveton-Holt stockrecruit function we also
incorporatedta most songly correlatedenvironmental covariat@to the BevertorHolt

stockreeruitfunction as a controllingnd masking factor.

Afterwfinding the best fithg environmentallyexplicit stockrecruit function for
SNEMA vyellowtail flounder, we comparedthe estimates and prediohs of three
population_attributes (recruitment, SS&d fully-selected fishing mortalityH)) and two
biological reference pointsnaximum sustainable yieldiSY) and SSBysy) provided by
the twormodels with and withodhe environmentaéffect on recruitment. Both models
madefive-yearpredictiors foryears20122016 under the assumption that futéres at the
level that produce th#MSY (Fusy). To evaluatewhich model can provide more reliable
populationpredictiors for 2012-2016, the predicticskill of the two models wereompared

by generating a segef retrospectiveredictionsfor each model.

In fisheries stock assessmgrassessing model performance by generating a series of
retrospectiveassessmenis nota newidea Terminal yeampopulationestimatesare of key
importance.tostock status determinaticaand harvesimanagementout are usually subject
to retrospective biagMohn, 1999, Legault, 2009)Retrospectivebias arises due to
misspecificaton instock assessmemodes (Legault, 2009andis usually evaluateth the
correspondingetrospectivepatterngeneratedhrough refitting themodel to the data after
removing (peeling) its terminal year sequenyiddir severatimes(Mohn, 1999) Similar to
assessinghe retrospective biaby generatinga series ofetrospectivegeels the prediction
skill of stocksassessment moslelin also be assessed by generating a series of retrospective
predictions using thétrue” F during the predictionyears and then comparing the
retrospective predictionsf population attributesvith the correponding “true” valuesThe
“true” valuesin this paperaredefined as the estimaté®m the assessmensingthe full

datafrom 1973 to 2011The “true” Frather tharftrue” catchwas specified in predictions
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251  consideringhat the “true” catcltanexceed the estimated population biomasd result in
252  negative population abundance (Brooks & Legault, 20AS)this paperis focused on
253 understandig environmental effects NEMA yellowtail flounderrecruitmentwe chose
254  recrutmentas the target populaticattributein retrospective predictiongor each model
255 13 retrospective thregear predictiors were generated in a way similar to retrospective
256  peelingfirst,/the statespacemodelfitted to the datebetweenl1973-2008with threeyears
257  (2009-2012)ecruitmentpredicted then, the statespacemodelfitted to the data between
258  1973-2007with threeyeass (2008-2011)ecruitmentpredicted repeagdthis process in the
259  same manner uttihe statespacemodelfitted to the databetween1973-1996with three
260 yeas (1997=1999Yecruitmentpredicted The mean relativelifference(MRD) and mean
261  absoluterrelativaifference(MARD) of the 13 retrospeiste recruitmentpredictionsfrom
262 the“true” rectuitmentwere calculated foeachprediction lead time (from one year to three
263  years)to_guantitativelycompare the retrospective prediction skill amdhg candidate
264 modelsThe MRD and MARDfor prediction lead/eart were calculated as

2008

1 Oit — Oiye
MRD; = — T (4
t7 13 Z 0; )

i=1996 +t

2008

1 160it — Ol
MARD, = — Z —— (5
t =13 o (5)

i=1996

265  respectivelyd; . is thet™ recruitment predictiorfrom the statespace modefitted to the

266 daaup toyeari, ando;,, is the correspondinfjrue” recruitmentthe full data in gari + t.

267

268 RESULIS

269  Environmental drivers of recruitment deviations

270  While.the correlatiorof recruitmentdeviationswith the CPl wassignificant andstronger
271 thanwith any,atmospheric indiceghe strongestorrelationswere observed witlthe two
272 Gulf Stream related indicesspecially the GS(Table 1 Fig. 1). The GSI and recruitment

273  deviationswere negatively correlatadith alag of one year (Table 1 other wordsthe
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274  latitudinal position of the Gulf Stream negatively imgaithe abundancef age 1 fish one

275  year later

276 The GSlandCPI were then separately incorporaiethe statespace assessment model
277  in the.BevertonHolt stockrecruit function eitheras a limiting, controllingor masking
278 factor. Based on AIC, the GShcorporated modelgperformed betterthan the CRI
279 incorported modelgTable 2), which isn agreenentwith the stronger correlation of GSI
280  with reeruitment deviationdvioreover, among th&Skincorporated models, thenewith
281  GSIl assumed to be a limiting factmerformed bestand more than two times more likely to

282  be the bestimodel than is the secbedtone with GSI assumed to be a controlling factor.

283 Myers (1998)noticed that only 1 out of 47 environmentatruitment correlationsvas

284 used in routine stock assessments at the time of his study, and moreover, most
285  environmentakecruitment correlations broke down when more years of data were added.
286  As another measarof model performanceve compared the retrospectikeC valuesfrom

287 the best.model above and frothe best modeMiller et al. (2016)found (ith the CPI

288 assumed to be limiting facto). Consistently in all seven peels, the @®lorporated

289  model ha smaller AIC valueghan the CRincorporated modgTable 3),indicatingthat

290 the GSkineorporated modetonsistentlyoutperformedthe CPtincorporated modebver

291 time. The retrospectivestimats of the environmental lingarameteshowedthat thesign

292 and degre®f the GSI effecton recruitment wrealso consistent easdditionyears of data

293  wereincluded(Table 3) The two models were also compared with respect tdbten’s p,

294  which wasdefinedin this studyas the mean of the seven relatdiéferencesin each

295 terminalyear Compared to the Chhcorporated model, the G8icorporated model laa

296 larger"Mohn’sp for all three population attributeshile the differencesn Mohn'sp are

297  negligiblefor SB and HTable 4).

298

299  Effects.of the GS on predicting recruitment

300 The estimated stoetecruit functionin the two models with(R(SSB&GSI))and without

301  (R(SSB))the GSI effect on recruitmentvas first compared When recruitment is solely a

302 function of SSB, the recruitment expected from a given SSB is always constant. Howeve

303 when recruitment is also a function of environment and the environmental effecing, str
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recruitment can vary dramatically with tleavionment(Fig. 2). Given that R(SSB and
R(SSB.GSI) differ in thestockrecruit functionthe estimates andspeciallypredictiors of
population attributesand biologicalreferencepoints provided bythe two modelsare
expected to be different is important to note tha&(SSB was treated as a base moidel
this studyte,evaluate theonsequencesf incorporatingan environmental covariateto a
stock assessmentode| it howeverwas notconsideredn the last benchmark assessment

becauseghestockrecruit relationship was not us@dEFSC, 2012).

As for recruitment,R(SSB and R(SSB&GSI) providedsimilar estimates before 2011
(excepthinssome individual years such as 19980) but notably different fiveyear
predictiors for 20122016 fig. 3a. Although under the same harvest scenaRgSSB)
predicted thafuture recruitmentwill be increasingly highewhile R(SSB&GSI) predicted
that future recruitmenwill be persistently lowethanthat estimated ithe terminal year
The SSBestimategrovided bythe two modelsvere alsosimilar and the SSB predictions
provided ‘by“the two models were alsotably different (Fig. 3b). Specifically. R(SSB
provided higher SSBpredictiors than R(SSBXGSI), primarily due tohigherrecruitment
predictionsfrom R(SSB. The recent unfavorable environmental conditions negatively
affectedrecruitment and res@d in a decreasing stock size is predicted by R(SSB&GSI)
for the-next=five years. By contrast, the higher SSB predibte®(SSB) provides an
optimistic view that the stock size will slowly rebuild over the next five yeaasne as
recruitmentand SSH; was alscestimated to be similan R(SSB) and R(SSB&GSIFig.
3c).

While'R(SSB andR(SSB&GSI) providedsimilar F estimatesthe estimatedrysy from
the two modelswere notably different(Fig. 3c). Specifically, he Rysy estimatefrom
R(SSB"is very close to the reference pofram the most recent benchmark assessment
(Fao%), but notably smalle than thatfrom R(SSB&GSI). Both MSY and SSRsy in this
statespace.assessment modet functionsof the incorporated environmental covarjate
their estimatedrom R(SSB&GSI) varied annually withthe GSI. The MSY estimatesrom
R(SSBGSI) wererelaively low sincethe 1990 (Fig. 3d) asunfavorable environmental
conditions(indicated by high GSI valuesyere more frequat during that time(Fig. 1).

Note that he MSY estimatedrom R(SSB)is time-invariantalso due to the fact that the
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terminal year weighatage andselectivity were usedn the calculation oMSY for all
previousyears In this case, wly using a constant set of values for these allows us to look at
how MSY varies annually just due to the annual fluctuation in the environsrfor
log(SSB/SSRisy), both the estimates angredictiors from the two modelsdiffer
substantiall(Fig. 3¢). When the GSvalueswerelow (i.e., environmental conditions were
favorable) before 1990, the stock was estimated to be more productive and therefore
log(SSB/SSRisy) was estimated to be lowefrom R(SSB&GSI) than from R(SSB.
Conversely,"when the GSkalues werehigh (i.e., environmental conditions were
unfavorable)after 1990,the stock was estimated to be less productive and therefore
log(SSB/SSRKsy) wasestimated to be highétom R(SSBXGSI) thanfrom R(SSB.

Overall, both models overrediced recruitmentafter 1996, except in a few years
between_ 2002006 (Fig. 4. The recruitmentpredictions from R(SSBGSI) were
generallyhigher thanthosefrom R(SSB when the terminayear GSI value were lower
than thelongrterm averageand viceversa as a result of the negative correlation between
the GSI andrecruitmerdeviations.As expected, the recruitment predictions from either
model become more biased (larger MRD) and less accurate (larger MARD) as prediction
lead time inereases (Table jenerally speaking, incorporating the GSI into the stock
recruit-function improved thecauracy of recruitment predictieras suggested by a smaller
MARD for R(SSB&GSI) Also, it reduced the bias in recruitment predictias suggested
by a smallerMRDfor R(SSB&GSI) The importance of the incorporation to recruitment
predictions is mogpronounced in the first prediction year and finally becomes negligible in

the third prediction year.

We compared each retrospective prediction pair from the two models and fourng that t
relative performancef the two modelsn predicting recruitmenttaddramatic yeato-year
fluctuations and neither model consistently outperfeanthe other in predicting
recruitment(Fig. 4). Although both MRD and MARD are smaller for R(SSB&GSI), the
comparison indicates that R(SSB&GSI) fails to provide better recruitment predictatin
13 retrospectivepredictioncasesBecausdhe GSI ismodeledas arandomwalk, the best
future prediction is the same as the estimate in the last observed year biodaaer, he

GSI hadvery large interannual fluctuatiorelative tothe long-term average, so trennual
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364  GSI prediction could be very different from thétrue” GSI. As a consequence, the
365 recruitment predictiondrom R(SSB&GSI) could also bgery different from the'true”
366 recruitment For exampleif the GSldid not change notably in thiaree predictioryears
367 (e.g., 200€2002), the GSI and its effect on recruitmemre found to bemore accurately
368  predicted.b)R(SSBXGSI). In this casethe recruitmenpredictionsfrom R(SSB&GSI) (the
369  bold solid_line _staiing in 2000 were more similar to thétrue” recruitments than the
370 predictions“from R(SSB) which did not account for the unfavorable environmental
371  conditions'(the bold dashed line starting ir2000). In contrast if the GSI changed
372 dramatically /in thethree predictionyears (e.g.2006-2008, the GSI and its effect on
373  recruitmentwere poorly prediced by R(SSBGSI). In this case,the recruitment
374  predictiors from R(SSBXGSI) (theboldedsolid line starting irR00§ werefurther from the
375  “true” recruitments than the predictions from R(SSBle bold dashed line starting in
376  2009.

377 DISCUSSION

378  This papeluses thestatespaceagestructured assessment model fristitier et al. (2016)o
379  exploresother environmental covariates to explain SNEMA yellowtail flouretzuitment
380 variability and builds on it to evaluate alternative effectsrofironmentatovariates within
381 the BevertorHolt stockrecruit relationship. Furthermore, we explotize ability of
382 environmental covariates to improve prediction of futteeruitments Specifically, ve
383 incorporated indicators of climate variabilijrectly into the stockrecruit function as a
384 limiting, controlling,andmasking factgrrespectivelyCompared to the model without any
385 environmental covariate, the modeith GSI as a limiting factorperformed better with
386 respeet-towAlCand provided recruitment predictiortbat were closer to the “true”
387 recruitmentS estimated from the full datdah respect tdoth MRD and MARD However,
388 therecruitment predictions provided by the model waBI were not closer to the “true”
389 recruitments, in every single retrospective predicticese Indeed, we found that
390 recruitment predictions frorthe model withGSI can be further from the “true” values
391  when GSI predictions from that model de& away from the “true” GSITherefore, we
392  suggest to treat thenvironmentallyexplicit modelas an alternative modehstead of the
393  best and only modglo be considereth population prediction and stock managemé&he
394 model with GSI as a limiting fact@trongly suggesd that the recent low productivity of
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the SNEMA yellowtail floundercan be explained bythe unfavorable environmental
conditionsresult froma northward shift of the Gulf Stream, aa¢so,the stockhas been

rebuilt relative tahe currenproductivity level

Many.environmentaindicatorsincluding the CPWwere correlated with the recruitment
deviatiors taken from the stock assessment,tbatcorrelationvasstrongest for the GSI.
The CPlis"a‘locascale environmental index representing bottom temperature condition in
the MidkAtlantic Cold Pool(NEFSC, 2012while the GSI is a basiscale environmental
index represnting the latitudinahnomaliesf the Gulf Stream path (Joyce & Zhang, 2010)
Comparisen‘of model tsuggests that local bottom temperature in the-Mldntic Cold
Pool should not behe only environmentalfactor affectingSNEMA yellowtail flounder
recruitment Indeed the basinscaleGSI also indicatesome other shelf physical/biological
conditions that potentiallgffectthe recruitment(1) shelf SST conditiofGawarkiewicz et
al., 2012);"which affects the physiology 8NBEMA vyellowtail flounder during the early
pelagic*phase(2) shelf current and eddy conditions, which affect larval transport and
retention an the continental sh@{are & Cowen, 1996); an() shelf primaryproduction
condition_in_spring (Saba et al., 2015), which affects food availabilitiie larvaeHallett
et al. (2004)argued that largscale climate indices contain information on several local
processes;=spotentially they could better prediccological proesses compared tocal
weatherconditionswhen a mechanistic understanding of how local environment influences
a biological"process is lackingVe hypothesiz¢hatthe better performance of the GSI than
the CPI inexplainingSNEMA yellowtail flounder recruitmens due tothe aggregation of
factors beyond the bottom temperature in the Mithntic cold pool thataffects

recruitment

Of the alternative type of environmental effects in the Bevddolh stockrecruit
function, we found the “limiting factor” assumption where the carrying capacity of pre
recruits is.regulated by the GSI to perform best for SNEMA we#ld flounder (lles &
Beverton, 1998, Neill et al., 1994). We noticint he differences in AIC betweethe
models withdifferent forms otthe stockrecruit functions (limiting, controllinggr masking
factor) were smallethanthosebetweendifferent enviromental covariatesicorporatedn
the stockrecruit function(GSlor CPI).The retrospectivAlC patternshowedthat the GSl
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incorporated modelvas consistently better than the Ciacorporated modeh all seven
retrospective peels. According to Mohn’s , another importantmetric of model
performance, theetrospective biasaa the estimates afecruitment, SSB, and ffom the

GStincorporated modelereminimally larger tha thosefrom the CPlincorporated model

Even though the GSI provided a lower AIC than the, @R$ important toalso assess
how theinclusion of GSI impactsnodelestimates angredictiors. Comparisorsuggested
that R(SSB) and R(SSB&GSIprovidedsimilar estimates of recruitmen§SB and F but
distinct estimates obiological referencepoints and predictia of recruitment andSSB
Indeed, the.GSI affeetlthe expected recruitment from the staekruit function. Although
recruitmentestimates fronthe two modelsvere similar, R(SSB&GSI) still hd a much
smaller_AIC as the deviations between the estimataad expectedecruitmentwere
generally closer to zenhen the GSI effect on recruitmentsincluded.When there are
catch and"survey data, recruitment estimates are informed byatiteare also constrained
by a penalty“term to not be fmom the stockecruit function expectedHowever, n the
predictionperiod whemo fisheries data aravailable, the best recruitmepttedictionsare
from _the_stockrecruit function.Specifically, recruitment predictions from R(SSB) are
based solely,on SSB while those from R(SSB&GSI) are also profoundly affeciesaby
to-yearifluetuations in thesSI. Since the only difference between R(SSB) and R(SSB&GSI)
lies in the stockrecruit functionwhether includes GSI effects on recruitmpredictionis
the only“pessible source responsible for the lahfferences between theredictiors of

recruitment and SSBom the two models.

In the™first prediction year (i.e, 2012), the SSBpredictiors from R(SSB and
R(SSBGSt)are not differentiable, although the recruitmpredictiors from R(SSB and
R(SSBxGSI) have been notably different. Sinaenf SNBVA yellowtail flounder can be
mature atage 1, recruitmenminimally impactsSSB in the first prediction yearin the
secondpredictionyear (i.e., 2013) the differencen recruitment predictiopropagates to
age 2atwwhich maturity reaches 0.5, leadingdiwergentSSB predictionsfrom the two
models This divergence in SSPBredictiors then propagates back to recruitment one year
later (i.e., 2014) through the steodcit function resulting inan evenlower recruitment
prediction from R(SSBXGSI), as the high predicted GShas already k& to a lower
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455  recruitment predictionn 2014. The increasingly different predictionsretruitment and
456  SSB from the two models clearshowthe importance oelecting the most appropriate

457  stockrecruit functionto neartermpopulation predictions.

458 Interesting enough, a highBgsy was estimatetty R(SSB&GSI) thanR(SSB andthe

459  recruitment estimates (when GSI equal 0) fiRE®SBGSI) werealso higher than from

460 R(SSBritindicates that the stock was estimated to be more productive at low SSB levels
461 when the GSkffect is includedn the stockrecruit function. The reasoior which, we

462  suspectgissthathe recent low recruitmenfsom R(SSB&GSI) were partly attributed to

463  unfavorablesenvironmental conditions, insteadb@ihg solely attributed to reduc&SBas

464 those fromR(SSB) In other words,when environmental conditionare neutral, the

465  productivity_and consequently vy of SNEMA yellowtail flounder estimatedfrom

466 R(SSB&GSI) should be higher thaR(SSB in which the environmental effect on

467  recruitmentis not included

468 As showny earlier, thBve-yearrecruitmentpredictions fromR(SSB andR(SSB:GSI)
469  differ substantially To evaluatewhich model can provide more reliablerecruitment
470  predictiors, we generatedi3 retrospectiveredictiors for each modelnd then compared
471 those predictions with th&rue” recruitments which were defined in this study as the
472  estimates from th&ull data Generally speaking, the differences betwtenpredictecand
473 “true” recruitmentsare smaller in R(SSB&GSIlespeciallyin the first pediction yearin
474  which recruitment predictioms a function oftherelatively reliable GSI observatian the
475 last year of ebservation$he second and thirdecruitment predictionare functions of the
476  increasingly“unreliable GSI predictiof®m R(SSB&GSI) so theinclusionof GSI effect
477  on recruitmenteads to relatively smallimprovement in those recruitment predictioAs.
478  expectedcomparison okitherMRD or MARD indicatedthat incorporating the GSI into
479  the stockrecruit function cannot reduce thifference betweemhe predicted and “true”
480 recruitmentbeyond a lead time ofwo years.In addition, we also made yediy-year
481 comparison otthe retrospectiveecruitmentpredictiors from the two modeldo evaluate
482  whether R(SSBXGSI) consistently outperfored R(SSB over time in predicting
483  recruitment The yeatby-year comparisorsuggestedthat the accuracy of recruitment

484  predictiors from R(SSB&GSI)is largely dependent orthe accuracyof those yearsGSI
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485  predictionfrom R(SSB&GSI) Becausehte GSlhadlarge interannual fluctuationselative
486  to thelongterm averagdts predictiondrom arandom walkmodel in R(SSB&GSI) could
487 be considerably biased. If it happettse recruitment predictionsom R(SSB&GSI)are
488 alsoexpected tde considerably biasedlbeitin the opposite directionHowever,if the
489  environmental covariate incorporat@ito the stockrecruit functionis a low-frequency
490 decadal\oscillatiosuch as th€acific Decadal Oscillatiorthe random walknodelis more
491 likely"to"providereliable nearterm predictios for the environmental covariatdowever,
492  another‘problencanarise when incorporating a lefrequency decadal oscillatianto the
493  stockrecruit function Haltuch and Punt (201Tpundthatwhenfisheries data arelativity
494  short instime compared to the period of the incorporated decadal oscillatmek
495 assessment‘models amet able tocorrectly tell whether the incorporated environmental

496  process haa significanteffect on recruitmentr not.

497 Thisstudy evaluated the skill adhe statespace assessmentodel in predicting
498  recruitmentvia implementing the retrospectipeediction scheme that is popularly used in
499 the climate science communitiAowever,the skill of an assessment model in predicting
500 recruitmentneed to be interpretedlifferenly from that ofa climate model in predicting
501 climate variablesGenerally speaking, the predicted climate variable such as sea surface
502 temperature=can be observed through eitheatu or remote sensing method. Therefore,
503 the prediction skill can be evaluated by comparingmodel prelictions with the
504 corresponding observatiorthat are relatively credibleBy contrast, some population
505 attributes predicted (e.g., recruitment and SBB$tock assessment models are inherently
506 unobservable in the field. This study evaluated the skilthef statespace model in
507  predictingrecruitrent by comparingnodel predictions with thecorrespondingestimates
508 from ithewfull data, which arenodel output andless accuratehan direct climate

509 observationsAs a resulta good skill in predictingecruitment does not necessaelyuals
510 accuraterecruitment predictions. For instancehigh prediction skill can possibly exist

511  whenretrospective recruitmemredictiors andrecruitmentestimates fronthe full dataare

512  both systematically biased in the same directma large extenfThus,like Mohn’sp, the

513  retrospectiveprediction skillis only one metric of model performance asitbuld be

514 evaluated together with other model diagnostics.
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515 In brief, this paperprovidestwo major suggestions for future fisheries studies that
516 incorporate environmental effectdarstock assessment models. Ficstreshouldbe taken

517 even when the modelith an environmental covariatéts data better When the

518 environmental covariate is poorly predicted, the model with that environmental covariate
519  can providdess accurate predictions than the model without any environmental cavariate
520 In future,work alterrative time series models fon anvironmental covariatehouldalso be

521  consideredn‘the statespace model to potentiallyjnprove its predictive performance. For
522 instance,"a‘stationary autoregressive process of order greater tlagnbg&en fountb be

523 robust in predicting the GSI and its effect on silver hake distribution for theterear

524  (Davis et al%,2017)Secondanalyzing the retrospective prediction patterguantitatively

525 evaluatemodel prediction skillis recommended before making management decisions
526 based on model predictions, in the samway that retrospective pattern &ndyzed as a

527 regular procedurenistock assessmento evaluatethe biases in terminal yearmodel

528 estimate

529
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TABLES

Table 1. The Pearsa corrdation coefficients between SNEMA yellowtail flounder
recruitmentdeviations and various envinmental indices with a lag aneto threeyears.
Positive lags mean the environment leads the recruitriiestands for Icelandic low and
AH stands for Azores higlOnly correlations that are significant at the 95% confiden
level are showrmmand the coefficient marked in botdpresents the calationis significant

at the,99%.confidence level.

Environmental index Lagl Lag2 Lag3
IL Pressure 0.38
IL Longitude
IL Latitude

AH Pressure
AH Longitude -0.36
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AH Latitude -0.38

NAO -0.37 -0.38
GSlI -0.52

GSNW -0.41
CPI -0.39

658
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659 Table 2. The fits of thestatespace assessment modadth different environmentally-
660  explicit stockrecruit functions. Theséits are compared according to AIC and Akaike

661  weight, which are shown in column three and foeispectively.

Model Stock+recruit function AAIC  w (AIC)

R(SSB % 13.89  0.00

R (CPlimiting, SSB) bt aii‘ieccpl 5.40 0.04

R (CPlnasking SSB) beccpfsfaSSB 4.53 0.06

RACPkontoling, SSB) %ecm 393 008

R (GSlimiting, SSB) bt aii‘iecGSI 0.00 0.55

R, (GShasking SSB) becasfiBaSSB 494  0.05

R (GSkontroling, SSB) %ec“’ 167 0.4
662
663
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664 Table 3. The retrospective differenaa AIC betweerthe modelwith the GSI as a limiting
665 factor andthat with the CPI as a limiting fact¢column 2)as well as the retrospective
666  estimdes of the environmental lingarameter and the associated standard deviataom
667 the modelwith the GSI as a limiting factoPositive differencen AIC correspondsgo the

668  GSlkincarperated model outperforms the CPI-incorporated model and vice versa.

Peel AIC(CPI)-AIC(GSI) ¢ (sd)

0 5.40 1.53 (0.37)
1 5.17 1.52 (0.37)
2 5.48 1.53 (0.37)
3 5.55 1.51 (0.36)
4 7.31 1.50 (0.34)
5 12.08 1.46 (0.29)
6 10.51 1.51 (0.32)

669

670
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671  Table 4. The Mohn’sp of SSB, F, and recruitmeifitom the statespace assessmanbdel
672  with and withoutenvironmentalGSI or CPI) effect on recruitmemd smaller Mohn'sp
673 (absolute value)orresponds to leseetrospective bias and consequently better model

674  performance,

Model p(SSB) p(F) p(R)

R(SSB 011 -0.14 0.24
R (CPhimiting, SSB)  0.11  -0.14 0.22
R (GSkimiting, SSB)  0.14  -0.16 0.36

675

676
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699

Table 5. The mean relativadifferenceand mean absolute relatigdiferencein the near
term recruitment predictiafrom R(SSB) and R(SSB&G¥I

Prediction lead time 1year 2years 3years
MRD - R(SSB) 1.23 153 1.68
MRD - R(SSB&GSI) 0.89 1.26 1.59
MARD - R(SSB) 1.45 1.73 1.76
MARD - R(SSB&GSI) 1.04 1.50 1.77

FIGURE CAPTIONS

Figure 1.Comparetie natural log oENEMA yellowtail flounder recruitmentith the two
most related environmental indicgs§1 and CP). The recruitment time series is from the
baseline run‘in the most recdr@rchmark assessment (NEFSC, 2048y theCH is scaled
to have the same variance as the GSk#&miercomparisonBoth environmental indices in
this figure have been shifted one year backward to account for thgeanéag between

them with reeruitment.

Figure 2. The estimated Bevertbiolt stockrecruit function fromR(SSB (dashed line) in
comparison to thoseom R(SSB&GSI) (solid ines) under various GSI values.

Figure 3. The first row shows the estimated pretliced recruitment (a) and SSBm the

two comparing modelunder the ksy harvest scenario. The second row shows the
estimated= and Fysy (c) andthe estimated MSY (dyom the two comparingnodels The
third row.shows the estimated apcediced log (SSB/SSRsy) from the two comparing
modelsunder the ksy harvest senario (e). In this figurethe color dashed lineand
verticalerror bargepresat the 95% confidence interval, and the black vertleshedines

marklast year of data
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706

Figure 4. The retrospectivgrediction patterns from R(SSB (dashed lines) and
R(SSBGSI) (solid lines). The two black lines represent the “true” recruitrfrems each

model, i.e., the recruitment estimates when performing the assessment on full data. The
dots are the terminal year recruitment estimatescaiat of lines and dotsrepresentshe

last year. of . data available feach retrospectivprediction from dark blug1996 to dark

red Q008) The two pairs ofrecruitmentpredictions mentioned in the discussicare

highlighted asold color lines.
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