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Better understanding of variation in growth will always be an important problem in ecology, 24 

since variation in growth can have substantial consequences for ecological and evolutionary 25 

dynamics. Individual variation in growth can arise from a variety of processes; for example, 26 

individuals within a population vary in their intrinsic metabolic rates and behavioral traits, which 27 

may influence their foraging dynamics and access to resources.  However, when adopting a 28 

growth model, we face trade-offs between model complexity, biological interpretability of 29 

parameters, and goodness of fit.  30 

We explore how different formulations of the von Bertalanffy Growth Function (vBGF) 31 

with individual random effects and environmental predictors affect these trade-offs. In the vBGF, 32 

the growth of an organism results from a dynamic balance between anabolic and catabolic 33 

processes. We start from a formulation of the vBGF that models the anabolic coefficient (q) as a 34 

function of the catabolic coefficient ( ), a coefficient related to the properties of the 35 

environment ( ) and a parameter that determines the relative importance of behavior and 36 

environment in determining growth (). We treat the vBGF parameters as a function of 37 

individual random effects and environmental variables. We use simulations to show how 38 

different functional forms and individual or group variability in the growth function’s parameters 39 

provide a very flexible description of growth trajectories. We then consider a case study of two 40 

fish populations of Salmo marmoratus and Salmo trutta to test the goodness of fit and predictive 41 

power of the models, along with the biological interpretability of vBGF’s parameters when using 42 

different model formulations. 43 

The best models, according to AIC, included individual variability in both  and  and 44 

cohort as predictor of growth trajectories, and are consistent with the hypothesis that habitat 45 

selection is more important than behavioral and metabolic traits in determining lifetime growth 46 

trajectories of the two fish species. Model predictions of individual growth trajectories were 47 

largely more accurate than predictions based on mean size-at-age of fish. Our method shares 48 

information across individuals, and thus, for both the marble and brown trout populations 49 

investigated, allows using a single measurement early in the life of individual fish or cohort to 50 

obtain accurate predictions of lifetime individual or cohort size-at-age. 51 

Keywords: von Bertalanffy growth function; Model predictions; Marble trout; Brown trout; 52 

Longitudinal data. 53 
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1 Introduction 54 

Understanding individual growth will always be an important biological problem, as 55 

survival, sexual maturity, reproductive success, movement and migration are commonly related 56 

to growth and body size (Peters 1983). Thus, variation in growth can have substantial 57 

consequences for ecological and evolutionary dynamics (Lomnicki 1988, Pelletier et al. 2007, 58 

Coulson et al. 2010). 59 

Experimental and observational studies provide information on growth throughout an 60 

individual’s lifetime or at specific life stages. However, a series of data points on size-at-age is 61 

difficult to interpret without reference to a model of growth, but non-linear growth models allow 62 

us to condense the information contained in such a data series into a few parameters. In some 63 

growth models, those parameters are biologically interpretable, i.e. they represent or summarize 64 

the most relevant biological processes and environmental factors determining variation in growth 65 

(West et al. 2004), while parameters of other growth models do not have a clear mechanistic 66 

interpretation and are best considered as curve-fitting parameters (Text A1).  67 

Growth models have multiple applications in ecology and evolutionary biology. For 68 

instance, when managing human intervention in natural populations, we may be interested in: 69 

 • Understanding how growth rates and size-at-age vary in time and space depending on 70 

environmental conditions within- and among-populations of the same species (Vincenzi et al. 71 

2014b); 72 

 • Inferring life-history strategies, i.e. trade-offs between allocation of resources to 73 

competing physiological functions such as growth, maintenance, and reproduction throughout 74 

the lifetime (Roff 2007); or 75 

  •Estimating heritability of growth and size-at-age (Carlson and Seamons 2008).  76 

Another potential application of growth models (e.g. for fisheries management) is the 77 

prediction of lifetime growth trajectories of individuals or group of individuals (e.g. year-of-birth 78 

cohort, same-sex individuals) from observations at early life stages. Growth models have been 79 

mostly used for describing or interpreting population and individual processes, but have seldom 80 

been used for predictive purposes in ecology (Peters 1991), although an ample literature exists 81 
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for health applications in humans (Berkey 1982, Radhakrishna Rao 1987, Shohoji et al. 1991, 82 

Roland et al. 2011).  83 

For both basic and applied ecological goals, the choice of the growth model is often critical. 84 

Across growth models, we often face trade-offs between model complexity, biological 85 

interpretability of model parameters, ease of parameter estimation, and model accuracy, i.e. the 86 

combination of goodness of fit and predictive power. These trade-offs are commonly faced in 87 

other ecological contexts (Ludwig and Walters 1985, Adkison 2009). For instance, Ward et al. 88 

(2014) tested the predictive performance of short-term forecasting models of population 89 

abundance of varying complexity. They found that more complex parametric and non-parametric 90 

models often performed worse than simpler models, which simply treated the most recent 91 

observation as the forecast. In their case, the estimation of even a small number of parameters 92 

imposed a high cost while providing little benefit for short-term forecasting of species without 93 

obvious cyclic dynamics. However, when a signal of cyclic dynamics was clearly identifiable, 94 

more complex models were able to extract meaningful patterns from data and more accurately 95 

predict future abundances. Thus, the complexity of the best predictive model will be determined 96 

by the ecological situation. 97 

A broad range of models describing the variation in size of organisms throughout their 98 

lifetime have been proposed (von Bertalanffy 1957, Lester et al. 2004, Quince et al. 2008, 99 

Kimura 2008, Kooijman 2009, Omori et al. 2009, Russo et al. 2009), with varying degrees of 100 

model complexity, biological interpretability of parameters, and data requirements for parameter 101 

estimation. For some growth models, parameters may or may not be biologically interpretable 102 

depending on model formulation. For instance, the parameters of the widely used von 103 

Bertalanffy growth function (vBGF, von Bertalanffy 1957) to model growth of fish may be 104 

considered either curve fitting parameters with no biological interpretation (i.e. providing just a 105 

phenomenological description of growth) or parameters that describe how anabolic and catabolic 106 

processes govern the growth of the organism (i.e. mechanistic description); see Mangel (2006). 107 

The classic vBGF has 3 parameters: asymptotic size, growth rate, and theoretical age at which 108 

size is equal to 0 (or size at age 0 in an equivalent formulation). In the original mechanistic 109 

formulation of von Bertalanffy, asymptotic size results from the relationship between 110 

environmental conditions and behavioral traits, and the growth coefficient is closely related to 111 

metabolic rates and behavioral traits (i.e. the same physiological processes affect both growth 112 
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and asymptotic size). However, in the literature asymptotic size and growth rate are commonly 113 

treated as independent parameters with no connection to physiological functions, thus becoming 114 

a phenomenological description of growth. 115 

In the vast majority of applications of growth models, parameters are estimated at the 116 

population level but interpreted as those of an average individual in the population. This 117 

approach fails to take into account the substantial variation in growth observed within 118 

populations, and severely limits the breadth and scope of the models (Sainsbury 1980, Siegfried 119 

and Sansó 2006, Vincenzi et al. 2014b). Individual variation in growth can arise from a variety 120 

of processes. For example, individuals within a population vary in their intrinsic metabolic rates 121 

and behavioral traits (e.g. aggressiveness or territoriality) (Rosenfeld et al. 2014), which may 122 

have consequences for their foraging dynamics and access to resources. Realized growth is a 123 

combination of an individual’s intrinsic growth potential, environmental conditions, intra- and 124 

interspecific competition, and stochastic events. For these reasons, the estimation of individual 125 

variation in growth is biologically and computationally difficult, and requires longitudinal data 126 

(Shelton and Mangel 2012). Random-effects models provide an intuitive framework for 127 

estimating heterogeneity of growth within- and among-populations along with individual growth 128 

trajectories (Sainsbury 1980, Eveson et al. 2007, Sigourney et al. 2012).  129 

Here, we explore how different formulations of the widely used vBGF with individual 130 

random effects offer different degrees of biological interpretability of model parameters, 131 

goodness of fit, and prediction of future growth trajectories or unobserved growth realizations. 132 

We start from the model that Snover et al. (2005) developed for management of coho salmon 133 

Oncorhynchus kisutch, which treats the anabolic factor in the vBGF as the product of the 134 

catabolic factor and a factor related to the properties of the environment, and show how 135 

correlation among parameter estimates arises and how different functional forms and individual 136 

or group variability in the growth function’s parameters provide a very flexible description of 137 

growth trajectories. However, flexibility comes at a cost, since it potentially reduces the 138 

biological interpretability of the parameters of the vBGF.  139 

We use simulated data and test whether the same growth trajectories can be obtained using 140 

different formulations and parameter combinations of the vBGF. We investigate the correlation 141 

between parameter estimates, as the sign and strength of the correlation give insights on life-142 
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history strategies (Vincenzi et al. 2014b). We use one population of marble trout (Salmo 143 

marmoratus) and one population of brown trout (Salmo trutta L.) living in streams located in 144 

Western Slovenia (Zakojska and Upper Volaja, respectively) as model systems for the fitting and 145 

application of the growth model.  146 

Marble trout is a resident salmonid endemic in Northern Italy and Slovenia that is at risk of 147 

extinction due to hybridization with brown trout (Vincenzi et al. 2008) and massive mortalities 148 

associated with catastrophic flood events, whose frequency is increasing (Vincenzi et al. 2014a). 149 

Brown trout was introduced in Upper Volaja in the 1920s, with no additional stocking of fish 150 

after the introduction.  Growth patterns and size-at-age in salmonids contribute to determine 151 

survival (Woodson et al. 2013), sexual maturity and reproductive success (Jonsson and Jonsson 152 

2011), so that having a better understanding of growth has important implications for our 153 

understanding of the ecology of the two species, their population dynamics, the evolution of life-154 

history traits, and for the effective applications of conservation measures. For those populations, 155 

we test the goodness of fit of the models along with the empirical correlation between parameter 156 

estimates. Then, we test the ability of the models to predict future or unobserved size-at-age data. 157 

We finally discuss the biological interpretation of the vBGF’s parameters, which are modeled as 158 

function of individual random effects and environmental predictors.  159 

2 Material and methods 160 

2.1 Growth model  161 

We use an extension of the model due to von Bertalanffy (vBGF, von Bertalanffy 1957, 162 

Essington et al. 2001, Mangel 2006), which has been used to model the growth of organisms 163 

across a wide range of taxa (Kingsley 1979, Zullinger and Ricklefs 1984, Shine and Charnov 164 

1992, Starck and Ricklefs 1998, Frisk et al. 2001, Lester et al. 2004, Tjørve and Tjørve 2010).  165 

We start with a description of the standard vBGF and we then follow with a formulation of 166 

the vBGF that allows for a description of the growth process in terms of interaction between 167 

individual behavior and properties of the environment. 168 

2.1.1 The standard von Bertalanffy growth function 169 

In the vBGF, the growth of an organism results from a dynamic balance between anabolic 170 

and catabolic processes (von Bertalanffy 1957), where anabolic processes are those leading 171 
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to tissue growth, differentiation of cells, and increase in body size, and catabolic processes are 172 

those involving the breakdown of complex molecules and the release of energy.  If ( )W t  denotes 173 

mass at time t, the assumption of the vBGF is that anabolic factors are proportional to surface 174 

area, which scales as 2/3( )W t , and that catabolic factors are proportional to mass. If a and b 175 

denote these proportionality parameters, then the rate of change of mass is 176 

2/3( ) ( )
dW

aW t bW t
dt

= −            (2.1) 177 

If we further assume that mass and length, ( )L t , are related by 3( ) ( )W t L tρ=  with 178 

corresponding to mass per unit volume, then 179 

 
dL

q kL
dt

= −                              (2.2) 180 

where / 3q a ρ=  and / 3k b ρ= . In this parameterization,  is a coefficient of anabolism. 181 

The coefficient of catabolism, , is commonly known as the von Bertalanffy growth coefficient 182 

and has the units of t-1. The coefficient , with unit size•t-1, is proportional to the amount of 183 

resources available to an individual and will vary with environmental conditions and individual 184 

behavior. The asymptotic size (i.e. obtained by setting  equal to 0 in Eq. 2.2) is 
q

L
k∞ =  185 

and if  0(0)L L=  is size at age 0, we can readily solve the linear differential equation 2.2 by the 186 

method of the integrating factor. Two forms of the solution are 187 

               (2.3) 188 

and 189 

0( )( ) (1 )k t tL t L e− −∞= −                   (2.4) 190 

where t0

The vBGF model in Eq. 2.4 has 3 parameters: 

 is the hypothetical age at which length is equal to 0.  191 

L∞ , k, t0 

L∞

(in addition to the residual variance 192 

when parameter values are estimated), which are usually estimated at the population or group 193 

(e.g. cohort, sex) level. is commonly treated as an independent parameter (i.e. not an explicit 194 
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function of , although a negative correlation between parameter estimates often emerges due to 195 

the presence of ridges in the likelihood surface, in particular when length-at-age data for older 196 

ages are relatively few or missing, see Vincenzi et al. 2014b) and the vBGF has often been used 197 

as a phenomenological and not mechanistic description of the growth process (although see 198 

Essington et al. (2001) and Temming & Herrmann (2009) for estimating consumption rates from 199 

vBGF parameter values). In this paper, we will not make explicit reference to L∞ , as it does not 200 

provide any insights on the behavioral and physiological processes governing growth. 201 

2.1.2 Model with individual variation in parameters of anabolism and catabolism 202 

There are biological reasons for  (the coefficient of catabolism) and  (the coefficient of 203 

anabolism) to be linked (Shelton and Mangel 2012, Shelton et al. 2013). Therefore, we turn to a 204 

model that combines individual and environmental variation and allows dependence between  205 

and  along with individual variation, i.e.  and  are defined and estimated at the individual 206 

level. Since  is the coefficient of anabolism, it should be closely linked to bottom-up factors in 207 

the environment, such as food conditions (Mangel 2006). By letting  vary across individuals (208 

), we assume that “realized anabolism” may vary across individuals. The parameter 209 

determines how metabolic rates scale with the size of individual i and thus relates to an 210 

individual’s phenotypic capacity for growth. Snover et al. (2005, 2006) assume that  211 

combines physiological and behavioral traits that determine individual activity and thus 212 

potentially affect the ability of an individual to obtain resources from the environment, although 213 

with a trade-off with energy expenditure. Thus, the “anabolic” conditions may be different for 214 

individuals and they may depend on as well as some properties of the environment. Under 215 

these assumptions, we model  as a function of , , and a parameter  constrained 216 

between 0 and 1 that determines the degree to which  depends on environmental (represented 217 

by ) versus behavioral (represented by ) factors, and set 218 

                                                                                                     (2.5) 219 

With the formulation in Eq. 2.5,  is the result of the interaction of the environment and 220 

the foraging characteristics of the species, and may depend for instance on patchiness of 221 
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resources, fragmentation of the habitat, movement range of individuals. Units of  depend on the 222 

value of : when ,  has the units of  (size• t-1); when ,  has the units of size, 223 

while units are fractal when .  224 

With Eq. 2.5, the expected length of individual i at age t is 225 

                       (2.6) 226 

Eq. (2.6) is the formula describing length-at-age for individual i in group j (e.g. sex, 227 

cohort) that we will use in this work. 228 

The case with  common and  varying among individuals 229 

The case with  common and  varying among individuals has been investigated in Snover 230 

et al. (2005, 2006), and Shelton & Mangel (2012). In this case, parameters have a clear 231 

biological interpretation when (a) , (b) , and (c) between 0 and 1.  232 

When (a) ,  has no effect on an individual’s success at obtaining resources from 233 

the environment. Therefore, individuals with large  have lower realized growth increments, 234 

since higher activity comes at a higher energetic cost. When (b) , individuals with large  235 

(i.e. aggressive and/or highly active individuals) have greatly increased access to resources, and 236 

therefore experience faster length-specific growth. For (c) values of between 0 and 1, the 237 

relative growth rate for each individuals with different  will change with an individual’s 238 

length. Individuals with large  will grow faster at small lengths and individuals with small239 

will  grow faster at large size; the length or age at which individuals experience equivalent 240 

growth and when growth trajectories cross depends on . 241 

The case with both  and  varying among individuals 242 

We hypothesize that and co-vary among individuals. This additional variability in  243 

increases the complexity of the model by increasing the number of parameters to be estimated, 244 

and allows for a greater flexibility of growth trajectories of individuals (Fig. 1). For instance, 245 

while with a common  between 0 and 1 and only  varying among individuals all growth 246 
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trajectories intersect at the same age, with both and co-varying among individuals we 247 

obtain a distribution of ages at which growth trajectories intersect. 248 

However, a biological interpretation of the two parameters and , and in particular of 249 

, becomes more challenging with respect to the case with only varying among individuals. 250 

In fact, we will show that the biological interpretation of  depends on the sign and strength of 251 

the correlation between values of and , and may also be seen as a parameter giving 252 

additional flexibility to the vBGF, rather than describing the relative importance of 253 

environmental and behavioral factors in determining .  254 

As  is defined at the population level, butand  are allowed to vary among 255 

individuals, we describe potential growth trajectories by first fixing  (i.e. the relative 256 

importance of behavioral and environmental factors in determining anabolism) and explore how 257 

growth trajectories may change with different strength and sign of correlation between values of 258 

 and (Fig. 1). 259 

When , the maintenance of size ranks through the lifetime of individuals and the mean 260 

age at which growth trajectories cross decreases going from a negative to a positive correlation 261 

between values of and . In the limiting case of a correlation between values of  and  262 

equal to 1, growth trajectories never cross throughout the lifetime of individuals for any variance 263 

of  and (Figures S1 and S2). When , aggressive/more active individuals (larger ) 264 

are always growing slower than less aggressive/active individuals. Thus, we may hypothesize 265 

that the more active individuals are either expending more energy than less active individuals 266 

without acquiring more resources, or are investing more energy on biological processes other 267 

than growth.  268 

On the other hand, when (i.e. asymptotic size is not an explicit function of ), the 269 

maintenance of size ranks (i.e. of size hierarchy) through an organism’s lifetime and mean age at 270 

which growth trajectories cross increases going from a negative to a positive correlation between 271 

values of and  (Fig. 1). In the limiting case of a correlation between and  equal to 1, 272 

growth trajectories never cross through organisms’ lifetime (i.e. size ranks are always maintained 273 

throughout the lifetime of individuals), thus aggressive and/or highly active individuals are 274 
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always able to obtain a higher share of resources (and invest them in growth). Thus, a similar 275 

pattern of growth at the population level emerges when and values of and are 276 

strongly negatively correlated or when and values of and are strongly positively 277 

correlated, but the biological and environmental processes leading to the emergence of similar 278 

growth trajectories are different. For values of between 0 and 1, a rich variety of growth 279 

trajectories can be obtained depending on the correlation between values of and as well as 280 

their variances (Fig. 1), although the biological interpretation of  is challenging with respect 281 

to the case of individual variability only for , in particular with values of  far from either 0 282 

or 1. 283 

2.2 Parameter estimation and individual variation 284 

Formulations of the standard vBGF with individually varying parameters (L∞ , k, t0) have 285 

been proposed previously (Sainsbury 1980, Francis 1988, Wang and Thomas 1995, Laslett et al. 286 

2002, Pilling et al. 2002, Eveson et al. 2007, Sigourney et al. 2012) . Here, we present a novel 287 

formulation of the vBGF (as described in Section 2.1) specific for longitudinal data where , k, 288 

and t0 

We treat t

are a function of shared predictor(s) (as explained below) and individual random effects.  289 

0 and as population-level parameters (with no environmental predictors and no 290 

individual random effects), so that all individuals are assumed to share the same value. This 291 

improves the biological interpretation of the other parameters and helps with model fitting, as 292 

explained below. Since k and must be non-negative, we use a log-link function to facilitate 293 

parameter estimation and convergence of the model fitting procedure. For individual i in group j 294 

(e.g. sex, year-of-birth cohort) we thus set 295 

                                                           (2.7) 296 

where uij and vij uσ 
are the standardized individual random effects, and vσ  are the standard 297 

deviations of the statistical distributions of the random effects (which we take to have prior 298 

distributions that are normal, while the posterior distribution is not guaranteed to be normal due 299 
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to the non-linearity of the likelihood function),  and  are population-level parameters,  300 

and  are group-level parameters, and has value of 1 if individual i is in group j and 0 301 

otherwise. The model with no predictors and no individual random effects contains only 4 302 

parameters (plus the residual variance), ,  i.e. parameters are estimated at the 303 

whole population level with no individual variation in growth. In the following, we report and 304 

interpret parameter estimates of  and  on their natural scale, as this allows to directly 305 

comparing their estimates to published values. 306 

We use the Automatic Differentiation Model Builder (ADMB) software to estimate the 307 

parameters of the growth models (Vincenzi et al. 2014b). ADMB is an open source statistical 308 

software package for fitting non-linear statistical models (Fournier et al. 2012, Bolker et al. 309 

2013) that is quickly becoming a standard tool for use in fisheries stock assessment and 310 

management. ADMB–RE (the random effects module of ADMB) has the ability to fit generic 311 

random-effects models using an Empirical Bayes approach that implements the Laplace 312 

approximation (Skaug and Fournier 2006). Empirical Bayes (EB) refers to a tradition in statistics 313 

where the fixed effects and variance (or standard deviation) of a random-effects model are 314 

estimated by maximum likelihood, while estimates of random effects are based on Bayes 315 

formula. Although traditionally random effects are predicted and fixed effects are estimated, we 316 

refer in this paper to estimates of and . Model fitting in ADMB-RE automatically stops 317 

when the maximum gradient (i.e. the larger of the partial derivatives of the likelihood function 318 

with respect to model parameters) is < 10-4

The length of individual i in group j at age t is 320 

 (appropriate with log-transformed model parameters). 319 

              (2.8) 321 

where ijε  is normally-distributed with mean 0 and variance 2εσ (estimated in the model-fitting 322 

procedure). 323 

For simplicity, we do not explicitly introduce process stochasticity, so that the likelihood is 324 

(Hilborn and Mangel 1997)  325 
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                      (2.9) 326 

where jn is the number of individuals in group j, J is the number of groups, ijm  is the number of 327 

observations from individual i of group j, l  is an index that run over these observations. Further, 328 

the observed length measurements for individual i in group j are denoted byijlL , while ijlt is the 329 

age of the individual when the l-th measurement is made. In the following, we will simply use  330 

and for the individual-level parameters. 331 

Note that Eq. 2.9 is only the likelihood for the observation part of the model. To obtain the 332 

likelihood that is used for parameter estimation it is necessary to include the contributions from 333 

the random effects, and to integrate the joint likelihood with respect to the random effects  334 

(Vincenzi et al. 2014b). 335 

We give a description of model parameters, model assumptions and imposed parameter 336 

values or their empirical estimates/relationship in Table 1. 337 

2.3 Case study   338 

We use as model systems for fitting and application of the growth model one population of 339 

marble trout living in Zakojska stream and one population of brown trout living in Upper Volaja 340 

stream in the Western region of Slovenia (Vincenzi et al. 2012) (Fig. 2). The population of 341 

Zakojska was established in 1996 by stocking age-1 fish that were the progeny of parents from a 342 

relict genetically pure marble trout population (Crivelli et al. 2000).  Fish hatched in Zakojska 343 

for the first time in 1998 and the 1998 cohort is the first included in the analysis. Upper Volaja 344 

was sampled for the first time in 2006 and the oldest cohort to be included in the analysis was 345 

born in year 2000. The two populations were sampled annually in June. Fish were collected by 346 

electrofishing and measured for length and weight to the nearest mm and g. If fish were caught 347 

for the first time - or if the tag had been lost – and they were longer than 110 mm they were 348 

tagged with Carlin tags (Carlin 1955) and age was determined by reading scales. Males and 349 

females in both marble and brown trout are morphologically indistinguishable at the time of 350 

sampling. The probability of capture at time t of a fish alive at time t was higher than 80% 351 
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(Vincenzi et al. 2008). Marble trout females reach sexual maturity when longer than 200 mm, 352 

usually at age 3 or older, while age at first reproduction for brown trout in Upper Volaja occurs 353 

at age 2 or older. The maximum observed age for fish born in the streams was 9 and 10 years in 354 

Zakojska and Upper Volaja, respectively. The last sampling occasion included in the dataset was 355 

June 2013. In Upper Volaja, the last cohort included was the one born in 2011. Due to a flood 356 

that almost completely wiped out the population in 2007 (Vincenzi et al. 2012), there were no 357 

fish born in Zakojska in 2008-2010. Also in Zakojska, the last cohort included was the one born 358 

in 2011. Density of fish age-1 and older (number m-2

2.4 Statistical analysis 362 

) was (mean±sd) 0.05±0.04 in Zakojska 359 

from 1998 to 2013 and 0.05±0.05 in Upper Volaja from 2006 to 2013. In total, 1141 unique fish 360 

were included in the Zakojska dataset and 1649 in the Upper Volaja dataset.  361 

2.4.1 Simulated data 363 

As this is the first time the model in Eq. (2.8) is proposed, we started by studying the 364 

behavior of the model using simulated data. First, we tested whether the same growth trajectories 365 

could be described using the parameter and growth functions in Eqs. 2.7 and 2.8 with different 366 

values of from 0 to 1 with a step of 0.1 (  is the set of values we used). To do so, we first 367 

simulated 400 (potentially) 10-year long unique growth trajectories with a true (i.e. data-368 

generating)  ( ) in Eq. 2.8 and for different scenarios with positive, negative or no 369 

correlation ( ) between the 400 pairs of  and . Specifically, we imposed a correlation 370 

structure between normal distributions of individual random effects for  and (ui and vi, 371 

respectively), we randomly drew 400 (ui,vi) pairs from the joint probability distribution of 372 

random effects, and then obtained 400 pairs following Eq. (2.7). To simulate a 373 

realistic empirical case, we used a mortality rate M and excluded one observation, on average, 374 

per individual. We did not introduce group parameters to simulate individual growth trajectories 375 

(i.e.  in Eq. 2.7). Then, we fitted the model to the simulated growth trajectories by 376 

fixing the value of  ( ) in Eq. 2.8.  Due to the random sampling of  and from the joint 377 

probability distribution, we ran 10 random replicates for each combination of , , and , 378 

and recorded the convergence of the model fitting procedure as determined by the maximum 379 
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gradient in ADMB-RE, average over replicates Mean Absolute Error (MAE) (i.e. mean absolute 380 

difference between simulated length-at-age and length-at-age predicted by the fitted model) and 381 

mean correlation between the 400 estimated pairs of and  ( ) across replicates ( ) that 382 

successfully converged. We did not compare data-generating parameter values and parameter 383 

estimates as they can be meaningfully compared only when . We also recorded how 384 

many times over the 10 random replicates for each combination of , , and  the model 385 

fitting procedure failed to converge. Convergence failure means that ADMB-RE was not able to 386 

obtain a sufficiently small likelihood gradient, with the (default) criterion being 10-4

2.4.2 Selection of the best growth model for Zakojska and Upper Volaja and prediction of 391 

unobserved data 392 

 for all 387 

parameters. The particular reason for lack of convergence may vary across simulation replicates, 388 

and although it is not feasible to investigate each case in detail, it is good practice to keep track 389 

of the number of cases in which convergence was not achieved.   390 

We checked the maximum gradient component to ensure that a satisfactory convergence 393 

was reached. Except for the case of non-linear regression explained further below, each model 394 

we tested included individual random effects as in Eq. 2.7. Following Vincenzi et al. (2014b), we 395 

introduced year-of-birth cohort as fixed categorical effects to test whether its inclusion as 396 

predictor included model fitting to data for either population (  and  in Eq. 2.7). The model 397 

may not be always not statistically identifiable, in that can only sometimes be estimated 398 

(Shelton and Mangel 2012). Thus, we fitted separately models with or without cohort as 399 

predictors of ,  or both with  from 0 to 1 with a step of 0.1. We used the Akaike 400 

Information Criterion (Akaike 1974, Burnham and Anderson 2002) to select the best model. We 401 

then investigated correlation between the estimates of  and  at the individual level. We 402 

tested whether the inclusion of individual random effects for both  and  (thus increasing 403 

model complexity) increased model accuracy with respect to models that include individual 404 

random effects only for  (i.e. models in Shelton & Mangel 2012; Shelton et al. 2013). For the 405 

latter model, in Eq. 2.8 we thus fixed .  406 
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We tested whether vBGF models with random effects for both  and with different 407 

values of  predicted substantially different mean cohort-specific growth trajectories. In 408 

addition, we tested whether fitting non-linear least-squares regression with no random effects on 409 

cohort-specific data (using the nls function in R (R Development Core Team 2011)) leads to 410 

substantially different mean cohort-specific growth trajectories with respect to random-effect 411 

models.  412 

We tested the predictive ability of (a) the best overall vBGF model with individual variation 413 

for both  and  (where is the value of for the best model), as well as the models with (b) 414 

 and (c)  for both populations. We also tested the predictive ability of the best 415 

overall vBGF model with variation only for . For each population, we: (i) randomly sampled 416 

one third of fish that have been sampled more than 3 times throughout their lifetime (validation 417 

sample); (ii) deleted from the data set all observations except the first one from each individual 418 

fish in the validation sample;  (iii) estimated the parameters of the vBGF for each individual 419 

including those in the validation sample; and (iv) predicted the missing observations.  420 

We compared the predictions of the vBGF to the predictions given by the mean 421 

length-at-age of the cohort of the fish. We used MEA and R2

3 Results 425 

 with respect to the 1:1 line 422 

observed data vs. predicted data as measures of predictive ability. The predictive abilities of the 423 

vBGF models were tested using the same 10 random validation samples for each population.  424 

3.1 Simulated data 426 

Model fitting with simulated data showed that when growth trajectories had a negative 427 

correlation  between  and , the average correlation between  and  across replicates 428 

 tended to remain negative in the area below the 1:1 line in the plane and around zero 429 

or positive above the line (Fig. 3a). When growth trajectories were simulated starting from a 430 

positive ,  tended to remain close to 0 or slightly negative in the fitted models below the 1:1 431 

line and mostly positive above the line (Fig. 3c). When  was equal to 0, the empirical 432 

correlation between estimated and in the fitted models tended to be around 0 for the 433 
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majority of combinations of  and 
 
(Fig. 3b). Similar results were obtained when using 434 

different variances of the individual random effects (Fig. A3 and A4). 435 

The probability of convergence of the model fitting procedure varied across combinations of 436 

, , and . Although a clear pattern of probability of convergence did not emerge, the 437 

model-fitting algorithm converged for most of the combinations and replicates  (Fig. 3d-438 

f). The average of MAE across replicates was smaller than 2 mm (thus an almost perfect fit) in 439 

more than 90% of the combinations of  and . 440 

3.2 Case study 441 

Observed trajectories showed higher individual variation in growth and length at age in the 442 

marble trout population of Zakojska than in the brown trout population of Upper Volaja (Fig. 2).  443 

For the vBGF models without cohort as a predictor for either  and , the correlation 444 

between  and was function of  (Fig. 4), and tended to shift from a negative to a positive 445 

correlation with increasing values of for both populations. In this case, for the population of 446 

Upper Volaja the best model according to AIC had  = 0.6 (AIC = 23 855.4), while the model 447 

with  = 0 had lower AIC than the model with  = 1 (23 951.4 vs. 24 059.2). For the 448 

population of Zakojska the best model according to AIC had  = 0.3 (AIC = 17 387.8), while 449 

the model with  = 0 had lower AIC than the model with  = 1 (17 395.9 vs. 17 445.1). The 450 

joint distribution of and sign and strength of the correlation between  and  (Fig. 4) 451 

suggested maintenance of size ranks throughout fish lifetime for both Zakojska and Upper 452 

Volaja trout populations, with growth trajectories crossing on average after sexual maturity (Fig. 453 

1). Every model predicted the observed data to high accuracy (Zakojska: range of MAE = 7.1-8.5 454 

mm, range of R2 = 0.98-0.98; Upper Volaja: MAE = 3.7-5.0 mm, R2 = 0.97-0.98). Assuming a 455 

lifespan of 10 years (i.e. predicting 10 years of length-at-age for each fish), growth trajectories 456 

predicted using estimated parameters for models with different value of (and without cohort 457 

as predictor of either parameter) had similar mean age at crossing of growth trajectories and CV 458 

of length at age 10, but substantially different number of trajectories crossing throughout the 459 

lifetime of fish (Fig. 5). 460 
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For marble trout, the best model using AIC as model-selection criterion had cohort as 461 

predictor both in  and  and  = 0.3 (Table 2).  For brown trout, the best model had cohort 462 

as predictor for only  and  = 0.6. For both Zakojska and Upper Volaja populations, the 463 

models with individual random effects only in  performed far worse than the models with 464 

individual random effects for both parameters (Table 2). 465 

Cohort-specific models for marble trout and brown trout with cohort as predictor both in  466 

and  provided essentially the same mean trajectories when  was equal to 1 and when  467 

was the one giving the smallest AIC (i.e.  = 0.3 for Zakojska and  = 0.5 for Upper Volaja) 468 

(Fig. 6). Cohort-specific vBGF models with no random effects fitted with standard non-linear 469 

least-squares regression  predicted substantially greater length-at-age than random-effects 470 

models for the marble trout population of Zakojska, while provided the same mean cohort-471 

specific growth trajectories as the random-effects models for the brown trout population of 472 

Upper Volaja (Fig. 6).  473 

3.2.1 Prediction of unobserved length-at-age  474 

In the population of Upper Volaja and Zakojska, 132 and 63 fish were sampled more than 3 475 

times during their lifetime, respectively. The vBGF model with both k and  function of cohort, 476 

individual random effects, and = 1 provided consistently better prediction of the missing 477 

observations than models with = 0, giving the best AIC value for models with both k and 478 

 function of cohort, and than prediction based on mean length-at-age of the respective cohort 479 

(Table 3 and Figs. 7 and 8). The best model with individual variation only in  provided 480 

substantially worse predictions than the best model with individual variation for both  and .  481 

4 Discussion 482 

Our formulation of the von Bertalanffy growth function balances biological details of the 483 

growth process and model fitting, and thus provides a flexible and powerful framework for 484 

estimating and understanding the role of abiotic and biotic factors in determining organisms’ 485 

growth. This unification in achieved by an ecological – rather than purely statistical – focus that 486 
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considers growth in terms of the behavior–environment interaction. Adding complexity in the 487 

form of individual variability in both mechanistic parameters (k and ) of our formulation of the 488 

von Bertalanffy growth function increases model accuracy with respect to the model including 489 

individual variability only in k, i.e. the parameter summarizing physiological and behavioral 490 

traits that determine individual activity. We now discuss the results of our simulations, parameter 491 

estimation and model selection using two fish populations as a case study, and their implications 492 

for our understanding of the determinants of variation and for management and conservation.  493 

4.1 Relationship between  and the correlation between model parameters 494 

Our simulation showed that models with different values of parameter describing the 495 

interaction between the environment and the foraging characteristics of the species ( ) and 496 

variability in both the parameter of catabolism () and the parameter describing the 497 

environmental contribution to anabolism () are in general able to describe very similar growth 498 

trajectories. A clear pattern of probability of convergence of the model fitting procedure did not 499 

emerge from our simulations, but model fitting was successful in the vast majority of cases. This 500 

flexibility has to be ascribed to the many degrees of freedom of our formulation of the von 501 

Bertalanffy growth function with individual random effects. Furthermore, when simulating 502 

growth trajectories with negative or positive correlation between pairs of  and , the sign of 503 

the correlation tended to remain negative and positive, respectively, when fitting models with 504 

other values of . This pattern emerged only in the case of simulated data, since a clear change 505 

of sign of the correlation between pairs of  and was found when fitting the growth models 506 

to empirical data, as described below. This has to be ascribed to some unrealistic growth 507 

trajectories that are obtained when keeping the same variance for individual random effects for 508 

each value of used to generate the growth trajectories (Fig. A5).  509 

4.2 Case study 510 

4.2.1 Model selection, parameter estimates, and trade-off between accuracy and 511 

interpretability in growth models 512 

All models predicted the observed data very well, although there were small differences in 513 

performance among models for either population. However, when predicting growth trajectories 514 
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using the estimated model parameters for models with different values of , for either 515 

population the best model among those with no predictor for either model parameter was the one 516 

predicting the highest number of crossing growth trajectories. The mean absolute error was very 517 

low in each model, thus “realized” growth trajectories were almost perfectly predicted by each 518 

model. It follows that the differences in predicted growth trajectories should be mostly ascribed 519 

to differences in prediction of growth trajectories for fish that have been sampled one or a few 520 

times early in life, i.e. the best model predicted that size ranks for the growth trajectories that 521 

were not “realized” due to early mortality were less maintained (i.e. more trajectories crossing) 522 

with respect to the other models. 523 

Accuracy describes the ability of a model to explain observed data and make correct 524 

predictions, while interpretability concerns to what degree the model allows for understanding 525 

processes. Often a trade-off exists between accuracy and interpretability; more complex models 526 

are usually opaque, while more interpretable models often do not provide the same accuracy or 527 

predictive power of more complex models (Breiman 2001). McCullagh & Nelder (1989) wrote: 528 

“Data will often point with almost equal emphasis on several possible models, and it is important 529 

that the statistician recognize and accept this.” (quoted in Breiman (2001)).  However, different 530 

models may give different insights on the relation between the predictors (model parameters and 531 

their predictors) and response variables (length-at-age), and how to determine which model most 532 

accurately reflects the data remains a challenge. One way is to use model selection procedures 533 

that trade off goodness-of-fit (the likelihood) and model complexity (number of parameters) to 534 

select for the best model (Burnham and Anderson 2002, Johnson and Omland 2004). In our 535 

work, the AIC analysis showed for either population that models with individual random effects 536 

for both parameters performed substantially better than models with individual random effects 537 

only for . Thus, increasing the complexity of the model by allowing individual variation in 538 

both parameters increased the accuracy of the growth models. 539 

The best model for the marble trout population of Zakojska included cohort as a categorical 540 

predictor for both and , while for the brown trout population of Upper Idrijca the best model 541 

included cohort as predictor of . That means that parameter values as well as the resulting 542 

predicted growth trajectories of fish seem to be more similar to those of fish in the same cohort 543 

than to those of the population as a whole.  544 
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The prediction of mean cohort-specific growth trajectories using models with or without 545 

random effects showed different results for the populations of Upper Volaja and Zakojska. For 546 

the brown trout population of Upper Volaja, cohort-specific models with no random effects (i.e. 547 

estimated using the nls function in R) and random-effects models with cohort as predictor of 548 

both  and with either  or that of the best model provided essentially the same 549 

prediction of mean cohort-specific growth trajectories. On the other hand, for the marble trout 550 

population of Zakojska the random-effects models provided essentially the same predictions of 551 

mean cohort-specific growth trajectories, while the cohort-specific models with no random 552 

effects tended to predict substantially higher length-at-age for fish older than 4 years old. This 553 

occurred because there was higher variation in length-at-age in Zakojska than in Upper Volaja 554 

and some big fish tended to have a longer lifespan in Zakojska, thus growth trajectories tended to 555 

be “pulled up” by the big, older individuals. This result supports the use growth models with 556 

individual random effects, in particular when there is substantial variability in both growth rates 557 

and size-at-age of individuals living in the same population. However, in both populations the 558 

random-effects models provided essentially the same predictions of mean cohort-specific growth 559 

trajectories. 560 

4.2.2 Biological interpretation of the selected growth models and parameter estimates 561 

Across taxa, climatic vagaries during the first stages of life have the potential to influence 562 

the mean growth trajectories of cohorts, as well as other life histories. Empirical evidence of 563 

early induced effects on later growth rate, life-history traits and behavior of organisms is quite 564 

recent (Danchin and Wagner 2010, Salvanes et al. 2013, Ait Youcef et al. 2015). Jonsson and 565 

Jonsson (2014) recently discussed how conditions fish encounter early in their life cycle could 566 

leave lasting effects on morphology, growth rate, life-history and behavioral traits. Vincenzi et 567 

al. (2014a,b) found that other processes may be potentially responsible for variability of mean 568 

growth trajectories of cohorts, such as high variance in reproductive success combined with 569 

either high heritability of growth or heterogeneity in site profitability accompanied by limited 570 

movement. High heritability of growth (Carlson and Seamons 2008), maternal decisions on the 571 

timing and location of spawning (Letcher et al. 2011), dominance established early in life 572 

(Gilmour et al. 2005) are all processes that may in combination or by themselves explain the 573 

maintenance of size ranks throughout fish lifetime.  574 
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Trade-offs between growth and survival have been found across species and taxa (Pauly 575 

1980) as well as at the individual level within populations at the early life-stages (Biro and Post 576 

2008, Woodson et al. 2013). Given the similarity in growth of fish in the same cohort, we may 577 

hypothesize cohort effects also in survival, either in the direction of higher mortality for faster-578 

growing cohorts due to trade-offs between growth and survival, or of higher survival for faster-579 

growing cohorts when faster growth is a signal of higher quality of individuals.   580 

The biological interpretation of model parameters is easier when only the individual random 581 

effects (and not cohort) are included as predictors. In this case, for both populations the model 582 

with  = 0 performed substantially better than the model with  = 1. This result, along with 583 

the strong negative empirical correlation between estimates of  and when , suggests 584 

that size ranks are largely maintained throughout marble and brown trout lifetime, crossing of 585 

growth trajectories mostly occurs after sexual maturity, and that more aggressive/active fish are 586 

on average growing slower than those less aggressive/active.  587 

One hypothesis is that both trout populations live in an environment in which resource 588 

acquisition depends less on intrinsic behavioral traits and more on habitat, and thus more active 589 

individuals are expending more energy than less active individuals without acquiring more 590 

resources. Support for this hypothesis comes from the mean bigger size-at-age found in both 591 

Upper Volaja and Zakojska for trout living in the uppermost part of the streams, as more food – 592 

in particular invertebrate drift - is available there. 593 

As for growth trajectories crossing mostly after sexual maturity, one potential explanation is 594 

sex-specific energetic investment in reproduction, with females allocating more energy to 595 

reproduction than growth with respect to males.  596 

4.2.3 Predicting unobserved data 597 

The variation in growth and size that characterizes organisms can almost always be modeled 598 

retrospectively. However, the limited number of attempts at predicting missing size observations 599 

or unobserved growth trajectories may also depend on the intrinsic unpredictability of some 600 

growth curves, for which it may be impossible to accurately predict later portions of the growth 601 

trajectory when only a few observations early in life are available (e.g. ocean growth of 602 

anadromous salmonids when only a few observations relative to the freshwater phase are 603 
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available) (Norton et al. 1976). The vBGF models with cohort as predictor of both  and , 604 

and , 1, or of the best overall model ( ) provided good predictions of unobserved 605 

growth trajectories for both the marble and brown trout populations, and except for one case (606 

for Zakojska) the predictions were consistently better than predictions of the best model 607 

with individual variability only for  and of predictions based on the mean length-at-age of the 608 

fish cohort. However, neither for the marble trout population of Zakojska nor for the brown 609 

population of Upper Idrijca, the best model selected according to AIC provided the best 610 

prediction of unobserved growth trajectories. Although the best model did not formally overfit, 611 

the additional flexibility provided by a value of not equal to 0 or 1 did not translate in more 612 

accurate predictions of unobserved growth trajectories.  613 

4.3 Conclusions and implications for management 614 

The purpose of a scientific investigation should drive model formulation and the type and 615 

amount of data collected. Random-effects models and powerful software and routines allow the 616 

fitting of complex models, but often complexity comes at the cost of interpretability of model 617 

parameters. Our work shows that adding additional complexity to the von Bertalanffy growth 618 

function (e.g. cohort as predictor of vBGF’s parameters, variability in both  and ) may offer 619 

substantial advantages in terms of understanding of the determinants of growth patterns and 620 

predicting or estimating the future or unobserved size-at-age of individuals. When using the 621 

model formulation that we propose in this paper and for ease of interpretation of model 622 

parameters, we recommend limiting model selection to models with  (vBGF as formulated 623 

by von Bertalanffy, in which asymptotic size is an explicit function of the growth coefficient) or 624 

 (vBGF as commonly fitted, in which asymptotic size is independent of the growth 625 

coefficient). In those two cases, model selection may give clearer insights on processes leading 626 

to individual and group variation in growth while providing accurate predictions of unobserved 627 

or future size-at-age data and growth trajectories. Further insights on the processes leading to 628 

variation in growth would come from combining parameter estimation and model selection with 629 

estimates of metabolic rates, patchiness of resources, movement of fish and costs of 630 

reproduction. Further investigation on these trade-offs are needed using other growth models and 631 

other species. 632 
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By furthering our understanding of variation in life-history processes that depend on, or 633 

correlate with, growth processes, our modeling approach has relevant implications for more 634 

applied contexts. For instance, our results support the hypothesis that both trout populations live 635 

in an environment in which resource acquisition depends more on habitat selection than on 636 

intrinsic behavioral traits (although, especially early in life, intrinsic difference in behavioral 637 

traits contributes to habitat selection). The hypothesis is also supported by the consistently bigger 638 

size-at-age of fish occupying the uppermost part of the Western Slovenian streams in which 639 

other marble trout populations live – where a larger portion of stream drift is available since no 640 

fish are present upstream - than of those fish living further downstream (Vincenzi et al. 2010, 641 

2014b, 2015). Trout are typically stationary feeders that hold relatively fixed positions from 642 

which they make short forays to feed; according to our model-selection results, habitat choice or 643 

chance (such as being born more upstream, especially when natural barriers reduce or impair 644 

upstream movement) are critical for growth and fitness of the individual. Riverscapes are highly 645 

spatially heterogeneous and the effects of habitat type and quality on individual fitness may be 646 

strongest and best explained at the microhabitat spatial scale (Fausch 1984). The importance of 647 

habitat selection may thus suggest the use of spatially explicit models for studying the population 648 

dynamics of the two species, as well as for predicting the evolution of growth and other life-649 

history traits (Ayllón et al. 2015).  650 

 Estimates of growth are also fundamental to any assessment of population demographics 651 

and population dynamics for management. For instance, age-structured stock assessment 652 

methods are based on size-at-age that is often derived from parameters of the von Bertalanffy 653 

growth model for that species (Katsanevakis and Maravelias 2008). We have shown that for the 654 

salmonid populations that we used as a model system, our model allows one to use a single 655 

measurement early in the life of individual fish (or, equivalently, a set of measurements from a 656 

cohort) to obtain accurate predictions of lifetime individual or cohort size-at-age.  657 
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individuals), , (mean across all individuals). 862 

Figure A2. Growth trajectories with , = 300 mm (mean across all 863 

individuals), , (mean across all individuals). 864 

Figure A3. Results of reciprocal fitting with = 300 mm, , , 865 

, , M = 0.8, and correlation  between and equal to -0.9. 866 

Figure A4. Results of reciprocal fitting with = 300 mm, , , 867 

, , M = 0.8, and correlation  between and equal to -0.9. 868 

Figure A5. Examples of growth trajectories simulated with , = 300 mm, 869 

, , , , M = 0.8, and correlations  870 

between and equal to -0.9, 0, 0.9. 871 

Text A1. Description of trade-offs between data requirements, model accuracy, and 872 

biological interpretability of parameters in the Dynamic Energy Budget (DEB) growth model 873 

and in the logistic growth model. 874 
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Table 1. Model parameters, model assumptions, and data-generating parameter values or 878 

their empirical estimates/relationship. 879 

  880 

Parameter Description 

L∞  Asymptotic length reached in the limit of infinite time 

k Coefficient of catabolism or vB growth coefficient 

t Age at which length is 0 0 

q Coefficient of anabolism 

 Parameter describing the environmental contribution to anabolism  

 
Parameter bounded between 0 and 1 describing the interaction between 

the environment and the foraging characteristics of the species 

 and  
Population-level parameters in the linear models for log(k) and log ( ) 

 and   
Group-level parameters in the linear models for log(k) and log ( ) 

u and v  

Standardized individual random effects in the linear models for log(k) and 

log ( ) 

uσ and vσ  
Standard deviations of the statistical distributions of the random effects in 

the linear models for log(k) and log ( ) 

Model assumptions  

q
L

k∞ =  
Asymptotic size emerges from the relationship between the coefficients of 

anabolism and catabolism  

 

The coefficient of anabolism  depends on environmental (represented 

by ) versus behavioral (represented by) factors, whose respective 

importance is modulated by the value of the parameter   

Estimated/data-generating 

parameter values and relationship 

between parameter values 

 

 Data-generating  

 
Data-generating Pearson’s correlation between individual-level pairs of  

and  

 Fixed value of when fitting length-at-age data 

 Empirical correlation between estimated pairs of  and  
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 881 

Table 2. The ten best von Bertalanffy growth models according to AIC for the marble trout 882 

population of Zakojska and the brown trout population of Upper Volaja. Parameters included in 883 

the model column are those that are a function of cohort. npar is the number of model 884 

parameters; AIC = Akaike Information Criterion. The last row reports the best models when 885 

individual random effects are included only for . 886 

 887 

Zakojska Upper Volaja  

Model        AIC npar Model  AIC npar 

 0.3 17 105 29  0.6 23 269 19 

 0.4 17 106 29  0.5 23 277 31 

 0.2 17 112 29  0.6 23 283 31 

 0.1 17 123 29  0.5 23 303 19 

 0.5 17 127 29  0.3 23 328 31 

 0 17 132 29  0.2 23 338 31 

 0.4 17 137 20  0.4 23 346 31 

 0.3 17 144 20  0.4 23 348 19 

 0.6 17 153 29  0 23 350 31 

 0.2 17 159 20  0.7 23 363 31 

 0.4 17 831 27  0.6 24 977 27 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

 888 

Table 3. Mean ± sd of R2 and mean absolute error (MAE, mm) of predictions of validation data for 10 random validation samples 889 

as provided by (a) the vBGF model with variation for both for both k and  (vBGF (k i ,γ i)) including cohort as predictor for both k and 890 

 with = 0, 1, and  of the best model according to AIC (= 0.5 for Upper Volaja and = 0.3 for Zakojska), (b) the vBGF model 891 

with variation for only k (vBGF (k i)) including cohort as predictor for both k and  with  of the best model according to AIC (= 892 

0.6 for Upper Volaja and = 0.4 for Zakojska). We also report mean ± sd of R2 

895 

and MAE of predictions with mean length-at-age of the 893 

respective cohorts (Cohort). 894 

 vBGF (k i , γ i

 

) vBGF (k i

 

) Cohort 

Population 
     

 R MAE 2 R MAE 2 R MAE 2 R MAE 2 R MAE 2 

Zakojska 
0.61±0.22 32.0±13.0 0.54±0.22 35.1±12.3 0.52±0.16 36.3±9.5 0.44±0.07 38.2±5.46 0.52±0.09 36±5.1 

U Volaja 
0.57±0.21 15±3.4 0.56±0.2 15.2±3.3 0.55±0.21 15.2±4.2 0.47±0.09 17.2±1.23 0.51±0.2 16±2.9 
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Figure captions 896 

 897 

Figure 1.  898 

Panel (a) Mean age at growth trajectories crossing, number of trajectories crossing divided 899 

by the total number of individuals (Norm traj crossing), and coefficient of variation of length at 900 

age 10 (CV of length) for von Bertalanffy growth models as in Eqs. 2.7 and 2.8 with different 901 

values of  and Pearson’s correlation between pairs of and . Panels in the same column 902 

are for models with the same correlation between pairs of and . For all models, individuals 903 

have the same asymptotic length= 300 mm, y,  y-1, , 904 

. Vertical segments are standard deviations over 10 replicates with random drawing 905 

of individual random effects to simulate individual growth trajectories. 906 

Panel (b) Ten growth trajectories simulated with the model in Eq. 2.8 and the same 907 

parameter estimates as in panel (a). From left to right column, correlation between and 908 

equal to -1, 1, ~0. From top to bottom row, equal to 0, 0.5, 1. 909 

Figure 2. Frequency of sampling events per individual and empirical growth trajectories for 910 

the populations of Upper Volaja (brown trout) and Zakojska (marble trout). 911 

Figure 3. Panels (a-c): average Pearson’s correlation  between and across 912 

replicates that successfully converged when fitting von Bertalanffy growth models as in Eqs. 2.7 913 

and 2.8 with on growth trajectories simulated with , = 300 mm, , 914 

, , , mortality rate M = 0.8, and correlation  between 915 

and equal to -0.9 (panels a,d), 0 (b,e), 0.9 (c,f). Panels (d-f): Number of replicates F that 916 

did not converge for every combination of and out of the 10 replicates. Plots for 917 

 and  are provided in Supplementary Material (Figures A3 and 918 

A4). 919 
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Figure 4. Correlation (Pearson’s r) between estimates of and  for different values of 920 

 for the von Bertalanffy growth model with no predictors other than individual random effects 921 

for either  and  for Zakojska (gray) and Upper Volaja (black). Vertical segments are 95% 922 

confidence intervals of r. The best model with no predictors other than individual random effects 923 

according to AIC for Upper Volaja and Zakojska had  and , respectively. 924 

Figure 5. Mean age at crossing of growth trajectories, total number of trajectories crossing 925 

divided by the total number of individuals in the population (1649 for Upper Volaja and 1147 for 926 

Zakojska), and coefficient of variation of length at age 10 for von Bertalanffy growth models 927 

(with no predictors except individual random effects for either model parameter) with model 928 

parameters estimated for values of  from 0 to 1 with step 0.1. All growth trajectories of 929 

unique individuals were predicted for a theoretical lifespan of 10 years according to the 930 

estimated model parameters at the individual level. Vertical lines identify the best model 931 

according to AIC for models with no predictors for either parameter. 932 

Figure 6. Cohort-specific growth trajectories for the trout populations of Zakojska (panel a, 933 

Cohort 1999; b, C01) and Upper Volaja (panel c, C08; d, CO7). Dashed line: prediction of model 934 

with no random effects fitted on cohort data with non-linear least square regression. Dash-dot 935 

line: Cohort-specific model with cohort as predictor for both  and  with  and  936 

(best models) for Zakojska and Upper Volaja, respectively. Solid line: Cohort-specific model 937 

with cohort as predictor for both  and  with . 938 

Figure 7.  Example of prediction of validation data for the marble trout population of 939 

Zakojska with the von Bertalanffy growth model with cohort as predictor of  and and 940 

(panel a), (b, best model),  (c). Panel (d) reports the prediction of validation data 941 

using mean length-at-age for the cohort of the individual whose growth is predicted.   942 

Figure 8. Example of prediction of validation data for the brown trout population of Upper 943 

Volaja with the von Bertalanffy growth model with cohort as predictor of  and  and 944 

(panel a),  (b, best model),  (c). Panel (d) reports the prediction of validation data 945 

using mean length-at-age for the cohort of the individual whose growth is predicted.   946 
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Figure 1 948 
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    a) 950 
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Figure 2 959 
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Figure 3 973 
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