
1 
 

Title:  

Upscaling Site-Scale Ecohydraulic Models to Inform Salmonid Population-Level Life Cycle 

Modelling and Restoration Actions – Lessons from the Columbia River Basin 

 

Short Title: 

Upscaling Ecohydraulic Models 

Authors: 

 

Joseph M. Wheaton1,2 

Peter McHugh1, 3 

Nicolaas  Bouwes3,1,2 

Carl Saunders1,3 

Sara Bangen1, 3 

Phillip Bailey4 

Matt Nahorniak5 

Eric Wall1, 3 

Chris Jordan 6 

 

 

Author Affiliations: 
1 Utah State University, Department of Watershed Sciences, Logan, Utah, USA 
2Anabranch Solutions, LLC, Newton, Utah, USA 
3Eco Logical Research, Inc., Providence, Utah, USA 
4 North Arrow Research, Inc., Vancouver, British Columbia, Canada 
5 South Fork Research, Inc., Seattle, Washington, USA  
6 National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, 

Seattle, Washington, USA 

 

Manuscript Description: 

New insights into what quantifying instream fish habitat can tell us about the populations of 

threatened salmon. 

 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/esp.4137

http://dx.doi.org/10.1002/esp.4137
http://dx.doi.org/10.1002/esp.4137


2 
 

Corresponding author: Joseph M Wheaton: Joe.Wheaton@usu.edu   

For Submission to Earth Surface Processes and Landforms as Research Article for 

consideration in Special Issue: ‘Remote sensing applications for hydro and morphodynamic 

monitoring & modelling’ 

Abstract 

With high-resolution topography and imagery in fluvial environments, the potential to 

quantify physical fish habitat at the reach-scale has never been better. Increased availability of 

hydraulic, temperature and food availability data and models have given rise to a host of 

species and life stage specific ecohydraulic fish habitat models ranging from simple, 

empirical habitat suitability curve driven models, to fuzzy inference systems to fully 

mechanistic bioenergetic models. However, few examples exist where such information has 

been upscaled appropriately to evaluate entire fish populations. We present a framework for 

applying such ecohydraulic models from over 905 sites in 12 sub-watersheds of the Columbia 

River Basin (USA), to assess status and trends in anadromous salmon populations. We 

automated the simulation of computational engines to drive the hydraulics, and subsequent 

ecohydraulic models using cloud computing for over 2075 visits from 2011 to 2015 at 905 

sites.  We also characterize each site’s geomorphic reach type, habitat condition, geomorphic 

unit assemblage, primary production potential and thermal regime. We then independently 

produce drainage network-scale models to estimate these same parameters from coarser, 

remotely sensed data available across entire populations within the Columbia River Basin. 

These variables give us a basis for imputation of reach-scale capacity estimates across 

drainage networks. Combining capacity estimates with survival estimates from mark-

recapture monitoring allows a more robust quantification of capacity for freshwater life stages 

(i.e. adult spawning, juvenile rearing) of the anadromous lifecycle. We use these data to drive 

life cycle models of populations, which not only include the freshwater life stages but also the 

marine and migration life stages through the hydropower system.  More fundamentally, we 

can begin to look at more realistic, spatially explicit, tributary habitat restoration scenarios to 

examine whether the enormous financial investment on such restoration actions can help 

recover these populations or prevent their extinction.  
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Introduction 

Globally, native anadromous salmonid populations are in decline and several face the threat 

of extinction (Gustafson et al., 2007; Rand et al., 2012). Given the cultural, economic, and 

ecological importance of these populations, numerous efforts are underway to mitigate 

impacts that lead to their decline and facilitate their recovery (e.g. conservation hatcheries, 

(Maynard and Trial, 2013), habitat restoration, (Barnas et al., 2015)). For example, in the 

Columbia River Basin, there are eleven evolutionarily significant units of salmon or steelhead 

(Oncorhynchus sp.) listed as threatened and two as endangered under the U.S. Endangered 

Species Act  (ESA) (Ruckelshaus et al., 2002; Gustafson et al., 2007). According to the ESA 

review on the risks posed to anadromous salmonids by the Columbia Basin’s federally 

administered hydropower dam system ((NOAA), 2008), three action agencies are required to 

make costly dam retrofits and operational changes (i.e., to improve passage) and/or mitigate 

dam impacts via offsite actions (i.e., tributary habitat restoration). The Bonneville Power 

Administration’s Tributary Habitat Improvement Program alone spends US$100-150M 

annually on habitat recovery efforts and another US$90M on research, monitoring and 

evaluation projects ((NPCC), 2015; Leonard et al., 2015). Arguably, the advancement of 

ecohydraulics owes much of its existence and history to applied science efforts like this. Such 

programs have spurred the development of new methods for understanding the nature of 

habitat impacts on fish. These methods are used for assessing the status and trends of fish and 

habitat, as well as the effectiveness of restoration actions. The field of ecohydraulics, 

particularly as informed by fluvial geomorphology, has helped better define, understand, 

model and predict the importance of physical habitat to fish (Pasternack, 2011).  
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Figure 1 - Illustration of hierarchical spatial scales for considering habitat. See Table 1 for definitions. 

Table 1 – Definition of spatial scales used in this paper in terms of extent and resolution. 

Scale Name Extent Resolution GIS Representation 

Basin-Scale  Basin (103 to 105 km2) Basin (103 to 105 km2) Polygon 

Sub-Basin-Scale Sub-Basin (101 to 103 

km2) 

Sub-Basin (101 to 103 km2) Polygon 

Network-Scale Sub-Basin (Areal: 101 to 

103 km2 ; Length: 104 to 

108 m) 

Reach (102 to 103 m) Polyline 

Reach-Scale Reach (102 to 103 m) Geomorphic Unit (100 to 102 

m) 

Raster or Polygon 

Sites-on-Network-

Scale 

Sub-Basin (101 to 103 

km2) 

Site Locations (points) Point 

Site-Summary-Scale Reach (102 to 103 m) Reach (102 to 103 m) Point, Polyline or 
Polygon 

Site-Scale (CHaMP 

Reach) 

Reach (20 x Bankfull 
width; 160 m to 600 m) 

Cell (10-1 to 100 m) Raster 

Geomorphic-Unit-

Scale 

Geomorphic Unit (100 to 

102 m) 

Hydraulic Unit (100 to 101 m) 

or Cell 

Polygon 

Hydraulic-Unit-

Scale 

Hydraulic Unit (100 to 101 

m) 

Grain (10-2 to 100 m) Polygon 

Cell-Scale Cell (10-1 to 100 m) Cell (10-1 to 100 m) Raster 

 

Advances in our ability to map riverscapes with aerial imagery (e.g. Gilvear et al., 2007; 

Legleiter et al., 2009) and a multitude of new topographic survey techniques (Passalacqua et 

al., 2015) across a range of spatial scales have transformed the ways in which rivers can be 

read and interpreted (McKean et al., 2009; Fonstad and Marcus, 2010; Carbonneau et al., 

2011; Carbonneau and Piegay, 2012). These techniques have matured and revolutionized 

what is possible to resolve and quantify with respect to fish habitat at a reach scale (see Table 

1 and Figure 1 for scale definitions in terms of resolution and extent).  Recent reviews by 

Passalacqua et al. (2015), Tarolli (2014) and Harpold et al. (2015) synthesize advances in 

acquisition of high resolution topography (i.e. < 2 m resolution), as well as imagery. In some 

environments, certain technologies (e.g. green lidar, multibeam sonar, structure from motion, 

spectral-depth correlation) can even provide near-continuous, high resolution coverage at 

‘segment-scale’ extents, thereby providing detailed insight at an extent that Fausch et al. 
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(2002) argued was critically missing almost 15 years ago. Many of the ecohydraulic advances 

over the past two decades are the direct result of improved remote sensing capabilities – the 

topic of this special issue and the related session at the 11th International Symposium on 

Ecohydraulics. 

 

With a few exceptions across limited spatial extents (e.g. McKean et al., 2009; Fonstad and 

Marcus, 2010; Carnie et al., 2016), none of these technologies can yet deliver the promise of 

a habitat census across the diversity of riverscapes occupied by salmonids (Bangen et al., 

2014a). While hybrid approaches combining multiple techniques have emerged as the most 

realistic way to obtain complete coverage of a portion of a riverscape (e.g. Legleiter, 2012; 

Javernick et al., 2014; Williams et al., 2014), for now, the notion of a physical habitat census 

is something we can only achieve across limited portions (albeit still impressive at 10-50 km) 

of rivers (e.g. Pasternack, 2011; Grams et al., 2013; Wyrick and Pasternack, 2014; Benjankar 

et al., 2016). Wyrick and Pasternack (2012) coined the term ‘near-census’ to describe 

impressive efforts to collect high-resolution topography and imagery, continuously at the 

riverscape-scale. Yet, detailed ’near-census’ mapping of physical habitat assessments 

continue to elude network-scale ambitions (i.e. 100’s to 1000’s of kilometers of stream) in all 

but the smallest of watersheds (e.g. McMillan et al., 2013), thereby necessitating sampling-

based approaches in most systems.  

 

Beyond questions of spatial scale, physical habitat data must be translated into a currency that 

can inform status assessments for populations of anadromous salmonids (Isaak et al., 2016). 

Estimates of carrying capacity and productivity are commonly used in salmonid life-cycle 

modeling to estimate likelihood for population persistence and recovery potential (Moussalli 

and Hilborn, 1986). Capacity for a given life stage refers to the upper limit or maximum 

number of fish that any spatial extent of a riverscape (see Table 1) can support (e.g. Beechie 

et al., 2006). Productivity represents the maximum survival between life stages, which can be 

estimated from fish monitoring efforts (e.g. Thorson et al., 2014). Anadromous salmonids 

begin their life cycle as eggs in the gravel beds of rivers, continue to grow and feed as 

juveniles in freshwater habitats, and then migrate (sometimes over 1000s of kilometers) to the 

ocean, where they spend 2-4 years feeding and growing; upon reaching maturity, they then 

reenter freshwater and return to their natal spawning grounds to spawn (Groot and Margolis, 
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1991). Juvenile and adult capacity refers to the maximum number of juveniles the habitat can 

support and the number of redds spawners could successfully build, respectively. While this is 

simple conceptually, habitat data are rarely used to inform salmon population assessments in 

a robust, meaningful way (Sweka and Wainwright, 2013).  

 

Despite the ever increasing resolution and extent of data available to drive traditional 

ecohydraulic models (e.g. Leclerc et al., 1995; Pasternack et al., 2004; Leclerc, 2005; Mouton 

et al., 2007), the ability of these data/tools to address questions of how habitat conditions will 

result in population-level responses remains unclear (Sweka and Wainwright, 2013). This 

may be a result of i) a lack of habitat data at a scale or extent that matters to a population, ii) 

the use of study designs that fail to capture the huge variability in fish habitat that influences a 

population (Larsen et al., 2001), and/or iii) a lack of jurisdictional or institutional 

coordination between governmental entities monitoring fish populations (e.g. state fish and 

wildlife agencies) and/or habitats (e.g. federal water, energy and land management agencies). 

Further, because the life history of salmon and steelhead also exposes them to anthropogenic 

threats outside of natal streams, rigorous studies on how geomorphology and ecohydraulics 

influence these fish may not reveal a basis for population limitation or recovery (Budy and 

Schaller, 2007). The challenge is how to objectively determine the extent to which habitat 

may matter and whether improvements through restoration could help increase fish 

production (i.e. the product of survival, growth and abundance).      

 

The purpose of this paper is to describe a framework that leverages field data (i.e., high-

resolution topography, and other habitat variables) to drive reach-scale ecohydraulic models 

that, following an upscaling step (i.e., from site/reach to network/population using remote 

sensing data), can inform population-level assessments of ESA-listed salmonids. Specifically, 

we illustrate this framework with the Columbia Habitat Monitoring Program (CHaMP) that 

aims to quantify the capacity of tributary streams to support both juvenile and adult spawning 

life stages of priority salmon populations. CHaMP achieves this by drawing on a host of 

technological advances and research discoveries in the fields of ecohydraulics, fluvial 

geomorphology, fish ecology, remote sensing and computer science. The program conducts 

surveys at over 600 sites per year throughout the Columbia River Basin, and thus produces an 

enormous amount of reach-scale data. Subsequently, the program has had to build and 
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operationalize a number of tools and existing analytical techniques into a framework to 

address key management questions relevant to salmon recovery. We do not cover the 

framework’s myriad of component pieces or specific advances in remote sensing that 

facilitate this integration in great detail. Although, we do refer the reader to relevant examples 

from the literature where appropriate. Instead, we sketch for the reader a well-integrated, 

thoughtfully designed framework. Although we specifically developed the framework for 

Pacific salmon in the Columbia Basin, the framework has relevance to virtually any salmonid 

with complex habitat associations and life history expression at multiple scales. The paper 

should help geomorphologists see some of the ways in which their research could inform 

more than simply better understanding fish habitat, but also make direct connections to 

implications for entire fish populations. 
 

Key Management Questions & Role of Research, Monitoring and Evaluation in 

Columbia River Basin 

We will use the case study of managing anadromous salmonid stocks from the Columbia 

River Basin (CRB), in the Pacific Northwest of the United States to explore the theme of 

leveraging remote sensing advances across a range of scales to develop an ecohydraulic and 

geomorphic informed assessment of the impacts of fish habitat condition on fish populations. 

The principles and approaches described here have utility beyond the CRB. The causes of 

population decline and need for recovery are by no means unique to this basin nor salmonids 

alone (Dudgeon et al., 2006). These anthropogenic impacts are typically summarized in terms 

of the four H’s – Harvest, Hatcheries, Hydropower and Habitat, which individually act to 

limit survival of natural stocks at specific life stages and collectively limit production 

(Ruckelshaus et al., 2002). In the CRB, more than 300 dams, including 25+ on the mainstem 

Columbia and Snake Rivers, directly (e.g. passage) or indirectly (e.g. river hydrology and 

temperature) impact anadromous salmonids (Leonard et al., 2015). Accordingly, considerable 

investments have been made (and are still ongoing) by dam operators (U.S. Army Corps of 

Engineers and Bureau of Reclamation) and hydropower marketers (Bonneville Power 

Administration) to improve passage and survival for both out-migrating juveniles and adults 

returning to spawn. However, the overarching recovery strategy relies heavily on restoration 

actions aimed at improving salmonid survival and production in their tributary life stages, 
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predominantly the egg to smolt stages (Kareiva et al., 2000). More specifically, restoration 

aims to create productivity or capacity gains by offsetting (or reversing) habitat degradation 

from a myriad of impactful historic and contemporary land use practices, such as timber 

harvest, extractive mining, arable agriculture, over-grazing, extirpation of beaver, and water 

diversions, among others (Meehan, 1991).  

 

Under NOAA’s 2008 Biological Opinion ((NOAA), 2008), a series of ‘reasonable and 

prudent alternatives’ (RPAs) to removing the mainstem dams of the hydropower system were 

identified (FCRPS, 2008). From FCRPS (2008), RPAs 56 and 57  identify tributary habitat 

restoration as a key, and required restoration component. BPA alone spends in excess of 

US$100M a year on such actions, and invests another c. US$90M a year on research, 

monitoring and evaluation (RM&E) culminating in well over 23,000 restoration projects to 

date at over 35,000 locations throughout the CRB between 1991 and 2005 (Katz et al., 2007).  

The efforts in the CRB dwarf the scope of restoration identified in the heavily cited Bernhardt 

et al. (2005) paper, which reported the scope of efforts from a database across the US, and 

identified roughly 37,000 projects.   The CRB is a massive system covering 668,000 km2 (for 

comparison, France is 643,000 km2), with over 288,011 km of perennially flowing rivers and 

streams, 36,348 km (13%) and 19,182 km (7%) of which are still capable of supporting 

Chinook salmon and steelhead runs, respectively (Figure 2). 

 

Three key management questions (Figure 3) emerge from RPAs 56 and 57, which represent 

both scientific and prioritization challenges affecting how a massive investment in tributary 

habitat restoration and RM&E can best be leveraged to help recover ESA-listed populations: 

1. What are the tributary habitat limiting factors impacting the ‘health’ of listed 

salmonids? 

2. What tributary improvement actions would provide the most freshwater production 

benefits to listed salmonid populations? 

3. How effective are tributary improvement actions at providing benefits to listed 

salmonids?  
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Figure 2 – The Columbia River Basin and US portion of its drainage network, showing in light grey the 

280,011 km of perennial streams within the US, and what proportion is still accessible to anadromous 

steelhead (cyan) and chinook (yellow).  Also shown are major dams, some of which (red x’s) are now 

barriers to their upstream migration. The 12 CHaMP study watersheds described in this paper are 

highlighted in Orange and correspond with key populations. 

 

The first question considers the condition of tributary habitat and its impact on the health of 

listed salmonid populations (i.e. one informed by status and trend monitoring). The habitat 

condition part of that question is what the Bouwes et al. (2011) Columbia Habitat Monitoring 

Program (CHaMP – http://champmonitoring.org) was fundamentally designed to track and 

address.  While monitoring data alone may give insights, additional analysis and 

interpretation of these data is required to inform assessments of habitat’s significance to 

populations, which is where the second question comes into play—how do we use the best 

available science and information to make planning decisions and design choices affecting 
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how restoration actions are implemented? Finally, the third question necessitates follow-up 

monitoring to determine whether or not investments in restoration are effective at improving 

the situation.  Fundamentally, these management questions are asked at the ‘population-

scale’, which typically corresponds to the extent of the drainage networks they occupy but 

does not resolve what individual fish are doing (simply sums up their abundances and 

survival between life stages across their extent). High-level policy may be concerned 

primarily with the bottom line population numbers that result in a viable, sustainable 

population target. However, those responsible for implementing specific tributary habitat 

restoration actions (i.e. KMQ 2) and those monitoring and evaluating the status and trends of 

these populations require insights across a range of scales to meaningfully address these key 

management questions.  
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Figure 3 – The relationship between the key management questions in the CRB surrounding how 

tributary habitat conditions and restoration actions to improve them relate to the health of ESA 

salmonids. Monitoring programs like CHaMP and its affiliates (Integrated Status and Effectiveness 

Monitoring Program [ISEMP] and Action Effectiveness Monitoring [AEM]) provide data that when 

combined with other programs and existing data sets can integrated and leveraged to address the key 

management questions in terms of assessment, planning and evaluation summary products (bottom 

circles). 

 

Ecohydraulic and Geomorphic Sampling and Analyses at Individual Sites  

Contemporary ecohydraulic analysis takes place at the reach scale (see Table 1), and can 

resolve spatial patterns of habitat variability across individual raster cells, hydraulic units or 
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geomorphic units in two or three dimensions (Goodwin et al., 2006; Pasternack, 2011). 

Within CHaMP, we collect field data at the reach scale, and in this section we describe what 

field data is collected, how we analyze it to produce detailed analyses at each sample site (i.e. 

reach), and which is frequently synthesized to summary metrics at the ‘Sites on Network’ 

scale (see Table 1).  

Habitat Sampling at Discrete Sites 

A study design describes the overall strategy for where and when we take samples to ensure 

that robust statistical inference can be performed to tell us about a broader population of all 

possible sites (i.e. every reach segment on a drainage network). By contrast, the sample 

design defines what and how we perform the measurements at every sample site.  If financial, 

human and time resources were infinite, we would use the same high-resolution sample 

design and census all 36,348 km of habitat everywhere. In some senses, remote sensing 

attempts to provide that census of habitat, but as we will explain - this is not pragmatic at 

larger (i.e. > 102 km) network scales in bigger watersheds or across regional extents (i.e. > 103 

km2). However, even with all the current advances in remote sensing of rivers (e.g. 

Carbonneau et al., 2011; Carbonneau and Piegay, 2012; Demarchi et al., 2016b) no suite of 

sensors or platform is currently able to remotely sample the types of environments steelhead 

and Chinook use consistently, with either acceptable accuracy or adequate resolution and 

coverage to drive ecohydraulic analysis. As such, we are forced to strategically invest 

available resources in representative sampling methods that can inform questions of interest 

in a statistically robust way (i.e. in this example, those watersheds with ESA-listed 

populations of management concern).  

Study Design 

Figure 2 shows the network extent of potential interest for Chinook and steelhead and 

identifies priority populations that correspond with the 12 CHaMP watersheds shown in 

orange. For most watersheds, the annual sampling effort is 25 sites (some have more). Thus, 

the study design needs to define where (i.e. which sites) that effort should be spent and when 

(i.e. how frequently)? The study design within CHaMP was developed using a GRTS 

(Generalized Random Tessellation Sample) design (Stevens and Olsen, 2004), which 

provides a spatially balanced random sample. If every site is sampled annually, we would 

only have 25 sites of spatial coverage per watershed. By introducing a temporal panel design 
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(Table 2) with both an annual panel of 15 sites surveyed each year and a three year rotating 

panel of 30 sites (10 per year, but resurveyed only every third year temporally), we increase 

the spatial coverage to 45 sites (Larsen et al., 2007; Larsen et al., 2008; Nahorniak et al., 

2015). The annual panel allows some insight into annual trends, while the rotating panel helps 

expand the spatial footprint of sites.  Examples from two CHaMP watersheds are illustrated in 

Table 2 and Figure 4.  

 

 
Figure 4 – Examples of GRTS study designs for two CHaMP watersheds (John Day in A and Lemhi in 

B).  See Figure 2 for locations of watersheds and Table 2 for details of study designs. 
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Table 2 – Examples of three-year study designs over nine years contrasting 25 (top), 140 (middle – 

corresponding to Lemhi) and 156 (bottom – corresponding to John Day) sites of annual effort. See 

Figure 4 for corresponding spatial illustrations. Introducing rotating panels with less frequent 

resampling, helps expand the spatial coverage of sites.  

Typical Survey 
Design 

Year Total 
Sites 1 2 3 4 5 6 7 8 9 

Annual 15 15 15 15 15 15 15 15 15 15 
Rotating Panel 1 10 - - 10 - - 10 - - 10 
Rotating Panel 2 - 10 - - 10 - - 10 - 10 
Rotating Panel 3 - - 10 - - 10 - - 10 10 
Total Sites Surveyed 25 25 25 25 25 25 25 25 25 45 

 
Example Design 1 
(e.g. Lemhi) 

Year  

 1 2 3 4 5 6 7 8 9  
Annual 80 80 80 80 80 80 80 80 80 80 
Rotating Panel 1 60 - - 60 - - 60 - - 60 
Rotating Panel 2 - 60 - - 60 - - 60 - 60 
Rotating Panel 3 - - 60 - - 60 - - 60 60 
Total Sites Surveyed 140 140 140 140 140 140 140 140 140 200 

  

Example Design 2 
(e.g. John Day) 

Year  
1 2 3 4 5 6 7 8 9  

Annual 196 196 196 196 196 196 196 196 196 196 
Rotating Panel 1 60 - - 60 - - 60 - - 60 
Rotating Panel 2 - 60 - - 60 - - 60 - 60 
Rotating Panel 3 - - 60 - - 60 - - 60 60 
Total Sites Surveyed 256 256 256 256 256 256 256 256 256 376 
 

Sample Design 

At each of the 905 sites that are surveyed in the CHaMP program, the Bouwes et al. (2011) 

protocol has been used to sample wadeable reaches varying between 120 m and 600 m in 

length (roughly 20 bankfull widths).  As of January, 2016, five years of monitoring using the 

study designs similar to those in Table 2 have been completed, translating to 2075 site visits, 

833 revisits of 400 annual sites, and between one and two revisits to 585 rotating panel sites. 

The heart of the sample design is a continuous, topographic survey, which both paints a 

quantitative picture of physical habitat at the site and supports a multitude of subsequent 

ecohydraulic (e.g. Wheaton et al., 2004) and geomorphic analyses (e.g. Wheaton et al., 

2010a; Wheaton et al., 2010b) as well as over 150 River Bathymetry Toolkit (e.g. McKean et 

al., 2009) derived metrics. In addition, a variety of ‘auxiliary’ measurements are made to 

collect data on other habitat variables commonly collected by traditional habitat sampling 

programs like the PIBO (Pacific-fish Inland-fish Biological Opinion; Heitke et al., 2010) and 
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AREMP programs, which are not based around a topographic survey. The Bouwes et al. 

(2011) protocol and subsequent updates (e.g. CHaMP (Columbia Habitat Monitoring 

Program), 2013), which are routinely updated on http://monitoringresources.org, provide the 

full details of the sample design methods. Below, we provide brief overview of the 

topographic survey and habitat sample designs. 

Topographic Survey Methods 
Within each reach, a standardized, high resolution topographic survey is performed using a 

topographically stratified sampling scheme (Brasington et al., 2000). A total station or rtkGPS 

is typically used as these are generally the only high-resolution survey techniques that will 

work across the full diversity of sites surveyed (Bangen et al., 2014a).  Each year prior to the 

field season, 15 to 20 survey crews undergo an intensive two-week training to ensure 

consistency in survey methods and approach (Bangen et al., 2014b). At each reach, a local 

control network is established and maintained to ensure subsequent resurveys can be 

performed on the same control network. Real-world UTM coordinates are either tied into 

existing professional control networks, or more commonly approximately established using 

the CHaMP Transformation Tool (Wheaton et al., 2012). Each survey point is attributed with 

feature codes to differentiate breaklines (e.g. top of bank, toe of bank), thalwegs, and other 

features that assist in producing more accurate DEMs (see §5 and Table 4, CHaMP 

(Columbia Habitat Monitoring Program), 2013). Crews are responsible for post-processing 

the surveys using the CHaMP Topo Toolbar (http://champtools.northarrowresearch.com/) as 

they are in the best position to ensure that the maps they produce are an accurate portrayal of 

what they measured in the field (Bangen et al., 2014b). The primary outputs of this post 

processing are a 10 cm resolution digital elevation model (DEM) capturing detail within the 

bankfull channel(s) and adequate context on the floodplain for high-stage flood modelling and 

or geomorphic change detection of lateral erosion (Wheaton et al., 2010b). After undergoing 

a rigorous series of quality assurance checks, the surveys are uploaded to cloud-based 

repository (http://champmonitoring.org) from which a series of morphometric and 

geomorphic change detection (GCD) analyses (using GCD software: 

http://gcd.joewheaton.org) are automated using cloud computing (e.g. EC2, using Amazon 

Web Services).   
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Habitat Sampling Methods 
While the topographic survey is the most basic representation and mapping of physical habitat 

at a site, one member of the crew is focused on collecting a host of ‘auxiliary’ habitat data 

following the (CHaMP (Columbia Habitat Monitoring Program), 2013) protocol. This 

includes mapping channel units using Hawkins et al. (1993) and recording for each channel 

unit a mix of ocular estimates and measurements to quantify fish cover (Peck et al., 2001), 

large woody debris (volumes and counts), and substrate composition. In addition, undercut 

banks are mapped and measured to assess fish cover (i.e. predation refugia). Pool-tail fines 

are quantified following Heitke et al. (2008) and pebble counts and embeddedness are 

measured in all riffles for understanding the adequacy of substrate to support spawning and 

egg survival, and flow refugia for juveniles in fast moving water. At the site level and extent, 

a field sketch site map is produced, and a series of photos are taken systematically. To 

characterize riparian conditions, in part for fish cover and terrestrial inputs and in part to 

explain temperatures, solar input is measured using a Solmetric Suneye™, and riparian 

structure is quantified using adaptations of the Peck et al. (2001) and (Kaufmann et al., 1999)  

protocols. Onset Tidbit temperature loggers are deployed at every site following Isaak et al. 

(2010a) to produce continuous time series of water temperature to aide in bioenergetics and 

production modelling. Discharge is measured near the top of every site following Peck et al. 

(2001) to contextualize site visits and act as a boundary condition for hydraulic modelling.  

Conductivity and alkalinity are measured during the visit to provide crude water quality 

context. Finally, drift nets are deployed to measure the density of invertebrates drifting in the 

water column, a primary input to drift foraging models and a measure of food availability that 

informs model-based assessments of juvenile rearing capacity (Wall et al., 2015).  

 

Ecohydraulic Analyses at Discrete Sites 

After site visits are post processed, subjected to quality assurance checks, turned into DEMs 

and a variety of derivative products are produced (e.g. water depth maps, detrended DEMs, 

channel unit maps, etc.), ecohydraulic analyses are undertaken for each site. Our ecohydraulic 

analyses are dependent on multi-dimensional hydraulic model simulations (i.e. two-

dimensional or three-dimensional computational fluid dynamic models) as inputs (Leclerc et 

al., 1995; Benjankar et al., 2015). When the computational meshes for these hydraulic models 

are discretized at high spatial resolution (i.e. 5 to 50 cm computational node spacing) and fed 
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with high quality topographic data (e.g. our 10 cm resolution DEMs), these models are 

capable of resolving hydraulic patterns at a scale that is relevant to fish (Wheaton et al., 

2010a).  

 

One of the most time-consuming steps in hydraulic modeling is producing computational 

meshes. We have automated the process of computational mesh construction at all sites by 

using a simplified rectilinear (i.e. raster) meshing scheme, but using between 10 cm and 20 

cm resolution node spacing. Such a high-resolution computational mesh was previously 

computationally costly, but with inexpensive cloud computing it is much more cost-effective 

than manual editing 1000’s of coarser resolution meshes using unstructured and/or curvilinear 

meshing schemes. The meshing process is based on the CHaMP survey formats, and set 

boundary conditions from auxiliary measurements like roughness, discharge entering the 

reach, and corresponding water surface elevation at the downstream end of the reach. 

Moreover, because crews topographically survey the water’s edge and major breaks in water 

surface topography, water depth maps are derived by subtracting the DEM from a water 

surface raster, and these are directly compared to hydraulic models for depth validation. The 

boundary conditions (discharge, downstream water surface elevation), and resulting hydraulic 

model solution, reflect low-flow conditions due to CHaMP’s survey timing (i.e., 

summer/fall). However, if real or synthetic rating curves (i.e. discharge vs. stage) are 

available for sites, the hydraulic model can be run at a range of flows, for instance in support 

of assessments quantifying varying habitat availability at different flows. Leveraging the 

open-source Delft3D hydraulic model code (Deltares, 2010), we have now fully automated a 

cloud computing workflow. To date, hawse have used this workflow to automatically 

generate models and run tens of thousands of simulations at over 2075 visits at 985 sites. The 

quality of ecohydraulic model simulations is highly dependent on hydraulic model accuracy 

(Pasternack et al., 2006a; Shen and Diplas, 2008), which for these systems is most influenced 

by the quality of the topographic boundary conditions and the representation of structural 

elements impacting the flow field in the computational mesh. Hydraulic model validation is 

performed by independently measuring depth fields (done with all CHaMP surveys), spot and 

cross sectional measurements of velocity, and mapping of large flow separation points and 

shear zones.  
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For the purposes of this paper and illustration, we only present and describe summer and fall 

baseflow simulations in these tributary habitats with unregulated flow regimes, which are 

representative of habitat conditions at the time of these surveys. The hydraulic models from 

CHaMP surveys can be reliably run at flows up to a ‘bankfull’ discharge contained within the 

channel, and at some sites (depending on quality and extent of floodplain survey) limited 

overbank flows can be resolved. Delft3D and similar hydraulic models based on Navier-

Stokes approximate solutions to the equations of motion, generally perform reasonably well 

when the quality of the topographic data is high. DEM quality is quantified by building DEM 

error models (output of ± m) using fuzzy inference systems (FIS) following Bangen et al. 

(2016) and a method developed by Wheaton et al. (2010b). Currently, DEM error is primarily 

used to inform geomorphic change detection, but its significance can be explored (e.g. 

Legleiter et al., 2011) and is generally not limiting for these types of surveys (Pasternack et 

al., 2006b). 

 

Spawning Life stage – HSI and FIS modelling 

Salmonid spawning typically takes place at locations (i.e. on riffles and pool-exit slopes) 

where multi-dimensional hydraulic models can perform reasonably well (Pasternack et al., 

2006b) if driven with accurate topographic, roughness and flow boundary conditions. In 

CHaMP, we have automated the simulation of two common approaches to modeling 

spawning habitat quality (Ahmadi-Nedushan et al., 2006; Pasternack, 2011) – the habitat 

suitability index (HSI) method (Raleigh et al., 1986) and a fuzzy inference systems (FIS) 

method (Ahmadi-Nedushan et al., 2008). Both approaches are driven on the physical side by 

substrate character (a CHaMP ‘auxiliary’ variable resolved at the geomorphic unit level) and 

the hydraulic model outputs of depth and velocity. On the biotic side, multiple physical 

variables (typically depth, velocity and substrate) are related to habitat quality with slightly 

different approaches that both score habitat quality on a 0 to 1 scale (1 being highest quality). 

In CHaMP applications, the models are applied at every ‘wet’ computational node. 

 

For the HSI method, the overall ‘suitability’ or quality index for a node is determined by 

either averaging or multiplying individual scores of habitat quality for each physical variable 

(e.g Figure 5A-C) obtained from a univariate habitat suitability curve (HSC). The HSI/HSC 
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framework is one of the earliest manifestations of an ecohydraulics modelling approach, and 

was popularized via the instream flow incremental methodology (IFIM) and physical habitat 

simulation (PHABSIM) system during the 1980s and 1990s (Reiser et al., 1989). While there 

is some healthy skepticism of HSC-based approaches (e.g. Railsback, 2016), many 

investigators have shown these models can provide robust predictions when driven by 

accurate, multi-dimensional hydraulic models at ecologically meaningful scales (e.g. Leclerc 

et al., 1995; Crowder and Diplas, 2000; Shen and Diplas, 2008) and with HSCs derived in or 

appropriate to the system of study. 

 

 
Figure 5 – Illustration of a site-scale juvenile rearing habitat HSI simulation (D), but driven by site-

scale inputs of velocity (A), depth (B) and substrate type (C) that drive HSI or FIS simulations. Site-

summary-scale syntheses of ecohydraulic model outputs (E) help distill the rich information down to 

summary metrics (in this case normalized weighted useable area) to something that can be displayed 

for all CHaMP sites (F) at the sites-on-network-scale. Using distributions of site scale summaries, box 

plots for WUA predictions at all surveyed sites can be made (e.g. G).  

 

 

For the FIS method, relationships between habitat variables and suitability are represented in 

an inference system or rule table. The rules (or rows) in the table map out how different 
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combinations of inputs, represented as linguistic variables (e.g. velocity could be ‘low’, 

‘medium’ and ‘high’ or ‘slow’, ‘average’ and ‘swift’), result in a given habitat quality (e.g. 

‘swift velocity’, ‘shallow depth’ and gravel substrate equates to ‘high quality spawning 

habitat’). The implementation of the inference system is made ‘fuzzy’ by allowing 

overlapping membership for different combinations of variables, with the degree of overlap 

capturing uncertainty in input-to-output mapping. For any combination of inputs for which an 

input has ‘overlapping’ membership, multiple rules will apply, allowing for a more nuanced 

representation in the continuous output of the model, even when ‘defuzzified’ back to a single 

crisp value. Additionally, when developing FIS models, analysts/experts must inherently 

consider the multivariate nature of habitat inputs—the same way in which fish experience 

conditions in nature—whereas HSC are typically derived/applied on a univariate basis. 

 

We implement both styles of models in an open-source, database-backed, geospatial habitat 

model interface we call the Fish Habitat Model (FHM: http://fhm.northarrowreserarch.com). 

The FHM has an easy-to-use GUI interface that individual simulations and scenarios can be 

run in, but because multiple steady-state model simulations and numerous models are run for 

every site visit, the database backbone of the FHM is tailored for automating and batching 

multiple simulations simultaneously. FHM is implemented by CHaMP using cloud-

computing via Amazon Web Services (AWS), and this allows us to quickly produce site-scale 

ecohydraulic simulations at every site (e.g. Figure 5D) at all CHaMP sites in a basin (e.g.  

Figure 5F shows site-summary scale results for all 2012 sample sites from Figure 4A). 

Juvenile Rearing Life Stage – NREI modelling 

Juvenile rearing is a critical time during the anadromous life cycle. Young fish are trying to 

eat and grow sufficiently to improve their chances of successfully navigating the downstream 

journey to the ocean, all while avoiding becoming prey themselves (Dill and Fraser, 1984). 

Both HSI (e.g. Raleigh et al., 1986) and FIS models (e.g. Atlantic salmon, (Mocq et al., 

2013)) exist for juvenile salmonid rearing, and we use virtually any of these within CHaMP, 

applying them via the FHM model framework described above (e.g. Figure 5). In contrast to 

spawners, for which habitat suitability can be reasonably inferred based on few physical 

variables (Gallagher and Gard, 1999), suitability for juvenile salmonid rearing is governed by 

a more complex set of factors (Rosenfeld et al., 2005). HSI/FIS models tend to provide a 
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simplistic view of conditions, representing by proxy the availability of depth/velocity 

combinations commonly occupied by fish.  However, because most HSI/FIS approaches do 

not include important determinants of habitat use like food availability or temperature as 

predictors, the quality/capacity of habitats for juveniles can be better approximated using a 

more mechanistic approach (Railsback, 2016). For example, an approach that explicitly 

considers the bioenergetics of this life stage by accounting for the role stream temperature 

plays in metabolism, the availability of food (i.e., drifting macroinvertebrate prey), the 

probability of prey capture, and the costs of locomotion in a stream environment (i.e., 

swimming costs)  (Hughes et al., 2003; Wall et al., 2015).  

 

In CHaMP, we have operationalized approaches inspired by (Hayes et al., 2007b) and 

elaborated in (Wall et al., 2015). These approaches are known as NREI – Net Rate of Energy 

Intake – models, because they calculate the net energy balance from an individual fish’s 

perspective if it were to maintain position within every computational node of the wetted 

channel. Briefly, given the local depths and velocities from hydraulic model simulations, the 

size of fish under consideration, and water temperature, the NREI model calculates the cost of 

swimming or holding position in a given locality. Then, using CHaMP data on invertebrate 

drift density (individuals / volume), the modeled fish’s swimming ability, and also its reactive 

distance to prey items, the model provides an estimate of the number of prey items that a fish 

can access at different nodes per unit time. Given a probability of capture for prey encounters, 

a likely energy intake can be estimated. Finally, by comparing the cost of swimming (in 

Joules), to the energy gain from capturing drifting prey (also in Joules), a net rate of energy 

intake can be calculated and zones that are energetically profitable, deficient, and neutral 

emerge (Figure 6C -> Showing an analogous output at the same site as Figure 5D). 
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Figure 6 – Example of site-scale NREI output (c), based (in part) on 2D hydraulic model predictions of 

velocity (A) and depth (B).    

 

Ecohydraulic models can be used to describe microhabitat scale (or hydraulic unit as defined 

in Table 1) habitat utilization by salmonids at a higher resolution than can be afforded by 

geomorphic unit or reach scale summaries.  They can provide mechanistic insight into 

measures of habitat complexity that remain elusive at these coarser scales.  For example, 

NREI models would generally predict that salmonids will minimize energy expenditure by 

holding in low velocity positions that offer access to high velocity zones within their reactive 

distance to maximize prey encounters (Hughes, 1998; Hughes et al., 2003). These shear zones 

(cf. Wheaton et al., 2015) are often found along lateral transition of geomorphic units, such as 

between bar forced pools and structurally forced bars.   Simple reach level metrics such as 

pool frequency or pool area, commonly used in traditional empirical models describing fish-

habitat relationships may not be adequate to define these more descriptive measures of habitat 

quality. For example, we used a simple path analysis to describe NREI estimates of carrying 

capacity at 64 CHaMP sites.  Path analyses regress explanatory variables not only to the 

predictor variable but other explanatory variables, allowing for indirect pathways. We created 

a variable to describe shear zones, which was based on a roving window summary across the 

velocity raster produced by hydraulic model.  The window size equaled the reactive distance 
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of a juvenile steelhead.  Gradients higher than 0.2 m/s were deemed shear zones, the sum of 

which produced the total area of shear zones in a reach. Gradient, shear zones, and pool 

frequency were used as explanatory variables.  Gradient predicted pool frequency and shear 

zones. Pool frequency helped explain shear zones as well but did not explain carrying 

capacity. Only shear zones predicted capacity, suggesting that after accounting for shear 

zones, pools themselves are not the strong predictor of salmonid habitat quality as commonly 

assumed.  Because the arrangement of geomorphic units can describe general hydraulic 

patterns (Moir and Pasternack, 2008; Wyrick and Pasternack, 2014; Wyrick et al., 2014), a 

more direct metric derived through models like NREI, such as area of transitions zones or the 

perimeter of influential geomorphic units, can be developed.  We are currently assessing how 

geomorphic unit assemblages can be used to approximate foraging efficiency.    

 

Site Capacity Estimates 

 

To address the key management questions outlined above, we need to translate these 

quantitative habitat measurements into estimates of capacity – or how many fish these reaches 

can support for adult spawning and juvenile summer rearing life stages.  Ecohydraulic models 

are not typically used in this way, tending instead to focus either on indices of habitat quality 

(e.g. Hanrahan et al., 2004) or a bioenergetics assessment (Hayes et al., 2007a). However, if 

assumptions are made about the size of habitat a fish of a given size occupies (i.e. a territory 

rules) when drift-feeding, holding position, or spawning, HSI/FIS and NREI models can be 

used to estimate of the maximum number of fish that a site can support (i.e. capacity 

(Hanrahan et al., 2004; Hayes et al., 2007b)). In contrast to purely geometric methods (i.e., 

capacity = area/territory size), which are likely to overestimate capacity, habitats that are 

energetically unfavorable (i.e., NREI juvenile capacity) can be excluded. For habitats that are 

‘suitable’ or bioenergetically favorable, the relative contribution of each cell to total capacity 

can be simply scaled or weighted in a manner commensurate with its habitat quality (i.e., 

HSI/FIS spawner capacity). An example of this capacity estimation approach is illustrated in 

Figure 7 for NREI-based predictions, based on an approach implemented in Hayes et al. 

(2016) and Wall et al. (2015). The output of such an approach is a predicted upper number of 

fish the site can support (i.e. capacity), and to make these capacity estimates inter-comparable 
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across sites they can be normalized into a lineal density (e.g. fish/m in Figure 7B) by dividing 

by site length, or into an areal density (i.e. fish/m2) by dividing by wetted area.  

 
Figure 7 – Example of estimation of capacity at single site (A) and how summing the values, dividing 

by reach length, capacity can be expressed as a fish density at all sites-on-network scale (B).  

Upscaling Site-Scale Information & Network Modeling 

While site-scale (as defined in Table 1) ecohydraulic model results provide useful insights 

and can inform specific restoration designs or effectiveness monitoring at those sites, their 
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extent is insufficient for answering key management questions across a population’s full 

range  in a drainage network (Isaak et al., 2016). Synthesis of site-scale analyses into 

descriptive site-summary-scale metrics, like capacity, are inadequate to assess an entire 

population. Even for study designs like used in CHaMP, where site-summary-scale metrics 

exist at a number of sites across a network (i.e. sites-on-network-scale), some upscaling 

methods are still required to inform population level questions.  First we describe three 

network co-variates that could be used to support juvenile rearing capacity estimation, and 

then we contrast the different upscaling techniques that use these. We discuss three 

approaches whereby multiple sites on the network are used to inform population level 

questions: design-based and correlative and causal model-based estimation.  All three 

approaches require network-scale co-variates.  

 

Network Co-Variates 

While there are many potential network scale co-variates that could be used , we highlight 

three key network co-variates, an example of which is illustrated in Figure 8A-C. 
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Figure 8 - Illustrative example of network-scale inputs of temperature (a), gross primary production (b; 

i.e. proxy for food), and river styles (c) used to inform a model imputation to drive a network-scale fish 

response output (d). 

 

Physical Template - Geomorphic Reach Type & Habitat Condition 

The local hydraulics, channel morphology, substrate type, and structural elements (e.g. wood) 

define the physical habitat setting perceived by salmonids. Site-scale ecohydraulic model 

outputs largely reflect these variations between hydraulic units, which form the building 

blocks of geomorphic units. Geomorphic units are the building blocks of a reach (Fryirs and 
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Brierley, 2013), but also the nexus of a reach’s identity (Montgomery and Buffington, 1998) 

and the microhabitat considerations of salmonids.  The identification of geomorphic unit 

assemblages within distinctive reach types throughout the stream network could provide 

extremely important information on the distribution of salmonid habitat (Hankin and Reeves, 

1988; Schwartz, 2016). Censusing geomorphic units is possible at the reach-scale or site-scale 

(Wyrick et al., 2014), and long reaches can be sampled with rapid assessments (Camp and 

Wheaton, 2014; Bouwes et al., 2016). For example, Blanchard (2015) censused over 30.5 

kilometers of streams using the Wheaton et al. (2015) taxonomy for geomorphic units, 

representing 197 CHaMP sites, but taking the equivalent effort of sampling 30 sites using the 

CHaMP protocol. However, censusing an entire network at a population scale (e.g. McMillan 

et al., 2013)  is typically impractical. As such, we need a means to predict what local 

hydraulics, geomorphic units and structural elements will be present, but for every reach in a 

network (e.g. the 962 km in Figure 8 or the 36,000+ km in Figure 2). Numerous potential 

reach-typing classification schemes exist see Buffington and Montgomery (2013). There are 

various network models for predicting grain size throughout a network (e.g. Snyder et al., 

2013), and even suitability for spawning (Buffington et al., 2004).  However, of those reach-

typing schemes that exist, only a few can be applied across a network (e.g. Beechie and 

Imaki, 2014) and most don’t necessarily predict the expected geomorphic units and structural 

elements (Kasprak et al., 2016). 

 

We use the Brierley and Fryirs (2005) River Styles framework to model reach types, 

geomorphic condition, and recovery potential (e.g. O'Brien and Wheaton, 2015; O'Brien et 

al., In Review). Similar, promising frameworks could be potentially substituted for at least the 

reach-typing components (e.g. Bizzi and Lerner, 2012; Bizzi et al., 2013; Beechie and Imaki, 

2014; Gurnell et al., 2015; Demarchi et al., 2016b; Demarchi et al., 2016a; Kasprak et al., 

2016), but here condition assessment and recovery potential are critical to addressing key 

management questions. Readily available remotely-sensed data such as 10m DEMs, geology 

and LANDSAT-derived vegetation layers, satellite and aerial imagery (e.g. Google Earth), 

along with overflights and on-the-ground validation can all be leveraged to produce network 

scale geomorphic assessments (e.g. Figure 8C).  Geomorphic condition (cf. Fryirs, 2015) 

combined with reach type is likely to be the best network-scale predictor of fish habitat 

character in individual reaches. Blanchard (2015) found that reach type alone was an adequate 
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discriminator of fish habitat, but this was likely because most reach types were only present in 

one condition variant in the study watershed. The combination of reach type and condition 

form a prediction of what fish habitat looks like on a reach-by-reach basis at the network-

scale that can be readily validated and spot-checked with site-scale CHaMP surveys or reach-

scale rapid assessments (Figure 9). By contrast, an honest appraisal of recovery potential 

(Figure 9) can form the basis for development of a range of realistic alternative restoration 

scenarios, which can then be used to explore potential capacity gains and subsequent fish 

population responses from various management alternatives. Too often, restoration planning 

is based on the wishful thinking that a historic condition is an attainable target (Roni and 

Beechie, 2013), whereas with the Brierley and Fryirs (2005) assessment of recovery potential, 

the contemporary boundary conditions help determine whether a not a historic condition or 

some intermediate condition is possible.  

 
Figure 9 – Illustration of four key outputs of geomorphic analysis (grey boxes), and supporting 

analyses (white boxes) used to produce network scale reach-type and condition maps, which form a 

combined co-variate for upscaling. See Figure 3 for how these outputs support addressing key 

management questions (KMQ) 1 and 2. Figure adapted from O'Brien et al. (In Review). 
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Temperature Modelling 

Stream temperature is an extremely important factor necessary in the description of salmonid 

habitat.  Temperature affects the physiological processes of all organisms, and thus stream 

temperatures affect stream food web dynamics, life history strategies, and behavior (Poole 

and Berman, 2001).  Temperature directly influences fish survival, and consumption and 

growth rates (Elliott, 1976; Kitchell et al., 1977).  With the onset of inexpensive temperature 

loggers, stream temperature monitoring is ubiquitous (Isaak et al., 2010a).  Large datasets 

have led to a better understanding of the factors controlling stream temperatures, and the 

development of models to predict temperatures across the stream network (Gardner et al., 

2003; Webb et al., 2008; Isaak et al., 2010b; Pike et al., 2013). Some models are highly 

mechanistic and can evaluate the expected impacts of alternative restoration scenarios (Boyd 

and Kasper, 2003), however such modeling is extremely data and labor intensive to 

implement over large extents.  Remote sensing of water and land thermal signatures have also 

been leveraged to extrapolate instream temperature logger data to stream networks (McNyset 

et al., 2015; Vatland et al., 2015).  Here, we use the temperature modeling approach of 

McNyset et al. (2015) that we use in estimating stream temperature across the network.  

 

McNyset et al. (2015) has developed a stream network model that estimates daily 

temperatures over the entire year (e.g. Figure 8A).  Remotely-sensed Land Surface 

Temperature (LST) is collected from the U.S. National Aeronautics and Space 

Administration’s (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellites.  Daily LST data is obtained at a resolution of 1 km over most of the planet.  

McNyset et al. (2015) found daily and 8 day averaged LST correlated highly with these same 

metrics from stream temperature loggers. Regression models were used to estimate 

temperatures throughout the network, with cross validation indicating these relationships were 

accurate and robust with as few as four stream temperature loggers.  Some of the factors 

influence LST are air temperature, climate, vegetation, surface geology, elevation, and 

physiography, which are also several of the controlling factors of stream temperature thus 

explaining the strong correlations observed.  While this model is capable of predicting stream 

temperature throughout the watershed, addressing KMQ1, the ability to predict changes due 

to restoration are not possible. We have used the Heat Source model of  Boyd and Kasper 
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(2003) to predict stream temperature across the smaller extents where restoration actions are 

implemented when addressing KMQ2.     

Primary Production – Food Proxy 

Although stream food webs are inherently complex, integrating basal energy fluxes from 

multiple habitats (e.g., riparian vegetation or detritus, terrestrial invertebrate resources, and 

allochthonous production; Wallace et al., 1997; Baxter et al., 2005), the total production of 

carbon by aquatic primary producers (gross primary production, GPP) provides a good index 

of the potential for streams to produce invertebrate prey resources for fish (Cummins and 

Klug, 1979; McCutchan and Lewis, 2002) as it is a measure of the abundance of basal food 

web resources in streams frequently used by rearing steelhead and salmon (e.g. midsize 

channels with partially open canopies).  Thus, modeling basal food web resources (i.e. GPP) 

can provide a reasonable proxy for fish food, and has been shown by Saunders et al. (in 

Review) to correlate well with fish abundance.  Further, GPP is responsive to changes in land 

use (Bernot et al., 2010; Griffiths et al., 2013), stream and riparian restoration (Adams et al., 

2002; Riley and Dodds, 2012; Giling et al., 2013; Roley et al., 2014), and geomorphology 

(Coleman and Dahm, 1990), and thus can account for factors known to influence spatial 

variation in fish populations.  Primary production can be approximated from dissolved 

oxygen time series (Cox, 2003; Grace et al., 2015), as dissolved oxygen is a proxy for whole 

system metabolism (the combined processes of primary production and ecosystem 

respiration; Odum, 1956; Ortiz-Zayas et al., 2005).  Although the dynamics of stream and 

riparian ecosystems that influence primary production are complex, the primary factors 

driving large-scale spatial variation (e.g. solar exposure, nutrient concentration, and water 

temperature, see Mulholland et al., 2001; Bernot et al., 2010) can be assessed remotely 

(nutrients [conductivity/alkalinity] (e.g. Olson and Hawkins, 2012), sunlight (Fu and Rich, 

2002), or mapped to stream networks temperature (e.g. McNyset et al., 2015) to continuously 

predict GPP throughout river networks.  Thus, we make continuous predictions of primary 

production throughout a river network using predictor variables that make conceptual sense to 

model spatial variation in potential food resources for fish populations (e.g. Figure 8B). 
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Design-Based Estimation 

In order to provide population estimates of the mean and variance of any metric of interest at 

the watershed-scale from site-level surveys, a representative probabilistic sample design is 

required.  Uniform and non-uniform (e.g. stratified) probabilistic sample designs are 

commonly used to distribute sites throughout a watershed (Nahorniak et al., 2015).  In most 

cases, CHaMP uses a stratified, spatially balanced, probabilistic sampling design.  Weights 

based on the inclusion probabilities are used to provide unbiased weighted estimates of the 

mean and variance of site level metrics when summarized across the watershed.  This 

approach has been shown to be an efficient and precise means to describe the status and 

trends of site-level salmonid habitat metrics at the watershed extent with 30-50 sites sampled 

(Larsen et al., 2004).  Whether the sampling design captures the variability across a watershed 

for more multivariate metrics such as carrying capacity estimates from ecohydraulic models 

requires further investigation.   

 

While a design-based estimation approach using capacity may provide summary information 

on status and trends of populations (KMQ1 and potentially KMQ3), the watershed-scale 

resolution of this upscaling does not resolve what is happening at individual reaches that a 

population may utilize (i.e. network-scale) to address where restoration should be 

implemented and what impairments restoration should target (KMQ2).  Given that restoration 

priorities are planned and implemented at specific locations on the ground, we assert that 

there is a pressing need for reliable information at the network-scale (i.e. watershed extent, 

but reach resolution) about where capacity is limiting and if and how it may be expanded 

(Benda et al., 2007; Macfarlane et al., 2015; Macfarlane et al., In Review). We call this the 

‘dots to network’ problem – where dots are sites. 

Imputation Techniques 

All techniques for tackling the ‘dots to network’ problem are basically spatial modeling 

exercises. In statistics, the act of substituting a reasonable estimate for missing values is 

known as imputation (Li and Parker, 2008).  Here, we wish to impute values of capacity 

spatially across a network, using some additional information at broader spatial extents from 

remote sensing, while properly accounting for sample design  (Nahorniak et al., 2015).  

Spatial models that exploit spatial autocorrelation may support imputation in the form of 
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kriging (e.g. Ver Hoef et al., 2014). However, kriging is not a feasible approach when spatial 

autocorrelation can neither be assessed nor exploited because points are measured at too 

coarse of a resolution, or data are obtained from spatially balanced samples, as in CHaMP.  

When attempting to model spatial patterns continuously (either in x-y space as in rasters, or 

longitudinally along a line in network space), imputation can be done with the assistance of 

some informative covariates that correlate to capacity estimates (e.g. Figure 8 - Illustrative 

example of network-scale inputs of temperature (a), gross primary production (b; i.e. proxy 

for food), and river styles (c) used to inform a model imputation to drive a network-scale fish 

response output (d).).  This assisted form of extrapolation is the basis for spatial or 

geographical imputation (Henry and Boscoe, 2008).  

 

The choice of covariates for any imputation exercise will necessarily depend on the variable 

that is being imputed.  A network covariate should be a variable that can be measured or 

modeled where site samples do not exist. Furthermore, the covariate should have information 

content such that there exists some non-zero correlation with the metric to be imputed.  

Correlative approaches test multiple potential covariates to find correlates to the variable to be 

imputed.  Causal approaches base covariate selection on a process-based understanding of 

how they relate to the variable of interest.  Final covariates will be empirically trained, 

calibrated, and/or simply validated to the imputed variable.    

Correlative Model-Based Imputation 

Empirical models can be derived that relate ecohydraulic estimates to globally available 

attributes, and then use these empirical models to estimate CHaMP metrics at unmeasured 

reaches. For simple linear models, we use model assisted regression to properly account for 

sampling design in the construction of empirical models. For more complex modeling 

techniques, Nahorniak et al. (2015) have developed a methodology called inverse probability 

boot-strapping (IPB) to properly account for sampling design while using model based 

statistical techniques. An ideal empirical model is unbiased across spatial scales of interest, 

and relationships observed within the data set over which the model is fit must be consistent 

at any spatial scale where the model is to be applied. Careful analysis of residuals must be 

performed, and in some cases models must be optimized to the spatial scale over which they 

are to be used for prediction.  
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As an illustrative example here, we developed a model-assisted multiple linear regression to 

predict HSI derived steelhead spawner wetted usable area (WUA/m; similar to Figure 5) from 

network-scale covariates describing attributes such as valley class, human disturbance, natural 

landform classifications, elevation, drainage area, slope, stream flow, stream width, 

etc.  Variable selection was performed using an iterative procedure to minimize model 

AIC.  Weights for the model-assisted regressions were proportional to the inverse of the site-

level sample inclusion probabilities. Cross-validation between HSI model estimates of WUA 

and the correlative model predictions are somewhat in agreement across several watersheds in 

the Columbia River Basin (Figure 10).  Because the model was developed over a wide range 

of conditions, imputation to locations not surveyed should be more reliable.  While this 

approach holds promise in providing spatially-explicit estimates of carrying capacity at the 

network-scale, caution must be exercised, especially when extrapolating this model in 

localities it was not empirically developed for or for considering alternative restoration 

scenarios.   
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Figure 10 -  Site-Summary-Scale measured versus regression model predicted log(1+ weighted usable 

area (WUA) per meter of stream length).  Dot size is proportional to sample weights for the model 

assisted regression.  R-squared = 0.61. 

Causal Model-Based Imputation 

To identify habitat impairments and plan and test for appropriate restoration strategies to 

benefit populations, we posit that estimates of carrying capacity at the network-scale will be 

most informative.  While correlative approaches, like above,may have the ability to create 

continuous estimates of carrying capacity of acceptable accuracy (e.g. Figure 10), the ability 

to manipulate covariate values to reflect potential changes due to restoration may not be 

possible (Brierley and Fryirs, 2005), or their prediction may not be defensible.  To protect 

against spurious correlations, increase accuracy, and target variables subject to restoration, a 

processed-based understanding, stemming from a strong and defensible theoretical 

foundation, of how the network scale variables influence carrying capacity is recommended. 
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Ecohydraulic site-scale models may help guide the development of network-scale models that 

inform the relevant reach scale metrics defining fish habitat.   

 

For example, the general inputs for a site-scale NREI can be summarized into inputs of food, 

temperature, and channel morphology and substrate as they pertain to hydraulics. The goal 

with a causal model approach would be to create network extent of these metrics resolved at 

the reach scale (Figure 8A through C).  At CHaMP sites, temperature is collected from 

temperature loggers and summarized (e.g. mean daily temperature).  McNyset et al. (2015) 

demonstrated that MODUS satellite information of ground temperature taken daily is highly 

correlated with data logger temperature at CHaMP sites, and that this information can be 

extrapolated across the network with a high accuracy.  Similarly, gross primary production 

estimated from DO sondes (see § Primary Production – Food Proxy above) could be predicted 

by site-level drivers like light, nutrients, and temperature, or remotely sensed/globally 

available proxies of these same variables (Šímová and Storch, 2016). Indeed, recent work 

using data from CHaMP sites suggests that causal models built on field measurements or 

globally available analogs (network-level GIS layers) predict GPP with similar accuracy and 

precision (Saunders et al., Unpublished Manuscript), opening a door to network-wide 

prediction of energy availability.  Finally, our investigations with ecohydraulic models at 

CHaMP sites suggest that the hydraulic patterns such as shear zones, found near geomorphic 

unit transitions, may be more important than geomorphic unit themselves (e.g. pools per 

kilometer) in determining habitat quality.  We are currently refining the relationship between 

hydraulic patterns, NREI values, and geomorphic unit assemblages to capture this complexity 

rather than relying simply on metrics such as pool frequency or pool area.  As discussed 

above, the River Styles framework delineates reach types with predictable geomorphic unit 

assemblages throughout the stream network.  CHaMP surveys provide geomorphic unit 

assemblages that can be derived through topography and are consistent with the River Styles 

framework (Wheaton et al., 2015).  Blanchard (2015) demonstrated that site survey 

information (consistent with CHaMP habitat sampling but without topography) and a few 

landscape variables derived from GIS and the 10m DEM could statistically classify with 88% 

accuracy, reaches delineated through the River Styles framework.  Further, she was able to 

predict the abundance of juvenile steelhead with greater precision and accuracy using reach 

types delineated using River Styles, network estimates of GPP (which is highly correlated 

This article is protected by copyright. All rights reserved.



38 
 

with temperature), and date, than from the same variables used to classify River Styles (see 

Figure 4 of Blanchard (2015)). Because we can estimate the same general inputs to NREI 

models from bottom-up reach level data and top-down “remote-sensed” data (Figure 11), we 

believe that a mechanistic based empirical model will be able to predict NREI estimates of 

carrying capacity.   

 
Figure 11- Example of how the components of the proposed framework can fit together for juvenile 

rearing using NREI model and causal-based imputation to produce robust carrying capacity estimates 

at the network and population scales to feed life-cycle models. Individual component pieces and 

concepts can be interchanged. The key attributes are the a) conceptual alignment at the reach-scale 

between inputs used to drive the site-scale ecohydraulic models and the network co-variates; b) the 

leveraging of readily available remotely sensed data to support network scale modeling; c) use of 

traditional site-scale ecohydraulic analysis to train, calibrate causal model-based imputation and 

ultimately validate it. The framework aims to highlight the analytical tools and underlying theory 

necessary to transcend spatial scales in the riverscape of relevance to understanding fish population 

dynamics.  
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Population - Life Cycle Modelling 

Upon generating watershed-level estimates of capacity for key life stages (e.g. Figure 8D), 

directly answers to key management questions within a life cycle modelling framework can 

be explored. A life cycle model (LCM) is simply a mathematical representation of an 

orangism’s life history that, given relevant inputs (i.e., stage-specific productivity, capacity, 

and initial abundance), can be applied in a forward simulation context (Figure 9). The LCM 

used by CHaMP is a stage-structured (for Pacific salmon and steelhead), stochastic projection 

model adapted from the ‘Shiraz’ model developed for similar applications in Puget Sound 

(Scheuerell et al., 2006). LCMs are particularly well suited for addressing key management 

questions pertaining to tributary habitat restoration because they simulate future population 

trajectories as a function of the same demographic parameters that restoration aims to 

improve, all while explicitly portraying uncertainty in model inputs (Sweka and Wainwright, 

2014). LCMs thus offer a means to rigorously tackle planning-related questions like ‘will 

restoration action X (or the suite of actions X, Y, and Z) help the population reach a target 

abundance threshold, within a certain time frame and/or risk tolerance?’; and post-project 

effectiveness questions like ‘could the improvement in tributary survival that’s been 

observed, given survival improvements expected elsewhere (e.g. at mainstem dams), result in 

population recovery?’. The latter example highlights an important strength of LCMs for 

assessments involving highly migratory species with diverse life histories and impacts (and 

restoration measures) occurring at many scales—i.e., stage-specific effects can be assessed 

amidst an otherwise overwhelming sea of complexity.          

 

In practice, LCMs are parameterized to answer questions pertaining to tributary habitat 

restoration using up-scaled CHaMP capacity estimates (i.e., juveniles, adult spawners), 

population-specific estimates of productivity or survival, and levels of variability around 

these inputs that are commensurate with variation observed in population monitoring data 

(McHugh et al., In Reivew). Based on hundreds of Monte Carlo runs spanning a few decades 

each, simulations from this baseline parameterization give managers a probabilistic view of 

population performance/status in the absence of intervention across a tractable time horizon. 

The real power of LCMs in the present setting ultimately traces back to the reach/site scale 

wherein topographic surveys and ecohydraulics models provide a mechanistic basis for 

prospective restoration gaming. For instance, CHaMP DEMs can be modified to simulate the 
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effects of large woody debris placement (e.g. Wall et al., 2016), a go-to restoration treatment 

for structurally simple salmonid habitats. The benefits of these treatments can then be 

quantified through hydraulic and NREI model reruns and up-scaled accordingly. Given its 

bioenergetics origins, NREI can also be used to quantify fisheries benefits arising from 

anticipated temperature improvements (e.g. resulting from riparian revegetation, ((ODEQ), 

2010). Thus, the ability of LCMs to provide meaningful insight on the population-level 

benefits of restoration relies heavily on a thoughtful integration of information from multiple 

scales. 

 

Discussion 

Plurality of Approaches for Component Pieces 

The focus of this paper was not on the how each component piece of this framework was 

done, but instead on the broader issue of what is needed from each component to facilitate the 

integration of these component pieces to support life cycle modelling in a meaningful way. 

Each piece represents the efforts and collective advances of various sub-disciplines of 

geomorphology, ecology, fisheries biology, hydraulics, and ecohydraulics. In this paper, we 

have not digressed into the methodological details for each component piece and instead 

emphasized an overall picture. However, it is important to recognize that many different 

approaches can be usefully substituted in each step, each with its own costs, advantages and 

disadvantages and corresponding uncertainties.  

 

For example, the implementation of the framework we have presented here would not be 

possible without numerous advances in remote sensing (Carbonneau and Piegay, 2012; 

Gilvear et al., 2016) from the past two decades. There are many different remote sensing 

techniques that can be combined in various ways to paint a quantitative picture of physical 

habitat with both topography and aerial imagery (Bangen et al., 2014a). So long as the 

uncertainties in each approach are adequately represented (Wheaton et al., 2010b; Bangen et 

al., 2016), and their significance to the analyses and questions at hand appropriately 

considered  (Wheaton et al., 2008), many different approaches should apply.  Our premise 

here was that as long as each component piece had a pragmatic way to produce the 

component output needed that was scientifically defensible, it would suffice towards 
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achieving the broader integration and ultimately addressing some pressing key management 

questions. 

 

Moving forward with application of this framework, we have been exploring tradeoffs and 

robustness of different methodological approaches to producing outputs for each component.  

In some cases, simultaneously implementing a plurality of approaches to get alternative 

‘solutions’ may be the best way to consider uncertainties (Rotmans and Van Asselt, 2001). 

For example, we may have a variety of habitat suitability curves to drive HSI models  

(Breecher et al., 2016) and varying levels of complexity of biotic or physical process 

representation in FIS models of spawning habitat suitability (Ahmadi-Nedushan et al., 2006; 

Hayes et al., 2016). The contrast between spatial predictions of habitat quality vary between 

models of different degrees of complexity (e.g. Figure 5 for HSI vs Figure 6 for NREI), but it 

is not yet clear whether this refined mechanistic representation produces markedly different or 

better estimates of capacity at the site-summary-scale. If different approaches to ‘answer’ the 

question of how many fish a reach can support converge on a similar result, some confidence 

in the robustness of that result is instilled. Conversely, ‘different’ answers can be combined 

into a distribution of probable values and reflected with uncertainty around a LCM input (cf. 

Rotmans and VanAsselt, 1996; Rotmans and Van Asselt, 2001; Sear et al., 2008). 

Additionally, the extent to which those competing model representations paint a divergent 

picture also highlights specific localities, issues, processes and factors that deserve closer 

attention and/or further research. All of the raw data used to drive the models here is already 

publicly available (http://champmonitoring.org), and we are working to make all the model 

product outputs publicly available in the near future. We encourage other investigators to 

make their own refinements, model substitutions and alternative analyses.    

 

Why hasn’t this already been done? What made it possible? 

The framework presented here is not the first attempt to make meaningful use of habitat 

measurements at a network scale to more accurately estimate capacity (McMillan et al., 

2013). However, to our knowledge, it is the most ambitious scope over which such an 

upscaling attempt has been made and perhaps the only one that attempts to preserve the kind 

of spatially explicit, reach-level resolution needed to support restoration 
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planning/implementation. We have focused on pragmatic approaches that are possible to 

implement today given available remote sensing information, as well as an overall framework 

that is theoretically sound, and conceptually aligned with the best available science. Benda et 

al. (2016) highlighted that the remotely sensed data (particularly DEMs to derive robust 

drainage networks) are not equal in all parts of the globe. The data we used to drive our 

network models is nationally available in the US, and similar or better products exist in some 

European counties, but worldwide equivalents are not yet available. Though recent 

breakthroughs in producing 2m DEMs from satellite imagery may improve this in coming 

years (e.g. Noh and Howat, 2015).  Therefore, we hope that the generic aspects of this 

framework will be transferred to catchments in other parts of the world, other populations and 

other species as this sort of data becomes more broadly available. We know the framework 

can be improved, and we do not propose it as a rigid, static manual proposing how to tackle 

the problem of making reach-scale physical habitat data more useful to fish population 

modeling.  

 

The reasons, we believe, that such a framework has not already been implemented has mostly 

to do with the fact that the data requirements and computing power required to implement and 

scale all of the component pieces described here have simply not been previously available.  

While various habitat monitoring methods have been in existence for at least thirty years 

(Kaufmann et al., 1999; EA, 2003; Heitke et al., 2010; Somerville, 2010), none of these stick-

and-tape approaches produce continuous, topographic data required to support the sort of 

ecohydraulic analyses that are the backbone of the proposed framework. As researchers, we 

just happen to be fortunate enough to be tackling these problems at a time when there is a 

convergence of management need and interest. That combined with a growing availability of 

remotely sensed data, increased rapidity and ease with which high resolution topography can 

be acquired (Passalacqua et al., 2015), and the computing power and scalability via cloud-

computing exists to now implement modeling approaches and analytical frameworks that 

have been in existence for decades across population scales. In short, the ecohydraulic, 

fisheries and geomorphic communities are maturing to the point that we can start to think 

about not just illustrating new methodological concepts with one off examples (much as we 

have in this paper), but we can actually begin to transform and combine operational models 

into production-level analyses. While such an advance is the cornerstone to management 
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being able to leverage and implement such science in a decision-support context, it also offers 

an unparalleled opportunity to test some basic hypotheses about how both these physical 

systems work as well as how these populations respond to physical habitat.   

 

Network-scale models that inform assessments of salmonid populations already exist. 

Promising riverscape network analyses to specifically look at implications to salmonid 

populations by Whited et al. (2012), Benda et al. (2007), Alvarez-Cabria et al. (2016).  

A perceived barrier to implementing the framework discussed here could be cost. Advances 

on the production of network co-variates that could be useful in the upscaling steps has been 

particularly fruitful over the past decade (e.g. Beechie et al., 2003; Benda et al., 2007; Alber 

and Piegay, 2011; Belletti et al., 2013; Bizzi et al., 2013; Roux et al., 2014; Schmitt et al., 

2014; Macfarlane et al., 2015; Demarchi et al., 2016a). Many of the datasets required to drive 

such network scale analyses are free and their availability is increasing. It would be tempting 

to conclude from what we presented here that this approach is only possible with massive 

financial investments in habitat sampling, monitoring, and research. However, there are at 

least three counter points to such an argument. 

 

 

First, while CHaMP is attempting to implement these methods across dozens of watersheds in 

the CRB simultaneously, the sampling effort required to study a single population in a 

watershed of interest is relatively modest (e.g. circa 25 sites of sampling effort per year) and 

is likely in the $50K to $100K US range for annual sampling effort.  We contend that the easy 

advances remote sensing was going to provide for better characterizing instream habitat have 

already been realized (Bangen et al., 2014a). There is a basic level of sampling effort required 

to acquire the necessary topographic data and only minor efficiencies are likely to be realized 

in the future. 

  

Secondly, with all of the component pieces described in this framework, we have invested 

heavily in transferability. Specifically, we focus on operationalizing established methods 

wherever possible, only creating new ones where necessary, and developing protocols (e.g. 

http://moniotringmethods.org) and writing software to implement both that are all open-

source, transparent, free to use and highly scalable. That is, the analytical cost barriers to 
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implementing such a framework are quickly diminishing, and the cost of cloud computing is 

now remarkably low. As an anecdote, we have spent less than $1000 on computation time 

running all of the tens of thousands of hydraulic model simulations described here. Thanks to 

Delft making their source code open source, a problem that a few years ago was 

insurmountable is now readily affordable. Traditional model parallelization requires 

substantial manual configuration and refactoring of code that is not needed when using virtual 

computing clouds. The emergence of this cheaper and more accessible parallelization makes 

these virtual computing services attractive. Virtual computing services currently price their 

infrastructure rental costs to commercial applications (such as media streaming and desktop 

cloud software services), which dwarf the size of the sort of research computing needs 

described in this framework.  

 

Finally, it may be possible to implement some of these approaches across the network based 

only on freely-available remotely sensed data and without large on-the-ground monitoring 

investments (Macfarlane et al., 2015). However, this is likely only to be the case if robust 

fish-habitat relationships can be established in other, similar, riverscapes. The methodological 

question we cannot yet address is how robust the fish habitat relationships established 

empirically and theoretically, here, hold up across locations without such intensive sampling 

efforts. This may be just wishful thinking, but if it proves possible with reasonable accuracy, 

it could save fisheries managers millions.   

 

 

Implications for Population-level Assessments & Life Cycle Modelling 

One of the problems with the ecohydraulic approach is its premise and guiding principles are 

based on the assumption that the physical environment in riverscapes (primarily as manifested 

via hydraulic processes, but also geomorphic processes), is a direct driver of ecology. While 

there is merit and truth, for example, in assuming fish selectively occupy habitat, other biotic 

factors such as competition, predation, disease, social factors, density dependence, and food 

availability all can act to modulate fish–habitat relationships (Rosenfeld, 2003). Accordingly, 

purely physical habitat-based approaches may not always provide useful insight on population 

limitation in every system (Railsback, 2016).  However, in cases where habitat is limiting, 
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this framework provides a workflow for identifying exactly where and to what extent habitat-

related constraints (i.e., diminished capacity) may be limiting a population. There are other 

promising alternative perspectives on estimating populations emerging, which are not based 

on full, simulation, life cycle modeling. These include geostatistical upscaling techniques like 

Isaak et al. (2016) that use block kriging interpolation across spatial-stream-networks (SSN; 

i.e. what we term drainage  network here) and fish density surveys. In principle, such 

approaches could substitute the ecohydraulic analyses described here for fish density surveys 

in their approach and use their upscaling techniques to assess populations. Similarly, it is 

possible to use actual fish density surveys in place of the ecohydraulic modeling efforts 

described here to drive life cycle models to make estimates of current populations. The 

problem with all three of these alternatives is that they are useful for assessing what a 

population looks like currently, but do not help for producing realistic and mechanistic 

scenarios of how restoration might influence future populations. For these reasons, we are 

pursuing more mechanistic linkages in the framework described here. However, all of these 

different approaches offer complimentary perspectives on similar problems. Managers will 

benefit from lots of creative approaches to think about the same problems.  

 

There are several other aspects of the framework presented here that we think make it 

compelling.  First, one of the ecohydraulic models we use, NREI, explicitly considers both a 

key biotic influence (i.e., food availability) and a primary physiological driver (i.e., 

temperature) on reach-scale capacity. The FIS-based habitat modelling framework also offers 

flexibility for incorporating additional variables, such as predation refugia (Muñoz-Mas et al., 

2016), which offers additional complexity/realism. Secondly, quantifying capacity is a 

fundamental parameter in most life-cycle models and can at least help contextualize the 

question and extent to which habitat may or may not make a difference to populations. Third, 

the life cycle modelling approach is explicitly driven by a mix of empirical (e.g. survival 

estimates) and mechanistic fish-centric processes. Moreover, life-cycle models are explicitly 

considering all stages of an anadromous fish’s life. 

Conclusion 

The multi-disciplinary study of ecohydraulics owes much of its existence to applied 

management questions surrounding the sustainable management of salmonids and recovery of 
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their populations. Despite this history, most ecohydraulic studies have been focused at 

relatively local reach-scales. Advances in remote sensing and computing power have 

facilitated a more precise characterization of physical habitat for fish and better mechanistic 

explanation of fish habitat relationships at reach-scales. However, we presented a framework 

for addressing applied management questions at the broader scale they are typically motivated 

by —population health and population numbers. The population-scale is not a scale at which 

traditional ecohydraulic inquiry typically operates. 

 

The crux of this framework hinges around reliable upscaling of our reach-scale understanding 

of ecohydraulic fish-habitat relationships to the network-scale at which fish populations 

operate. We described the many component pieces required to facilitate this integration and 

alluded to the insights into population dynamics it can provide, using examples from the 

Columbia River Basin (CRB) and the CHaMP (Columbia Habitat Monitoring Program).  The 

CHaMP program captures an unprecedented amount of detail on fish habitat at over 900 sites 

in 12 sub-watersheds of the CRB. We argue that the primary outputs needed to better inform 

life-cycle modeling efforts and underscore the significance of tributary habitat in the 

freshwater life stages of anadromous salmonids were more reliable estimates of capacity (i.e. 

the upper limits on the number of fish the habitat can support). However interesting such 

estimates may be at individual sampled reaches, for them to be useful to understanding their 

impact on population dynamics, these estimates need to be made at the scale that the 

population exists – i.e. across the entire drainage network. 

 

To reliably extrapolate estimates of capacity across entire drainage networks (i.e. watershed 

extents and reach-scale resolution), we suggest two primary requisites must be met. First, the 

detailed sampling and ecohydraulic analyses made at sites must be done with a survey design 

that places sampling effort at sites in a spatially balanced, randomly selected, but 

geomorphically stratified manner to allow robust statistical inference and upscaling. 

Secondly, the extrapolation to the network needs to be done with spatial co-variates that help 

explain physically and biotically why fish habitat and subsequent estimates of capacity vary 

systematically across a drainage network.  For our examples of estimating juvenile rearing 

capacity and spawning capacity, we suggest that geomorphic reach type and condition 

variants are required for both.  However, for juvenile rearing capacity, we suggest that stream 
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temperature (as a determinant of metabolic rate) and proxy for food availability (primary 

production) are additionally useful. These spatial co-variates need to be realistically  

measureable or modelable at network extents and should correlate strongly to measures that 

can be made at individual sites. It is only because of advances in remote sensing yielding 

spatially continuous models of these co-variates that we can even begin to consider how to 

put these various pieces together in a quantitative and conceptually coherent framework to 

directly address key management questions about populations. All of the component pieces 

can be substituted out with more refined, more precise and improved methods and models as 

and if appropriate. However, before investing too heavily in individual component pieces, we 

think the next step is to see how sensitive life-cycle model results are to different aspects of 

the tributary habitat capacity estimates. In some instances, in some watersheds, a simple 

exploration of the full range of habitat capacity conditions and maximum plausible 

improvements possible with restoration may reveal that no detectable improvements toward 

population targets are possible. By contrast, in other watersheds, this framework could be 

very powerful for helping identify precisely where in the drainage network habitat restoration 

could lead to capacity improvements that actually can facilitate positive population level 

responses. For the future, we suggest that the framework could be used to strategically 

develop more realistic expectations beyond the optimism and wishful thinking that underlie 

too many restoration actions today.  
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