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Better understanding ofaiation in growthwill always be an important probleim ecology,
sincevariation in growtlcan have substantial consequences for ecologicah\aidtionary
dynamics. Individual variation in growth can arise from a variety of processesxample,
individuals within a population vary in tiientrinsic metabolic rates and behangbtraits which
may influence.their foraging dynamics and access to resources. However, when adopting a
growthmodel we face tade-offs between model complexity, biological interpretability of

parameters,angbodness of fit.

We explore how different formulations of the von Bertalanffy Growdindtion (vVBGF)
with individual.random effectand environmental predictoasfect these tradeffs. In thevBGF,
the growthof/an organism results from a dynamic balance between anabolic and catabolic
processesNe start froma formulation of the'BGF thatmodels the anabolic coefficie(d) asa
functionof the catabolic coefficier(tk ), a coefficientelated to the properties of the

environment#) and a parameter that determines the relative importarshafior and
environméntin determining growth(). We treat thevBGF parameters asfanction of

individualirandom effects and environmentatiables We use simulations tehow how
different.functional forms and individual or group variability in the growth functipatameters
provide a very flexiblelescription of growth trajectorie®/e then consider aase studypf two

fish populations' ofalmo marmoratus andSalmo trutta to test the goodness of fit and predictive
power of the models, along with the biological interpretability of vBGF's parars when using

different model formulations.

The best modejsaccording to AIC, included individual variability in bofh and » and

cohort as [predictor of growth trajectories, amel consistent witthe hypothesis thatabitat
selection is more important than behavioral and metabolic traits in determining lifetime growth
trajectoriesof the two fish species. Modetaaictions of individual growth trajectories were
largelymore accurate than predictions based on mearasege of fishOur method shares
information.across individuals, and thus, for both the marble and brown trout populations
investigatedallowsusinga single measurement early in the life of individual ésleohortto

obtain accurate predictions dfetime individual or cohort sizatage.

Keywords. von Bertalanffy growth function; Model predictions; Marble trout; Brown trout;

Longitudinal data.
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1 Introduction

Understanding individual growthill always bean important biological probleras
survival,sexualmaturity, reproductive success, movement and migration are comnataid
to growth-and-body size (Peters 1983). Thus, variation in growth can Hestardial
consequences for ecologicald evolutionary dynamics (Lomnicki 1988, Pelletier et al. 2007,
Coulson etal. 2010).

Experimental and observational studies provide information on growth throughout an
individual’slifetime orat specific life stagesdowever, aseries of data pointan sizeat-ageis
difficult to interpretwithout reference to a model of growth, but non-linear growth modeis a
us to condenstie information contained in such a data series into a few paranieteosne
growth models, those parameters are biologically interpretablthayaepresent or summarize
the most relevant biological processesl environmental féors determining variation in growth
(West et al. 2004), whilparametersf other growth modeldo not have a clear mechanistic

interpretatiorandare bestonsidered as cunvéting parametergTextAl).

Growth' moedels have multiple applications in ecology and evolutionary biology. For

instancewhen managing human intervention in natural populatesnay be interestad:

«Understanding how growth rates asire-at-agevary in time and space depending on
environmental conditions within- and amopgpulations of the same spex{¥incenzi et al.
2014b);

* Inferring life-history strategies.e.tradeoffs between allocation of resources to
competinggphysiological functions such as grgwaiaintenanceand reproduction throughout
the lifetime(Roff 2007); or

*Estimatingheritability of growthand sizeatage (Carlson and Seamons 2008).

Another-potential application of growth modédsg. for fisheries management) is the
predictionsof lifetime growth trajectories of individuals or group of individualg. fgear-ofbirth
cohort, samesex individuals) from observations at early life sta@rewth models have been
mostly used for describing or interpreting population and individuatgsses, but haweeldom

been used for predictive purposes in ecology (Peters 1991), althoagtplnliterature exists
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for health applications in huma(Berkey1982, Radhakrishna Rao 1987, Shohoji et al. 1991,
Roland et al. 2011).

For both basic and applied ecaicg goals, the choice of the growth model is often critical.
Acrossgrowth modelswe oftenfacetradeoffs betweenmodel complexitybiological
interpretability“ef model parameteease oparameter estimatiomandmodel accuracy,e. the
combinationsef goodness of fit and predictive powérese tradeffs are commonly faced in
otherecolegical contextéLudwig and Walters 1985, Adkison 2009). For instai¢ard et al.
(2014) tested the predictive performance of short-term forecasting models of mopulati
abundance,of varying complexity. They found that more complex parametric apaurzonetric
models often péormed worse than simpler modelhichsimply treated the most recent
observation as the forecakt their case, the estimation of even a smaihber of parameters
imposed a high' cost while providing little benefit for sherm forecasting of species without
obvious cyeliesdynamicddowever,when asignalof cyclic dynamicaas clearly identifiable,
more complexsmodels were able to extract meaningful patterns from dataemdccurately
predict future abutancesThus, the complexity of the best predictive model will be determined

by the ecological situation.

A broad range of models desang thevariation in sizeof organisms throughout their
lifetime'havebeen proposed (von Bertalanffy 1957, Lester et al. 2004, Quince et al. 2008,
Kimura 2008, Kooijman 2009, Omori et al. 2009, Russo et al. 2009), with varying degrees of
model complexity, biological interpretability of parameters, and data recemtsfar parameter
estimation For some growth models, parameters may or may not be biologically interpretable
dependingson-model formation For instancethe parameters of the widely used von
Bertalanffyrgrowth functionBGF, von Bertalanffy 1957) to model growth of fish may be
considered either curve fitting parameters with no biological interpret@@omprovidingjusta
phenomenological description of growth)parametershat describe hownabolic and catabolic
processes govern the growth of the orgar(isen mechanistic description); sktangel (2006).

The classi’BGF has 3 parameterasymptotic size, growttate andtheoreticalage at which
size is equal to Qor size at age 0 in an equivalent formulatidnXhe original mechanistic
formulation of von Bertalanffy, asymptotic size results fribwa relationsip between
environmental conditions and behawbiraits and the growth coefficiemnd closely related to

metabolic rates and behavioral trdite. the same physiologicptocessesaffect both growth
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113 and asymptotic size). Howeven, theliterature agmptotic size and growth rate are commonly
114 treated as independegpdirameters with no connection to physiological functiimssbecoming

115 a phenomenological description of growth.

116 In thenvasmajority of applications ofrowth modelsparameters amestimded at tle

117 populationdevel buinterpreted athoseof an average individual in the populatidinis

118 approach fails‘tertake into account the substantial variation in growth obsetked wi

119 populationsand severely lints the breadth and scopetbé models (Sainsbury 1980, Siegfried
120 and Sanso.2006, Vincenzi et al. 2014bjlividual variation in growth can arise from a variety
121 of processeds:or example, individuals within a population vary inithetrinsic metabolic rates
122 and behayiml traits (e.g. ggressiveness or territorialitylRosenfeld et al. 2014), which may
123 have consequences for their foraging dynamics and access to res@eatesd growth is a

124  combination of an individual'sitrinsic growth potentialenvironmental conditiongtra- and

125 interspecifieseompetition, argtochastievents. For these reasons, the estimation of individual
126 variationin‘growthis biologicallyand computationally difficult, anctquiredongitudinaldata
127 (Shelton and Mangel 2012). Random-effects models provide an intuitive framework for
128 estimating heterogeneity of growth withismd amongpopulationsalong withindividual growth
129 trajectorieSainsbury 1980, Eveson et al. 2007, Sigourney et al. 2012).

130 Here,'weexplore howdifferent formulations of the widelysedvBGF with individual

131 random effectsffer different degrees difiological interpretability of model parameters,

132 goodness of fit, and prediction of futugeowth trajectorie®r unobservedrowth realizations
133 We start from the mod¢hatSnover et al(2005) developed for management of coho salmon
134  Oncorhynchuskisutch, whichtreatsthe anabat factorin thevBGF as the product of the

135 cataboliedfactoand a factor related to the properties of the environment, and show how
136 correlation‘amongarameter estimatesisesand howdifferent functional forms and individual
137 or group variability in the growth function’s parameters provide a very flexible gaeorpf
138 growth trajectoriesHowever, flexibility comes at a cost, since it potentially reduces the
139 Dbiological.interpretability of the parametersthevBGF.

140 We usesimulated datand test whether the same growth trajectories can be obtained using
141 different formulationsand parameter combinatiookthe vBGF. We investigate theorrelation

142 between parameter estimates, as the sign and strength of #lataorrgive insights on life-
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143 history strategiegVincenzi et al. 2014b)Ve use one population of marble tro&almo

144  marmoratus) and one population of brown troda(mo trutta L.) living in streans located in
145 Western Sloveni&Zakojska and Upper Volaja, respectivedg)model systemtor the fitting and
146 application of the growth model.

147 Marble“trout is a resident salmonid endemic in Northern Italy and Slotrextia at risk of
148 extinction-duettorhybridization with brown trout (Vincenzi et al. 2G808) massive mortalities
149 associateavith catastrophidlood events whose frequency is increasing (Vincenzi et al. 2014a).
150 Brown trout was introduced in Upper Volaja in the 1920s, with no additional stocking of fish
151 after the introduction Growth patterns and sizt-age in salmonids edribute to determine

152 survival (Woodson et al. 2013), sexual maturity and reproductive sydoesson and Jonsson
153 2011),so thathaving a better understanding of growth imagortant implicatios forour

154 understanding of the ecology of the two species, their population dynémaies;olution of life
155 history traits@and for theeffective applications of conservation measuFes those populations,
156 we test the'geodness of fit of the models alaith the empiricalcorrelation between parameter
157 estimatesThen, we test the ability of the models to predict future or unobservedtsige-data.
158 Wefinally discusghe biologicainterpretatiorof thevBGFs parameters, which are modelesl

159 function of individual random effects and environmental predictors.
160 2 Material and methods

161 2.1 Growth mode

162 We use an.extension of the model due to von BertalanB{%E, von Bertalanffy 1957,

163 Essingtonetal®2001, Mangel 2006), which has been used to model the growth of organisms
164 across awiderange of taf{éingsley 1979, Zullinger and Ricklefs 1984, Shine and Charnov
165 1992, Starck and Ricklefs 1998, Frisk et al. 2001, Lester et al. 2004, Tjgrve and Tjgrve 2010).

166 We start with a description of the startlaBGFandwe then follow witha formulationof
167 the vBGFthat'allows for a description of the grovgiocessn termsof interaction between

168 individualbehavior angbroperties of the environment.
169 2.1.1 The standard von Bertalanffy growth function

170 In thevBGF, the growthof an organism results from a dynamic balance between anabolic

171 and catabolic process@sn Bertalanffy 1957)whereanabolic processes are those leading
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to tissue growthdifferentiation of cellsandincrease in body size, and catabolic processes are
those involving the breakdown of complex molecules and the release of .eifeVgft) denotes
mass at timé, the assumptioof thevBGF is that anabolic factors are proportional to surface

2/3

area, which scales a#/(t)=~, and that catabolic factors are proportional to massaifdb

denote thesproportionalityparameters, then the rate of change of mass is

oij_vtv =aW(t)** —bw(t) (2.1)

If we further assume that mass and lenditt) , are related byV(t) = pL(t)* with o

correspondingtoass per univolume, then

dL

whereq=a/3p andk =b/3p. In this parameterization is a coefficient onabolism.

The coefficient of catabolisni;, is commonly known as the vdertalarify growth coefficient

and has the uniisf t*. The coefficienty, with unitsizest™, is proportionato the amount of
resources.available to an individual and wdly with environmental conditions and individual

behaviorTheasymptotic sizeife. obtained bgeting ¢—4L equalto Oin Eq.2.23 L, -4

k
andif L(0)= L, is size at age,@ve can readilysolve the linear differentialggiation 2.2 by the

method of theuintegrating factor. Two forms of the solution are

L=l (1-e )+ Le ™ (2.3)
and

E@y=L,(1-e““")) (2.4)
wherety is theshypothetical age at which length is equal to 0.

The vBGFmodel in Eqg. 2.4 @3 parameterd:_, k, to (in addition to the residual variance

when parameter values are estimatediich are usually estimated at the population or group

(e.g. cohortsex)level.L, is commonly treated as an independent pararfietenot an explicit
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195 functionof k, althougha negative correlation between paramestimateften emerges due to
196 the presence of ridges in the likelihood surfacgarticular when lengthtage datdor older

197 ages areelatively few or missingseeVincenzi et al. 2014b) and tvBGF has often been used
198 as a phenomenological and not mechanistic description of the growth process (although see

199 Essington etal. (2001) adeemming & Herrmani§2009)for estimating consumption rates from

200 vBGF parameteralues).in this paper, we will not make explicit referencelip, asit does not

201 provide any insights on the behavioral and physiological processes governing growth.

202 2.1.2 Modd with individual variation in parameters of anabolism and catabolism

203 Therearesbiological reasons fdr (the coefficient of catabolism@nd ¢ (the coefficient of

204  anabolism)to be linked (Shelton and Mangel 2012, Shelton et al. 2013). Therefore, we turn to a
205 model that combines individual and environmental variation and allows dependeneerbetw

206 andg alongwith individual variation, i.et andg are defined and estimatatithe individual

207 level. Sinceq is the coefficienbf anabolismit should be closely linked to bottoup factors in

208 the environmentuch as fod conditions (Mangel 2006y letting g vary across individuals (

209 g,), werassume that “realizeshabolism” may vary across individualie parametek,

210 determinesshownetabolic rates scaleith the size of individual andthusrelates to an

211 individual's phenotypic capacity for growtSnover et al(2005, 2006 assume thak,

212 combines physiolgical and behavial traits that determine individual activity atidis
213 potentially/affect the ability of an individual to obtain resources from the enveonrmalthough
214  with a tradeoff'with energy expenditure. Thuthe“anabolic” conditions may be diéfrent for

215 individuals andhey may depend o#;, as well as some properties of the environmentler

216 theseassumptionsye modelg, as a function oft,, y,, and gparametery” constrained

217 between 0 andthat determines the degreewhich ¢, depends oenvironmental (represented
218 Dby y,) versussdbehaviorgtepresented by, ) factors, and set

219 g =wk” (2.5)

220 With theformulationin Eq. 2.5, isthe result of the interactiasf the environment and

221 theforaging characteristics of the speciasd may depend for instance on patchiness of
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resourcesfragmentation of the habitat, movement range of individuhigs of ¥ depend on the
value of i : wheny =0, ¥ has the units of (size t'); wheny =1 7 has the units of size

while unitsare fractawhen 0 <y <1,

WIth'Eq. 2.5, the expected length of individuat aget is
L{=gded ™V (1—e ") (2.6)

Eq.(2.6) is the formula describing lengihage for individual in groupj (e.g. sex,

cohort) thatve will use in this work.

The case with ¥ common and & varying among individuals

The case.witly common and; varying among individuals has been investigated in Snover

et al.(2005;200%, andShelton & Mange(2012). Inthis casgeparameters have a clear
biological(interpretatiomvhen(a) =0, (b) ¥ =1, and(c)  between 0 and 1.

When(@)w«=0, &, has no #ect on an individual's success at obtaining resources from
the ewvironment. Thereforendividuals withlarge 4, have lower realized growth increments,
since higher-activity comes atragherenergetic cosWhen(b) ¥ =1, individuals with largek,

(i.e. aggressivand/or highly active individualg)ave greatly increased access to resouases,

therefore experience faster lenggbecific growth. Fofc) values oft between 0 and,the
relative growth rate for ea individuas with different &, will change with an individual’s
length. Individuals with larget, will grow faster at small lengths and individuals with sr4all

will grow faster-at large sizéhe lengthor age at which idividuals experience equivalent

growthand when growth trajectories cradspends ory .

The casewith both 7 and & varying among individuals

We hypothesize thaf;, and y, co-vary among individuals. fis additional variability iny,

increasesithe complexity of the motdglincreasinghe number of parameters to be estimated,

andallows for a greater flexibility of growth trajectories of individuals (Fig.Fby instance,

while with a commory between 0 and 1 and ontyvarying among individuals all growth
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trajectories intersect #te same age, with both, and ¥, co-varying among individuals we

obtaina distribution of ages at which growth trajectories intersect.

However,a biological interpretation of the two parametérsand 4, , andin particular of
¥ , becomes'more challengingth respect to the case with onky varying among individuals.
In fact, we will show thathe biological interpretation off depends on the sign and strength of
the correlation.betweeralues of £, andy ., and ¥ may also be seen as a parameter giving
additional-flexibility to the vBGF, rather than describing the relative impoegaf

environmental and behavioral factors in determining

As /| is/defined at the population level, Bytand -, are allowed to vary among
individualspwerdescribpotential growth trajectories by firBking ¥ (i.e. the relative

importance“of‘behavioral and environmental factors in determining anabolism) and éxplore
growth trajectories may change with different strength and sign of correlationelpetaieies of
k., andy, (Fig. 1).

Wheny =0, the maintenance of size ranks through tegifhe of individualsand the mean
age at which.growth trajectories cross decreases going from a negative to a positive correlation
betweenvalues oft, and #, . In the limiing case of a correlation betweealues oft, and y,
equal to 1growth trajectoriesmever crosshroughout the lifetime of individuafer any variance
of &, and#x(Figures S1 and S2)Vhen y =0, aggressivehoreactive individuals (largek;,)
are always growing slower than less aggressive/active individials. we mayhypothesize
that themoreactive individuals are either expending more endingy less active individuals
without acquiring more resources,are investing more energy biological processes other
than growth:

On the other hand, whep =1 (i.e. asymptotic size is not an explicit function/of, the
maintenanceof size rankise. of size hierarchy) through an organisiiitime andmean age at
which growth.trajectories cross increases going from a negative to a positive correlation between
values of &, and -, (Fig. 1).In the limiting case of a correlation betweédrnand y, equal to 1,
growth trajectories never cross through organisms’ lifefiree size ranks are always maintained

throughout the lifetime of individuals), thus aggressive and/or highly active indisidiea
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always able to obtain a higher share of resoujaes invest them in growthyhus, a similar

pattern of growth at the population level emerges wien0 and values ok, and y, are
strongly negatively correlated when ¢ = 1and values ofk, and y, are strongly positively

correlatedbut the biological and environmental processes leading entkeegence ofimilar

growth trajectories are differerior values ofi” between 0 and 1, a rich variety of growth
trajectories canbe obtained dependinghendorrelation betweeralues oft, and i, as well as
their variancegFig. 1), althouglthebiological interpretation of/ is challengingvith respect
to the case of individual variability only fdr, in particular with values of far fromeitherO

orl.

2.2 Parameter. estimation and individual variation

Formulations of thetandard/BGF with indvidually varying parametersi(,_, k, to) have

been proposed previously (Sainsbury 1980, Francis 1988, Wang and Thomas 1995, Laslett et al.
2002, Pilling-et@al. 2002, Eveson et al. 2007, Sigourney. 204P). Here, ve present aovel

formulation:ofithevBGF (as describd in Section 2.13pecific for longitudinal data where, k,

andto areasfunction of shared predictor(@s explained belowgnd individual random effects.

Weltreattos@and i as populatioreVel parametar(with no environmentairedictorsand no
individual random effects), so that all individuals are assumebdare the samealue.This
improvesthe biological interpretation of tretherparameterand helps with model fittinggs
explained belowSincek andy must be non-negativeje use a logink functionto facilitate
parameter.estimation and convergence of the model fitting procé&auiadividuali in groupj

(e.g. sexsyear-of-birth cohome thus set

log(ky.)
log(j/U) = log(y,) + ﬁsz + oy, (2.7)

Gy _
Z‘0 - Z‘0

log(k,) + ax +ou,

whereu;; andv;; are the standardized individuandom effed, o, ando, are the standard

deviations of the statistical distributions of the random eff@etiich we take to have prior

distributions that are normal, while the posterior distribution is not guaranteedorbal due
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to the nonkinearity of the likelihood function) x, and , are populatiorievel parametersx,
and 3, are grouplevel parametersand x; has value of 1 if individualis in groug and 0

otherwise The model with no predictors and no individual random effects contains only 4

parametergplus the residual variancehg( &, ).log( 7, ).t,,y i.e. parameters are estimated at the

whole population level with no individual variation in growth. In the following, we report and

interpret parameter estimatesf and y, on their natural scal@s thisallows to directly

comparingtheirestimates to published values.

We use the Automatic Differentiation Model Builder (ADM#&)ftwareto estimatehe
parameters of the growth models (Vincenzi et al. 20J4DBMB is an open source statistical
software package for fitting ndmear statistical modeld-ournier et al. 2012, Bolker et al.

2013) that is quickly becoming a standardl for use in fisheries stock assessment and
managemeniADMB -RE (the random effects module of ADMB) hthg ability to fit generic
randomeffects.models using amipirical Bayesapproactthat implementshe Laplace
approximation (Skaug and Fournier 200B)mpirical Bayes (EB) refers to a tradition in statistics
where the fixed effects and variance (or standard demjatioa randoneffects model are
estimated by.maximum l&ihood, while estimates of random effects are based on Bayes
formulaAlthoughtraditionallyrandom effects are predicted and fixed effects are estimated, we
refer in this paper to estimates &fand y, . Model fitting in ADMB-RE automatically stops

when the maximum gradient (i.e. the larger of the partial derivatives okétiéadiod function

with respett to'model parametgis < 10* (appropriate with logransformednodelparameters)

The kength.of individual in groupj at aget is

L=y, % - " ) te (2.8)

i
where g; is normallydistributed with mean 0 and varianeg (estimated in the modditting
procedure).

For simplieity, we @ notexplicitly introduceprocessstochasticityso thatthe likelihood is
(Hilborn and Mangel 1997)
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( ( oLy, k.,rg”),v/)) )

HHH \/ﬂg GXPL 2 J (2.9)

j=1 i=1 =1

where n, is the number of individuals in grogipd is the number of groupsy, is the number of

observations from individualof groupj, | is an index that run over these observations. Further,

while t, is the

the observed length measureméatsndividuali in groupj are denoted bl , il

age of the-individual when theh measurement is made the following, we will simply usé,

and y, for the individuallevel parameters.

Note thatEq: 2.9 is only the likelihood for the observation part of the model. To obtain the
likelihood that is used for parameter estimation it is necessary to includerttidutions from
the random effects, and to integrahe joint likelihood with respect to the random effects
(Vincenzi et-al=2014Db).

We give adescriptionof model parameters, model assumptions and imposed parameter
values or their empirical estimates/relationshigablel.

2.3 Casestudy

We use as model systefias fitting and application of the growth model one population of
marble trout living in Zakojska stream and one population of brownlivang in Upper Volaja
streamin thesWestern region of Slovenia (Vincenzi et al. 2012) (Fig. 2). The population of
Zakojska was-established in 1996 by stocking age-1 fish that were the progeny offpareats
relict geneticdl/ pure marble trout populatiqi€rivelli et al. 2000) Fish hatched idakojska
for the first time_in 199&nd the 1998ohort is the firstncluded in the analysitlpper Volaja
was sampled for the first time in 2086d the oldest cohort to be included in the analyas
born inyear 2000Thetwo populationsveresampled annually in June. Figlerecollected by
electrofishing/and measured for length and weight to the nearest mm and gwHrgstaught
for the firsttime- or if the tag had been lost — and tlvegre longer than 110 mm theyere
tagged with Carlin tag&Carlin 1955) and ageasdetermined by reading scales. Males and
femalesn both marble and brown trout are morphatadly indistinguishablat the time of
sampling. The probability of captuag¢ timet of a fish alive at timé washigher than 80%
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(Vincenzi et al. 2008). Marble trout females reach sexual maturity when longer theam®00
usually at age 3 or oldewhile age at first reproduction for brown trout in Upper Volagaurs

at age 2 or oldeiThe maximum observed ador fish born in the sekams wa® and 10 years in
Zakojska and Upper Volaja, respectively. The last sampling occasiodeddin the dataset was
June 2013..In.Upper Volajthe last cohort incided was the one born in 2011. Due to a flood
that almost.completely wgal out the ppulation in 2007 (Vincenzi et al. 2012here were no

fish born in"Zakojskan 20082010. Also in Zakojskahe last cohort incided was the one born
in 2011. Density of fish age-1 and older (numb&) mas (meanzsd) 0.05# in Zakojska

from 1998 to 2013 and 0.05+0.05Upper Volaja from 2006 to 2013. In total, 1141 unique fish
were includedrin the Zakojska dataset and 1649 in the Upper \dal@set.

24 Statisticallanalysis
2.4.1 Simulated data

As thisiissthe first time the model in Eq. (2.8) is proposedstagted by studyinthe
behavior of theimodel using simulated d&iast, we testedwhether the same growth trajectories
could be described using tharameter androwth functionsn Egs. 2.7 and 2.8ith different

values ofyfrem O to 1 with a step of 0.1y is theset of i valueswe usefl To do so, we first
simulated400(potentially) 10-year longuniquegrowth trajectories with ue (i.e. data

generating)y” (y ) in Eq. 2.8 andor different scenads with positive, negative or no
correlation(z,) betweerthe 400 pairs ofk, and -, . Specifically,we imposed a correlation
structure between normal distributionsrdividual randoneffects fork, and y, (ui andv;,
respectively)we randomlydrew400 (;,v;) pairsfrom the jointprobability distributionof
random effectsfand then obted00 (log( X, ),log(y,))pairsfollowing Eg. (2.7).To simulate a

realistic empirical case, we used a mortality Mtand excluded one observation, on average,
per individual. We did not introduce group parametersimulate individual growth trajectories

(le.a, g /)’j =0 in Eq. 2.7). Thenwefitted themodel to thesimulated growth trajectories by
fixing the value ofty (t//f) in Eq.2.8. Due to the random sampling @f and v, from thejoint

probabilitydistribution, we ran 10 randomeplicates for eacbhombination ofy , W, andr,,

and recorded the convergence of the model fitting procedure as determined by the maximum
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380 gradientin ADMB-RE, averageoverreplicatedMeanAbsolute Eror (MAE) (i.e. mean absolute
381 difference between simulatéehgthatage andengthatagepredicted by the fitted model) and

382 meancorrelation between the 400 estimated pairs aind y, (7 f) across repIicate(st) that

383 successfully.convergetlve did not compare datgenerating parameter values and parameter

384 estimatesasthey.can be meaningfully compared only when= y - We also recorded how

385 many timessover the 10 random replicates for each combinatiqyg,oj/f, andr, the model

386 fitting procedure failed to converg€onvergence failure means that ADMRE was not able to

387 obtain a sufficiently small likelihood gradiemtijth the (default) criterion being TGor all

388 parangterss The particular reason flack of convergence may vary across simulation rejgigca

389 and although it'is not feasible to investigate each case in detail, it is good practice to keep track

390 of the number of casin whichconvergence was not achieved.

391 24.2 Seectionof the best growth model for Zakojska and Upper Volaja and prediction of
392 unobserved data

393 We checked the maximum gradient component to ensure that a satistacieeygence

394 was reachedExceptfor the casef nonlinear regression explained further beJasch model

395 we tested included individual random effeassin Eq. 2.7. Following Vincenzi et al. (2014b), we
396 introducedyearof-birth cohortas fixed categorical effects to test whetiteinclusion as

397  predictor includednodelfitting to datafor either populatiorfcz, and ﬁj in EQ. 2.7). The model
398 may not besalwaysot statistically identifiablein that i can onlysometimede estimated

399 (Shelton and-Mangel 2012). Thus, we fitted separately models with or without cohort as

400 predictors ofy,, k; or bothwith ¥ from Oto 1with a step of 0.1We used the Akaike

401 Information Criterion(Akaike 1974, Burnham and Anderson 2062%elect the best mod#&lie

402 then investigated correlation between ¢éisémates ofk, and y, at the individual levelWe
403 tested whether the inclusion of individual random effects for Bgthnd 3, (thus increasing

404 model complexityjncreased model accuracy with respeantmlek that includendividual
405 random effectsonly fok, (i.e. models in Shelton & Mangel 2012; Shelton et al. 2(A®)the

406 latter model, in Eq. 2.8 we thus fixed) = 0.
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407 We tested whier vBGF models with random effects for bath and 3, with different

408 values ofty predicted substantially different mean cadkepecific growth trajectories. In

409 addition, we tested whether fitting ninear leastsquares regression with no random effects on
410 cohortspecific datgusing thenls function in R(R Development Core Team 20)Bads to

411 substantiallydifferent mean coha@ppecific growth trajectories with respect to raneeffiect

412 models.

413 We tested the predictive ability () the best overalBGF modelwith individual variation
414  for both & @nd¥y (where, is the value ofy for the best modelps well aghe modelsith (b)

415 =10 and €) ¥ =1 for both populationsWe also tested the predictive ability of thest

416 overallvBGF model with variation only fok . For each population, wei) fandomly sampled
417 one third of fishithat have been sampled more than 3 times throughout their I{fetlidation
418 sample); i) deleted from the data set all observations except the first one&amindividual
419 fish in the'validation samplejiij estimated the parameterfstioe vBGF for each individual
420 including these'in the validation sample; ang predicted the missing observations.

421 We compared the predictions of the vBGF to the predictions given by the mean

422  lengthatageefthe cohort of the fish\e used MEA ané® with respect to the 1:1 line

423 observed datas,predicted datas measures giredictive ability The predictive abilitie of the
424  vBGF modet were testedisingthe sameé 0 random validation samples for each population.

425 3 Results

426 3.1 Smulated data

427 Model fitting with simulated data showed that when growth trajectdwaela negative

428 correlatienz=betweenk, andy , theaveragecorrelationbetweenk, andj, acrosgeplicates
429 T, tended taemainnegative irthe area below the 1:1 line in thee —y plane and arounzero

430 or positive above the line (Fig. 3&)Yhen growthrajectories wergsimulated starting from a

431 positiver,, = tended to remaiolose to O or slightly negative the fitted models below the 1:1

432 line and mostly positive above the line (Fig. 3c). Whewas equal to heempirical

433 correlation between estimatéd and y . in the fitted models tended to be around 0 for the
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majority of combinations ofy_ and ¥, (Fig. 3b).Similar results were obtained when using
different variances of the individual random effects (Fig. A3 and A4).

The probability of convergence of the model fitting procedure varied across combimdtions

v,y ,,andr . Although a clear pattern of probability of convergence did not emesge, th
model-fitting algorithm convergefdr most of they,, — y .combinations and replicatg$ig. 3d-

f). The averge of MAE across replicates was smaller thami (thus an almostepfect fif) in

more than 90% of the combinationsif and v ,.

3.2 Casestudy

Observedrajectories showebigherindividual variation in growtland length at age in the

marble troufpopulation of Zakojska than in the brown trout population of Upper Volaja (Fig. 2).

Forthe \BGF modes without cohort as a predictéor either £, and y,, the correlaton

betweenig-andy was function ofy” (Fig. 4), and tended tehift from a negative to a positive
correlation with increasing values @f for both populationdn this casefor the population of
Upper Volajasthe best model according to AIC Rad= 0.6(AIC = 23 855.4) while the model
with i I=0hadlower AIC than the model withy =1 (23 951.4ss. 24 059.2) For the
population of Zakojska the best model according to AIC fae 0.3(AIC = 17 387.8, while
the model withyr = 0 had lower AIC than the model with =1 (17 395.9s. 17 445.1). The

joint distribution of i and sign and strength of the correlation betwgerand y, (Fig. 4)

suggestednaintenance of size ranksroughout fish lifetime for both Zakojska and Upper
Volajatrout populations, with growth trajectories crossing on average after sexual migrity
1). Every model predicted the observed dathigh accuracyZakojskarange of MAE =7.1-8.5
mm, range.ofR%= 0.980.98; Upper Volaja: MAE 8.7-5.0mm, R? = 0.97-0.98). Assuming a
lifespan of 20%ears (i.e. predicting 10 years of leragthage for each fishigrowth trajectories

predicted usingstimategarameters for models with different valueysf(and without cohort

as predictor of either parametégd similar mean age at crossing of growth trajectories and CV
of length at age 10, but substantially differeaimber of trajectories crossitigroughout the
lifetime of fish (Fig. 5).
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Formarble troutthe best model using AIC as model-selection criterion had cohort as

predictor both irig. andy, andy =0.3(Table2). For brown trout, the best model had cohort
as predictor for onl'y, andy = 0.6. For both Zakojska and Upper Volaja populations, the

models with.individual random effects onlykgperformed far worse than the models with

individual random effects for both paramet€rable?2).

Cohort-specific models for marble trout and brown trout with cohort as predictor tki thin

andy, provided ssentidly the same mean trajectories whgnwas equal to 1 angthen ¥/

was the one giving the smallesiC (i.e. i = 0.3for Zakojska andy = 0.5for UpperVolaja)

(Fig. 6). CohortspecificvBGF modelswvith no randoneffects fitted with standard ndmear
leastsquaresegressionpredicted substantially greater lengtkagethanrandomeffects
models forthe-marble trout population of Zakojska, while pledithe sammeancohort-
specificgrowthstrajectoriess the randoreffects model$or the brown trout population of
Upper Volaja (Fig. 6).

3.2.1 Prediction of unobserved length-at-age

In the pepulation of Upper Volaja and Zakojska, 132 anfiss3veresampled more than 3
times during their lifetime, respectively. ThB@F modelwith bothk and ¥ function of cohort,
individual‘tandom effects, an@ = 1 provided consistelyt better prediction of the missing
observations'thamodels withy = 0, ¥/ giving the best AIC value for models with bdtland

¥ function of'eohort, and than prediction based on mean laatgthe of the respective cohort
(Table3.and Figs. 7 and 8). The best model with individual variation orig/mnovided

substantiallyworse predictions than the best model with individizalationfor bothig andy,.

4 Discussion

Ourfermulation of the von Bertalanffy growth function balanb&sogical detailsof the
growth process and model fitting, and thus provalésxibleand powerfuframework for
estimating and understanding the role of abiotic and biotic factors in determiningsargani

growth. This unificationn achieved byan ecologicatrather than purely statisticalfocus that
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considers growth in terms of the behavemvironment interactionAdding complexity in the

form of individual variability in bothmechanistic parametefisand? ) of our formulation of the
von Bertalanffy growth function increases model accuracy with respect to the mzdding
individual variability only ink, i.e.the parameter summarizing physiological and behavioral
traits that determine individual activittVe nowdiscuss the results of our simulations, parameter
estimation and‘model selection usimg fish populdéions asacase stug, andtheir implications

for our understanding of the determinants of variationfanthanagemerdnd conservation.

4.1 Relationship between yr and the correlation between model parameters

Our simulation showed that models with different valoigsarameter describing the

interaction between the environment and the foraging characteristics of tresqperiand
variability in_boththe parameter of catabolisnk() and the prameter describing the

environmental contribution to anabolis y, | are in general able to describ&ry similar growth

trajectoriesA clear pattern of probability of convergence of the model fitting procedure did not
emerge fram our simulations, bmbdel fittingwas successful in the vast majority of ca3dss
flexibility‘hasto be ascribed tthe many degrees of freedom of our formulation of the von
Bertalanffy growth functionvith individual random effectszurthermorewhen simulating

growth trajectories with negative or positive correlation betvpeers of 4, and y,, the sign of

the correlation tended to remain negative arsitpe, respectively, when fitting models with

other valugs ol . This patterremergé only inthe case of simulated data, since a clear change
of sign of the=correlatiobetweerpairs of £, and y; was found when fitting the growth models

to empirical data, as describbdlow. This has to be ascribed to somreealistic growth
trajectorieghat are obtained when keeping the same variance for individual random effects for

eachvalueof##used to generate the growth trajectories (Fig. A5).

42 Casestudy

4.2.1 Mode selection, parameter estimates, and trade-off between accuracy and

interpretability in growth models

All models predicted the observed data very well, althdbgre were small differences in

performance among moddts either population. However, when predictiggwth trajectories
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usingthe estimatedhodel parameterf®r models with different values a# , for either

population the best model among those with no predictor for either model parasetee one
predicting the highest number of crossgrgwth trajectoriesThe mean absolute error was very
low in each modelthus “realized” growth trajectories were almost petyegtedicted by each
model. It follews thathe differences in prected growth trajectorieshouldbe mostly ascribed
to differences.in.prediction of growth trajectories for fish that have beenedumpe or a few
timesearly in fife,i.e. the best model predicted that size ranks fogtbesith trajectories that
were not “realized” due to early mortalityere less maintaing@e. more trajectories crossing)

with respect to the other models.

Accuracy describes the ability of a modektglain observed data and neadorrect
predictions, while interpretability concerns to what degree the model allows for understanding
processes. Often a tradf exists between accuracy and interpretabilitpre complex models
are usually'opaque, whiteore interpretable models often do not provide the same accuracy or
predictive"power of more complex models (Breiman 200ECullagh & Nelder(1989)wrote:

“Data will often pointwith almost equal emphasis on el possible models, and itilmportant
that the_statistician recognize and accept tijgubdted inBreiman(2001)). However, ifferent
models may give differenmsights orthe relation between the prediddmodel parameters and
their predietorspnd response variabl@engthatage) and how to determine which moahebst
accuratelyreflectsthe data remains a challen@@ne way is to use model selection procedures
that tradeoff'goodness-ofit (the likelihood) and model complexitfnumber of parameters)
select for the best mod@urnham and Anderson 2002, Johnson and Omland 2004). In our
work, theAIC analysis shoed for either populationhatmodels wih individual random effects
for both parameters performed substantially better than models with individuahr afigcts

only for #&; ~Fhus, increasing the complexity of the model by allowing individual variation in
both parameters increased the accuracy of the growth models.

The best:.model for the marble trout population of Zakojs&lded cohort as a categorical
predictor for.bothy and &, while for the brown trout population of Per Idrijca the best model

included cohort as predictor &f. That means that parameter values as well as the resulting
predicted growth trajectories of fish seem to be more similar to those of fish in the same cohort

than to thosef the population as a whole.
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The prediction of mean cohapecific growth trajectoriegsing models with or without
random effects showed different results for the populations of Upper Volaja kogkza For
the brown trout population of Upper Volaja, cohspiecific models with no random effects (i.e.
estimated_using thels function in R)and random-effects models with cohorpasdictor of

both &, andypwith eitherys=1 orthat d the best model provided essentially the same

prediction.of.mean cohodpecific growth trajectories. On the other hand, for the marble trout
population of Zakojska the randoeffects models provided essentially the same predictions of
mean cohortpecific growth trajectories, while the cohepecific models with no random
effects tended tpredict substantially higher leng#tage for fish older than 4 years olchis
occurred because there was higher variation in leaggige in Zakojska than in Upper Volaja
andsomebig fish tended to have a longer lifespan in Zakqj#as growth trajectories tended to
be “pulled up” by the bigplder individuals This result supports the use growth moaath
individual randem effects, in particular wherté is substantial variability imoth growthrates
and sizeatage.of individuals living in the same population. However, in both populations the
randomeffects models provided essentially the same predictibrreean cohorspecific growth

trajectories
4.2.2 Biological interpretation of the selected growth models and parameter estimates

Across taxa, climatic vagaries during the first stages of life have the potential to influence
the meangrowth trajectories of cohorts, as well as other life histories. Eahpiridence of
early induced. effects dater growth rateljfe-history traits and behavior of organismsgjuite
recent(Danchin'and Wagner 2010, Salvanes et al. 2013, Ait Youcef et al. 2015). Jonsson and
Jonsson (2014ecently discusseldow mnditions fish encountezarly in their life cyclecould
leave lastingeffects on morphology, growtlate, lifehistory and behavral traits.Vincenzi et
al. (2014a,b) found that other processes may be potentially responsible for waéipilgan
growth trajectories of cohorts, such aghhvariance in reproductive successnbined with
eitherhigh heritability of growth oheterogeneity in site profitability accompanied by limited
movement, High heritability of growth (Carlson and Seamons 20G8®&rmal decisions on the
timing and location of spawning (Letcher et al. 201bjnohance established early in life
(Gilmour et al. 2005areall processes that may in combination or by themselves explain the
maintenance of size ris throughout fish lifetime.
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Tradeoffs between growth and survival have been found across species a(felaalya
1980)as well as at the individual level within populations at the earhstdgegBiro and Post
2008, Woodson et al. 2013). Given the similarity in growth of fish in the same cohort, we may
hypothesize cohort effectdsoin survival, either in the direction of higher mortality for faster
growing coherts due to trade-offs between growth and suravalf higher survival for faster
growing cohorts when faster growth is a signal of higher quality of individuals.

The biological interpretation of model parameters is easier when onlydivedual random
effects(and.not cohortare included as predictors. In this case, for both populations the model

with ¥ ='Q,performed substantially better than the model with= 1. This result, along with
the strong negative empirical correlation between estimat&sarid 7, wheny =0, suggests

that size ranksgare largely maintained throughout marble and brown trout ljfetossing of
growth trajeeteries mostly occurs after sexual maturity, batimore aggressive/active fish are

on average growing slower than those less aggressive/active.

One hypethesis is that both trout populations live in an environmertiaghwesource
acquisitionndependssson intrinsic behavioral traits and more on it@hand thus more active
individuals are expending more energy than less active individuals withoutiagaqnore
resourcesSupport for this hypothesis comes from theanbiggersizeat-age found in both
Upper Volaja and Zakojska for trout living ine uppermost part of the streams, as nuood —

in particularinvertebrate drift is availablethere

As forggrowth trajectories crossing mostly after sexual maturity, one potential explanation is
sexspecific'energetic investment in reproduction, with females allocating more energy to

reproduction than growth with respect to males.
4.2.3 Predicting unobserved data

The variation in growth and size that characterizes organisms can almost always be modeled
retrospectivelysHowever, the limited number of attempts at predicting missing size observations
or unobserved growth trajectories may also depertti@mtrirsic unpredictability of some
growth curves, for which it may be impossible to accurately predict later portions of the growth
trajectory when only a few observations early in life are available (e.g. ocwath af

anadromous salmonids when only a fewewlations relative to the freshwater phase are
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available)(Norton et al. 1976)The \VBGF modes$ with cohort as predictor of both, and y;,
andy =0, 1, ory of the best overall modelg, ) provided good predictions of unobserved

growth trajectoriesor both the marble and brown trout populations, and except foramee(

w =y, forZakojska)he predictions were consistently better tpegdictions of the best model
with individual variability only fork, and of predictionbased orthe mean lengthtage of the
fish cohort. However, neither for the marble trout population of Zakojska nor for the brown
population.of Upper Idrijca, the best modelectedaccording to AIC provided the best
predictionof unobserved growth trajectories. Although the best model did not formallyt,overfi

the additionalflexibity provided by a value of not equal to O or 1 did not translate in more

accurate predictions of unobserved growth trajectories.

4.3 Conclusions and implications for management

Thepurpose of acientificinvestigation shouldrive model formulation and the type and
amount of da collectedRandom-effects models and powerful software and routines allow the
fitting of complex models, but often complexity comésh& cost of interpretability of model
parametersOurwork shows that adding additional complexity to the von Bertalanffy growth

function (e.g«cohort as predictor of vVBGF's parameters, variability in ho#nd , ) may offer

substantial advantagasterms ofunderstanding of the determinants of growth patterns and
predictinger estimatinghe future or unobserved siaéage of individuals. When using the
model formulation that we propose in this paperfanease of interpretatioof model

parameterswe recommend limihg model selection to models with= 0 (vBGF as formulated

by von Bertalanffy, in which asymptotic size is an explicit functiothefyrowth coefficien) or

w =1 (vVBGF as commonly fittedn which asymptotic size is independehthe growth

coefficien)..In.those two casemjodel selection may givdearerinsights on processes leading

to individual.and group variation growthwhile providing accurate predictions of unobserved
or future sizeatage datand growth trajectories-urther insights on the processes leading to
variation in‘grewthwould come from combining parameter estimation and model selection with
estimats of metabolic rates, patchiness of resources, movement of fish and costs of
reproduction. Further investigation on these trafie are needed using other growth models and

other species.
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By furthering our understanding of variation in life-history preessthat depend on, or
correlate with, growth processesiranodelirg approach ha®levant implications fomore
applied contexts-or instance, our results support the hypothesis that both trout populations live
in an environment in whitresource acqutton depengd more on habitat selection than
intrinsic behavioral traitéalthough, especially early in life, intrinsic difference in behavioral
traits contributeto habitat selection)he hypothesis is also supported by the consistently bigger
sizeatage offish occupying the uppermost part of\thestern Slovenian stream which
other marble“trout populations livewhere a larger portion of stream drift is available since no
fish are present upstrearnthan of those fishving further downstreaniVincenzi et al. 2010,
2014b, 2015)«Trout are typically stationary feeders that hold relatively fixed positoms fr
which they'make short forays to feed; according to our meelektion resulidabitat choice or
chance (such as being born more upstream, especially when natural barriers reduce or impair
upstream movement) are critical fymowth anditness of the individuaRiverscapes are highly
spatially heterogeneous and the effects of habitat type and quality on individual ritagHe
strongest and+best explained at the microhabitat spatial(ealech 1984)he importance of
habitat selectiomaythus suggest the use of spatially explicit models for studhegopulation
dynamicsef.the two speciess well ador predicting the evolution of growth and other life-
history traits(Ayllon et al. 2015).

Estimates of growthare alsdundamental to any assessment of population demographics
and populatien=dynamics for managemeéiot. instanceagestructured stock assessment
methods are based size-at-age that ioften derived fronparameters of theon Bertalanffy
growth modefor that speciegKatsanevakis and Maravelias 2008)e have showithat for the
salmonid populationthatwe used as a model systemay model allows one to usesingle
measuremdrearly in the life of individual fish (or, equivalently,set of measuremexftom a

cohort) to'ebtain accurate predictions of lifetime individuatanort sizeat-age.
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879

880

Table 1. Model parameters, model assumpticarsd data-generatingarameter values or

their empirical estimates/relationship

Parameter Description
L, Asymptotic length reached in the limit of infinitiene
k Coefficient of catabolism or vB growth coefficient
to Age at whichength is 0
o} Coefficient of anabolism
¥ Parameter describing the environmental contribution to anabolism
Parametebounded between 0 andigscribing the interaction between
v the environment and ttieraging characteristics of the species
ko and 7, Populationlevel parameters in the linear models for lgg{nd log (" )
o and ﬁ Grouplevel parameters in the linear models for lQg(nd log ()
Standardized individual random effects in the linear model®&fk)l and
uandv g (7)
Standard deviations of the statistical distributions of the randi@tiin
o,and o,

the linear models for log) and log ()

Mode assumptions

f

q Asymptotic size emerges from thelationshipbetween the coefficients o
L, =— . .
k anabolism and catabolism
The coefficient of anabolisngy depends on environmental (represente
g= ykY by %) versus behavioral (representedAby factors, whose respective

importance is modulated by the value of the paramigfer

Estimated/data-generating
parameter values and relationship

between parameter values

W, Datageneratingl/
DatageneratingPearson’s correlation between indiviciglel pairs ok
.
s and ¥
W, Fixed value oftys when fitting lengthat-age data
7, Empirical correlation between estimated pairshofand 3
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881

882 Table 2. The £nbest von Bertalanffy growth models accordiacpIC for the marble trout
883 population of Zakojska and the brown trout population of Upper VdPagemeters included in
884 the modelcolumn are thosteat areafunction of cohortnpar is the number of model

885 parameters; AIC = Akaike Information Criteriofhe last row reports the best models when
886 individual randomreffects are included only for

887
Zakojska Upper Volaja
Model /4 AIC npar Model 74 AIC npar
k.y 0.3 17 105 29 4 0.6 23 269 19
k.y 0.4 17 106 29 k.y 0.5 23277 31
k,y 0.2 17 112 29 k,y 0.6 23283 31
Ky 0.1 17 123 29 y 0.5 23 303 19
k.y 0.5 17 127 29 k.y 0.3 23328 31
k.y 0 17 132 29 k.y 0.2 23338 31
4 0.4 17 137 20 Ky 0.4 23 346 31
y 0.3 17 144 20 y 0.4 23348 19
k,y 0.6 17 153 29 k,y 0 23 350 31
y 0.2 17 159 20 Ky 0.7 23363 31
Ky 0.4 17 831 27 Ky 0.6 24 977 27
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892

893
894

895

Table 3. Mean + sd oR? and mean absolute error (MAE, mm) of predictions of validationfdati) random validation samples
as providedsbya) the vBGF modeWith variation for both for botk andy ¢BGF (i,»)) including cohort as predictor for bokhand
¥ with 17 =0, 1, and/ of the best model according to Al@/ (= 0.5 for Upper Volaja and = 0.3 for Zakojska), (b) the vBGF model
with variation for onlyk (vBGF (k;)) including cohort as predictor for bokrandy with ¥ of the best model according to Al@/(=

0.6 for Uppet Volaja and = 0.4 for Zakojska)eWlso report mean + sd &fand MAE of predictions with mean lenggt-age of the
respective’'cohost(Cohort)

VvBGF i, 1i) VvBGF (ki) Cohort
Population
P w=1 =0 best best y

R MAE R MAE R MAE R MAE R MAE

Zakojska
0.61+0.22 | 32.0+13.0 | 0.54+0.22 | 35.1+12.3 | 0.52+0.16 | 36.3+9.5 | 0.44+0.07| 38.2+5.46| 0.52+0.09 | 36+5.1

U Volaja
0.57+0.21 | 15+3.4 0.56+0.2 | 15.2+3.3 0.55+0.21 | 15.2+4.2 0.47+0.09| 17.2+1.23| 0.51+0.2 | 16+2.9
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Figure captions

Figurel.

Panel (@)'Mean age at growth trajectories crossing, number of trajectories crossing divided
by the totalnumber of individua({dlorm traj ¢ossing), and coefficient of variation of length at

age 10 (CV of length) for von Bertalanffy growth models as in Egs. 2.7 and 2.8 with different

values ofyZ, and Pearson’s correlation betwegairs of £, and .. Panels in the same column

are for models'with the same correlation betwegtrs ofi and .. For all models, individuals

have the same /asymptotic length= 300 mm, ¢, = -0.32y, k, =038 y*, o, =, =0.36,

v, = L (k~?). Vertical segments are standard deviations over 10 replicates with random drawing

of individualkrandom effects to simulate individgmbwth trajectories

Panel (b) Tengrowth trajectories simulated with the model in Eq. 2.8 and the same

parameter estimates as in panel kapm left to right column, correlation betweénand y,

equal ta=27"27=0. From top to bottom rowequal to 0, 0.5, 1.

Figure?2. Frequency of sampling events per individual and empirical growth trajectories f

the populations of Upper Volaja (brown trout) and Zakojska (marble trout).

Figure 3. Panels (e): averagd’earson’sorrelation 7 betweenk and y . across

replicates'that successfully converged when fitting von Bertalanffy growth snasléh Eqs. 2.7

and 2.8 withy = W .on growth trajectories simulated with=y _, £ =300 mm,; =-032y,
k,=038y", gp=0c =037, y, =L (k ), mortality rateM = 0.8, and correlation between
k. and y equalito-0.9 (panels a,d), 0 (b,e), 0.9 (c,f). Panel§(thumber of replicatef that

did not converge for every combination Mandwfout of the 10 replicates. Plots for

o, =c, =060andc =c =0.14 are provided in Supplementary Material (Figui&sand
A4).
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920 Figure 4. Correlation (Pearsoniy between estimates &fand y, for different values of
921  for the von Bertalanffy growth model with no predictors other than individual raedfects

922 for eitherk andy for Zakojska (gray) and Upper Volaja (black). Vertical segments are 95%

923 confideneerintervals af The best model with no predictors other than individual random effects

924  according'to AIC for Upper Volaja and Zakojska hae- 0.6 and ¢ = 0.4, respectively.

925 Figur e@5"Mean age atrossing ofgrowth trajectories, total number of trajectories crossing
926 divided by‘the'total number of individuals in the population (1649 for Upper Volaja and 1147 for
927 Zakojska), and coefficient of variation of length at age 10 for von Bertalanffy growth snodel

928 (with no predietors except individual random effects for either model parametennadel

929 parameters‘estimated for valuesysffrom 0 to 1 with step 0.1. All growth trajectories of

930 unique individuals were predicted for a theoretidakipan of 10 years according to the
931 estimated model parameters at the individual level. Vertical lines identify the best model

932 according,to.AlC for models with no predictors for either parameter.

933 Figure 6. Cohortspecific growth trajectories for the trqubpulations of Zakojskaganela,
934 Cohort 1999; b, C01) and Upper Volaja (panel ¢, C08; d, CO7). Dashed line: prediction of model

935 with no random,effects fitted on cohort data with tioear least square regression. Ddsh
936 line: Cohortspecific model wittcohort as predictor for bothi andy, with ¢ =0.3 andy =0.5
937 (best models) for Zakojska and Upper Volaja, respectively. Solid line: Cgbectfic model

938 with cohortaswpredictor for bothi andy, with =1.

939 Figure 7. Example of predictioof validation data for the marble trout population of

940 Zakojskaswithsthe von Bertalanffy growth model with cohort as predictéri @indy andy =1

941 (panel a)y=0.3(b, best model)y =0 (c). Panel (d) reports the prediction of validation data
942 using mean lengthtage for the cohort of the individual whose growth is predicted.

943 Figure®8. Example of prediction of validation data for the brown trout population of Upper
944  Volaja with the'von Bertalanffy growth model with cohort as predictdri(ﬁnd 7 andy =1

945 (panel a)y =0.3 (b, best model)y =0 (c). Panel (d) reports the prediction of validation data

946 using mean lengthtage for the cohort of the individual whose growth is predicted.
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