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Biosketch 

This work is part of Auriane Virgili's PhD project which aims to model distributions of rare 

marine species with a focus on deep-diving cetaceans. These species are rare and difficult to 

observe at the surface thus it was necessary to assemble datasets from different surveys to 

model their distribution in the North Atlantic Ocean and the Mediterranean Sea. This required 

the collaboration of many organisations represented by the different co-authors of this article. 
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Abstract  12 

Aim: Deep-diving cetaceans are oceanic species exposed to multiple anthropogenic 13 

pressures including high intensity underwater noise, and knowledge of their distribution is 14 

crucial to manage their conservation. Due to intrinsic low densities, wide distribution ranges 15 

and limited presence at the sea surface, these species are rarely sighted. Pooling data from 16 

multiple visual surveys sharing a common line-transect methodology can increase sightings 17 

but requires accounting for heterogeneity in protocols and platforms.  18 

Location: North Atlantic Ocean and Mediterranean Sea 19 

Time period: 1998 to 2015 20 

Major taxa: Ziphiidae; Physeteriidae; Kogiidae 21 

Methods: About 1,240,000 km of pooled effort provided 630 sightings of ziphiids, 836 of 22 

physeteriids and 106 of kogiids. For each taxon, we built a hierarchical model to estimate the 23 

effective strip width depending on observation conditions and survey types. We then 24 

modelled relative densities in a Generalised Additive Modelling framework. Geographical 25 

predictions were limited to interpolations identified with a gap analysis of environmental 26 

space coverage. 27 

Results: Deeper areas of the North Atlantic gyre were mostly environmental extrapolation, 28 

thereby highlighting gaps in sampling across the different surveys. For the three species 29 

groups, the highest relative densities were predicted along continental slopes, particularly in 30 
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the western North Atlantic Ocean where the Gulf Stream creates dynamic frontal zones and 31 

eddies.  32 

Main conclusions: Pooling a large number of surveys provided the first basin-wide models 33 

of distribution for deep-diving cetaceans, including several data-deficient taxa, across the 34 

North Atlantic Ocean and the Mediterranean Sea. These models can help the conservation 35 

of elusive and poorly known marine megafauna.  36 

 37 

Keywords: Beaked whales, Data-assembling, Deep-diving cetaceans, Habitat modelling, 38 

Kogiids, Sperm whales  39 

 40 

1. Introduction 41 

Deep-diving cetaceans, defined here as beaked whales (family Ziphiidae; e.g. Ziphius 42 

cavirostris, Hyperoodon spp. and Mesoplodon spp.) and sperm whales (families 43 

Physeteridae and Kogiidae), are distributed worldwide. They are oceanic species that feed in 44 

deep waters during long dives (close to or even longer than an hour; Perrin et al., 2009). Due 45 

to their offshore habitat and the short time they remain available at the sea surface, little is 46 

known about their synoptic distribution (especially for kogiids and ziphiids). Moreover, these 47 

species are threatened by anthropogenic activities, including bycatch, debris ingestion, ship 48 

collisions (Carrillo & Ritter, 2010; Madsen et al., 2014; Unger et al., 2016) and any activity 49 

producing high intensity noise (e.g. military sonars, seismic guns or techniques used on large 50 

maritime construction projects; Stone & Tasker, 2006). Recent studies have demonstrated 51 

the sensitivity of deep-diving cetaceans, and particularly beaked whales, to underwater noise 52 

pollution, with a number of unusual stranding events associated with the use of military 53 

sonars (Fernández et al., 2005; D'Amico et al., 2009). To mitigate the impact of these 54 

activities, accurate knowledge of the distribution and abundance of deep-diving cetaceans is 55 

crucial to Marine Spatial Planning to inform management measures at a national scale 56 

(Douvere, 2008). International initiatives, such as Important Marine Mammal Areas (IMMAs, 57 

Corrigan et al., 2014), are needed for these highly mobile species. However, any single 58 

survey often yields only a handful of sightings that are then restricted to areas too small 59 

compared to the large geographical scale needed for effective conservation planning.  60 

Data-assembling is increasingly used to model habitat preferences of cetaceans at the 61 

basin scale (Roberts et al., 2016; Rogan et al., 2017; Cañadas et al., 2018). Due to the 62 

various protocols, platform types and observation heights, species detectability and data 63 

quality vary with surveys. In addition, each survey may not collect the same information, 64 

particularly with regard to observation conditions. Some surveys only record Beaufort sea-65 

state while others record additional parameters that also influence species detection, such as 66 

sun glare, cloud coverage or wave height. In the process of synthesising different datasets, 67 
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only variables common across all datasets can generally be retained in a broad scale 68 

analysis, which nevertheless needs to account for heterogeneity. Finally, to make basin-wide 69 

predictions from the assemblage of a number of local surveys, identifying areas of 70 

environmental extrapolations is crucial to bolster confidence in predicted maps (Mannocci et 71 

al., 2018).   72 

Our study aims to understand how deep-diving cetaceans are distributed at a large scale 73 

and to highlight areas of high relative densities for conservation purposes. To model the 74 

habitats of deep-diving cetaceans at a large scale, we assembled data from different surveys 75 

in the North Atlantic Ocean and the Mediterranean Sea from 15 organisations. To take into 76 

account heterogeneity in sighting protocols, we built a hierarchical model to estimate the 77 

effective strip width across platforms and observation conditions. We then modelled relative 78 

densities of three deep-diving cetacean taxa with Generalized Additive Models (GAM). 79 

Finally, we performed a gap analysis (Jennings, 2000, Mannocci et al., 2018) to assess the 80 

reliability of the predictions outside the surveyed area.  81 

 82 

2. Methods 83 

2.1. Data origin 84 

The study area encompassed the North Atlantic Ocean and the Mediterranean Sea from 85 

the Guiana Plateau to Iceland, excluding the Baltic and Black Seas, the Gulf of Mexico and 86 

the Hudson Bay, both because of an absence of effort data and of ecological and 87 

environmental differences (Fig. 1A; Appendix S1 in Supporting Information). Four sub-88 

regions were defined in the study area (Table 1; Fig. 1A): the northeast Atlantic Ocean (NE-89 

ATL), the northwest Atlantic Ocean (NW-ATL), the tropics and the Mediterranean Sea 90 

(MED). 91 

We assembled visual shipboard and aerial surveys performed by 15 independent 92 

organisations in the North Atlantic Ocean and the Mediterranean Sea between 1998 and 93 

2015 (Fig. 1; survey-specific information are detailed in Appendix S2 in Supporting 94 

Information). Except for the JNCC-ESAS surveys that use a 300m-strip-transect 95 

methodology, all surveys used line-transect methodologies that correct for non-detection bias 96 

with the estimation of an Effective Strip Width (ESW) from the measurement of the 97 

perpendicular distances to the sightings (Buckland et al., 2015; see below).  98 

To account for the difficulty in identifying deep-diving cetaceans to the species level (e.g. 99 

genera Mesoplodon, Kogia), we pooled species into three groups: (1) beaked whales, 100 

consisting of Cuvier’s beaked whales (Ziphius cavirostris), mesoplodonts (Mesoplodon spp.) 101 

and northern bottlenose whales (Hyperoodon ampullatus), (2) sperm whales (Physeter 102 
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macrocephalus), and (3) kogiids, including pygmy (Kogia breviceps) and dwarf sperm whales 103 

(K. sima). 104 

 105 

2.3. Data processing 106 

2.3.1. Data-assembling 107 

All survey datasets were standardised for units and formats (e.g. date, time and 108 

coordinates) and aggregated into a single common dataset. A specific coordinate projection 109 

encompassing the entire survey area was used for accurate distance computations (Albers 110 

equal-area conic defined from http://projectionwizard.org). Effort data were linearized and 111 

divided into 5 km segments using ArcGIS 10.3 (ESRI, 2016) and the Marine Geospatial 112 

Ecology Tools software (Roberts et al., 2010). The segment length represented a trade-off 113 

value across varying survey transect lengths, for example aerial surveys had transect lengths 114 

of up to 100 km while shipboard surveys were often much shorter. Finally, for each species 115 

group, sightings were linked to their respective 5 km segments. 116 

Encounter rates were calculated in each sub-region as:                       117                                 118 

 119 

2.3.2. Environmental variables   120 

In habitat models, we tested the static and dynamic variables that were expected to 121 

influence the distributions of deep divers (Table 2). All variables were resampled at a 0.25° 122 

resolution because of the very large size of the study area and the spatial resolution of the 123 

variables (Table 2; Appendix S3 in Supporting Information). Spatial gradients of sea surface 124 

temperature (SST) were calculated as the difference between the minimum and maximum 125 

SST values in an eight-pixel buffer around a given pixel. Net primary production (NPP) was 126 

used as a proxy for prey availability.  127 

Dynamic variables, which relate to the movements of water masses or prey availability, 128 

were computed at a monthly resolution i.e. averaged over the 29 days prior to each sampled 129 

day to avoid gaps in remote sensing oceanographic variables. They were used in addition to 130 

static variables because they reveal the presence of time-stable structures such as 131 

temperature gradients or eddies when variables are averaged.  132 

 133 

2.3.3. Effective Strip Width estimation 134 

Line-transect surveys are commonly used to estimate cetacean abundance (Hammond 135 

et al., 2013; Buckland et al., 2015). A key parameter to estimate this abundance is the 136 

effective strip width (ESW) which corrects the decreasing detection of animals with distance 137 
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from the trackline. ESW is expected to depend on survey platform height, platform type, sea-138 

state, species, etc… (Buckland et al., 2015).  139 

ESW estimation was a key step in the data-assembling process to take into account 140 

heterogeneity in effort per segment in the models and to directly compare the different 141 

surveys (Hedley & Buckland, 2004). ESWs are generally estimated for each survey (i.e. no 142 

pooling of information) by using the ‘Distance’ software (Thomas et al., 2010; Buckland et al., 143 

2015). However, for deep-diving cetaceans, the majority of surveys contained insufficient 144 

sightings to allow survey-specific detection functions to be fitted. Consequently, for each 145 

species group, we pooled sightings from the various surveys, taking into account survey 146 

heterogeneity. We built a hierarchical model in which survey identity was included as a 147 

random effect.  148 

In conventional distance sampling (Marques & Buckland, 2003; Buckland et al., 2015), 149 

factors such as the characteristics of the species being surveyed, search methods, search 150 

platform, environmental conditions can all affect ESW estimation. However, the different 151 

datasets did not always contain this information, especially regarding observation conditions. 152 

All surveys recorded environmental data such as Beaufort sea-state, cloud coverage and sun 153 

glare, although Beaufort sea-state was the only parameter recorded by all of them. Platform 154 

type, observation height and Beaufort sea-state were used as covariates in the hierarchical 155 

model. 156 

Truncation distance   was first determined as the 95th percentile of the set of 157 

perpendicular distances for each species group, i.e. the 5% most distant sightings were 158 

discarded from the analysis (Buckland et al., 2001, page 16). Then, we created classes to 159 

pool the different surveys; namely platform type (plane or boat), observation height (e.g. 0-5 160 

m; 5-10 m…) and Beaufort sea-state (0-1; 1-2; 2-3 and 3-4; data collected beyond a Beaufort 161 

sea-state 4 being removed from the analysis). Hierarchical modelling was then performed in 162 

R-3.3.1 (R Core Team, 2016) in a Bayesian framework using JAGS version 4-6 and package 163 

‘rjags’ (jags model in Appendix S4 in Supporting Information; Royle & Dorazio, 2008; 164 

Plummer, 2016).  165 

For each taxa, perpendicular distances of sightings were used to estimate a detection 166 

function with a hazard key. For a sighting   made during survey   at height   under Beaufort 167 

sea-state  , let       denotes the perpendicular distance. The detection probability of sighting 168   is: 169 

                                                                 
where     and     are respectively random intercept and slope parameters for the effect of 170 

platform height; and    and    are survey random effects. Bivariate random effects were 171 
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specified with a Cholesky decomposition and using priors for the Cholesky factors from 172 

Kinney & Dunson (2008). We used half Student-t distributions with 3 degrees of freedom and 173 

scale set to 1.5 as priors for dispersion parameters, and standard normal priors for all other 174 

parameters. Four chains were run with a warmup of 10,000 iterations, followed by another 175 

10,000 iterations (with a thinning factor of 10). Parameter convergence was assessed with 176 

Gelman-Rubin    statistics. Posterior inferences were based on the pooled sample of 4,000 177 

values (1,000 per chain). 178 

The advantage of setting a hierarchical model to estimate detection functions is to 179 

borrow strength across the different datasets to increase the precision of estimates. For each 180 

combination of survey – platform type – observation height – Beaufort sea-state, estimated 181 

detection functions are shrunk towards a common detection function (itself estimated from 182 

the data) according to the available data corresponding to this particular combination of 183 

survey – platform type – observation height – Beaufort sea-state. If, for a given combination 184 

of parameters, there were few sightings, the estimated detection function was very close to 185 

the common detection function, whereas if there were enough data, the estimated detection 186 

function could deviate from this common function. Upon model fitting and successful 187 

parameter estimation, the ESW for each combination of survey – platform type – observation 188 

height – Beaufort sea-state was computed: 189                    
                                     

  

The posterior mean value of estimated ESW was then allocated to each segment with 190 

respect to species group, survey, platform type, sea-state and observation height class.  191 

 192 

2.4. Habitat modelling 193 

To model habitat preferences of deep-divers, we fitted Generalised Additive Models 194 

(GAMs; Hastie & Tibshirani, 1986; Wood, 2006) with a Tweedie distribution to account for 195 

over-dispersion (Foster & Bravington, 2013) with the ‘mgcv’ R-package (R-3.3.1. version; 196 

Wood, 2013). GAMs extend Generalised Linear Models to allow for smooth nonlinear 197 

functions of predictor variables (Hastie & Tibshirani, 1986; Wood, 2006). The mean number 198 

of individuals per segment   was modelled with a logarithmic link function: 199                     

where       are non-parametric smooth functions (thin plate regression splines) of the 200 

covariates and    is the intercept (Hastie & Tibshirani, 1986). To attenuate the scope for 201 

over-fitting, the maximum number of knots was limited to 4 (mgcv parameter k = 4; Wood, 202 

2006). An offset equal to segment length multiplied by twice the ESW was included (except 203 

for the JNCC-ESAS surveys in which only one side of the vessel was surveyed). We 204 
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removed combinations of variables with Spearman partial correlation coefficients higher than 205 

|0.7| (Dormann et al., 2013; Mannocci et al., 2014) and tested all models with combinations 206 

of one to four variables. A maximum of four covariates per model was used to avoid 207 

excessive complexity of models and difficulty in their interpretation (Mannocci et al., 2014). 208 

Model selection was done with the Akaike Information Criterion (AIC, the lower the better; 209 

Anderson & Burnham, 2002) and Akaike model weight (akaike.weights function from ‘qpcR’ 210 

package; Spiess, 2014).  211 

A key assumption of line-transect surveys is that animals on the trackline are always 212 

detected (Buckland et al., 2001). However, this assumption is not met with diving species 213 

and trackline detection probability      needs to be accounted for (Barlow, 2015). Observers 214 

on a plane spend less time in a given area and the following inequality is expected: 215                   . Thus a segment of effort with zero sighting of deep-divers is more likely 216 

to be a false absence (non-detection of a diving animal present on the trackline) if that 217 

segment comes from a plane survey rather than a boat survey. As detection probability      218 

was not available for every survey and is expected to differ between platforms, we calculated 219 

the ratio of      between the plane and boat platforms from Roberts et al. (2016) and 220 

obtained a ratio of approx. 1/5 for beaked whales, approx. 2/5 for sperm whales and approx. 221 

1/3 for kogiids. These crude ratios were then used to weight plane segments with zero 222 

sightings when fitting GAMs. While this method does not fully correct for availability bias, it 223 

down-weights zeroes from plane surveys. 224 

We fitted "year-round" models as the studied taxa have been reported to show little or no 225 

seasonal variation in their habitats (e.g. Wimmer & Whitehead, 2004; McSweeney et al., 226 

2007). We did not model yearly variations because of little temporal overlap between 227 

surveys. Consequently, the year effect is confounded with survey heterogeneity. 228 

Predictions of relative densities (in number of animals per km²) were provided at 0.25° 229 

resolution. There was not enough data to fit a model by month or by season (the number of 230 

sightings in winter was too low) and we therefore produced averaged maps over the entire 231 

time period. These predictive maps provided the expected distribution of beaked whales, 232 

sperm whales and kogiids according to static and monthly environmental conditions to 233 

highlight relationships with static (canyons and seamounts) and time-stable structures 234 

(temperature gradients or eddies).  235 

Finally, coefficients of variation (CVs) were estimated for each 0.25° pixel. Coefficients of 236 

variations are a measure of the prediction uncertainty per cell, it is a standard error 237 

associated with the calculation of the prediction. Therefore, high CVs indicate high model 238 

uncertainties due to the lack of detection.  239 

 240 

2.5. Gap analysis 241 
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Even though more than 1,240,000 km of effort was pooled, extensive geographical gaps 242 

remained. Predictions in the middle of the Atlantic Ocean are from geographical extrapolation 243 

(Fig. 1A) but not necessarily environmental extrapolations. The latter depends on the 244 

selected habitat models and covariates therein. We conducted a gap analysis on 245 

environmental space coverage to identify areas where habitat models could produce reliable 246 

predictions outside survey blocks, i.e. geographical extrapolation, whilst remaining within the 247 

ranges of surveyed conditions for the combinations of covariates selected by the models, i.e. 248 

areas of environmental interpolation (Jennings, 2000; Mannocci et al., 2018).  249 

From the selected models for each taxa, we estimated the convex hull defined by the 250 

environmental data used to fit habitat models (hereafter the calibration data). The convex 251 

hull of a set of points is the smallest convex envelop that contains all these points. We then 252 

assessed whether a prediction from a set of environmental covariates with a given model fall 253 

inside or outside this convex hull (King & Zeng, 2007; Authier et al., 2016). We used 254 

climatological predictors instead of monthly predictors to lessen the computational burden. 255 

Due to the large number of data (more than 280,000 points in the calibration dataset), 256 

convex hulls were estimated by random sub-sampling with the ‘WhatIf’ R-package (Stoll et 257 

al., 2014). We randomly extracted a fraction of the calibration dataset (10,000 points) to 258 

estimate a convex hull and assess environmental extrapolation in the prediction dataset. A 259 

combination of climatological predictor values that fall inside the convex hull corresponds to 260 

an interpolation. Combinations of climatological predictor values that were classified as 261 

interpolations were set aside but other combinations were retained and further tested against 262 

another random sample of 10,000 points from the calibration data. This procedure was 263 

carried out until the complete calibration dataset was examined.  264 

The full procedure was conducted twice. In a simple approach, the full range of sampled 265 

variables was considered to identify all points of the whole study area where the actual 266 

combinations of environmental variables had been sampled in survey blocks. In a more 267 

‘precautionary approach’, we excluded 5% of the extreme values of the sampled 268 

environmental variables to include in the interpolation areas only the points whose 269 

associated combinations of covariates fell within 95% of the core ranges sampled. This 270 

allowed the definition of two levels of confidence (hereafter ‘simple’ and ‘precautionary’) in 271 

the predictions.  272 

Finally, we produced maps delineating the extent of the simple and precautionary 273 

interpolation areas and overlaid them with the relative density prediction maps to show areas 274 

with greater reliability. 275 

 276 

 277 
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3. Results 278 

3.1. Encounter rates 279 

The survey pool represented a total of 1,240,000 km of on-effort transects (i.e. following 280 

a transect at a specified speed and altitude with a specified level of visual effort) of which 281 

58% were carried out by plane and 42% by boat (Fig. 1A, Table 1). Effort data with a 282 

Beaufort sea-state higher than 4, which represented 9% of the effort data, were removed 283 

from further analysis to only keep sightings collected during good to excellent detection 284 

conditions. Most sampling effort was performed in the northeast (37 %) and northwest (45 %) 285 

Atlantic Ocean. Surveys in the Mediterranean Sea and in the tropics represented 286 

respectively only 16 % and 2 % of total sampling effort.     287 

A total of 630 sightings of beaked whales, 836 sightings of sperm whales and 106 288 

sightings of kogiids, mainly distributed in the northeast and  northwest Atlantic Ocean (north 289 

of the 35°N latitude) and in the northwest Mediterranean Sea, were assembled for the 290 

present study (Fig. 1B-D).  291 

Overall encounter rates were very low with 0.05 sightings∙100 km-1 for beaked whales, 292 

0.07 sightings∙100 km-1 for sperm whales and <0.01 sightings∙100 km-1 for kogiids (Table 3). 293 

The highest encounter rates were recorded in the tropics for all three species groups, 294 

particularly for kogiids. There were no sightings of kogiids in the Mediterranean Sea. 295 

 296 

3.2. Effective strip width 297 

Estimated ESWs varied across surveys and platform type and were on average 298 

narrower in aerial than shipboard surveys (Fig. 2). This is probably because aerial observers 299 

are more restricted to recording animals below the plane while shipboard observers can look 300 

further afield. ESWs were generally larger and more consistent between surveys using the 301 

same platform type, for sperm whales than for beaked whales. There were not enough kogiid 302 

sightings to estimate an ESW for each survey and particularly for shipboard surveys; 303 

consequently, we pooled all aerial surveys and estimated an ESW of 1.1 km that was then 304 

applied to all surveys (shipboard and aerial).  305 

The outcomes from the hierarchical model were consistent with expectations (Fig. S4.1 306 

in Supporting Information S4): a decrease in Beaufort sea-state (less wind-sea) resulted in a 307 

larger ESW (milder non-detection bias). 308 

 309 

3.3. Habitat modelling 310 

For each species group, selected variables, explained deviances and Akaike weights are 311 

shown in Table 4. 312 

 313 

Beaked whales 314 
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Highest relative densities were found in depth ca. 1,500 m, high values of slopes and 315 

SST and intermediate NPP. This resulted in high predicted relative densities of beaked 316 

whales along steep slope areas associated with deep depths and high gradients of 317 

temperature, particularly on the western side of the Atlantic Ocean. The lowest relative 318 

densities were predicted in the Mediterranean Sea (Fig. 3B).  319 

The gap analysis identified areas where the combination of the four variables selected 320 

by the best model had not been sampled. Reliable predictions were available for 94% of the 321 

study area under the simple approach and only 53% under the precautionary approach (Fig. 322 

3B and 3C). This discrepancy was mostly due to low sampling effort in the oceanic zone. 323 

Coefficients of (temporal) variation were higher on the continental shelf associated with high 324 

gradients of SST, where beaked whales were not sighted in any of the surveys (Fig. S5.2A in 325 

Supporting Information S5). 326 

 327 

Sperm whales 328 

Predicted relative densities of sperm whales increased in deep waters (> 2000 m) 329 

associated with high gradients of SST and high NPP. The highest relative densities were 330 

also predicted on the western side of the Atlantic Ocean, along the Gulf Stream, although 331 

were lowest in the Mediterranean Sea (Fig. 4B).  332 

Reliable predictions for sperm whales were available for 84% of the study area under the 333 

simple approach and only 30% under the precautionary approach because of low survey 334 

effort in deeper areas. The highest predicted relative densities were predicted outside the 335 

precautionary interpolation zone (Fig. 4B and 4C). Coefficients of (temporal) variation were 336 

highest in non-sampled areas where uncertainty was therefore greatest (Fig. S5.2B in 337 

Supporting Information S5). 338 

 339 

Kogiids 340 

As the Akaike weight was small for kogiids (0.17), we used model-averaging and 341 

generated predictions from the five first models (cumulative Akaike weight of 0.63) and 342 

because all predictions were very similar (see Appendix S6 in Supporting Information), we 343 

only kept the first model for practical reasons. The highest relative densities were found in 344 

deep waters associated with fronts, canyons and seamounts (Fig. 5B). The highest relative 345 

densities were predicted on the western side of the Atlantic Ocean, along the Gulf Stream 346 

(Fig. 5C). 347 

Reliable predictions for kogiids were available for 94% of the study area under the 348 

simple approach against only 55% under the precautionary approach because of low survey 349 

effort in deeper areas (Fig. 5C). Coefficients of (temporal) variation were highest in shallow 350 
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waters and in the Mediterranean Sea where kogiids were not sighted in any of the surveys 351 

(Fig. S5.2C in Supporting Information S5).  352 

 353 

4. Discussion  354 

Deep-diving cetaceans are species characterised by low sighting rates and modelling 355 

their habitats is particularly challenging. Our study pooled different surveys allowing us to 356 

capitalise on more than 1,240,000 km of survey effort deployed over the North Atlantic 357 

Ocean and the Mediterranean Sea in the past two decades. For each taxon, we built a 358 

hierarchical model to estimate the effective strip width depending on observation conditions 359 

and surveys. We investigated habitats of deep-divers using GAMs with a focus on 360 

quantifying how reliable the predictions were. The selected habitat models of deep-diving 361 

cetaceans included static environmental variables such as depth and slope as well as spatial 362 

gradients of temperatures, revealing the highest densities in the western North Atlantic 363 

Ocean. Deeper areas of the North Atlantic gyre were mostly areas of environmental 364 

extrapolation, thereby highlighting gaps in sampling across the different surveys. 365 

 366 

4.1. Methodological considerations 367 

Over the past few years, data-assembling has been increasingly used for the study of 368 

top marine predators (Roberts et al., 2016; Rogan et al., 2017; Cañadas et al., 2018). Due to 369 

the very low sighting rates of deep-diving cetaceans, each survey taken separately cannot 370 

provide enough data to investigate the habitats of these rare species. In contrast to Rogan et 371 

al. (2017), we did not assemble data collected with similar protocols but data collected with 372 

different variants of the line transect distance sampling protocol which meant standardising 373 

the data according to their core communalities before developing a single spatial model. 374 

Ideally, at a time when shared databases are becoming increasingly important (e.g. OBIS 375 

SEAMAP -- http://seamap.env.duke.edu/, EMODnet -- http://www.emodnet.eu/), 376 

implementing standardised survey methods would greatly improve data compatibility, by 377 

enhancing the level of communalities in shared datasets, and helping to describe large-scale 378 

habitats and distributions of marine species. However, we realise this can lead to financial 379 

and logistical constraints and the work we present here could be a way to embrace and 380 

incorporate the diversity of data collection methods. 381 

Hierarchical modelling accommodates heterogeneity between surveys; it borrows 382 

strength across surveys (‘partial pooling’) when estimating survey-specific ESWs. The 383 

resulting estimates are biased (in proportion to the available data contributed by each 384 

survey) toward a common mean, although are more precise than those that would be 385 

obtained if each survey was analysed separately (‘no pooling’ scenario) as it is usually done 386 
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when the number of sightings per survey is large (Buckland et al., 2015; Laran et al., 2017; 387 

Redfern et al., 2017). Results from the hierarchical model were consistent with expectations 388 

and showed that a decrease in Beaufort sea-state values resulted in increased ESW 389 

estimates.  390 

The majority of environmental variables we used in habitat modelling describe the 391 

euphotic zone (upper layer) because variables that describe the deep-water column are 392 

difficult to obtain or simply do not exist at a basin-wide scale. As deep-diving cetaceans 393 

spend most of their time at depth and generally feed on mesopelagic to bathypelagic prey 394 

(e.g. Perrin et al., 2009; Spitz et al., 2011), the use of surface variables limits the ability to 395 

correctly infer their habitat. The identified relationships between deep-diving cetacean 396 

abundance and environmental variables may be indirect rather than causal (Austin, 2006). 397 

Although causation may be out of reach, prediction remains a worthy goal, especially for 398 

spatial planning and conservation (McShea, 2014).   399 

We took care in using appropriate statistical tools for modelling the habitat of species 400 

with few sightings (Virgili et al., 2018). Indeed, Virgili et al. (2018) showed that GAMs with a 401 

Tweedie distribution generated reliable habitat modelling predictions for rarely sighted marine 402 

predators. Here, the habitat models we selected had moderate to high levels of explained 403 

deviances (from 20.6% to 55.7%), suggestive of a good fit to the data. Nevertheless, the 404 

rather high explained deviance of the kogiid model (55.7%) might indicate some level of 405 

model over-fitting due to the small dataset, even if predictions were in general consistent with 406 

the known ecology of the species group (McAlpine, 2009).  407 

 408 

4.2. Large-scale deep-diver habitats 409 

Depth and spatial gradients of sea surface temperature were consistently selected 410 

across deep-diving cetaceans, suggesting a major influence of topographic features and 411 

thermal fronts in structuring their habitats. As a result, higher relative densities of deep-divers 412 

were predicted in areas of strong gradients associated with thermal fronts in which deep-413 

diver prey aggregates (Bost et al., 2009; Woodson & Litvin, 2015). Indeed, deep-divers 414 

typically feed on mesopelagic to bathypelagic species, such as pelagic cephalopods and 415 

benthic fishes (Spitz et al., 2011) that aggregate along continental slopes where temperature 416 

gradients are the strongest. Hence, the Gulf Stream, which is the most active frontal zone in 417 

the study area compared to the eastern boundary currents that are broader and much 418 

slower, may explain the high predicted relative densities of deep-divers on the western side 419 

of the North Atlantic Ocean (Waring et al., 2001; Roberts et al., 2016). 420 

Despite commonalities, each studied taxon also showed specificities. Slope appeared to 421 

be an important predictor of beaked whale relative density. The prey targeted by beaked 422 
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whales are more specific than those of sperm whales, which have broader prey size 423 

spectrum (Spitz et al., 2011), and their distribution is more driven by dynamic variables than 424 

by static features. Accordingly, the selected model for sperm whales included more dynamic 425 

variables such as NPP and SSH than for beaked whales. Canyons and seamounts were 426 

included in the selected model for kogiids, suggesting a more restricted habitat than for the 427 

other two groups of deep-divers conforming Staudinger et al.’s (2014) evidence of how 428 

kogiids’ feeding areas concentrated on the deeper shelf and slope, particularly in the 429 

epipelagic and mesopelagic zones. 430 

Overall, our model predictions corroborated species distribution predictions of previous 431 

smaller-scale studies. In the Mediterranean Sea, our predictions were consistent with the 432 

documented presence of beaked whales and sperm whales in the Alborán, Tyrrhenian and 433 

Ligurian Seas (Praca & Gannier, 2008; Arcangeli et al., 2015; Lanfredi et al. 2016; Cañadas 434 

et al., 2018) and along the eastern coasts of the Mediterranean Sea (Podestà et al., 2006). In 435 

the North Atlantic Ocean, the highest relative densities of beaked whales and sperm whales 436 

were predicted along the slope, a result consistent with those of Rogan et al.’s (2017) and 437 

Roberts et al.’s (2016). In the Northwest Atlantic Ocean, higher relative densities of kogiids 438 

were predicted in warmer and deeper waters, which is consistent with their known ecology 439 

(McAlpine, 2009) and the predictions of Mannocci et al. (2017) except for predictions off the 440 

coast of Florida. Our predictions could probably be improved by incorporating the NOAA 441 

SEFSC surveys of southeast US waters off Florida and Virginia. In contrast to beaked and 442 

sperm whales, we were not able to fit a hierarchical model on kogiid sightings and resorted to 443 

complete pooling of the plane data to estimate an ESW. This shortcoming probably resulted 444 

in a larger bias (with respect to the true density) in predicted relative density of kogiids 445 

compared to other deep-diving species. Given the paucity of information on kogiids, we think 446 

that our results are tentative but important nonetheless. 447 

The gap analysis revealed large gaps in environmental space coverage across the study 448 

area, especially in the deeper and less productive waters of the central north Atlantic gyre 449 

and in tropical waters. High relative densities of deep-divers were predicted at the margin of 450 

the precautionary interpolation zone (Figs. 3-5) in particular because deeper waters and 451 

steeper slopes were within the upper 2.5% quantiles of aggregated survey coverage for 452 

these two physiographic covariates. This suggests that sampling effort was not sufficient in 453 

deeper and steeper areas and more intensive sampling effort performed in these areas could 454 

help better describe the habitat used by deep-divers.  455 

 456 

4.3. Management considerations 457 
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The management and conservation of species and ecosystems increasingly relies on 458 

habitat models (McShea, 2014; Hazen et al., 2016). The ability of these to predict species 459 

occurrence in non-sampled or poorly documented areas is useful (Fleishman et al., 2001; 460 

Lumaret & Jay-Robert, 2002) because the implementation of dedicated surveys is 461 

sometimes impracticable due to budgetary and logistical challenges. It is logistically 462 

challenging to carry out dedicated cetacean surveys in the middle of the North Atlantic 463 

Ocean. However, by collecting data on both sides of the Atlantic Ocean, relative density 464 

maps were produced and our analyses indicated these predictions may be reliable (Figs. 3D, 465 

4D, 5D).  466 

Here, we showed that deep-diving cetaceans are closely associated with stable 467 

topographic features, thus it could be possible to delineate marine protected areas that cover 468 

the principal habitats used by the species (e.g. Cañadas et al., 2005). However, these 469 

species are also responsive to temporally dynamic structures, such as thermal fronts, 470 

implying that protected areas will need to be large enough to capture seasonal variation of 471 

such features. In this context, Important Marine Mammal Areas, which are currently being 472 

discussed by the Marine Mammal Protected Areas Task Force and incorporate governmental 473 

and intergovernmental considerations (Corrigan et al., 2014), could help the delineation of 474 

sufficiently large protected areas. In addition, in a Marine Spatial Planning approach 475 

(Douvere, 2008), it would be worthwhile to overlay predicted density maps with 476 

anthropogenic pressure maps (Halpern et al., 2008) to define areas where pressures could 477 

be mitigated.  478 

 479 

5. Conclusion  480 

Habitat modelling of rare species is particularly challenging because habitat models 481 

require large datasets, yet rare species typically yield low numbers of sightings. As a result, 482 

combining datasets is a useful strategy to model the large-scale habitats of deep-divers; 483 

beaked whales, sperm whales and kogiids, across the North Atlantic Ocean and the 484 

Mediterranean Sea. At a local scale, predicted relative densities of deep-diving cetaceans 485 

were consistent with previous studies. At a larger scale, a gradient in predicted relative 486 

densities emerged, with the highest relative densities predicted on the western side of the 487 

study area. This pattern was evidenced thanks to assembling a large dataset and had not 488 

been detected previously. It highlighted the pronounced influence of active frontal zones, 489 

such as the Gulf Stream, on deep-diving cetaceans. Even though extensive gaps remain at a 490 

large scale, we were able to predict the habitats of these taxa throughout the North Atlantic 491 

Ocean and adjacent Mediterranean Sea, thus identifying potential habitats, including in non-492 

sampled areas. However, these predictions should be used with caution as most of the study 493 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

area represented geographical extrapolations and about half (mostly deeper waters) 494 

represented environmental extrapolations. Indeed, through an environmental space 495 

coverage gap analysis, we identified areas in tropical and deep oceanic waters where 496 

sampling effort was insufficient to predict habitats and needs to be increased to improve 497 

prediction reliability. 498 
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All sighting and effort data used in this study are available in the OBIS SEAMAP 662 

database: http://seamap.env.duke.edu/. All data providers can be contacted via the OBIS 663 

SEAMAP website.  664 

 665 

Tables 666 

Table 1. Effort performed by platform type or Beaufort sea-state for all surveys in the North Atlantic 667 

Ocean and the Mediterranean Sea. This table presents the total effort conducted in each sector broken down by 668 

platform type and Beaufort sea-state. Beaufort sea-state values reported with decimals in the surveys were 669 

rounded up. For the analyses, all segments with Beaufort sea-state > 4 were excluded. ‘NE-ATL’ means northeast 670 

Atlantic Ocean; ‘NW-ATL’ means northwest Atlantic Ocean and ‘MED’ means Mediterranean Sea.  671 

Sectors 

Total 

survey 

effort (km 

and %) 

Total 

aerial 

effort (km) 

Total 

shipboard 

effort (km)  

Total effort by Beaufort sea-state class (km) 

0-1 1-2 2-3 3-4 4-7 

NE-ATL 
469,000 

37 % 
70,000 399,000 77,000 118,000 136,000 85,000 53,000 

NW-ATL 
557,000 

45 % 
546,000 11,000 43,000 121,000 199,000 132,000 62,000 

MED 
195,000 

16 % 
87,000 109,000 92,000 70,000 27,000 6,000 800 

TROPICS 
19,000 

2 % 
15,000 4,000 11,000 3,000 4,000 2,000 400 

STUDY 

AREA 
1,240,000 

718,000 

58 % 

522,000 

42 % 

222,000 

18 % 

312,000 

25 % 

365,000 

30 % 

225,000 

18 % 

116,000 

9% 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

Table 2. Candidate environmental predictors used for the habitat modelling. All variables were resampled at 684 

a 0.25° resolution. A: Depth and slope were derived from GEBCO-08 30 arc-second database 685 

(http://www.gebco.net/); 30 arc-second is approximately equal to 0.008°. B: Surface area per cell was calculated 686 

in ArcGIS 10.3 from the shapefile of canyons and seamounts provided by Harris et al. (2014). C: The mean, 687 

standard error and gradient of Sea Surface Temperature (SST) were calculated from the GHRSST Level 4 CMC 688 

SST v.2.0 (Canada Meteorological Centre, https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0). 689 
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D: The Aviso ¼° DT-MADT geostrophic currents dataset  was used to compute mean and standard deviation of 690 

Sea Surface Height (SSH) and Eddy Kinetic Energy (EKE; https://www.aviso.altimetry.fr/en/data/products/sea-691 

surface-height-products/global/madt-h-uv.html). E: Net primary production (NPP) was derived from SeaWIFS and 692 

Aqua using the Vertically Generalised Production Model (VGPM; 693 

http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.vgpm.m.chl.m.sst.php).  694 

 695 

Environmental variable 
Original 

Resolution 
Source Justification 

Physiographic 
   

Depth (m) 30 arc sec A 
Deep-divers feed on squids and fish in the deep water 

column 

Slope (°) 30 sec arc A 
Associated with currents, high slope induce prey 

aggregation or enhanced primary production 

Surface area of canyons 

and seamounts in a 

0.25° cell (km²) 

30 sec arc B 

Deep-divers are often associated with canyons and 

seamounts structures; the variable indicates the 

proportion of this habitat in each cell 

Oceanographic    

Mean of SST (°C) 0.2°, daily C 

Variability over time and horizontal gradients of SST 

reveal front locations, potentially associated with prey 

aggregations or enhanced primary production 

Standard error of SST 

(°C) 
0.2°, daily C 

Mean gradient of SST 

(°C) 
0.2°, daily C 

Mean of SSH (m) 0.25°, daily D 
High SSH is associated with high mesoscale activity 

and enhanced prey aggregation or primary production 
Standard deviation of 

SSH (m) 
0.25°, daily D 

Mean of EKE (m².s
-2

) 0.25°, daily D 
High EKE relates to the development of eddies and 

sediment resuspension induce prey aggregation 
Standard error of EKE 

(m².s
-2

) 
0.25°, daily D 

Mean of NPP (mgC.m
-

2
.day

-1
) 

9 km, 8 

days 
E Net primary production as a proxy of prey availability 

 696 

 697 

Table 3. Encounter rates in sightings∙100 km-1
 calculated for the entire study area and each sub-region of 698 

the North Atlantic Ocean and the Mediterranean Sea. ‘NE-ATL’ means northeast Atlantic Ocean; ‘NW-ATL’ 699 

means northwest Atlantic Ocean and ‘MED’ means Mediterranean Sea. 700 

 701 

 NE-ATL  NW-ATL MED TROPICS STUDY AREA 

Beaked whales 0.042
 
 0.058 0.035 0.22 0.051 

Sperm whales 0.057 0.067 0.09 0.095 0.067 

Kogiids 0.0013  0.01 0.0 0.23 0.0085 

 702 
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 703 

 704 

 705 

Table 4. Summary of the selected models by species group. 706 

Species group Selected variables Explained 

deviance 

Akaike 

weight 

Specific comments 

Beaked whale Depth 

Gradients SST 

Slope  

NPP 

33.1 % 0.98 Depth, gradients SST and slope 

selected in the first 10 models 

Sperm whale Depth 

Gradients SST  

SSH mean 

NPP 

20.6 % 0.76 Depth, gradients SST and SSH mean 

selected in the first 8 models 

Kogiids Depth 

Gradients SST  

EKE mean 

Surface of canyons 

and seamounts 

 

55.7 % 0.17 Depth, gradients SST and surface of 

canyons and seamounts selected in the 

first 7 models 

 707 

Figures 708 

Fig. 1. Study area divided into sub-regions showing assembled survey effort (A), along with the beaked 709 

whale (B), sperm whale (C) and kogiid (D) sightings recorded during all surveys. The blue polygon 710 

delineates overall study area and other polygons delineate sub-regions. Surveys were carried out along transects 711 

following a line-transect methodology (survey details in Appendix S1 in Supporting Information). Sightings were 712 

classified by group sizes with each point representing one group of individuals and point size representing the 713 

number of animals in a group. 714 

 715 

Fig. 2. Beaked whale and sperm whale averaged ESWs estimated for each survey group and each 716 

platform type. For each survey group, the boxplot represents the extent of estimated ESWs depending on 717 

Beaufort sea-states and observation heights recorded within the group. 718 

 719 

Fig. 3. Functional relationships for the selected variable (A) and the predicted relative densities of beaked 720 

whales in individuals·km
-2

 (B and C). A: Solid lines are the estimated smooth functions, and the shaded regions 721 

represent the approximate 95% confidence intervals. The y-axes indicate the number of individuals on a log 722 

scale, where zero indicates no effect of the covariate. The vertical lines indicate the 2.5
th

 and 97.5
th

 quantiles of 723 

the data. Black areas on prediction maps (B: without precautionary approach and C: with a 5% precautionary 724 

approach) represent zones where we did not extrapolate the predictions. Percentages represent the proportion of 725 

the study area defined as interpolation with the gap analysis.  726 
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Fig. 4. Functional relationships for the selected variable (A) and the predicted relative densities of sperm 728 

whales in individuals·km
-2

 (B and C). A: Solid lines are the estimated smooth functions, and the shaded regions 729 

represent the approximate 95% confidence intervals. The y-axes indicate the number of individuals on a log 730 

scale, where zero indicates no effect of the covariate. The vertical lines indicate the 2.5
th

 and 97.5
th

 quantiles of 731 

the data. Black areas on prediction maps (B: without precautionary approach and C: with a 5% precautionary 732 

approach) represent zones where we did not extrapolate the predictions. Percentages represent the proportion of 733 

the study area defined as interpolation with the gap analysis.  734 

 735 

Fig. 5. Functional relationships for the selected variable (A) and the predicted relative densities of kogiids 736 

in individuals·km
-2

 (B and C). A: Solid lines are the estimated smooth functions, and the shaded regions 737 

represent the approximate 95% confidence intervals. The y-axes indicate the number of individuals on a log 738 

scale, where zero indicates no effect of the covariate. The vertical lines indicate the 2.5
th

 and 97.5
th

 quantiles of 739 

the data. Black areas on prediction maps (B: without precautionary approach and C: with a 5% precautionary 740 

approach) represent zones where we did not extrapolate the predictions. Percentages represent the proportion of 741 

the study area defined as interpolation with the gap analysis.  742 

 743 

 744 

 745 

Supporting Information  746 

Appendix S1: Characteristics of the study area. 747 

Appendix S2: Details of surveys used in the analyses. Total effort represents the total length of transects of each 748 

survey (without removing the transects with a Beaufort sea-state > 4). MED: Mediterranean Sea; NE-ATL: 749 

Northeast Atlantic Ocean; NW-ATL: Northwest Atlantic Ocean. 750 

Appendix S3: Monthly environmental conditions averaged over the study period (from 1998 to 2015). 751 

Appendix S4: Effective Strip Width estimation methodology. 752 

Appendix S5: Supporting information for the models. 753 

Appendix S6: Comparison between predictions of the 5 best kogiid models, the average prediction of the 5 best 754 

models (Mean) and the average prediction of the 5 best models weighted by the Akaike weight (Weighted). 755 

The 5 models are described in the table at the bottom (mod: model; AIC: Akaike Information Criterion). 756 

“Mean” is the simple average of the predictions of the 5 best models. To calculate the “Weighted” 757 

prediction, we averaged the predictions of the 5 best models by weighting each prediction by the Akaike 758 

weight (weighted.mean function of the raster package). 759 
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