
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Supporting Information for “Physically Interpretable
Neural Networks for the Geosciences: Applications to

Earth System Variability”

Benjamin A. Toms1∗, Elizabeth A. Barnes1, Imme Ebert-Uphoff2,3

1Department of Atmospheric Science, Colorado State University, Fort Collins, CO
2Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO

Contents of this file

1. Text S1 and S2

2. Code S1

3. Figures S1 and S2

Additional Supporting Information (Files uploaded separately)

1. Python scripts for the “Optimal Input” method

Introduction

Within this supplemental material, we list additional rules for propagation, re-
sources for implementing and using LRP in neural network packages other than Keras,
and sample Python code.

Text S1: Additional Relevance Propagation Rules

We list additional relevance propagation rules here that are most relevant for
LRP as we present it within the main manuscript, although we do not intent for this
list to be comprehensive. For additional information, readers should refer to Chapter
10 of Samek et al. (2019), which provides a detailed discussion of the theory behind
the various propagation rules developed thus far for LRP.

We mention within the main manuscript that we use a set of relevance propa-
gation rules that only propagates information that increases the value of the selected
output, although there are rules that permit the inclusion of information that reduces
the value of the selected output as well. There are caveats to these additional rules,
however, as the relevance is not conserved from the output value back to the input
layer, and so interpretation of the relevance heatmaps becomes more subjective. We
share the rules below for completeness, but we encourage the reader to be careful in
their application and to carefully read the theory behind their development as provided
by Bach et al. (2015), Montavon et al. (2017), and Samek et al. (2019).

The relevance propagation rule that includes information that reduces the target
output node is as follows:

Ri =
∑
j

(
α

aiw
+
ij∑

i aiw
+
ij

Rj − β
aiw

−
ij∑

i aiw
−
ij

)
Rj . (1)

∗Department of Atmospheric Science, Colorado State University, Fort Collins, CO

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Within Equation 1, α represents the relative amount of positive relevance to be prop-
agated backwards, beta represents the relative amount of negative relevance to be
propagated backwards, the i subscript represents the i-th node in the layer of the net-
work to which the relevance is being translated backwards, the j subscript represents
the j-th node in the layer of the network from which the relevance is being translated,
Ri is the relevance translated backwards to the i-th node, Rj is the relevance of the
j-th node, ai is the output from the i-th node after the non-linearity has been applied
when the sample is passed forward through the network, wij is the weight of the con-
nection between the i-th and j-th nodes, and the + and − superscripts signifies that
only positive or negative weights are considered, respectively.

There is also a separate propagation rule for relevance propagated backwards
to the input layer from the first hidden layer for cases where the input is bounded
between two values. In these cases, the relevance propagation rule is as follows:

Ri =
∑
j

(
xiwij − lw+

ij − hw−
ij∑

i xiwij − lw+
ij − hw−

ij

)
Rj . (2)

Within Equation 2, the i subscript represents the i-th node in the layer of the network
to which the relevance is being translated backwards, the j subscript represents the
j-th node in the layer of the network from which the relevance is being translated, x
represents the input value associated with the i-th node, l represents the lower bound
of the input dataset, h represents the upper bound of the input dataset, Ri is the
relevance translated backwards to the i-th node, and Rj is the relevance of the j-th
node. This rule also conserves the total relevance translated from the first hidden layer
backwards to the input layer, and abides by the rules of deep Taylor decomposition.
If this rule is used in tandem with the rules presented within the manuscript that
only propagate information backwards that increases the value of the output, then
the relevance is conserved as it is propagated from the output node to the input
layer. Additional information about deep Taylor decomposition is6 available within
Montavon et al. (2017).

Text S2: Additional Resources for LRP

We offer a list of resources for programming LRP to be compatible with various
Python packages, although we do not intend for this list to be comprehensive. We use
innvestigate, the first item in the below list, which is an implementation of LRP and
various other neural network interpretation techniques for the Keras neural network
package within Python.

• Python, Keras/Tensorflow package: https://github.com/albermax/innvestigate
• Python, Keras/Tensorflow package: https://github.com/nielsrolf/tensorflow-

lrp
• Python, Keras/Tensorflow package (coming soon): https://github.com/sicara/tf-

explain
• Python, Caffe package: https://github.com/sebastian-lapuschkin/lrp toolbox
• Python, PyTorch package: https://github.com/moboehle/Pytorch-LRP
• MATLAB: http://www.heatmapping.org/lrptoolbox.html

Code S1: Example Script for Optimal Input

We provide an example script for the optimal input method using the Keras
package within Python. This is only meant to be an example, and the reader should
be careful to understand each line of code within the script before attempting to
implement it themselves. We only offer the code for the Keras Python neural network
package, although the concepts are transferable to any other neural network package,
as well.

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Example scripts using the innvestigate package for LRP are available from the
authors of the method at the following URL: https : //github.com/albermax/innvestigate.

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure S1. Regression coefficients for the linear regression method to predict the phase of

ENSO using global maps of sea-surface temperature anomalies. The regression coefficients are

calculated by regressing the time series of global sea-surface temperature anomaly maps onto

the standardized ENSO (Niño3.4) time series. We then project this map of regression coeffi-

cients onto the global sea-surface temperature anomalies to predict the sign of ENSO phase. The

resultant accuracy predicting the ENSO phase using the regression coefficients is 82.5%.

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure S2. As in Figure 6 of the main manuscript, but for the neural network’s understand-

ing of the spatial structure of La Niña based on a total of 485 samples (including both testing

and training data).

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure S3. As in Figure 9 of the main manuscript, but for the neural network’s understand-

ing of the sea-surface temperature anomalies that lend predictability for negative surface temper-

ature anomalies at the red dot.

–6–


