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Abstract: 

The study introduces a new quantitative precipitation estimation (QPE) algorithm from 

Advanced Baseline Imager (ABI) observations from GOES-16 across the CONUS. It is 

developed and comprehensively evaluated using the Ground Validation Multi-Radar/Multi-

Sensor (GV-MRMS) system as a benchmark, and features Random Forest (RF) machine 

learning-based QPE. The key innovations of the algorithm include a comprehensive set of 

satellite predictors derived from five infrared ABI channels, complemented by low-level 

environmental conditions from RAP Numerical Weather Prediction (NWP) model, and outputs 

of probability of precipitation type for seamless integration of varying precipitation rates across 

types. A systematic analysis of the predictors is performed. The analysis reveals that satellite 

predictors contribute more to high-intensity precipitation estimates, whereas environmental 

predictors primarily condition low-intensity precipitation. Combining both categories of 

predictors improve scores (correlation coefficient, CC=0.41) overall, with the greatest 

improvement in the Warm Stratiform precipitation type. Introducing precipitation type 

information through probabilities further improves correlation (0.46). An inter-comparison of 

the RF model with the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) shows 

that RF has better detection and quantification scores than SCaMPR (Heidke Skill Score, 

HSS=0.91 vs. 0.19; CC=0.44 vs. 0.26). Both retrievals display similar performance patterns 

across different regions of the CONUS. For example, skill degrades in complex terrain. 

Precipitation processes in complex terrain and their variability may not be well captured, 

especially with the degraded ABI resolution in the Western CONUS. It is recommended to 

complement the 11.2μm legacy channel with at least the 6.2μm channel for global precipitation 

retrievals using GEO sensors. 

 

Keywords: GOES-16, Numerical Weather Prediction, Precipitation, Machine Learning, 

Classification, Geostationary Satellites  
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1. Introduction:  

Precipitation is highly variable in space and time, and its estimation at fine scale and 

with low latency is pivotal for advancing our understanding of precipitation formation and 

evolution. As extreme rainfall events intensify under a changing climate (IPCC, 2021; Fowler 

et al., 2021), precipitation-related disasters such as flash floods have aggravated societal and 

economic consequences. Fine-scale and timely observations are needed to monitor rapidly-

evolving high-impact precipitation, extract critical information from rapidly developing 

storms, and provide improved forecasts which can increase warning lead time for the associated 

hazards. As many regions around the world lack sufficiently dense surface-based observation 

networks, global observations from satellites are a highly attractive alternative (van Emmerik 

et al., 2015). Satellites in low-Earth orbit (LEO) offer global coverage but not frequently 

enough to capture the rapidly-evolving features of hazardous precipitation. Geostationary 

satellite (GEO) sensors have been used for decades to retrieve precipitation at sub-hourly time 

scales and at lower latency than other space-based precipitation products used for near-real 

time applications. For example, the Integrated Multisatellite Retrievals for GPM-Early 

(IMERG-E; Huffman et al. 2015) combines multiple satellite sensors but has a latency of 

around 4 hours. On the other hand, the NOAA’s operational GOES-16/17 Self-Calibrating 

Multivariate Precipitation Retrieval (SCaMPR; Kuligowski 2002; Kuligowski et al., 2016) has 

a latency lower than 5 min, making it suitable for monitoring and forecasting fast-paced 

hydrologic processes such as flash floods. However, because challenges exist due to the 

indirectness of the relationship between cloud top observations from GEO sensors and surface 

precipitation (e.g., Kirstetter et al., 2018) further developments are required to advance GEO 

satellite precipitation estimates. While GEO sensors are critical for precipitation science and 

applications, the information content in IR observations may remain not well understood and 

is probably underutilized. Progress can be made by investigating the IR information content 

and by quantifying its benefit in terms of QPE accuracy.  

Significant advances in satellite and sensor technology have led to the development of 

new-generation GEO sensors with improved spatial, temporal, and spectral information. The 

latest GEO satellite sensors such as the Advanced Baseline Imager (ABI) onboard the GOES-

R satellites, the Advanced Meteorological Imager (AMI) onboard GEO-KOMPSAT-2A, and 

the Advanced Himawari Imager (AHI) onboard Himawari-8/9, capture observations at 0.5-

2km spatial resolution every 10min or less across 16 spectral channels. Compared to the five 

channels on the previous GOES imager, the additional spectral information from the ABI 

improves the capability to detect very thin cirrus clouds, discriminate snow cover from clouds, 
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estimate cloud particle size and phase, and detect and track low- and mid-tropospheric water 

vapor (Schmit et al., 2005). Over the last few decades, several indices have been derived from 

one or several channels to identify cloud properties and precipitation microphysics. Recently, 

increased efforts have focused on effectively utilizing this big data at high spatial, temporal, 

and spectral resolution along with physical information for improving quantitative precipitation 

estimation (QPE) from space (Hirose et al., 2019; Kuligowski et al., 2016; Kirstetter et al., 

2018; Lazri et al., 2020; Ouallouche et al., 2018). 

As an example, Hirose et al. (2019) developed a QPE algorithm for the AHI sensor 

onboard the Himawari-8 satellite that uses Brightness Temperatures (BT) from 9 Infrared (IR) 

channels and combinations of Brightness Temperature Differences (BTD) as predictors. BTDs 

have been one of the earliest indices that combine information from two channels, and have 

been widely used for precipitation detection, classification, and quantification (Ba and Gruber, 

2001; Kuligowski et al., 2016; Tjemkes et al., 1997; Upadhyaya and Ramsankaran, 2014, 

2016). Min et al. (2018) also developed a similar algorithm for AHI by using additional 

information from the Global Forecast System (GFS) and surface elevation as environmental 

predictors. Recently, Ouallouche et al. (2018) and Lazri et al. (2020) developed a separate day 

and night-time QPE for SEVIRI (Spinning Enhanced Visible and Infrared Imager, onboard the 

MSG (Meteosat Second Generation) satellite. In addition to BTs and BTDs, spatial predictors 

such as the 10.8μm BT mean and variance across 5 x 5 grids were used along with a temporal 

predictor computed as the 10.8μm BT difference between two consecutive 15-min SEVIRI 

observations. For daytime, the retrieval used Visible (VIS) channels, whereas only IR channels 

are used for nighttime. Meyer et al. (2017) specifically focused on the significance of 

textural/spatial predictors on QPE from SEVIRI. With ABI, recent work on precipitation 

quantification involved the advanced machine learning (ML) techniques such as Deep Neural 

Networks (Tao et al., 2018) and Convolutional Neural Networks (Sadeghi et al., 2019), yet 

these studies used only two out of the 16 ABI channels. All of the above studies utilised one or 

a combination of ML techniques such as Random Forest, Artificial Neural Networks, Support 

Vector Machines, Deep Neural Networks and Convolutional Neural Networks. Meyer et al. 

(2016) evaluated some of the commonly used ML techniques and concluded that no single 

technique overperformed compared to the others. They recommended focusing further research 

on developing suitable predictors. In contrast with the above studies, Upadhyaya et al. (2021a, 

b) examined a large number of predictors (260) compared to using only infrared channels from 

ABI onboard GOES-16 to systematically analyse the detection of precipitation occurrence and 

types. The studies showed the significance of (1) deriving new satellite-based predictors and 
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(2) combining satellite information with Numerical Weather Prediction (NWP) model based 

environmental predictors.  

The overarching goal of this study is to develop a low latency precipitation retrieval 

that provides “explainable QPE” for GOES-16 satellite observations across CONUS. 

Predictors discussed in Upadhyaya et al. (2021a, b) for precipitation typology are evaluated for 

precipitation quantification using precipitation type probabilities and the Random Forest (RF) 

ML technique. The QPE is designed to estimate instantaneous precipitation rates every 10 min 

(which is the temporal resolution of ABI full-disk imagery) at the full spatial resolution of the 

ABI infrared channels.  

It is evaluated by comparing the retrievals to an external reference to assess the overall 

QPE accuracy, and also to the operational SCaMPR product to establish a baseline comparison 

with the state-of-the-art. Both SCaMPR and the retrievals developed in this study are designed 

at the ABI spatial-temporal resolution and use the same five ABI infrared channels; in this 

sense, the primary GEO information content is the same for both retrievals. The twofold 

comparison aims at depicting the opportunities and the challenges on the way to improving 

GEO precipitation estimation, specifically how much can be gained by deriving additional 

predictors from the same data, and the benefit of combining more model-predicted parameters 

than SCaMPR.  

 It is crucial to analyse and report the progress obtained with the new generation GEO 

QPEs for identified challenges such as: 

(1) the impact of precipitation types on quantification (Upadhyaya et al., 2020);  

(2) the impact of degraded ABI spatial resolution at higher zenith angle (Yu et al., 2008) 

on QPE; 

(3) QPE in traditionally challenging regions such as complex terrain (Kuligowski 2011; 

Upadhyaya and Ramsankaran, 2018), and coastal areas (Nieman et al., 2004; Zou et al., 

2011).  

A detailed evaluation of QPE performance is expected to benefit precipitation science 

and users for precipitation applications, as well as provide guidance to algorithm developers 

for further algorithm improvement. Therefore, a comprehensive evaluation of QPE is 

performed across different climate regions, surfaces (ocean, coast, land) and regions 

(complex/flat terrain).  

Following the Introduction, Section 2 of this paper describes the data sets and their 

processing, outlines the RF model, and introduces the evaluation scores for performance 
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assessment. Section 3 describes the results from various designed experiments. It is followed 

by concluding remarks in Section 4. 

 

2. Data and Methods 

2.1. Satellite and Environmental Predictors 

Conventionally, most global operational precipitation algorithms such MERG, Global 

Satellite Mapping of Precipitation (GSMaP; Aonashi et al. 2009), the Climate Prediction 

Center morphing algorithm (CMORPH; Joyce et al. 2004), and Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System 

(PERSIANN-CCS; Hong et al. 2004) utilize the 11.2 μm channel that is available globally from 

the Climate Prediction Center (CPC) at the National Oceanic and Atmospheric Administration 

(NOAA) National Weather Service (Janowiak et al. 2001). However, in the new era of GEO 

sensors, more channels are available and have been shown to provide additional information 

on precipitation (Hirose et al., 2019; Tao et al., 2018; Upadhyaya et al., 2021a, b).  

The categories of predictors used in this study are listed in Table 1A. In total, seven 

categories of predictors are used: the first four consist of satellite predictors derived from the 

BT fields of five ABI IR channels at wavelengths 6.2μm (referred as T6.2), 7.3μm, 8.5μm, 11.2 

μm, and 12.3μm; the fifth is the ABI zenith angle; the sixth consists of environmental predictors 

derived from the zero-hour analysis of the Rapid Refresh model (RAP; Benjamin et al., 2016); 

and the seventh category is MRMS precipitation type probabilities . Table 1A also provides an 

example for each category of satellite predictor along with its acronyms and Table 1B lists all 

of the environmental predictors. The number and significance of the predictors in each category 

discussed below.   

 

Table 1. A. Categories of predictors used in this study. B. The Environmental predictors are 

further detailed in section B of the table. 

Category Predictor Type  

A. Predictors Category (Acronym: Example) 

I Brightness temperature (BT: T6.2*) 

II Brightness temperature difference (BTD: T8.5 – T11.2) 

III Difference of BTDs (D-BTD: (T6.2 – T7.3) – (T8.5 – T11.2)) 
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IV GLCM textures: mean, variance, homogeneity, contrast, and entropy 

(Te: T11.2 mean) 

V Satellite zenith angle (Ze) 

VI Environmental predictors (NWP: Listed below) 

VII Precipitation type classification probabilities from MRMS 

B. Environmental Predictors 

VI:1 Vertically integrated precipitable water (PWV) (kg/m2) 

VI:2 1000-700-hPa mean relative humidity (%) 

VI:3–6 Relative humidity (%) at 900, 850, 700 and 500 hPa 

VI:7 Surface equivalent potential temperature (K) 

VI:8 Surface-based convective available potential energy (CAPE) (J/kg) 

VI:9 Surface temperature (C) 

VI:10–12 Temperature (K) at 850, 700 and 500 hPa 

VI:13 Height of 0C isotherm (km) 

VI:14 – 16 Wind shear (m/s) between the surface and 850 hPa, 700 hPa and 

500 hPa  

VI:17– 18 Lapse rate (K/km) at 850-500-hPa and 850-700-hPa 

VI:19 Wet bulb temperature 

*T6.2 is read as the brightness temperature of ABI channel 6.2μm; the bold rows in environmental predictors 

are derived from RAP output fields and other predictors are directly available from RAP output. 

 

The first predictor category is BTs sampled at all five channels that are available during 

both day and night (5 BTs). Following Kuligowski et al. (2016), these IR observations are 

parallax-adjusted. T11.2 provides cloud top brightness temperature that is a proxy indicator for 

cloud top height (Ba and Gruber, 2001). The water vapor (WV) absorption channels (T6.2 and 

T7.3) are sensitive to different levels of tropospheric WV (upper and lower, respectively for 
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cloud-free regions). Other IR window channels (T8.5 and T12.3) display slightly greater 

absorption due to WV than T11.2 and are commonly known as “dirty” IR bands. Note that, 

following the design of several operational products such as PERSIANN-CCS and SCaMPR, 

the scope of this study is limited to only IR channels to maintain consistency across day/night 

retrievals. GEO VIS and Short-Wave IR (SWIR) channels will be considered in future analyses 

to more fully exploit GEO observations.  

The second category of predictors consists of BTDs of all channel combinations (10 BTD 

predictors). The difference between two channels highlights cloud and precipitation properties 

unavailable from single channels. For example, the difference between T6.2 – T7.3 is used to 

separate low-level clouds from high-level clouds (Giannakos and Feidas, 2013; Kuligowski, 

2011), and the T6.2 – T11.2 difference is commonly used to separate thin cirrus clouds from 

overshooting cloud tops (Upadhyaya et al., 2014, 2016; Ouallouche et al., 2018).  

The third category of predictor is the difference of BTDs (D-BTD: 25 predictors). The 

difference between T8.4 – T11.2 and T11.2–T12.3 is used to identify cloud phase (So and Shin, 

2018). Upadhyaya et al. (2021a, b) demonstrated the significance of additional D-BTDs 

combinations in detecting precipitation occurrence and convective precipitation.  

The fourth category consists of texture predictors, which encode spatial information as an 

index. Texture indices, namely mean, variance, homogeneity, contrast, and entropy, are derived 

using the Grey Level Co-occurrence Matrix (GLCM; Haralick et al., 1973) for all possible 

combinations of BTs, BTDs and D-BTDs across 5 x 5 grids of ABI images. These texture 

predictors contribute the greatest number of predictors of any category (200 total). T11.2 spatial 

textures have long been recognised for detecting precipitation (Adler and Negri, 1988; Ba and 

Gruber, 2001; Hsu et al., 1997). Upadhyaya et al. (2021a, b) showed for the first time that 

spatial textures derived from BTDs and D-BTDs contribute considerably to identifying 

precipitation types. In this study, their relevance for quantification is evaluated.  

The fifth and last category in the satellite predictors is the satellite zenith angle, which 

accounts for the varying spatial resolution of the ABI sensor which is around 2 km on the East 

Coast to 3-4km in Central CONUS, and around 12-16 km on the West Coast, and also accounts 

for the effects of limb darkening; i.e., increased attenuation of radiation as the length of the 

path increases with satellite zenith angle. Thus, a total of 241 satellite predictors are used for 

QPE. 

Environmental predictors from NWP models complement the cloud-top information from 

GEO satellite sensors by providing low level environmental conditions that contribute to 

improving precipitation detection and quantification. The environmental predictors listed in 
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second part of Table 1 (19 predictors) include the vertically integrated precipitable water, 

surface temperature, wet bulb temperature, surface-based Convective Available Potential 

Energy (CAPE), height of the 0℃ isotherm, air temperature, relative humidity, lapse rate and 

wind shear at different levels of atmosphere. In the preceding study on precipitation detection 

and classification (Upadhyaya et al., 2021a, b), it is found that atmospheric moisture content 

predictors such as relative humidity and precipitable water have the highest contribution in 

detecting stratiform types, while predictors such as lapse-rate and CAPE consistently have the 

highest contribution for convective precipitation.  

The last category of predictors used to develop the quantification model includes 

probabilities of precipitation types (listed later in this section) that are predicted by the 

classification model (Upadhyaya et al., 2021a, b). Upadhyaya et al. (2021a) showed the value 

of probabilistic classification over deterministic separation of precipitation types. The 

probabilistic classification accounts for the under constrained information coming from cloud-

top satellite observations and transition challenges from one type to another (e.g. non-uniform 

beam filling: NUBF reported in Kirstetter et al., 2012, and Upadhyaya et al., 2020). The full 

information content provided by precipitation type probabilities is thus more suitable than a 

deterministic classification.  

  The approach explored in this study differs from the commonly used two-step approach 

of classifying precipitation types first before quantifying precipitation for each type separately 

(e.g., Kuligowski et al., 2016; Hirose et al., 2019; Ouallouche et al., 2018). The model 

developed herein seamlessly accounts for the varying relationships between passive satellite 

sensor observations and surface precipitation of different types through probabilities of 

precipitation types. Hereafter, the impact of developing different models for each type is 

contrasted with incorporating classification probabilities into a single model. 

 

2.2. Precipitation products: Ground Validation-Multi-Radar/Multi-Sensor (GV-MRMS) and 

SCaMPR  

In this study, the Ground Validation-Multi-Radar/Multi-Sensor (GV-MRMS) product 

is used to develop and train the QPE model. GV-MRMS is the surface reference precipitation 

developed by Kirstetter et al. (2012; 2014; 2018) using MRMS (Zhang et al., 2016) to support 

the Global Precipitation Measurement mission for ground validation of satellite sensors and 

combined precipitation products across CONUS. GV-MRMS maximizes the accuracy of 

combined radar-gauge surface precipitation estimates through adjustments and conservative 

quality and quantity controls. The GV-MRMS precipitation types are used to train satellite-
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based probabilistic precipitation type estimates (Upadhyaya et al., 2021a, b) and to evaluate 

satellite-derived QPE across different GV-MRMS detected precipitation types. Seven 

precipitation types from GV-MRMS are: Hail, Convective (Conv), Tropical Convective/Mix 

(Trp_ConvMix), Tropical StratiformMix (Trp_StratMix), Warm Stratiform (WarmStart), Cool 

Stratiform (CoolStrat) and Snow.  

This study is carried out across the CONUS for the period of summer 2018 (June 

through September). Note the snow precipitation type is not considered given the low sample 

size across the summer season. GV-MRMS products are spatially aggregated to match the 

spatial resolution of ABI and are temporally aggregated to a scale of 30 min to mitigate 

uncertainty due to temporal matching and to the indirect link between cloud-top observations 

and precipitation processes. Regarding precipitation type, the aggregated product represents 

the highest proportion of occurrence of precipitation type within the considered space-time 

window. Conservative quality controls are applied to the resampled GV-MRMS data to derive 

the precipitation reference. Details on data preparation, matching, and thresholds used for 

quality control are provided in Upadhyaya et al. (2021a, b).  

 The RF precipitation model is inter-compared with the latest version of SCaMPR 

(Kuligowski et al. 2016). SCaMPR (abbreviated as SC) uses the same five ABI spectral 

channels described in Section 2.1. It derives various indices to detect and quantify precipitation 

using discriminant and multiple linear regression techniques, respectively. SC uses 

environmental predictors of relative humidity to adjust for reduced surface-level precipitation 

due to subcloud evaporation. For details of the algorithm, the reader is referred to Kuligowski 

et al. (2016).  

 

2.3. Random Forest precipitation retrieval 

This study implements the RF technique (Breiman 2001) with the open source scikit-

learn (Pedregosa et al. 2011) package. RF builds on the concept of decision trees where a single 

tree is considered to be brittle and sensitive to small changes in the input parameter space 

(McGovern et al., 2019). To reduce overfitting and get unbiased estimates, RF uses ensembles 

of trees by introducing the “Randomness” in two forms; i.e., by training each tree in the 

ensemble (1) on a random subset of samples called “Bagging” (Breiman, 1996) and (2) on a 

subset of the predictor space. RF is found to be very effective at building non-linear 

relationships between predictors and the predictand. It has been used for different 

meteorological applications such as for hail forecasting probability (Gagne et al., 2017), 

precipitation type forecasting from ground radars (Elmore and Grams, 2016), and satellite 
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precipitation detection and quantification (Kuhnlein et al., 2014; Lazri and Ameur, 2018; 

Ouallouche et al., 2018; Upadhyaya et al., 2021a, b). In the present study, the RF model is fed 

with the predictors listed in Table 1, and it is trained against the quality-controlled GV-MRMS 

precipitation reference across the CONUS. The most commonly tuned RF parameters are (1) 

the number of bootstrap samples (represented as n) to develop n number of trees and (2) the 

number of randomly selected features (represented as m) for each RF tree. In this study, 500 

trees with m = √(no. of features) are used (see Section 3.1 for a discussion of features). A 

sensitivity analysis was performed to fine-tune these parameters (not shown) but did not 

indicate significant impact on the performance accuracy. Thus, for all experiments, these two 

parameters were kept as indicated above. 

Regarding dataset preparation, the entire summer 2018 (June to September) dataset is 

broken down into 3 equal datasets, each containing 10 consecutive days from each of the four 

months). The first two datasets are used for precipitation type classification and regression 

training, respectively, and the remaining dataset is used as independent testing data. The dataset 

is separated this way for each month in order to provide representative samples from the entire 

summer season and ensure that events in the training and testing datasets have good spatial and 

temporal representations. The independence between the training and testing datasets caused 

by some of the same storms ending up in both datasets was checked, and its impact on the 

results was found to be negligible. Since the training data is highly imbalanced across 

precipitation types, it is balanced by using random sampling (for details refer to Upadhyaya et 

al., 2021a). Note that the validation data distribution remains unchanged to evaluate the 

retrievals on the natural distribution of precipitation rates and types. To address the issues with 

aggregated evaluation scores caused by skewed distribution of data, a comprehensive 

validation analysis is performed by conditioning on precipitation types, precipitation rates, and 

predictors to assess their impact (details in Section 2.4). 

 

2.4. Evaluation 

The RF model is evaluated for different scenarios listed below with the independent validation 

dataset. The quantification scores listed in Table A1 are used to compare different models, 

along with the relative bias conditioned by the reference precipitation rates and the predictors. 

In a second stage of performance evaluation, the RF detection and quantification capabilities 

are compared with SC for the exact same time period and area. Note that since the spatial 

resolution of SC is the same as RF retrieval, a direct comparison is performed without any 

spatial aggregation. The inter-comparison is performed across four different conditions: 
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1. Precipitation types from GV-MRMS; 

2. ABI Zenith angle bins (10° bins) as shown in Figure 1a;  

3. Transition zones from ocean to coast to land, where “coast” is defined as the region 

within 0.1° inland from shoreline (NOAA Medium Resolution Shoreline; Graham et 

al., 2003). Note that the shoreline of the Great Lakes is also considered as a coastal 

region;  

4. Flat and complex terrain (Figure 1b). Following Daly et al. (2002), elevation gradients 

are calculated between the four adjacent cells of the digital elevation model (ASTER 

GDEM V3, 2019) by using a moving window technique. Elevation gradients less than 

a threshold of 0.015m/m are considered flat. This resulting terrain mask is at the 

resolution of DEM (1 arc second ~ 30 m) and therefore resampled to ABI grid using a 

nearest neighbour approach. 

The last two analyses further decompose the evaluation across different U.S. climate regions 

defined by Karl and Koss (1984; Figure 1c). The Ocean region is also further divided into: 

East, West, South, and Great Lakes as shown in Figure 1c.   

Bulk error metrics such as correlation or bias (Table A1) depict averaged performances 

because they are computed over samples that gather a variety of precipitation situations (types, 

rates) and sampling conditions (Ze) for which the retrievals are likely to behave differently. 

Conditional biases are also computed to provide an in-depth assessment of the precipitation 

retrievals.   
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Figure 1. Depiction of regions for validation: (a) ABI zenith angle bins (b) flat and complex 

terrain and (c) climate regions   
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3. Results and Discussions 

3.1. Predictor Importance and Selection 

The most important predictors should be identified in order to make the model as 

computationally efficient as possible for real-time applications. Note that RF estimation is 

still computationally efficient even with a large number of predictors. However, the latency 

is impacted by the pre-processing of predictors; for example, texture predictors are 

computationally intensive, especially for large images (e.g., Tahir et al. 2004). The latency 

exponentially increases with the number of predictors; therefore, a trade-off needs to be 

reached between latency and accuracy by selecting only highly relevant predictors. A 

predictor selection exercise is therefore carried out to select the fewest possible predictors 

without significantly compromising the model accuracy. It is done in two stages. Initially, 

a preliminary RF model is trained with all 260 predictors listed in Table 1. Next, predictors 

are selected and ranked based on their importance according to the decrease in impurity 

score that is inherently computed by the RF (Louppe et al., 2013). Following a backward 

predictor elimination procedure, the least important predictors are sequentially eliminated 

to train the RF models with the remaining most important predictors (e.g., Genuer et al. 

2010). Note that RF predictor importance has bias regarding correlated predictors (Strobl 

et al., 2008). Therefore, impurity score is only used as a relative indicator and the predictors 

are removed based on their impact on validation scores.  In other words, the choice of the 

next predictor to test for removal is based on the impurity score, but the actual choice of 

whether or not to remove it is based on validation scores. This approach seems to reduce 

the risk of removing a predictor that should not be removed.  

Figure 2 provides accuracy scores obtained with the RF models trained with various 

sets of predictors and validated against an independent validation dataset. Sets of predictors 

are defined by their threshold on cumulative importance and associated number of 

predictors given in the x-axis. Accuracy scores are the correlation coefficient (Table A1: 

Eq.1) and RMSE (Table A1: Eq. 2), shown on the primary and secondary y-axes, 

respectively, in Fig.2a. Because the proportion of precipitation types is uneven, the 

dominant precipitation types (e.g., warm stratiform) can influence the selection of 

predictors at the expense of under-represented precipitation types. Therefore, the impact of 

removing predictors was also evaluated for each precipitation type in Figure 2b, which 

provides a normalised RMSE (nRMSE) (Table A1: Eq.3) score for each precipitation type. 

Note that scores such as CC and RMSE can naturally vary with precipitation types (e.g., 

Convective type is associated with more quantitative variability than the Stratiform type 
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and therefore is associated with lower CC) and, and they are affected by heteroscedasticity 

within each type. Therefore, nRMSE is shown in Fig.2b to enable comparison among 

precipitation types.       

 

 

 
Figure 2. (a) Evaluation scores correlation coefficient (blue) and RMSE (orange) for the 

Stage-I predictor selection experiment, where the x-axis indicates the cumulative importance 

and number of the remaining predictors. The red box shows where the number of predictors 
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is further reduced by removing eight predictors which give similar information (as opposed to 

removing them based on cumulative importance) and the accuracy scores after removal are 

indicated by dots. (b) Same as (a) but Normalised RMSE is computed separately for each 

precipitation type. 

From Fig. 2a, it can be observed that the accuracy scores remain almost the same until 

the combined importance of the selected predictors is reduced to 70% of the total importance 

(i.e., when number of predictors is reduced from 260 to 29). A consistent result is revealed in 

Fig. 2b, where nRMSE remains almost the same for each precipitation type, which confirms 

that the removed predictors are not significant for any precipitation type. Removing additional 

predictors as ranked by cumulative importance markedly degrades the accuracy scores, 

specifically for the Warm Stratiform precipitation type followed by Hail type. An exception is 

with Tropical Stratiform Mix where nRMSE improves by reducing predictors from 25 to 21 

while it degrades for most other precipitation types. Therefore, 29 predictors are selected from 

this experiment. Within this set, removing highly correlated predictors (CC > 0.95) to keep 

only the predictors with the highest importance further reduces the number of selected 

predictors to 21. The resulting accuracy scores are slightly improved as shown in Fig. 2a (dots), 

in contrast to the degraded skill obtained when removing 8 additional predictors based on 

cumulative importance (Fig. 2a). 

The technique used above is at a risk of keeping a few insignificant predictors in the 

model. Therefore, in the final stage of selection, each of the predictors is removed from the 

model one at a time (independently of its RF importance score) and the model is retrained. At 

the end of this cycle, the predictor whose removal produces the largest improvement in 

performance is removed. This process is repeated and an additional predictor is removed each 

time until it is observed that removing any more predictors reduces the validation accuracy, 

indicating that all the remaining predictors in the model are important. Figure 3 shows the final 

selected predictors arranged in decreasing order of their impact on validation score (CC and 

RMSE) when removed from the model. The predictor impact on validation score can be used 

as a proxy indicator of their importance and can be ranked based on the amount of degradation 

on performance metrics. Note that this final stage involves re-training the model several times 

and is computationally expensive; therefore, an initial selection based on RF importance is 

performed.  
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Figure 3. Final list of selected predictors at Stage-II. Blue (Orange) line represents % 

improvement correlation (RMSE) on the left (right) vertical axis. The predictors are arranged 

in the decreasing order of their impact on validation scores.  

 

Figure 3 provides the most important predictors included in the identified parsimonious 

model, arranged in decreasing order of importance. From Fig. 3, the T8.5 – T11.2 satellite 

predictor is the most important predictor as it degrades considerably both CC and RMSE. The 

next predictors are environmental predictors such as relative humidity, temperature, and 

windshear. Out of fourteen selected predictors, six are satellite-based predictors and eight are 

environmental predictors, which suggest complementary information content brought by 

satellite observations and model parameters. The contribution of environmental predictors 

reflects the indirect relationship between the information provided by GEO observations and 

surface precipitation. Among satellite predictors, other than the BTD predictor T8.5 – T11.2, 

the texture features of BT at 6.2µm (T6.2) are confirmed to have the highest importance along 

with texture-based index derived from D-BTD: T6.2 – T8.5 and T8.5 – T11.2 mean. Note that 

out of six selected satellite predictors, five predictors are texture-based satellite predictors (T6.2 

– T8.5 and T8.5 – T11.2 mean, T6.2 mean, T6.2 variance, T6.2 entropy, T6.2 contrast). This 

highlights the importance of these newly introduced texture-based satellite predictors for 

precipitation quantification. It is consistent with the finding that texture-based predictors lead 
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to the greatest improvement in precipitation type classification, especially for the detection of 

the WarmStratiform type (Upadhyaya et al., 2021b).  

  

3.2. Benchmarking precipitation quantification: from legacy GEO sensors to the new 

generation GEO observations 

Before evaluating the RF model, it can be helpful to take a broader look at the total 

value of the data from multiple IR bands.  As noted in Section 2.1, most of the operational 

precipitation retrieval algorithms that operate at the global scale utilize only the 11.2 μm 

channel. Upadhyaya et al. (2021b) shows the significance of including additional channels for 

precipitation detection and classification. An experiment is conducted to understand the impact 

and highlight the need to incorporate multiple spectral channels from GEO sensors to improve 

the quantification of precipitation. Separate RF precipitation quantification models are trained 

with sets of BT predictors where BTs are successively introduced (Table 2). Following 

Upadhyaya et al. (2021b), the order of introduction is selected based on the historic availability 

of channels in GEO sensors.   

 

Table 2. Quantification scores for experiments with different channels and their derived 

predictors.   

Predictors with channel CC RMSE  

(mm h-1) 

Rbias  

(%) 

T11.2  0.20 4.01 -4.78 

T11.2 + T6.2 0.28 3.94 -2.18 

T11.2 + T6.2 + T12.3 0.28 3.95 -1.80 

T11.2 + T6.2 + T12.3 + T7.3 0.30 3.91 -1.80 

T11.2 + T6.2 + T12.3 + T7.3 + T8.5 0.31 3.90 -1.69 

 

Table 2 reports the validation scores. It can be observed that the highest accuracy scores 

are obtained when all BTs from five channels are used. In particular, adding the WV channel 

at 6.2µm to the legacy 11.2µm channel considerably improves scores compared to other 

channel additions. For example, CC increases from 0.20 to 0.28 and Rbias reduces from -4.78% 
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to -2.18%. Similar improvements are also observed for precipitation type classification 

(Upadhyaya et al., 2021b), with about a 5% accuracy gain for the No-Precipitation and 

Convective types, and more than 10% gain for all other precipitation types. 

The introduction of T12.3 observations in addition to T11.2 and T6.2 does not show 

improvement in most scores except a small reduction in overall bias. This is consistent with 

the results in Section 2.1, where the highest contributing satellite predictors do not include 

T12.3 channel observations. Adding T12.3 observations for detection and classification of 

precipitation shows modest improvements in the range of 2-4% gain for most types 

(Upadhyaya et al., 2021b), suggesting the significance of T12.3 observations for classification 

rather than for quantification.  

Adding more channels (T7.3 and T8.5) contributes to an overall improvement in the 

accuracy scores. Overall, using the 5 multispectral channel BTs improves CC from 0.2 to 0.31, 

RMSE from 4.01 mm h-1 to 3.90 mm h-1, and bias ratio from -4.7% to -1.6%. Note that their 

impact further improves when using BTDs, D-BTDs and textures (see Section 3.3). Therefore, 

it is recommended to incorporate at least one additional channel, T6.2, with the legacy channel 

T11.2 to global precipitation retrievals using GEO sensors, and to revisit climate data records 

with the two channels.    

 

3.3. Relative contribution of satellite, environmental predictors, and precipitation types 

Different experimental set-ups that are listed in Table 3 were conducted to address the 

following key points:  

1. understand the relative impact of combining satellite and environmental predictors. 

2. understand the impact of precipitation type probabilities that allow the design of a single 

quantification model, and compare this design with the common approach that uses 

separate quantification models trained per precipitation type. 

To address point 1, E1 is a model developed with environmental predictors only (19 

predictors), E2 is developed with satellite predictors only (241 predictors), and E3 involves 

both satellite and environmental predictors. To answer point 2, E4 builds different models for 

each precipitation type deterministically identified by the RF based classification model 

(Upadhyaya et al., 2021a), while E5 is a single model built with satellite, environmental, and 

precipitation type probabilities (Upadhyaya et al., 2021b). Other than experiments E1 and E2, 

all experiments (E3, E4 and E5) use the parsimonious model predictors identified in Section 

3.1 (i.e., the RF model with 14 predictors listed in Figure 3).  
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Table 3. Experimental setup details.  

Experiment Model Type Predictors 

E1 Single Environmental Predictors 

E2 Single Satellite Predictors 

E3* Single Environmental + Satellite Predictors  

E4* Multiple Environmental + Satellite Predictors 

E5* Single Environmental + Satellite Predictors + Classification Probabilities 

* E3, E4 and E5 use only the predictors included in the subset of 14 parsimonious model 

predictors 

        

 
Figure 4. Overall scores and conditioned scores across GV-MRMS precipitation types. (a) 

Correlation coefficient and (b) normalised RMSE for a set of experiments in Table 3. The 
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numbers in the bottom of the top panel represent the proportion (sample size) in each 

precipitation type. 

 

Figure 4 provides the overall evaluation scores and conditioned scores across GV-

MRMS precipitation types. From Figure 4, comparing scores of models E1 and E2 shows that 

the model built with satellite-only predictors (E2) has higher correlation coefficient (0.34) and 

lower nRMSE (1.42) than the model built with environmental variables only (CC=0.28 and 

nRMSE=1.52). Combining satellite and environmental predictors further improves scores (E3) 

with CC=0.42 and nRMSE=1.36, which confirms that the two sets of predictors bring 

complementary information to quantify precipitation. Focusing on convective precipitation 

types (Convective and Tropical Convective/Mix types), CC values are generally lower than 

overall (< 0.2), as expected, because convective precipitation generally displays higher 

variability. This variability seems better captured with satellite observations than with 

environmental parameters (E2 displays higher correlation and lower RMSE than E1). The 

reverse is observed with stratiform types (Warm Stratiform, Cool Stratiform and Tropical 

Stratiform/Mix). In stratiform precipitation, the influence of processes that significantly affect 

precipitation fluxes in the vertical and at the surface may be better captured through 

environmental conditions than with the cloud-top information provided by the ABI. Convective 

precipitation that is easier to diagnose from Tbs and is more vertically homogeneous may be 

more appropriate for using cloud-top information to infer surface precipitation. Combining 

satellite and environmental predictors generates the highest improvement with the Warm 

Stratiform type with some degradation of Convective types. A possible explanation is that the 

combined model gives higher importance to environmental predictors so the E3 predictor set 

is closer to E1 than to E2. Note the high proportion of Warm Stratiform type (92.1%) drives 

the overall accuracy scores.  

Overall, models that include precipitation type predictors (E4 and E5) outperform 

models that do not. For example, the single model with precipitation type probabilities (E5) 

displays the best scores with CC=0.48 and nRMSE=1.30 and outperforms other models for 

most precipitation types. Interestingly, it performs better than a combination of models 

designed for each precipitation type (E4; CC=0.43; nRMSE=1.35).  These results highlight the 

advantage of the proposed precipitation type probabilities that constrain the precipitation 

retrievals within a single model against the commonly used two-step approach that classifies 

different precipitation types first before applying quantification models for each type (e.g., 

Kuligowski et al., 2016; Hirose et al., 2019; Ouallouche et al., 2018). A single parsimonious 
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model applied on all precipitation types also improves retrieval consistency and latency against 

using a model for each type.  

Figure 5 displays the overall and conditional bias values for different classes of 

precipitation rates and for all models. The overall bias scores are less than 10%, which 

illustrates the overall good performance of the RF retrievals. Overall bias follows a trend 

similar to the CC and nRMSE scores reported in Fig. 4. For example, the smallest bias is 

displayed by the E5 model, which includes precipitation type probabilities as additional 

predictors. These bulk metrics are complemented with a conditional bias for an in-depth 

assessment. The conditional biases show significantly higher values than the overall bias 

depending on precipitation magnitude. All models overestimate lower rain rates and 

underestimate high-intensity precipitation. This behavior is expected and consistent with other 

satellite precipitation products (e.g., Upadhyaya et al., 2018; 2020; Kirstetter et al., 2013) as 

well as with any method that targets overall performance as a driving metric (Ciach et al., 

2000). Combining both satellite and environmental predictors (E3) improves bias at very low 

rain rates (< 0.25 mm h-1) compared to E1 and E2. Furthermore, including precipitation type 

predictors improves the conditional bias (e.g., E4 and E5 compared to E3) across low rain rates 

GV-MRMS precipitation bins. The best conditional bias is reported when including 

precipitation probabilities (E5).  

 

 
Figure 5. Relative bias (in %) conditioned for GV-MRMS precipitation rate classes for the 

models listed in Table 3. Red (blue) bars represent underestimation (overestimation). The size 

of each bar is relative to the maximum relative bias in each GV-MRMS precipitation rate bin. 

The last row gives the sample size in each bin.  
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Figure 6. nRMSE and relative bias as a function of the values of selected predictors from 

environmental, satellite, and precipitation type probabilities for the models listed in Table 3. 

The x-axis provides the bin-width and the sample size in each bin. 

 

As observed from Fig. 5, bulk metrics average out conditional dependencies. For 

example, the E5 model shows an overall bias of ~ 0% whereas the conditional analysis displays 

significantly higher overestimation of low rain rates and underestimation of higher rain rates. 

To get more insight into how the skill of the model depends on the values of specific predictors, 

Fig. 6 shows how nRMSE (absolute error magnitude) and Rbias (systematic error) are 

conditioned on the values of selected predictors. For purposes of illustration, one predictor was 

selected to represent each of the categories; i.e. Vertically integrated precipitable water (PWV; 

Environmental Predictor), T6.2 (Satellite Predictor), and Probability of Warm Stratiform (PWS: 

Classification probabilities). It can be observed that the scores display large conditional 

dependencies. Regarding nRMSE (upper panels of Fig. 6), the largest dependency is seen with 

the environmental variable PWV, with nRMSE values in the range [0.75-2] compared to T6.2 

(range [1-1.7]) and PWS (range [0.75-1.75]). It can be related to the importance of PWV as a 

predictor (Section 3.1; Fig. 3). These retrievals and to some extent their biases are expected to 

be driven more by PWV than by other predictors.  For all models, nRMSE shows a positive 

dependency with PWV, indicating higher errors in environments characterized by high 

precipitable water. Opposite trends are noted with T6.2 and PWS, i.e. larger errors are noted in 
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situations associated with cold BTs and low probabilities of warm stratiform precipitation. 

Collectively, it indicates that larger errors are related to convective situations with higher rain 

rates and variability compared to lower PWV and more stratiform precipitation (also observed 

in Figs. 4 and 5).   

Among models, the intercomparison of nRMSE for E1 (environmental predictors only) 

and E2 (satellite predictors only) shows larger errors with E2 at low PWV (<50 kg/m2) and 

with E1 at higher PWV. It clearly shows the complementary advantages of environmental 

predictors at lower PWV and of satellite predictors when PWV is high in probably convective 

situations. It is demonstrated with E3 (combining both categories of predictors), where nRMSE 

is consistently improved across most of PWV, T6.2 and PWS values. Introducing precipitation 

types, either as probabilities (E5) or as two-stage modelling (E4) improves nRMSE across most 

cases, with higher improvements with model E5. 

Rbias (lower panels in Figure. 6) shows the largest range with predictor PWV (range [-

25; 80%]), followed by T6.2 (range [-15; 60%] except E1) and PWS (range [-20; 25%]). PWV 

is confirmed to be the strongest driver of errors. Again, overestimation and underestimation 

driven by various conditions average into overall biases of less than 10% (Figure. 5). For all 

models except E2, there is a general tendency to underestimate precipitation rates (up to -20%) 

associated with low PWV values (<30 kg/m2) and overestimate (up to 40%) at high PWV 

values (> 66 kg/m2). This overestimation can be attributed to challenges in detecting tropical 

precipitation types that are often associated with high PWV values (> 66 kg/m2); it will be 

investigated in a future study. Note that high PWV values contribute to only 1% of the total 

validation sample. This trend is the opposite for the E2 model, most likely because it does not 

include environmental predictors. Rbias conditioned by T6.2 highlights a general trend of 

overestimation at high BTs whereas for intermediate to low BTs, Rbias is limited and shows a 

slight decreasing trend (Except for E1 and E2). As expected, the E1 model (without satellite 

predictors) shows a larger conditional and increasing bias with T6.2 that confirms the 

significance of satellite observations. Rbias conditioned with Pws displays large 

underestimation (up to -20% for E1) for low probabilities (Pws < 0.1), again indicating 

challenges in quantifying convective precipitation, whereas overestimation is noted (Rbias up 

to 25% for E2) for higher Pws. Like nRMSE, Rbias is larger for extreme values for all three 

predictors. It highlights that extreme retrieval conditions pose quantification challenges and a 

room for improvement exists. 

Collectively, larger Rbias that is noticed with predictors not included in models confirm 

how models are sensitive to parameters that have not been accounted for (Stephens and 
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Kummerow, 2007). Overall, the E5 model displays the lowest conditional bias which remains 

within the ±15 % range in most situations. It supports the benefits of using precipitation type 

probabilities in a single model to constrain the precipitation retrievals. 

 

3.4. RF and SCaMPR evaluation across different climate regions, land/coastal/ocean areas 

and complex/flat surfaces:  

In this section, the RF retrievals are intercompared with SCaMPR with an objective of 

performance evaluation across different climate regions which is further sub-categorized in 

terms of coastal areas and Complex/Flat surfaces.  

 

3.4.1. Precipitation Detection 

Table 4. Detection scores for RF and SC 

 Threshold POD POND FAR HSS CSI VHI 

RF 
0.1 mm h-1 

0.98 0.94 0.02 0.90 0.96 0.98 

SC 0.38 0.99 0.01 0.19 0.38 0.45 

 

Table 4 shows the detection scores (Table A1) for RF and SC computed with a 

precipitation rate threshold of 0.1 mm h-1. SC shows a detection score of 38% by occurrence 

(POD) and 45% by volume (VHI), indicating that it misses 55% of the precipitation volume 

across the period of comparison (summer 2018) and across the U.S. By comparison, RF detects 

most of the precipitation occurrence (POD = 98%) and volume (VHI = 98%). Both algorithms 

correctly detect high fractions of non-precipitating events (POND > 0.94). RF detects more 

non-precipitation pixels as precipitating since POND is 5% lower than SC, yet both SC and RF 

show similar and very low proportion of falsely detected precipitation (FAR = 0.02 for RF and 

0.01 for SC). SC has a comparatively lower POD than RF, hence the proportion of false alarms 

is the same. As a result, the RF HSS is high (0.90), showing excellent ability to separate rain 

from no rain, and much better than SC (HSS = 0.19). Note that this analysis has been repeated 

with higher thresholds of precipitation rate (not shown) and similar trends are observed 

between RF and SC. 

Table 6 breaks down detection scores by precipitation types. Note that only POD is 

given in Table 6 because SC does not define corresponding precipitation types; in other words, 

MRMS provides a precipitation type for computing POD but SC does not provide one for false 
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alarms. For a detailed analysis on the performance of the RF model across different 

precipitation types, please refer to Upadhyaya et al. (2021a, b). In Table 6 RF displays excellent 

performance in detecting precipitation occurrence across all precipitation types (POD > 0.98). 

RF detection scores are also consistently higher than SC. SC detection is higher than 75% for 

all three convective types, followed by Tropical Stratiform/Mix type (69%), Warm Stratiform 

(36%) and Cool Stratiform (8%), which clearly indicates that SCaMPR has better ability to 

detect convective types than stratiform types (as expected from Section 3.3). RF detection of 

stratiform precipitation occurrence is noteworthy, since it has been a reported challenge with 

GEO precipitation retrievals (Upadhyaya et al., 2020). This performance is attributed to the use 

of texture-based satellite indices and environmental predictors (Upadhyaya et al., 2021b).  

 

Table 6. Probability of detection (POD) scores for RF and SC for different GV-MRMS 

precipitation types. 

Precipitation Type POD: RF POD: SC 

Cool_Strat 0.99 0.08 

WarmStart 0.98 0.36 

Trp_StratMix 1.00 0.69 

Trp_ConvMix 1.00 0.86 

Convec 0.99 0.75 

Hail 0.99 0.86 

 

Detection performances display a regional dependence that is illustrated in Fig. 7 and 8, 

which show the POD and HSS, respectively, for both RF and SC retrievals across different 

regions. RF shows consistently higher POD (0.69-0.99) and HSS (0.78-0.93) compared to SC 

POD (0-0.52) and HSS (0-0.48) across all regions. Overall, lower POD detection scores are 

observed in the western US for both retrievals (around 5-12% reduction in POD for RF and 8-

20% for SC compared to the eastern US), where the ABI zenith angle and the associated 

footprint are larger. Note that the degradation of performance is greater with SC while RF 

displays more consistent detection performance across regions. This can be attributed to the 

inclusion of the zenith angle as an additional predictor in the RF model. HSS is slightly lower 
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across the eastern CONUS for both RF and SC than over the central and western CONUS, 

which may be due to higher FAR in the east.   

As expected, both RF and SC detection is generally lower over coastal regions than 

over land across all regions except in the southern and southeastern CONUS. The POD across 

coastal regions falls to a range of 1-21% for RF and 1-29% for RF. These performance 

differences are larger in the western and northwestern regions of the CONUS, where the 

degraded ABI spatial resolution may combine with gradients in these transition zones to make 

precipitation detection more challenging. With regards to oceanic regions, both RF and SC 

show higher POD over the EastOcean region (0.98 for RF and 0.36 for SC) than over the 

WestOcean region (0.94 for RF and 0.24 for SC), again, presumably because of the degraded 

ABI resolution. This trend is reversed with HSS, possibly due to higher false alarms as 

indicated earlier. The HSS for RF (SC) improves from 0.86 (0.13) to 0.92 (0.23) from the 

EastOcean region to the WestOcean region. Note also that the sample size across the 

WestOcean region is considerably lower compared to the EastOcean region. 

From Fig. 7, it can be observed that across the eastern regions of the CONUS, RF POD 

is up to 1% higher in complex terrain than flat terrain. On the contrary, in the western CONUS, 

POD in complex terrain drops by 2% with respect to flat terrain. This trend is not observed 

with SC: in all regions except NorthEast and EastCentralNorth, SC POD is lower in complex 

terrain by 2-18%. HSS shows lower values in complex terrain than flat regions in all regions 

except NorthEast, EastCentralNorth, WestNorthCentral for both SC and RF. This analysis 

suggests that the degradation of precipitation delineation across the western CONUS is due 

both to the degrading ABI resolution as well as complex terrain. This impact is higher on SC 

than on RF.  
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Figure 7. Probability of detection for RF and SC across different climate regions and 

broken down into land vs. coast areas and flat vs. complex terrain. 

 

 

 
Figure 8. HSS of RF and SC across different climate regions and broken down per 

Land/Coast areas and Flat/Complex terrain. 

 

To get further insight into the impact of the ABI resolution, the detection scores are broken 

down per ABI satellite zenith angle bins in Table 7.  
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Table 7. Probability of detection (POD) and Heidke Skill Score (HSS) for the developed 

model (RF) and SCaMPR (SC) across different ABI zenith angle bins 

ABI Zenith Angle Bin POD: RF POD: SC HSS:RF HSS:SC 

30.0 – 40.0  0.98 0.43 0.92 0.30 

40.0 – 50.0 0.98 0.40 0.90 0.19 

50.0 – 60.0 0.97 0.35 0.89 0.16 

60.0 – 75.0 0.96 0.27 0.93 0.21 

 

From Table 7, it can be observed that as the satellite footprint resolution decreases with 

zenith angle, the detection scores drop in terms of POD by 2% for RF and 16% for SC. HSS 

shows a similar trend overall. The impact of zenith angle and resolution is higher on SC than 

RF.  

 

3.4.2. Quantification  

Figure 9 shows the scatter plots (grey points) overlaid by density plot of RF and SC against 

GV-MRMS along with overall quantification scores. Overall, the RF estimates are more 

centered around the 1:1 line than SC estimates. It is confirmed that the RF model has better 

scores than SC. SC underestimates precipitation rates by ~17% overall, while RF slightly 

underestimates (~2%) with respect to. GV-MRMS. There is considerable difference in 

correlation, with RF CC = 0.47 and SC CC = 0.26, and 14% better RMSE is observed with RF 

(5.01 mm h-1) than with SC (5.87 mm h-1).   
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Figure 9. Overall quantification scores of RF and SC. Panels a and b: Scatter plot (grey 

points) overlaid by density plot of RF and SC against GV-MRMS; panel c is overall 

quantification scores.  

Table 8. Quantification scores of RF and SC for various GV-MRMS precipitation types 

 CC 
RMSE 

(mm h-1) 
nRMSE 

Abias 

(mm h-1) 
Rbias (%) Data size 

 RF SC RF SC RF SC RF SC RF SC  

Cool_Strat 0.39 0.44 2.03 2.37 0.73 0.86 -0.78 -0.27 -28.04 -9.87 2114 

WarmStart 0.16 0.09 2.48 3.56 0.95 1.37 0.58 0.21 22.36 8.01 1217554 

Trp_StratMix 0.42 0.12 5.16 5.80 0.84 0.95 -0.27 -2.21 -4.34 -36.0 130218 

Trp_ConvMix 0.21 0.23 31.72 34.1 0.83 0.89 -26.66 -29.8 -69.81 -77.9 12843 

Convec 0.17 0.15 17.84 18.6 0.84 0.87 -14.43 -15.1 -67.81 -70.8 18008 

Hail -0.07 0.03 26.93 30.7 0.69 0.79 -23.54 -28.1 -60.69 -72.4 7269 

 

Table 8 breaks down quantification scores by precipitation types. In general, RF 

overestimates precipitation rates associated with WarmStratiform (by 22%), and it 

underestimates for all other types (from -4% to -69%). SC also overestimates 

with WarmStratiform (by 8%) only and underestimates precipitation rates for all other 

precipitation types (from -9% to -77%). Generally, both products show larger underestimation 

with convective precipitation types (< -60%) than stratiform types (-36 to 22%). Note that the 
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proportion of Warm Stratiform is large compared to other precipitation types, thus influencing 

the overall scores. Except for Cool Stratiform and Tropical Convective/Mix, RF shows higher 

CC than SC for all precipitation types, with maximum improvement over SC for Tropical 

Stratiform/Mix precipitation type (RF=0.42 and SC=0.12). As expected, Hail shows the lowest 

CC, followed by WarmStratiform for both RF and SC. Due to smaller precipitation rate 

variations within each precipitation type, CC values for individual precipitation types are 

generally lower than the overall CC. RMSE is better for RF than SC for all precipitation types. 

Generally, stratiform types show higher nRMSE (0.73-1.37) than convective types (0.69-0.89) 

for both RF and SC.  

 
Figure 10. Correlation Coefficient of RF and SC across different climate regions which 

further segregated across Land/Coast and Flat/Complex terrain regions 
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Figure 11. Rbias of RF and SC across different climate regions which further segregated 

across Land/Coast and Flat/Complex terrain regions 

 

Figures 10 and 11 provide the quantification scores in terms of CC and Rbias across 

different climate regions and segregated by land vs. coast surfaces and complex vs. flat terrain. 

As with detection scores, it can be observed that the RF quantification scores are generally 

better than SC. The improvement with RF over SC is noticeable when comparing CC across 

land regions (greatest improvement from 0.16 to 0.69 in the EastNorthCentral complex terrain 

region) and ocean regions (greatest improvement from 0.40  to 0.46 over EastOcean). As seen 

earlier, SC has a general tendency for underestimation (except SouthWest, flat terrain of 

NorthWest, and land of EastNorthCentral) whereas no such trends are seen with RF. Overall, 

the Rbias of RF is within 15% (except for the West and SouthWest CONUS and SouthOcean), 

while the Rbias for SC varies in the range [-70; +93]% across all regions. Note that RF’s Rbias 

is more degraded across the western CONUS than over other regions (except NorthEast land), 

as observed with detection scores.  

Contrasting land and coastal areas, RF and SC both display degraded Rbias and varying 

CC over coastal regions. The bias is larger in most coastal regions (e.g., +14% Rbias for RF in 

NorthWest land versus -25% over coast) except in the East coastal region for RF and NorthEast 

for SC. These varying performances across coastal regions reflect the challenges in quantifying 

precipitation from space in transition zones, and the need to analyze and treat such regions 

separately for algorithm development.  

Over ocean, it can be observed that both products (RF/SC) show lower CC (0.09/-0.10) 

over the WestOcean region than over other water regions (e.g., EastOcean CC=0.46/0.40; 

SouthOcean=0.35/0.31). Again, this can be attributed to the coarser spatial resolution of ABI 

that misses more precipitation variability. RF exhibits underestimation over the West Ocean 

region (-9%) and the Great Lakes region (-6%), close to no bias over the EastOcean region, 

and overestimation in the SouthOcean region (+29%). SC underestimates across all water 

regions ranging from -11% in the SouthOcean region to -60% in the WestOcean region.    

Contrasting flat and complex terrain, CC tends to be lower over complex terrain than 

over flat terrain as expected, except for the SouthWest, NorthEast and EastNorthCentral 

regions. Rbias takes on larger values across complex terrain than flat terrain except for the 

Central, NorthWest and EastNorthCentral regions for RF. This contrast in Rbias values 

between terrain types is higher in the west CONUS (e.g., for RF in NorthWest the difference 

in RBias is 40%) than other regions. Note the sample size in the flat terrain region in the western 
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CONUS is low (138 samples); therefore, no significant conclusion can be made about the 

performance difference between complex and flat terrain in this region.  

CC also degrades with Ze for both retrievals and the impact is larger on SC (Table 9). 

The general degradation of performance in the West is explained by a combination of coarser 

resolution and complex precipitation mechanisms in mountainous terrain.  

 Table 9. Quantification score CC for developed model (RF) and SCaMPR (SC) across 

different ABI zenith angle bins 

ABI Zenith Angle Bin CC: RF CC: SC 

30.0 – 40.0  0.48 0.33 

40.0 – 50.0 0.46 0.29 

50.0 – 60.0 0.46 0.21 

60.0 – 75.0 0.30 0.14 

 

4. Summary and Conclusions 

The study focuses on the development and comprehensive evaluation of a Random 

Forest QPE using ABI observations onboard the GOES-16 satellite across the CONUS. Key 

innovations concern the introduction of novel predictors and the use of a high-quality and high-

accuracy reference: 

1. For the first time, 241 different satellite predictors are investigated for QPE that are 

derived from five ABI infrared channels observations. Categories of predictors are: 

Brightness Temperatures (BTs), Difference of BTs (DBTs), Difference of DBTs (D-

BTD) and their textures which accounts for spatial information.   

2. A set of 19 NWP-based predictors are used to complement the satellite observations 

with mid- and low-level environmental conditions. 

3. The high-quality and high-accuracy gauge-radar ground reference GV-MRMS is used 

to develop and evaluate the QPEs. 

4. A novel approach is explored to account for precipitation types and associated 

processes that drive surface precipitation. By using probabilities of precipitation types 

as additional predictors, a single model is developed that seamlessly accounts for 

varying relationships between satellite observations and surface precipitation. It differs 
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from the commonly used multi-step approach that detects and classifies various 

precipitation types then applies a quantification model for each type. 

 

The benefit of these novel features is systematically evaluated in a series of 

experiments. Results are summarized as follows: 

1. The number of model predictors can be reduced from 260 to 14 without significantly 

reducing the quantification accuracy.   

2. The satellite predictors that contribute the most information include T8.5 – T11.2, 

texture features of the brightness temperature at 6.2µm (T6.2) and texture-based index 

derived from D-BTD: T6.2 – T8.5 and T8.5 – T11.2 mean.  

3. Some of the important environmental predictors include the relative humidity, 

temperature, wind shear and the vertically integrated precipitable water. 

4. The relative contribution of satellite and environmental predictors depends on the 

precipitation type. Satellite predictors contribute more towards high intensity (probably 

convective) precipitation with overall CC=0.34, whereas environmental predictors 

contribute more to low-intensity precipitation with overall CC=0.28. 

5. Combining both categories of predictors improves overall performances with overall 

CC=0.42 and especially with the Warm Stratiform precipitation type.  

6. Precipitation type predictors further constrain the retrievals and improve performance. 

The best improvement is obtained with precipitation type probabilities (CC = 0.48). 

This approach benefits operational implementation with a single model. 

7. Conditional analysis showed that the RF retrieval with classification probabilities 

displays the least conditional bias, which remains within the ±15 % range in most cases. 

However, room for improvement is noticed for extreme rain rates.  

8. The additional channels provided by the ABI have value for QPE. It is confirmed that 

the highest accuracy is obtained when all five channels are combined. In particular, 

adding the WV channel at 6.2µm to the 11.2µm legacy channel significantly improves 

the retrieval performance.  

 

The RF retrieval was compared with the operational Self-Calibrating Multivariate Precipitation 

Retrieval (SCaMPR; Kuligowski 2002; Kuligowski et al., 2016) across different climate 

regions, surfaces (ocean, coast, land) and regions (complex/flat terrain). RF displays higher 

precipitation detection and quantification skills than SC. Both products display similar trends 

across regions.  
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● Detection: While SC’s detection performance varies with precipitation types and is 

improved for convective precipitation, it misses significant amounts of stratiform 

precipitation. On the contrary, RF detection is consistent across precipitation types and 

displays better scores overall than SC. Both retrievals show lower detection across the 

western CONUS than the eastern CONUS, which is attributed to the degraded ABI 

spatial resolution and complex topography. This degradation in performance is greater 

for SC than RF. Detection along the coast (complex terrain) is generally lower than land 

(flat terrain) for both QPEs.  

● Quantification: RF displays better quantification scores than SC. SC underestimates by 

~17% while RF slightly underestimates (~2%) compared to GV-MRMS precipitation 

rates. Considerable differences in correlation are noted, with RF CC=0.47 and SC 

CC=0.26 overall. The improvement in RF over SC is noticeable in terms of CC across 

land regions, whereas over ocean RF and SC have closer CC. Quantification across 

coastal regions (complex terrain) is more challenging than over land regions (flat 

terrain). Again, the degradation of performance in the western CONUS is attributed to 

the degraded resolution of ABI as well as complex terrain. 

 

Recommendations from the study are: 

1. Predictors derived from the five satellite brightness temperatures (e.g., texture, inter-

band differences) add information with respect to single-pixel, single-channel values 

and are recommended to include in addition to brightness temperatures in precipitation 

rate retrieval algorithms. 

2. Environmental predictors from NWP, such as vertically integrated precipitable water 

and the relative humidity, complement the satellite brightness temperatures and are 

recommended as predictors in precipitation rate retrieval algorithms. 

3. Constraining precipitation quantification with precipitation type is advantageous. It is 

recommended to incorporate precipitation type probabilities as additional predictors for 

seamless integration across different precipitation types and also benefit from a single 

model for operational implementation. 

4. When possible, it is recommended to include the heritage channel T6.2 in global 

precipitation retrieval algorithms and for precipitation reanalyses. 

The findings of this study are expected to contribute to improved precipitation 

estimation and characterization from space, which can complement the incomplete weather 

radar coverage of the Weather Service Radar-1988 Doppler (WSR-88D) network in the 
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western United States (Gebregiorgis et al. 2018; Upadhyaya et al., 2020). The approach could 

be directly adapted to other regions with similar precipitation climatologies, environment, and 

satellite observations. Note that the QPE is developed and evaluated across the CONUS and 

during the summer season. Future work will focus on winter precipitation and precipitation 

outside the CONUS. 
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Appendix: 

Table A1. Performance assessment scores used for precipitation quantification and 

detection  

                      Quantification Description 

1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝐶𝐶) 

=  
∑ �𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅��𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑅𝑅𝑅𝑅�𝑛𝑛
𝑖𝑖=1

�∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅������)2𝑛𝑛
𝑖𝑖=1  ×  �∑ (𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑅𝑅𝑅𝑅������)2𝑛𝑛

𝑖𝑖=1  
 

Linear association between between 

estimated precipitation and observed 

precipitation 

2 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅;  mm ℎ−1) 

=  �
1
𝐶𝐶

(𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)2 

Average magnitude of estimation 

error. RMSE puts greater influence 

on large errors than smaller errors. 

3 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅) 

=  
�1
𝐶𝐶 (𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)2

𝑅𝑅𝑅𝑅𝑅𝑅������  
 
 

nRMSE facilitates comparison 

across different regions/ 

precipitation types with varying 

characteristics/magnitude/scale of 

precipitation 

4 𝐴𝐴𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶 𝐵𝐵𝐶𝐶𝐶𝐶𝑁𝑁 (𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑁𝑁 ;  mm ℎ−1) 

=  
1
𝐶𝐶

 �𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

Average estimation bias 

5 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶 𝐵𝐵𝐶𝐶𝐶𝐶𝑁𝑁 (𝑅𝑅𝐴𝐴𝐶𝐶𝐶𝐶𝑁𝑁; %) 

=  
∑ 𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1

 × 100 

Ratio of averaged estimation 

magnitude and averaged observed 

magnitude 

Detection  

6 𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 (𝑃𝑃𝑃𝑃𝐷𝐷:𝑅𝑅) 

=  
ℎ

ℎ + 𝑁𝑁
 

Fraction of precipitating events 

correctly detected by RF 

7 𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:𝑁𝑁𝐶𝐶 − 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 (𝑃𝑃𝑃𝑃𝐷𝐷:𝑁𝑁𝑅𝑅) 
=  

𝐶𝐶
𝐶𝐶 + 𝐶𝐶

 
Fraction of non-precipitating events 

correctly detected by RF 

8 𝑅𝑅𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑅𝑅𝐴𝐴𝑅𝑅) 

=  
𝐶𝐶

ℎ + 𝐶𝐶
 

Fraction of falsely detected 

precipitating events among all 

detected precipitation events by RF 

9 𝐻𝐻𝐶𝐶𝐶𝐶𝑁𝑁𝐻𝐻𝐶𝐶 𝑆𝑆𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐻𝐻𝑆𝑆𝑆𝑆) 

=  
2(ℎ𝐶𝐶 − 𝐶𝐶𝑁𝑁)

(ℎ + 𝐶𝐶)(𝐶𝐶 + 𝐶𝐶) +  (ℎ + 𝑁𝑁)(𝑁𝑁 + 𝐶𝐶) 

Accuracy of precipitation detection 

relative to that of a random chance 
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10 𝑉𝑉𝐶𝐶𝐶𝐶𝑆𝑆𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐻𝐻𝐶𝐶𝐶𝐶 𝐼𝐼𝐶𝐶𝑁𝑁𝐶𝐶𝐼𝐼 (𝑉𝑉𝐻𝐻𝐼𝐼) 

=
∑ �(𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 > 𝐶𝐶 & 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 > 𝐶𝐶)�𝑛𝑛
𝑖𝑖=1

∑ �(𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 > 𝐶𝐶 & 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 > 𝐶𝐶)�𝑛𝑛
𝑖𝑖=1 +  ∑ �(𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖 ≤ 𝐶𝐶 & 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 > 𝐶𝐶)�𝑛𝑛

𝑖𝑖=1
 

Volume of precipitation correctly 

detected by RF 

 

 SRE is the satellite-based precipitation product (i.e. RF or SCaMPR) and REF is the GV-MRMS reference precipitation, n is the validation 

sample size and t is the precipitation threshold above which 𝑉𝑉𝐻𝐻𝐼𝐼 is computed. ℎ,𝑁𝑁,𝐶𝐶, 𝐶𝐶 stands for hits, misses, false detections and correct 

rejections by occurrence, respectively.   
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Caption: 

The study introduces a new quantitative precipitation estimation (QPE) algorithm from 

Advanced Baseline Imager (ABI) observations from GOES-16 across the CONUS. It is 

developed and comprehensively evaluated using the Ground Validation Multi-Radar/Multi-

Sensor (GV-MRMS) system as a benchmark, and features Random Forest (RF) machine 

learning-based QPE. The key innovations of the algorithm include a comprehensive set of 

satellite predictors derived from five infrared ABI channels, complemented by low-level 

environmental conditions from RAP Numerical Weather Prediction (NWP) model, and 



outputs of probability of precipitation type for seamless integration of varying precipitation 

rates across types. 
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