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Abstract
Fluctuations in the population abundances of interacting species are widespread. Such fluctuations could be

a response to abiotic factors, biotic interactions, or a combination of the two. Correctly identifying the drivers is
critical for effective population management. However, such effects are not always static in nature. Nonlinear
relationships between abiotic factors and biotic interactions make it difficult to parse true effects. We used a
type of nonlinear forecasting, empirical dynamic modeling, to investigate the context-dependent species inter-
action between a common fish (three-spine stickleback) and an endangered one (northern tidewater goby) in a
fluctuating environment: a central California bar-built estuary. We found little evidence for competition,
instead both species largely responded independently to abiotic conditions. Stickleback were negatively affected
by sandbar breaching. The strongest predictor of tidewater goby abundance was stickleback abundance; how-
ever, this effect was not a uniform negative effect of stickleback on goby as would be hypothesized under inter-
specific competition. The effect of stickleback on gobies was positive, though it was temporally restricted.
Tidewater goby abundance in the summer was strongly positively correlated to stickleback abundance in the
spring, which represents an offset in the reproductive and recruitment peaks in the two species that may help
minimize competition and promote coexistence. Our study demonstrates how empirical dynamic modeling can
be applied to understand drivers of population abundance in putative competitors and inform management for
endangered species.

Both abiotic and biotic factors can drive population fluctua-
tions (Grant et al. 2016; Šipoš et al. 2017; Morris et al. 2020).
Understanding which drivers are acting on a given population
is important for understanding resilience, estimating popula-
tion viability, and managing endangered species (Sinclair and
Byrom 2006; Traill et al. 2010). Abiotic factors such as climate
and habitat degradation may limit population abundance or
cause fluctuations in population size (Chavez et al. 2003;
Lemoine et al. 2007; Kearney et al. 2010). Alternating popula-
tion cycles of pairs of species may be taken as evidence for

alternative responses to abiotic forcing variables such as cli-
mate (Chavez et al. 2003). Alternating cycles may be due to
populations having different optimal values of fluctuating
environmental variables, different seasonal patterns, or a com-
bination thereof.

Biotic interactions, such as competition, predation, or
parasitism may also influence the abundance of a focal pop-
ulation (Bardsley and Beebee 2001; McGraw and
Furedi 2005; Rogowski and Stockwell 2006). However, dis-
entangling abiotic and biotic drivers, especially when those
potential drivers fluctuate, can be challenging (Sugihara
et al. 2012; Gabald�on et al. 2019). Mirage correlations can
occur when the relationship between predictor and popula-
tion response is state dependent (Deyle et al. 2013). For
example, determining whether abiotic conditions or biotic
interactions are driving population fluctuations may be dif-
ficult if the presence of an interacting species depends on
certain abiotic conditions (Rogowski and Stockwell 2006)
or if interaction strength changes as a function of those abi-
otic conditions (Alcaraz et al. 2008; Jiao 2009; Deyle
et al. 2016a).
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The magnitude of interaction strengths such as competi-
tion coefficients, and even the identity of the dominant com-
petitor can change as a function of the environment (Stewart
and Levin 1973; Dunson and Travis 1991; Muench and Elsey-
Quirk 2019). Coexistence may depend on changes in the iden-
tity of the competitive dominant under fluctuations in envi-
ronmental conditions (Hutchinson 1961). Typically,
understanding such context-dependent species interactions
requires conducting manipulative experiments under diverse
environmental conditions which may be impractical when
threatened and endangered species are concerned (Costanzo
et al. 2005; Muench and Elsey-Quirk 2019).

Empirical dynamic modeling, a type of nonlinear state
space reconstruction, can be used to overcome these chal-
lenges using time series data (Sugihara et al. 2012). Such time
series of abundance data is regularly collected for monitoring
of some threatened and endangered species. Multivariate s-
map projection, a type of empirical dynamic modeling analy-
sis, sequentially estimates the partial derivatives of the
response variable with respect to each predictor variable over
time. When response and predictors are the abundance of two
species, these partial derivatives can be interpreted as a mea-
sure of time-varying interaction strength such as competition
coefficients (Sugihara 1994; Deyle et al. 2016b). Such measures
of interaction strength can be used to assess numerical popula-
tion responses to competition. For the purposes of this study,
competition is defined as a numerical response of one
population’s growth rate as a function of the other species’
density.

The habitat and abiotic conditions in bar-built estuaries in
central California undergo dramatic seasonal fluctuations lead-
ing to episodic opening and closure (Williams and
Stacey 2016). Bar-built estuaries, or lagoons, are intermittently
connect to the ocean during the wet seasons but will dry up
when the rains stop and the runoff runs out; then a sandbar
or berm will form, disconnecting the estuary from the open
ocean (Behrens et al. 2009, 2013; Rich and Keller 2013). The
bathymetry can change extensively during cycles of breaching
and closing (Webb et al. 1991; Elwany et al. 1998; Orescanin
and Scooler 2018). These physical changes to the shape of the
estuary basin, from flowing and river-like during the winter to
still and pond-like during the summer are accompanied by
changes in the physicochemical properties of the estuary such
as temperature, dissolved oxygen, and temperature and may
include changes to stratification (Williams and Stacey 2016).
Dissolved oxygen can reach anoxic conditions during the
summer dry period.Northern tidewater goby (Eucyclogobius
newberryi) are a federally threatened species that is a habitat
specialist adapted to living in bar-built estuaries
(Swenson 1999). Such specialization does not mean they are
immune from mortality during extreme environmental condi-
tions such as hypoxia or breaching (Williams and Stacey 2016;
Swift et al. 2018). Tidewater goby populations fluctuate dra-
matically (Swenson 1999).

Three-spine stickleback (TSS; Gasterosteus aculeatus) may
function as competitors for tidewater gobies. In bar-built estu-
ary habitats both species primarily consume benthic
macroinvertebrates (Swenson and McCray 1996; S�anchez-
Gonz�ales et al. 2001). In laboratory experiments stickleback
presence negatively affected tidewater goby survival, but only
when food resources were limiting (Chase et al. 2016; Chase
and Todgham 2016). TSS are a common and widespread spe-
cies, not restricted to bar-built estuary habitats (Bell and
Foster 1994).

Here we use empirical dynamic modeling to separate the
effects of abiotic and biotic drivers on tidewater goby and TSS
population abundance. We ask whether stickleback and goby
interact (compete) or are independently responding to envi-
ronmental drivers. Second, we ask whether environmental
conditions can cause changes in the interaction strength
between stickleback and gobies. For example, the relationship
between stickleback and goby abundance may depend on a
third value, such as temperature, with competition stronger
during warm weather, but weaker during cool weather.

Methods
We surveyed fish in Younger Lagoon monthly from

February 2014 through September 2020. Younger Lagoon is a
10-ha bar-built estuary, which is noteworthy in being uni-
mpeded by habitat alteration such as channelization or
anthropogenic breaching (Clark and O’Connor 2019). Youn-
ger Lagoon experiences annual breaching cycles as described
above. In addition, during the dry, warm summer conditions,
the lagoon is often densely populated by a primary producer.
In many years, that is the submerged vegetation Ruppia, but
other years a phytoplankton bloom occurs. Anoxic conditions
may occur in the late summer as the producer biomass begins
to senesce and decay, especially overnight.

We placed 12 unbaited minnow traps (40.5 cm long,
22.9 cm diameter at the center, with 3 mm mesh, and open-
ings with a diameter of 22 mm) along the eastern shore of the
lagoon in the evening and retrieved them the next morning.
Minnow traps were allowed to sink to the substrate. We did
not place minnow traps in fixed locations. Instead, location
was allowed to vary along the shoreline to prevent fish mortal-
ity since fluctuating water levels led to seasonal changes in
habitat and anoxia risk. The front of the lagoon (the channel
on the beach) was generally the deepest, the large central
basin was less shallow, and the two upstream arms were the
most shallow. When conditions warranted (warm tempera-
tures and the potential for low oxygen), we varied the depth
of water we set out traps in. As such we often moved them
away from shore into deeper water. In the extreme, during
hot summers and fall months, our traps in the central basin
were placed along the thalweg (the deepest channel), and few
if any traps were placed in the upstream arms because they
were too shallow for the traps to even remain submerged. We
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counted the number of each species of fish encountered in
each trap and report the average catch per unit effort for each
survey.

Starting in September 2014, we measured the surface water
temperature, salinity, and dissolved oxygen (percent satura-
tion) using a YSI Pro2030 at a subset of the trap locations, usu-
ally every other trap. We used linear interpolation to fill in
missing data due to equipment failure (1 salinity measurement
and 2 dissolved oxygen measurements).

Rainfall data were provided by the University of California
Natural Reserve System (https://ucnrs.dendra.science/). Rain-
fall was summarized for the water years 1991–2020 (water year
starts on 01 October of the preceding calendar year, https://
water.usgs.gov/nwc/explain_data.html). Data on estuary
breaching were taken from an automated camera that photo-
graphed the lagoon mouth every 15 min during daylight
hours. Photos were available for water years 2014–2020. We
manually searched all photos available during the wet season
to identify breaches. The lagoon does not breach during the
dry season. Overnight breaches were detected by observing
differences in mouth morphology from evening until morn-
ing photos. We augmented missing data with personal obser-
vations taken during the surveys and other visits to the
lagoon. To determine whether breaching dynamics are primar-
ily driven by within-year variation in rainfall, or cumulative
effects of rainfall (such as multiyear droughts) we used an
ANOVAANOVA to test for the effect of total rainfall and Accu-
mulated Drought Severity and Coverage Index (https://
droughtmonitor.unl.edu/) on the log-transformed total num-
ber of days open in a given water year; because the interaction
term was not significant we removed it.

Drivers of fish abundance
To understand which environmental drivers influence

stickleback and goby abundances, we used empirical dynamic
modeling, a set of tools for understanding nonlinear processes
from time series data (Sugihara and May 1990; Sugihara 1994;
Sugihara et al. 2012; Ye and Sugihara 2016). Empirical
dynamic modeling uses time-lagged values of the measured
variables to reconstruct the attractor of the underlying
dynamic system based on generalized Taken’s theorem
(Sugihara and May 1990; Deyle and Sugihara 2011). We can
then use this graphical model to make predictions and use
measures of cross-validated prediction accuracy (rho, R2) to
compare alternative models (Deyle et al. 2013). For empirical
dynamic modeling analysis we used a time series from
September 2014 to September 2020. Our focal variables were
the mean number of stickleback and tidewater goby caught
per trap. Potential environmental drivers included the total
amount of precipitation that had fallen (rain), the total num-
ber of days the lagoon was documented as open (breach) since
the last survey, and the mean of temperature, dissolved oxy-
gen, and salinity weighted by the number of traps associated
with each measurement. We normalized all variables to mean

0 and standard deviation 1 to compare the relative importance
of drivers measured on very different scales.

We used convergent cross-mapping to identify which, if
any, of the environmental variables, including the abundance
of the other species, influence the abundance of the two focal
species (Sugihara et al. 2012). In convergent cross-mapping,
lags of the focal variable are used to make predictions about
the state of a hypothesized driver (target variable) via simplex
projection. If that target variable’s states can be predicted by
using lags of the focal variable then we say the focal variable
cross-maps onto the target and that is evidence that the target
variable exerts causal influence on the focal variable (Sugihara
et al. 2012). We used this procedure to evaluate which target
variables causally influence the abundance of each fish spe-
cies. The embedding dimension (number of lags we used) for
each species was the optimal embedding dimension for
predicting the abundance of that species using a univariate
simplex projection model (Sugihara and May 1990). To test
whether the cross-mapping was significant, we compared the
forecast accuracy for the target variable (cross-map skill, mea-
sured as rho, the Pearson correlation between predicted and
observed values) from the model to cross-map skills derived
from a null distribution (Deyle et al. 2016a). We created the
null distribution of cross-map skills from 1000 surrogate time
series by extracting a mean seasonal trend with a smoothing
spline and then shuffling the residuals.

If the abundance of a focal species (e.g., gobies) is driven
primarily by abiotic factors, then we would expect it to only
cross-map onto abiotic factors (e.g., temperature or dis-
solved oxygen). Alternatively, if competition is important in
driving focal species abundance, then we would expect it to
significantly cross-map onto the abundance of the other
species (e.g., stickleback). If the focal species abundance sig-
nificantly cross-maps to both abiotic factors and biotic fac-
tors then both are important for driving the abundance of
the focal species and we can use s-map regression to deter-
mine whether those effects are merely additive, or whether
they are interactive (i.e., context-dependent competition)
(Deyle et al. 2016b).

Drivers of interaction strength
To test whether interaction strength between the two fish

species varies with environmental conditions, we used
another empirical dynamic modeling technique, s-map regres-
sion (Sugihara 1994). Multivariate s-map projection sequen-
tially estimates the Jacobian matrix of partial derivatives of
the response variable with respect to each predictor variable
over time and can be interpreted as a measure of time-varying
interaction strength (May 1973; Deyle et al. 2016b). For each
species we ran a number of multivariate s-map projections to
predict species abundance at time t + 1. All models included
two “seasonal predictors”: st and st�3, to account for seasonal
variation (Rogers et al. 2020). The seasonal predictors were
two sine functions (mean 0, variance 1) offset by 3 months,
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with a period of 1 yr and a timestep of 1 d, which used the
sample date and the sample date from three samples earlier as
input variables (e.g., if st was the date of the April sample,
then st�3 was the date of the January sample). We then
searched through a set of candidate models that included all
possible combinations of those two seasonal predictors, lags of
the two species abundance, and lags of any other predictors

variables that the focal species was found to significantly
cross-map to. We ran all possible combinations of lags for
each predictor up to E, the univariate embedding dimension
for the focal species (e.g., with two variables, we could have 2
+ 3E predictors: 2 seasonal variables, and E lags of two
variables + E lags of the species itself). S-map projection
requires a nonlinear tuning parameter, θ, which indicates the
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relative weighting of points nearby in predictor space
(Sugihara 1994). A value of θ = 0 represents an unweighted
global model where all points contribute equally to predic-
tions, whereas a larger value of θ means points nearby in pre-
dictor space are more heavily weighted. For each model (set of
predictor lags) we chose the best value of θ between 0 and
20 based on prediction accuracy (R2). We then picked the best

model for predicting the focal species by choosing the one
with the highest prediction accuracy (R2).

We extracted the coefficients from this best model for
each species, which represents a time series of partial deriva-
tives for the focal species with respect to each predictor.
Coefficients describing the relationship between species rep-
resent time-varying interaction strengths between them
(Deyle et al. 2016b). However, since the variables were nor-
malized to compare the relative importance of drivers mea-
sured on very different scales, they are not exactly
interchangeable with per-capita interaction strengths deter-
mined experimentally, rather they are more analogous to
standardized regression coefficients and are useful in deter-
mining the relative importance of predictors (Paine 1992;
Laska and Wootton 1998). We used an ANOVA to determine
if either of the season variables or any of the environmental
variables we measured were associated with the interaction
strengths between the two species. Significant effects of

Table 1. ANOVA table for log-transformed number of days
open per water year against predictors: Accumulated Drought
Severity and Coverage Index (ADSCI) and annual rainfall (mm).

Predictor SS Df F p

ADSCI 0.30411 1 1.9031 0.2398

Annual rainfall 1.15491 1 7.2273 0.0548*

Residuals 0.63919 4

*alpha = 0.10.
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environmental variables on interaction strengths would be
considered evidence of context-dependent competition. We
checked for multicollinearity using variance inflation factors,
all were less than 5.

Results
Stickleback and tidewater goby catch per unit effort fluctu-

ated by three orders of magnitude (Fig. 1a,b), generally
increasing in the spring and summer and crashing in the late
summer, fall, or winter. No stickleback were encountered for
6 months from September 2018 through March 2019. It is not
possible to distinguish whether the population persisted at
low levels or whether it truly went extinct in fall of 2018 and
was recolonized during the open phase of winter 2018–2019.
In the spring of 2019, after several months with no stickleback
captures, tadpoles of two species of amphibians, Pacific Cho-
rus Frogs (Pseudacris regilla) and California Red-legged Frogs
(Rana draytonii) were captured and swarming cladocerans
(Daphnia magna) were observed in the shallows but were not
observed at any other time during this survey.

Rainfall varied seasonally as expected (Fig. 1f). Winters were
characterized by rainfall that led to decreased salinity, and
temperature, and eventually led to one or more breaching
events (Fig. 1). Dry summer seasons were characterized by
increased temperature, increased salinity as water evaporated
from the isolated lagoon, and, in some cases, anoxia
(Fig. 1c–f). Our fish surveys span most of the range of varia-
tion in annual rainfall at Younger Lagoon; they ranged from
the 4th wettest to the very driest years in the 25 years with suf-
ficient data (Fig. S1a). In addition, drought monitor data reveal
that of the 20 water years since 2001, our fish surveys ranged
from the 1st to the 16th drouthiest years on record (Fig. S1b).
The lagoon was open between 2 and 14 d per water year
(mean = 5.3, SD = 4.2). We observed 32 d total where the
lagoon was open. During the winters of 2015–2017, there
were a total of 133 d during the wet season, split across several
distinct periods, for which no photo data were available; how-
ever, our direct observations identified at least one breaching
event during each of those periods. It is therefore possible (but
not certain) that the counts of days open in the winters of
2015–2017 are slightly underestimated. The log-transformed
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total numbers of days the lagoon breached in a water year was
more closely related to rainfall within a year than to Accumu-
lated Drought Severity and Coverage Index which measures
cumulative drought conditions (Table 1, Fig. S2). Therefore,
breaching is largely a function of within-year conditions
rather than multiyear droughts.

Drivers of fish abundance
In general, stickleback were more predictable than gobies.

The optimal simplex univariate embedding dimension for
stickleback was 2, with R2 = 0.21, while the optimal embed-
ding dimension for tidewater gobies was 4, with R2 = 0.03.
We found one significant predictor for each species using
convergent cross mapping (CCM). Breaching was the only
significant predictor of stickleback abundance (CCM,
p = 0.002) (Fig. 2a). Stickleback abundance was negatively
related to the first two lags of breaching (Fig. 3). Stickleback
abundance was the only significant predictor of tidewater
goby abundance (CCM, p = 0.025) (Fig. 2b). Tidewater goby
abundance was positively correlated with stickleback
abundance.

Drivers of interaction strength
Effects on stickleback

The best model for predicting the abundance of stickleback
at time t + 1 included the seasonal predictors and the current
time points of stickleback (TSSt), tidewater goby (TWGt), and
breach (Breacht), but no time lags from further back. This
model had an R2 of 0.28, slightly better than the univariate
stickleback model. The optimal value for θ, the nonlinear tun-
ing parameter, in this model was 0.1 and this means that the
model was weakly nonlinear, that is, interaction strengths did
not change much as a function of ecosystem state. The mean
magnitudes of the coefficient for the effect of tidewater goby
abundance and breaching on stickleback abundance were sim-
ilar and slightly negative; they were smaller than the coeffi-
cients for either seasonal predictor or stickleback abundance
itself (Table 2).

Even though seasonal variables were included as predictors
in the s-map projections, the coefficient for the effect of
gobies on stickleback was primarily associated with season, st,

(ANOVA, F1,59 = 12.75, p = 0.001), and tidewater goby abun-
dance (ANOVA, F1,59 = 6.22, p < 0.016) (Table 3). The interac-
tion strength of tidewater gobies on stickleback was highest

Table 3. ANOVA tables testing for the effects of environmental
predictors on the interaction strengths recovered from the multi-
variate s-map projections. Predictors include seasonal sine func-
tions, monthly rainfall, number of days open (Breach),
temperature, salinity, dissolved oxygen (DO), and the abundance
of threespine stickleback (TSS), and tidewater goby (TWG).

Response Predictor Sum Sq Df F-value p

dTSSt/dTWGt SeasonalSinet 0.040 1 12.753 0.001*

SeasonalSinet�3 0.001 1 0.267 0.607

Raint 0.007 1 2.074 0.155

Breacht <0.001 1 0.07 0.792

Tempt 0.005 1 1.617 0.208

Salinityt 0.005 1 1.466 0.231

DOt 0.001 1 0.252 0.617

TSSt 0.001 1 0.237 0.628

TWGt 0.019 1 6.217 0.016*

Residuals 0.184 59

dTSSt/

dBreacht

SeasonalSinet 0.003 1 7.479 0.008*

SeasonalSinet�3 0.001 1 3.633 0.062

Raint <0.001 1 0.868 0.355

Breacht <0.001 1 0.030 0.864

Tempt <0.001 1 0.007 0.934

Salinityt 0.001 1 2.541 0.116

DOt <0.001 1 0.628 0.431

TSSt 0.002 1 4.141 0.046*

TWGt 0.001 1 3.381 0.071

Residuals 0.023 59

dTWGt/

dTSSt�2

SeasonalSinet 41.8 1 0.312 0.578

SeasonalSinet�3 118.7 1 0.886 0.350

Raint 22.9 1 0.171 0.681

Breacht 10.9 1 0.081 0.777

Tempt 110.4 1 0.825 0.367

Salinityt 0.9 1 0.007 0.936

DOt 9.7 1 0.073 0.789

Residuals 8169.3 61

dTWGt/

dTSSt�3

SeasonalSinet 0.6 1 0.005 0.947

SeasonalSinet�3 822.5 1 6.679 0.012*

Raint 6.2 1 0.05 0.824

Breacht <0.1 1 <0.001 0.988

Tempt 1 1 0.008 0.929

Salinityt 8.1 1 0.066 0.798

DOt 0.7 1 0.006 0.939

Residuals 7511.6 61

*Statistical significance (p < 0.05).

Table 2. Time-averaged s-map coefficients for the best model
for (a) stickleback (TSS), and (b) Tidewater goby (TWG).

(a) TSS (b) TWG

Predictor Coefficient Predictor Coefficient

st 0.16 st 1.83

st�3 0.30 st–3 2.33

Breacht �0.06 TSSt–2 �0.12

TSSt 0.86 TSSt–3 4.86

TWGt �0.08 TWGt–3 �0.07
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(least negative) in March and when tidewater goby abundance
was highest (Fig. 4).

Effects on tidewater goby
The best model for predicting the abundance of tidewater

goby at time t + 1 included the seasonal predictors, the second
and third lags of stickleback (TSSt�2 and TSSt�3), and the first
lag of tidewater goby (TWGt�1). This model had an R2 of 0.13,
considerably better than the univariate model for tidewater
goby. The tidewater goby model was highly nonlinear, opti-
mal θ = 13.8, meaning that interaction strengths change as a
function of system state.

The largest mean coefficient in the model was for the third
lag of stickleback abundance (Table 2). The only significant
predictor of this coefficient was season, st�3 (ANOVA,
F1,61 = 6.68, p = 0.012). During June and July dTWGt/dTSSt�3

had a large positive value, whereas during other times of the
year the value was close to zero, usually slightly negative
(Fig. 5). There were no significant predictors for the coefficient

for the second lag of stickleback abundance (dTWGt/dTSSt�2)
(Table 3).

Discussion
Our results support the hypothesis that fluctuations in

stickleback and endangered tidewater goby abundance reflect
independent responses to environmental fluctuations rather
than the effects of interspecific competition. Stickleback abun-
dance was negatively affected by sandbar breaching. Tidewater
goby abundance was affected by TSS abundance. However,
when we used s-map regression to investigate the nature of
that relationship, we found that the pattern was primarily
driven by a large positive coefficient for the effect of stickle-
back abundance in the spring on tidewater goby abundance in
the summer, rather than by fluctuations in the magnitude of
negative interaction strengths that we would expect if state-
dependent competition was occurring.

Although prior experiments have indicated the potential
for competition (Chase et al. 2016; Chase and Todgham 2016)
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and the dynamics of population fluctuations in our study sys-
tem seem to imply competition, our analyses revealed little
evidence of competition. In our best model for explaining var-
iation in goby abundance, positive effects of the third lag of
stickleback (dTWGt/TSSt�3) outweighed the negative effect of
the second lag of stickleback (dTWGt/dTSSt�2), and so the
overall mean effect of stickleback on goby was positive
(Table 2). Conversely, the mean effect of gobies on stickleback
(dTSSt/dTWGt) was negative, but had a very small magnitude,
smaller than either seasonal effects or the effects of lagged
stickleback abundance. Therefore, tidewater goby abundance
did not have a major impact on stickleback abundance (also
see Fig. 2). Taken at face value, this suggests a commensalism
whereby stickleback have a positive effect on gobies, but we
do not know of a plausible mechanism by which this would
occur.

Using s-map regression we investigated the temporal varia-
tion in interaction strength to better understand the relation-
ship between the two species. Compared to the small effect of
gobies on stickleback, stickleback were the primary driver of
goby abundance in our models. For most of the year the

magnitude of the effect was quite small. However, counter to
our expectations, during the time periods when that effect
was large, the effect was positive: in June and July, the lagged
effect of stickleback on gobies was positive and very large
(dTWGt/dTSSt�3) (Fig. 5). Therefore, for most of the year, there
is not much meaningful effect of stickleback on gobies in
either direction, but in these 2 months there is a distinct, but
lagged, positive effect of stickleback. The lagged effect corre-
sponds to a positive correlation between the abundance of
stickleback in March and April with the abundance of gobies
in June and July. When stickleback have a good spring, gobies
are predicted to have a good summer.

Most likely, this reflects the season when juveniles of each
species recruit to a size large enough to be caught in our traps
and it may point toward the mechanisms for coexistence of
these two species that share a resource base. Perhaps then,
stickleback and gobies are responding similarly to an
unmeasured environmental driver, such as the onset of spring
productivity and availability of shared macroinvertebrate prey,
but stickleback respond earlier or more quickly. The major
reproductive period of the two species appear to be offset, so
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niche partitioning may be achieved across seasons (for data on
annual cohort timing in nearby lagoons, see Swenson 1999 for
gobies and Wasserman et al. 2021 for stickleback). Such
allochrony has been shown to help limit the potential for
competition by offsetting peak resource use (Trivelpiece
et al. 1987; Spilseth and Simenstad 2011; Clewlow
et al. 2019). Another study of a bar-built estuary food web sug-
gests a similar mechanism at play. Young et al. (2022) found
stickleback and prickly sculpin to have a greater overlap in
diet and stable isotope niche during the summer than the
spring; tidewater goby were also similar during the summer
but no goby data were available from the spring. Spatial segre-
gation of resource use could also lead to a lack of negative
impacts of the two species, but that does not explain the tem-
poral pattern of positive interactions we detected.

There was a great deal of spatial variation in conditions in
Younger Lagoon, just as there was a great deal of temporal
variation. We chose to focus on the temporal variation aver-
aged over the spatial variation in this study. This allows us to
focus on population- and system-wide data and processes.
Our method of attractor reconstruction assumes that mea-
sured fish abundance acts as an observation function of the
true state of abundance in the population; as long as catch
(averaged over all 12 traps) is a monotonically increasing
function of true abundance, our attractor reconstructions
should give accurate results (Takens 1981). Still, it is possible
that the two species might use the habitat differently during
different periods of the year when those environmental con-
ditions change (Moyle 2002). For example, we moved our
traps around the lagoon to avoid locations where diel oxygen
swings may cause fish mortality, but this may have changed
the relative accessibility of our traps to stickleback and more
anoxia-tolerant gobies (Swift et al. 2018). Unfortunately, this
confounding effect could drive some of the relationships we
see in the data. Further research could compare trapping stud-
ies to other methods, such as contemporaneous seine surveys
or trap placement controls to further investigate this source
of bias.

An important direct effect of the environment we
detected was a negative effect of breaching on stickleback
abundance. Breaching appears to be a major mortality event
for stickleback, with 90% or more reduction in abundance
following the first breach in most years (Figs. 1a, 3). Goby
abundance was not impacted by breaching in the same way
(Fig. 1b). Although goby mortality in response to artificial,
out-of-season breaches has been documented, our data
reaffirm that natural breaching is not a major source of mor-
tality for gobies and that they are well adapted to this feature
of the environment (Swift et al. 2018). When we observed
fish mortality following breaches, the majority of fish
stranded on dewatered mud or sand flats were stickleback,
and the few tidewater goby observed were alive, and many
were on a section of mudflat that would likely rewater at the
next high tide (B. A. Wasserman pers. obs.).

All of our models did a better job of predicting stickleback
abundance than they did tidewater goby abundance including
univariate Simplex, bivariate convergent cross-mapping, and
multivariate S-Map. Our analyses are robust to measurement
error because time-delay embedding allows us to use data from
multiple time points (Munch et al. 2020). However, measure-
ment error or process error (stochasticity) may provide an
upper limit on prediction accuracy in empirical dynamic
modeling. It is therefore possible that tidewater goby abun-
dance is marked by more stochasticity than stickleback abun-
dance in this system. In addition, there may be other, rarer
effects that we were unable to detect because they did not
happen during our time series, or only happened on a single
occasion. Empirical dynamic modeling generally require a
time series that includes enough data to cover several times
the characteristic return time for the system to resolve the
attractor in that area of parameter space (Munch et al. 2020).
For example, in 2018 we witnessed the largest abundances of
both stickleback and gobies, followed by a population crash
and an apparent wave overtopping event with unseasonable
temperature and salinity measurements. The following spring
tidewater goby abundances were higher than in other years.
One might conclude this was due to lack of stickleback pres-
ence. While the Smap coefficients were slightly more negative
in that year than others, our ANOVA did not identify any
proximate driver of that difference, instead it only detected
the overwhelming effect of season on the Smap coefficient of
stickleback on gobies.

The conclusion that stickleback and goby are not influenc-
ing each other’s population abundance, but rather responding
separately to environmental fluctuations will be important for
the management of these species. However, they co-occur in a
variety of environments and these results will be most applica-
ble to similar ecosystems. Small bar-built estuaries draining
intermittent streams in central California share a number of
features that may influence this interaction. In such small sites
that are rarely flowing, the submerged aquatic plant Ruppia is
common in some summers. Predatory fishes are not present in
Younger Lagoon and similar sites, but are found in many
other estuaries draining larger watersheds where stickleback
and goby co-occur (Wasserman et al. 2020). Many other ele-
ments of the ecosystem and community change along the
north–south axis of the tidewater goby’s range that might
impact this interaction, such as climate and the presence of
other species (des Roches et al. 2020).

Empirical dynamic modeling has been used to make predic-
tions and infer causality, and it is now starting to be used to
improve forecasting of commercially valuable fish stocks
(Anderson et al. 2008; Ye et al. 2015; Giron-Nava et al. 2020)
and to answer questions in community ecology such as deter-
mining the effect of biodiversity on stability and the drivers of
bottom-up and top-down effects (Sugihara et al. 2012; Ushio
et al. 2018; Rogers et al. 2020). As opposed to computing such
community-wide metrics, our goal was to understand the
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environmental factors that affect a particular species of conser-
vation concern and its interspecific interactions (Deyle
et al. 2016a). We think there is a real opportunity in using
these methods for such studies when monitoring data are
available but manipulative experiments are impractical,
whether that be for cost, logistical, or ethical reasons.

We used empirical dynamic modeling to understand the
interaction between two putative competitors in a seasonally
fluctuating environment. We showed fluctuations in interac-
tion strength but rarely showed competition. Instead, our data
revealed that seasonal cycles of both species reflect their
unique responses to environmental conditions including
annual pulses of recruitment that were offset by approxi-
mately 3 months. Empirical dynamic modeling can be used to
understand the context dependence in interactions, especially
in cases like ours utilizing endangered species, when the usual
methods (manipulative experiments) are not an option. Our
method allows us to understand the drivers of variation in
abundance of the endangered goby and strongly suggests
against competition from TSS as a threat to goby population
numbers. This information can be used to make decisions
about the management of the focal species. We suggest that
restoration of bar-built estuaries should take precedence over
efforts to eliminate the interaction with stickleback
(Zedler 1996; Clark and O’Connor 2019). Similarly, empirical
dynamic modeling can be used to decide between alternative
conservation actions in other cases.
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