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An estimator of the Opportunity for Selection that is independent of mean fitness 

Supporting Information 

SI 1.  Underdispersed variance in reproductive success.   

This paper has focused on overdispered variance in reproductive success (𝑠𝑘1
2  > 𝑘̅1, using the 

Poisson approximation), which reduces effective size and provides opportunities for natural 

selection to operate.  Underdispersion (𝑠𝑘1
2  < 𝑘̅1) is less common but nevertheless occurs in many 

taxa, at least with respect to seasonal reproduction.  For example, the number of eggs or early-

juvenile offspring can be constrained to a relatively small range of values, and this limits how 

large 𝑠𝑘1
2  can be.  At the extreme, females of many large animal species, and some birds, can 

only produce 0 or 1 offspring per season, in which case it is impossible for the variance in 

offspring number to be as large as the mean.  This can be shown as follows.  Of the N females, 

assume that XN produce exactly 1 offspring that appears in a sample, and the rest produce none.  

Mean offspring number in the sample is 𝑘̅1X and 𝑠𝑘1
2 = mean of the squares minus the square of 

the mean = SS/N - (𝑘̅1)2 =  XN/N – X2 = X – X2, which leads to 𝜑̂1 = 1 – X. 

The original Wright-Fisher model of reproduction incorporated an extreme version of this 

underdispersion scenario: each of N potential parents were imagined to contribute equally to an 

infinitely large pool of gametes, which then united at random to form the next generation of N 

individuals.  Under this scenario, using the current notation, 𝑠𝑘1
2  and 𝜑̂1 were both 0 while 𝑘̅1was 

infinitely large, and substituting these values into Eq. 1A produces 
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which is simply E(𝜑̂𝑑𝑟𝑖𝑓𝑡) (i.e., RS is neither overdispersed nor underdispersed).  Note that 

because the initial gamete pool (and hence 𝑘̅1) is assumed to be infinitely large, this result holds 

regardless what 𝑘̅2 is. 

All real populations of are of course finite in size.  Also, we can generalize the idea of an initial 

gamete pool to production of diploid offspring ranging from zygotes to adults. If we still assume 

equal contributions to the initial pool of offspring (𝑠𝑘1
2 = 0), but in finite amounts by each parent, 

we have 
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where X = 𝑘̅1 could be relatively large but is finite.  Equation A2 shows that E(𝜑̂2) is always less 

than the random expectation, so variance in RS is underdispersed, and the degree of 

underdispersion depends on the ratio 𝑘̅2/X.   

This model is still not very realistic, as it assumes 0 variance among parents in contributions to 

the initial gamete pool.  Overdispersion can be generated by having unequal parental 

contributions to the initial gamete pool.  Waples et al. (2018) used a variation of this approach to 

provide a minimum estimate of 𝜑̂2 in southern bluefin tuna (Thunnus maccoyii), based on 

empirical data for variation in female size at specific ages (and hence assumed variance in age-
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specific egg production).  For the current project, in modeling underdispersion I relaxed that 

restrictive assumption that 𝑠𝑘1
2 0 by having two separate processes for producing offspring: 1) a 

directed process, whereby each parent contributes equally to the fraction Y of all offspring; and 

2) a random process, whereby parents for the remaining fraction (1-Y) of all offspring are chosen 

randomly from the N candidates.  As in the main text, in the simulations 100 parents produced a 

total of 10,000 initial offspring (so 𝑘̅1 = 100), and random subsampling produced 𝑘̅2 values as 

small as 0.1.  I considered two values of Y:  0.5 (moderate underdispersion) and 0.9 (strong 

underdispersion). 

Results (Figure S1) show that initial Index of Variability for the two scenarios is simply the 

fraction of offspring that were randomly assigned to parents (i.e., 𝜑̂1 = 1-Y).   As the sample size 

of offspring declines, 𝜑̂1 for both scenarios rapidly approach 1, in agreement with predictions 

from Equation 1A.  It is apparent that sparse sampling of offspring will generally have a poor 

chance of detecting underdispersed variance in reproductive success, even when underdispersion 

is pronounced. 

 

Figure S1.   Relationship between the estimated Index of Variability (𝜑̂1) and sample 𝑘̅1when 

variance in reproductive success is underdispersed.   Observed values (symbols) are from 

simulations that initially generated 10,000 offspring from 100 parents and then randomly 

subsampled offspring to produce smaller sample 𝑘̅1 values.  Expected values (lines) were 

obtained from Equation 1A using the empirical value of raw 𝜑̂1 for maximum 𝑘̅1 = 100.  

Moderate and strong underdispersion scenarios are described in the Appendix text.  
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SI 2.  Poisson approximation to the binomial variance. 

 

Figure S2.  Comparison of results for rescaling empirical data for 𝜑̂1 from Figure 2A to 𝑘̅2 = 2, 

using Equation 1 (black) and Equation 1A (gray).  The two equations differ in that 1 uses the 

Poisson approximation that E(𝜑̂𝑑𝑟𝑖𝑓𝑡) ≈ 1, whereas 1A uses the exact value E(𝜑̂𝑑𝑟𝑖𝑓𝑡) = (N-1)/N, 

with N being the number of parents.  The difference between (N-1)/N and 1 is small (0.99 vs 1 

for the N = 100 parents used in simulating the data), but that difference becomes magnified when 

𝑘̅1 is small, in which case the term 𝑘̅2/𝑘̅1 = 2/𝑘̅1 becomes large.   

 



4 
 

SI 3.  R code used in the simulations, conducted with version 3.6.1. 

#install.packages("matrixStats") 
#install.packages("EnvStats") 
library(matrixStats) 
library(EnvStats) 
 
a=as.numeric(Sys.time()) 
set.seed(a) 
 
NReps1 = 1000 
NReps2 = 100  ## extra reps for smaller sample sizes 
 
### this version considers only female parents of each offspring 
NParents = 100 
NOffspring = 100*NParents  ## this, compared to NParents, determines initial mean offspring number = kbar1 
Parents = 1:NParents 
 
A = rep(1,NParents)  ## equal weights = Wright-Fisher model 
B = Parents  ## moderately unequal weights for parents 
C = Parents^2  ## more strongly unequal weights for parents 
weights =  C 
 
kbar1 = NOffspring/NParents 
kbar2 =c(kbar1/2,kbar1/5,kbar1/10,kbar1/20,kbar1/30,kbar1/40,kbar1/50,1.5,1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1) 
PartOff = kbar2*NParents 
BigOff = matrix(NA,NReps1*NReps2,NOffspring) 
LittleOffA = list() 
LittleOffB = list() 
for (j in 1:9)  { 
  LittleOffA[[j]] = matrix(NA,NReps1,PartOff[j]) 
  LittleOffB[[j]] = matrix(NA,NReps1*NReps2,PartOff[j+9]) 
  } 
 
ITSA = matrix(NA,NReps1,10)  ## Crow's Index of Total Selection = Var/mean^2 
IVA = ITSA  ## Crow's Index of Variability = Var/mean 
ITSB = matrix(NA,NReps1*NReps2,9)   
IVB = ITSB   
 
for (k in 1:NReps1)  { 
Offspring = sample(Parents,NOffspring,replace=T,prob=weights)  
BigOff[k,] = Offspring 
for (j in 1:9)  { 
   ## take a random subsample drawn from all offspring; equivalent to allowing random mortality 
   LittleOffA[[j]][k,] =  sample(Offspring,PartOff[j])   
   }  ## end for j   
for (j in 1:9)  {   
  jj = j+9 
   for (q in 1:NReps2)  { 
   kq = (k-1)*NReps2+q 
   LittleOffB[[j]][kq,] =  sample(Offspring,PartOff[jj])   
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   }  # end for q 
  }  ## end for j 
}  ## end for k 
 
 
for (k in 1:NReps1)  { 
 

X = BigOff[k,] 
T1 = as.vector(table(X)) 
NZero = NParents - length(T1) 
addzero = rep(0,NZero) 
T1 = c(T1,addzero)  ## add in parents with zero offspring 
ITSA[k,1] = var(T1)/mean(T1)^2 
IVA[k,1] = var(T1)/mean(T1) 

 
for (j in 1:9)  { 

  jj = j+1 
  Y = LittleOffA[[j]][k,] 
  T2 = as.vector(table(Y)) 
  NZero2 = NParents - length(T2) 
  addzero2 = rep(0,NZero2) 
  T2 = c(T2,addzero2)  ## add in parents with zero offspring 
  ITSA[k,jj] = var(T2)/mean(T2)^2 
  IVA[k,jj] = var(T2)/mean(T2) 

 }  ## end for j 
 
for (j in 1:9)  { 
  for (q in 1:NReps2)  { 

  kq = (k-1)*NReps2+q 
  Y = LittleOffB[[j]][kq,] 
  T2 = as.vector(table(Y)) 
  NZero2 = NParents - length(T2) 
  addzero2 = rep(0,NZero2) 
  T2 = c(T2,addzero2)  ## add in parents with zero offspring 
  ITSB[kq,j] = var(T2)/mean(T2)^2 
  IVB[kq,j] = var(T2)/mean(T2) 

    }  # end for q 
}  ## end for j 
 
}  ## end for k 
 
 
## get geometric means 
R1 = 1:10 
R2 = 1:10 
R3 = 1:9 
R4 = 1:9 
for (i in 1:10)  { 
R1[i] = geoMean(ITSA[,i]) 
R2[i] = geoMean(IVA[,i]) 
}  ## end for i 
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for (i in 1:9)  { 
R3[i] = geoMean(ITSB[,i]) 
R4[i] = geoMean(IVB[,i]) 
}  ## end for i 
   
X = c(R1,R3) 
Y = c(R2,R4) 
Z = rbind(X,Y) 
colnames(Z) = c(kbar1,kbar2) 
rownames(Z) = c("I","Phi") 
Z 

 

 

 

 

 


