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Spatiotemporal analysis of compositional data: increased
precision and improved workflow using model-based inputs to
stock assessment
James T. Thorson and Melissa A. Haltuch

Abstract: Stock assessment models are fitted to abundance-index, fishery catch, and age–length–sex composition data that are
estimated from survey and fishery records. Research has developed spatiotemporal methods to estimate abundance indices, but
there is little research regarding model-based methods to generate age–length–sex composition data. We demonstrate a spatio-
temporal approach to generate composition data and a multinomial sample size that approximates the estimated imprecision.
A simulation experiment comparing spatiotemporal and design-based methods demonstrates a 32% increase in input sample
size for the spatiotemporal estimator. A Stock Synthesis assessment used to manage lingcod (Ophiodon elongatus) in the California
Current also shows a 17% increase in sample size and better model fit using the spatiotemporal estimator, resulting in smaller
standard errors when estimating spawning biomass. We conclude that spatiotemporal approaches are feasible for estimating
both abundance-index and compositional data, thereby providing a unified approach for generating inputs for stock assess-
ments. We hypothesize that spatiotemporal methods will improve statistical efficiency for composition data in many stock
assessments and recommend that future research explore the impact of including additional habitat or sampling covariates.

Résumé : Les modèles d’évaluation des stocks sont calés sur des données d’indice d’abondance, de prises des pêches et de
composition selon l’âge, la longueur ou le sexe qui sont estimées à partir de registres de relevés et de pêche. Des travaux de
recherche ont mené à l’établissement de méthodes spatiotemporelles pour estimer les indices d’abondance, mais peu de travaux
ont touché aux méthodes basées sur les modèles pour produire des données de compositions selon l’âge, la longueur ou le sexe.
Nous faisons la démonstration d’une approche spatiotemporelle pour produire des données de composition et une taille
d’échantillon multinomiale qui approxime l’imprécision estimée. Une expérience de simulation qui compare des méthodes
spatiotemporelles et basées sur le schéma d’évaluation fait ressortir une augmentation de 32 % de la taille de l’échantillon intrant
pour l’estimateur spatiotemporel. Une évaluation avec Stock Synthesis utilisée pour la gestion de la morue-lingue (Ophiodon
elongatus) dans le courant de Californie montre également une augmentation de 17 % de la taille de l’échantillon et un meilleur
calage du modèle en utilisant l’estimateur spatiotemporel, ce qui se traduit par des écarts quadratiques moyens plus faibles pour
les estimations de la biomasse de géniteurs. Nous concluons que les approches spatiotemporelles sont viables pour estimer des
données d’indice d’abondance et de composition, fournissant ainsi une approche unifiée pour générer des intrants pour les
évaluations de stocks. Nous postulons que les méthodes spatiotemporelles amélioreront la puissance statistique pour les
données de composition dans de nombreuses évaluations de stocks et recommandons que des travaux futurs se penchent sur
l’incidence de l’inclusion d’autres covariables associées à l’habitat ou à l’échantillonnage. [Traduit par la Rédaction]

Introduction
Fish production is highly variable over space and time, and

variation is driven by both human and natural causes. Scientific
advice regarding fish status and productivity is often based upon
population-dynamics models fitted to available data (termed
stock assessments). These stock assessments generally use a sta-
tistical framework to integrate data that are indexed by time
(Maunder and Punt 2013), including a measurement of population
abundance (abundance indices), the proportion of population
abundance in different age–size–sex categories (composition data),
and total fishery removals (catch data) in one or more years.

However, the abundance-index, compositional, and catch data
fitted in stock assessments are not directly measured in any single
field sample. Instead, fisheries scientists record data obtained
from fishers or from preplanned survey programs, and these re-

cords must be aggregated across space to generate inputs that can
be fitted by a stock assessment model. For example, data from
port-side intercept sampling, fisher logbooks, and observers lo-
cated on fishing vessels are frequently collected and analysed to
estimate total fishery catch (Cotter and Pilling 2007), and these
estimates are then treated as catch data in a subsequent stock
assessment. Similarly, fishery-independent sampling programs
frequently conduct sampling (e.g., bottom trawl tows) at random-
ized locations, sort the catch to species, weigh biomass for each
species, subsample individuals, and then measure length, age,
and (or) sex for subsampled individuals (Stauffer 2004). These data
are then analysed to estimate abundance-index (using biomass
from each sample) and (or) compositional data (using length–age–
sex subsampling from each sample), and these estimates are
treated as data in an assessment model.

Received 11 January 2018. Accepted 12 May 2018.

J.T. Thorson* and M.A. Haltuch. Fisheries Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries
Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
Corresponding author: James Thorson (email: James.Thorson@noaa.gov).
*James Thorson currently serves as an Associate Editor; peer review and editorial decisions regarding this manuscript were handled by Keith Tierney.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

401

Can. J. Fish. Aquat. Sci. 76: 401–414 (2019) dx.doi.org/10.1139/cjfas-2018-0015 Published at www.nrcresearchpress.com/cjfas on 22 May 2018.

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
06

/0
5/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

mailto:James.Thorson@noaa.gov
http://www.nrcresearchpress.com/page/authors/services/reprints
http://dx.doi.org/10.1139/cjfas-2018-0015


Methods for analysing fishery-dependent and -independent
samples to generate abundance-index, compositional, catch, and
diet data for use in stock assessments have become more sophis-
ticated over time. For example, hierarchical models have been
developed to estimate catch data using fishery logbooks and ob-
server data (Shelton et al. 2012), and model-based analysis of
fishery-dependent catch rates decreased bias (Ye and Dennis 2009)
and imprecision (Thorson et al. 2017a) relative to simpler analysis
methods. In particular, spatiotemporal analysis of survey catch
rates resulted in improved precision for simulated data and
28 real-world data sets (Thorson et al. 2015b), and spatiotemporal
methods similarly improved precision relative to nonspatial
methods when estimating diet proportions (Binion-Rock et al.
2019).

Despite the development of model-based approaches to abundance-
index or fishery catch data, there is relatively little prior research
regarding model-based estimates of compositional data for use in
stock assessments. This is particularly surprising, given the large
literature regarding sophisticated statistical approaches when fit-
ting compositional data within an assessment model (Francis
2011; Maunder 2011; Thorson et al. 2017b). Model-based analysis of
compositional data could be useful for at least three reasons:

1. Estimate input sample sizes. Analysing compositional data us-
ing a statistical model would give an estimate of imprecision
as well as the estimated proportion for each length–age–sex,
and this imprecision could be used to calculate the “sample
size” for the resulting estimate (Thorson 2014). This sample
size could then be used as a starting point (or upper bound)
during stock assessment data weighting (Francis 2011; Thorson
et al. 2017b). Although bootstrapping could instead be used
without an explicit statistical model to estimate an input sam-
ple size (Stewart and Hamel 2014), a bootstrap analysis typi-
cally depends upon the independence of available data and
therefore can be biased if this assumption is violated. Al-
though the bootstrap can be extended to correlated data
(Fortin and Jacquez 2000), there are many different methods
to do so, and an appropriate method has not been proposed for
fisheries compositional data.

2. Account for covariates. A statistical model would allow the
analyst to explore the potential importance of covariates. In
particular, many designs for collecting compositional data in-
clude observations at different times and locations, using mul-
tiple gears and sampling vessels. Vessel ID is increasingly
included as a fixed or random factor when analysing abun-
dance index data (Helser et al. 2004), and season has been used
in catch-data analysis (Shelton et al. 2012). Although spatial
strata are frequently used when analysing age–length–sex
composition records, it is unclear how season, vessel, or other
covariates could be included without developing a model-
based approach.

3. Improved statistical properties. A model-based framework
will often decrease bias, increase precision, and ensure that an
estimated confidence interval includes the true value at an
intended rate (termed “confidence interval coverage”). For ex-
ample, accounting for outliers in survey catch rates can im-
prove precision for abundance indices (Thorson et al. 2012),
spatiotemporal models can estimate covariance among differ-
ent sizes or ages arising from the behaviour of a fishing fleet or
design of a survey (Berg et al. 2014), and models for multispe-
cies catch rates can be used to control for vessel targeting in
fishery catch-rate records (Stephens and MacCall 2004; Winker
et al. 2013; Thorson et al. 2017a; Okamura et al. 2017).

These motivations clearly overlap (i.e., accounting for covari-
ates can improve precision), and there could be other reasons to
motivate model-based compositional analysis that are not listed.

Given these potential benefits for model-based analysis of com-
positional records, we develop and demonstrate a spatiotemporal
approach to estimate length–age composition data for use in
stock assessment. This approach involves (i) estimating popula-
tion density for each length–age–sex category at multiple loca-
tions in each year, (ii) summing this estimate across space,
(iii) standardizing by total abundance to estimate proportions,
(iv) estimating imprecision for proportions, and (v) calculating a
multinomial sample size that approximates this estimated impre-
cision. To implement these steps, we modify an existing R pack-
age VAST (www.github.com/James-Thorson/VAST) for multivariate
spatiotemporal models, which has previously been used for index
standardization in stock assessments in the Pacific and North
Pacific fisheries management regions. We then use a simulation
experiment to compare bias, imprecision, and confidence interval
coverage for this spatiotemporal approach with a conventional
design-based estimator. Finally, we use bottom trawl survey oper-
ations from 2003 to 2015 to generate length-composition data for
the stock assessment for lingcod (Ophiodon elongatus) in the north-
ern portion of the US California Current to show that the method
is feasible to implement in conjunction with existing stock assess-
ment software and increases assessment precision in this case
study.

Methods

Expansion of composition data
Age- and size-structured stock assessment models in North

America (e.g., Stock Synthesis; Methot and Wetzel 2013) fre-
quently incorporate two forms of “data” arising from these survey
operations: an index of abundance I(t) for each year t and a matrix
of compositional data Pc(t) for each year t and category c (whether
age, size, sex, etc.). In both cases, these data are in fact derived
from operations-level samples, and the operations-level data have
rarely been included directly within a stock assessment model
(although exceptions exist; e.g., Maunder and Langley 2004 or
Kristensen et al. 2014). In the following, we focus on abundance-
indices and compositional data estimated from fishery-independent
survey operations, but note that similar issues arise when process-
ing fishery-dependent records. We also use the term “bins” to
refer to categories defined by the size or age of sampled individu-
als (e.g., length bins for categories defined based on individual
length).

Parameters in stock assessment models are then estimated by
maximizing their log-likelihood given available data. Specifically,
a probability density is specified for abundance-index data given
assessment estimates of available biomass:

(1) I(t) � Lognormal��
c�1

nc

qScWcNc(t), �2(t)�
where q is an estimated catchability coefficient, Sc is the estimated
selectivity for each bin, Wc is the biomass-per-individual for bin c
(which may be estimated or input as data), Nc(t) is estimated abun-
dance for each bin and year, and �2(t) is the variance for the
abundance index in year t, which is input as data (see Table 1 for a
list of notation). Similarly, a probability distribution is specified
for compositional data P(t) representing the proportion of abun-
dance (or biomass) Pc(t) within category c, given assessment esti-
mates �(t) of the proportion of available population abundance (or
biomass) �c(t) for each age–length–sex bin c:

(2) P(t) � Multinomial(�(t), �(t))
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where �c�t� �
ScNc�t�

�c�1

nc
ScNc�t�

is the proportion of abundance in each

bin c in year t that is estimated by the stock assessment model, and
�(t) is the sample size for compositional data in year t (which is
input as data). Both equations are frequently modified to incorpo-
rate “overdispersion” (e.g., instances where the fit between abun-
dance index or compositional data has greater variance than
would be expected given the abundance variance �2(t) or compo-
sitional input sample size �(t)). In these cases, the assessment
model frequently estimates additional overdispersion, and this is
equivalent to estimating the relative weight associated with each
data source in the assessment model (Francis 2011; Thorson et al.
2017b).

Surveys for sampling marine populations are frequently de-
signed to collect samples in each year at locations that are chosen
using simple or stratified random sampling. At each chosen loca-
tion, a gear is deployed and results are recorded. In the following,
we refer to bottom trawl sampling, but results could also apply to
other samples at discrete locations (e.g., longline or hook-and-line

sampling gears). Gear operations typically yield multiple records
for each tow i: (i) the total biomass bi and (or) abundance ni for a
given species; (ii) the biomass b̃i that is subsampled for a given
species; and (iii) attributes (e.g., length, mass, age, sex, etc) mea-
sured from individuals that are subsampled from the set of cap-
tured individuals for each species. Individual-specific attributes
are then aggregated to calculate the abundance ñc�i� for different
age–length–sex categories in the subsample, and records are ana-
lyzed to generate inputs to stock assessment models (I(t) and Pc(t)).

The proportion of total biomass that is subsampled for ages or
lengths, termed the “subsampling intensity” �i (where �i � b̃i/bi
or �i � ñi/ni depending upon whether bi or ni is measured) may vary
between tows. If subsampling intensity is correlated with total
biomass bi, then the subsampling design is not “ignorable” and
must be included during analysis to yield unbiased estimates of
compositional data. For this reason, subsamples are typically ex-
panded to represent total abundance in each survey tow, and we
refer to this step as “first-stage expansion” (Thorson 2014). This
first-stage expansion involves predicting abundance nc(i) for each

Table 1. Names and symbols for variables and data as used in the main text, as well as whether the variable is
used in the theoretical explanation (“Exp.”, eqs. 1–3), estimation model (EM, eqs. 4–13), the operating model
used to simulate data for model testing (OM, eqs. 14–17), or model diagnostics (“Diag.”, eqs. 18–19).

Name Symbol Use

Abundance index I(t) Exp.
Catchability coefficient in assessment model q Exp.
Selectivity at age in assessment model Sc Exp.
Mass-at-age in assessment model Wc Exp.
Numbers-at-age in assessment model Nc Exp.
Abundance index variance �2(t) Exp.
Proportion-at-age in assessment model �c(t) Exp.
Observed proportion-at-age Pc(t) Exp.
Observed biomass in sample i bi Exp.
Observed number of individuals in sample i ni Exp.
Subsampled biomass in sample i b̃i Exp.
Subsampled abundance-at-age in sample i ñc�i� Exp.
Subsampling intensity for sample i �i Exp.
Abundance-at-age for sample i after first-stage expansion nc(i) Exp., EM
Predicted encounter probability pc(i) OM, EM
Expected biomass when encountered rc(i) OM, EM
Area swept for sample i ai EM
Area associated with knot s a(s) EM
Predicted density for category, location, and time dc(s, t) EM
Dispersion for probability density function for positive catch rates �M(c) EM
Intercepts �p(c, t) EM
Spatial variation for encounter probability r �p(c, s) EM
Spatiotemporal variation for encounter probability r 	p(c, s, t) EM
Standard deviation for spatial variation ��p(c) EM
Standard deviation for spatiotemporal variation �	p(c) EM
Predicted proportion for each category and year P̂c�t� EM
Predicted index of population abundance for category c Îc�t� EM
Predicted index of population biomass across all categories Î�t� EM
Input sample size for predicted proportions �̂�t� EM
Average recruitment �N OM
Spatial variation in recruitment �N(s) OM
Spatiotemporal variation in recruitment 	N(s) OM
Annual instantaneous survival rate Z OM
Abundance at age for each cell Na(s, t) OM
Expected mass-at-age Wa(s, t) OM
Brody growth coefficient K OM
Asymptotic maximum length L∞ OM
Tissue density w
 OM
Allometric scaling of mass and length w� OM
Spatial variation in mass-at-age �W(s) OM
Spatiotemporal variation in mass-at-age 	W(s, t) OM
Error in estimated proportion-at-age Ec(t) Diag.
Likelihood-ratio statistic for estimated proportion-at-age and sample size �2(t) Diag.
Quantile for estimated proportion-at-age and sample size Q(t) Diag.
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bin as the ratio of subsampled proportions and the subsampling
intensity nc�i� � ñc�i�/�i and then analysing the expanded abun-
dance nc(i) using a statistical model.

Design-based approach to expanding compositional data
Predicted abundance per bin nc(i) after first-stage expansions is

then typically expanded to the total area sampled by a given sur-
vey design, and we call this “second-stage expansion.” The second-
stage expansion is typically conducted using a “design-based”
algorithm, where the predicted abundance nc(i) is summed across
all records in a given stratum to calculate the total number per
stratum. Total number per stratum is then averaged across strata
with each stratum weighted by its total area (for survey data) or
landings (for fishery data), then these aggregate numbers are nor-
malized to calculate a proportion Pt(c) for each bin c and year t.
Given simple-random sampling (i.e., only one sampling stratum),
this second-stage expansion reduces to

(3) P̂c(t) �
�i�1

ni
nc(i)

�c�1

nc �i�1

ni
nc(i)

where P̂c�t� is then fitted as data in the subsequent stock assess-
ment model.

The spatiotemporal approach to analysing compositional
data

We propose an alternative approach to estimating proportions
Pt(c) using a vector autoregressive spatiotemporal (VAST) model
(Thorson and Barnett 2017c). This alternative builds upon Berg
et al. (2014), which applied a generalized additive model (GAM)
with a single spatial smoother and annually varying intercept to
estimate an abundance index Ic(t) for each age, where this age-
specific abundance index was then fitted directly to abundance-
at-age Nc(t) within an assessment model. Fitting abundance-at-age
and its standard errors SE[Nc(t)] within an assessment model is
common in European assessment models (e.g., Nielsen and Berg
2014; Albertsen et al. 2016). By contrast, we estimate proportions
Pt(c), input sample size �(t), and total abundance I(t) as is common
for assessment models in the US West Coast (e.g., Methot and
Wetzel 2013).

We specifically fit a spatiotemporal delta model to expanded
numbers per bin nc(i)

(4) Pr(nc(i) � B) � �1 � pc(i) if B � 0

pc(i) × Lognormal�Brc(i), �m
2 (c)� if B � 0

where pc(i) is the predicted encounter probability, rc(i) is the pre-
dicted log-biomass if encountered, Lognormal�Brc�i�, �m

2 �c�� is a
lognormal probability density function, and �m

2 �c� governs the pre-
dicted variance for positive catch rates. This model involves linear
predictors for pc(i) and rc(i):

(5)
logit[pc(i)] � �p(c, ti) � ��p(c)�p(c, si) � �	p(c)	p(c, si, ti)
log[rc(i)] � log(ai) � �r(c, ti) � ��r(c)�r(c, si) � �	p(c)	r(c, si, ti)

where �p(c, ti) and �r(c, ti) are intercepts for each bin c and year t,
�p(c, si) and �r(c, si) are random effects representing spatial varia-
tion among locations si for each sample i (e.g., a tow, visual sam-
ple, etc.), 	p(c, si, ti) and 	r(c, si, ti) are random effects representing
spatiotemporal variation among locations si and times ti for each
sample, and log(ai) is the log-area sampled as a linear offset for
log[rc(i)]. We specify a distribution for spatial and spatiotemporal
random effects:

(6)

�p(c) � MVN(0, Rp)
�r(c) � MVN(0, Rr)
�p(c, t) � MVN(0, Rp)
�r(c, t) � MVN(0, Rr)

where Rp and Rr are correlation matrices for pc(i) and rc(i), respec-
tively, as calculated from a Matern function:

(7) Rp(s, s � h) �
1

2��1�(�)
× (�p|hH|)� × K�(�p|hH|)

where H is a linear transformation representing geometric aniso-
tropy that is assumed to be identical for Rp and Rr and that in-
volves estimating two parameters (the direction of the major axis
of geometric anisotropy and the ratio of major and minor axes), �
is the smoothness of the Matern function (fixed at 1.0), and �p

governs the decorrelation distance for Rp and where �r is sepa-
rately estimated for Rr (see Thorson et al. 2015b for more details).
We specify that random effects �p(c), �r(c), 	p(c, t), and 	r(c, t) have
a standard deviation of 1.0, so that parameters ��p(c), �	p(c), ��r(c),
and �	p(c) are identifiable and are interpreted as the standard
deviation of a given spatial or spatiotemporal process.

Fixed effects (�p(c, t), ��p, �	p, �r(c, t), ��r, �	r, and �m(c)) are
estimated by identifying their values that maximize the marginal
log-likelihood function. The marginal log-likelihood is calculated
by integrating the joint log-likelihood of data and random effects
with respect to random effects (�p(c, s), 	p(c, s, t), �r(c, s), and 	r(c, s, t)).
We use Template Model Builder (TMB; Kristensen et al. 2016) to
implement the Laplace approximation to the marginal log-
likelihood (Skaug and Fournier 2006), and TMB uses automatic
differentiation to also calculate the gradients of the marginal log-
likelihood with respect to fixed effects. We approximate the prob-
ability of spatial random effects using the SPDE method (Lindgren
et al. 2011). Preliminary exploration suggests that age–length–sex
categories with few positive encounters can result in poor conver-
gence for bin-specific hyperparameters (i.e., ��p(c), �	p(c), ��r(c),
�	r(c), and �m

2 �c�). We therefore impose the restriction that these
parameters are equal for any bin with fewer than X encounters
combined throughout all observed years (where the value for X is
chosen based on model exploration). For identifiability, we also
“turn off” all intercepts for any combination of year t and category
c with no encounters (i.e., nc(i) = 0 for all i) and fix �p(c, t) to a
sufficiently low value such that predicted encounter probabilities
pc approach zero for that year.

We identify the maximum likelihood estimate (MLE) of fixed
effects using a gradient-based nonlinear minimizer within the R
statistical environment (R Core Team 2016). Specifically, we use a
gradient-based version of the Nelder–Mead algorithm five times,
each time starting from the MLE identified the previous iteration.
At the end of each Nelder–Mead iteration, we identify any spatio-
temporal hyperparameter that approaches zero (i.e., <0.001) and
fix these parameters to zero. We eliminate hyperparameters that
approach zero because these parameters are approaching a bound-
ary in parameter space, and having parameters at boundaries will
generally complicate any interpretation of asymptotic standard
errors. We also use a final Newton-step (based on the Hessian
matrix after the final Nelder–Mead iteration) to tighten conver-
gence and confirm that the absolute gradient of the marginal
log-likelihood with respect to each fixed effect is <0.001.

Estimated values of fixed and random effects are then used to
predict density d̂c�s,t� for every location s and year t:

(8) d̂c(s, t) � p̂c(s, t) × r̂c(s, t)
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where density d̂c�s,t� is then used to predict total abundance for
the entire domain (or a subset of the domain) for a given species:

(9) Îc(t) � �
s�1

ns

[a(s) × d̂c(s, t)]

where a(s) is the area associated with location s (Thorson et al.
2015b). We then use this index to calculate total abundance:

(10) Î(t) � �
c�1

nc

Îc(t)

the proportion for each bin:

(11) P̂c(t) �
Îc(t)

Î(t)

and the estimation variance SÊ	P̂c�t�

2 for proportions:

(12) SÊ[P̂c(t)]
2 ≈

Îc(t)
2

Î(t)2
�SÊ[Îc(t)]

2

Îc(t)
2

� 2
SÊ[Îc(t)]

2

Î(t)Îc(t)
�

�c�1

nc
SÊ[Îc(t)]

2

Î(t)2
�

where we use this approximation (see online Supplementary ma-
terial A for derivation1) because it relies only on standard errors
for each individual category (SÊ	Îc�t�


2) and does not require a
standard error for any value calculated from multiple categories
(e.g., as required to calculate SÊ	Î�t�
2). Calculating the standard
error for a value derived from multiple categories eliminates the
sparsity of Hessian matrix used in the Laplace approximation, so
our approximation results in improved computational efficiency.
For any category c and year t with no encounters, we specify that
Îc�t� � SÊ	Î�t�
2 � 0, such that model behaviour matches a design-
based estimator in these instances. We then use estimated proportions
and standard errors to calculate the input sample size �̂�t�:

(13) �̂(t) � Medianc�P̂c(t)[1 � P̂c(t)]

SÊ[P̂c(t)]
2 �

where this formula is derived by calculating the multinomial sam-
ple size that would approximate the estimated imprecision for
proportion P̂c�t� (see Thorson 2014) and where we use the median
instead of the mean because that was the version previously pub-
lished by Thorson (2014). For comparison, we also calculate the
input sample size �̂�t� for the design-based algorithm, using the
sample variance of expanded numbers nc(i) across samples i in
year t divided by the number of samples in that year as SÊ	Îc�t�


2 in
eq. 12. Future research could explore passing the estimated cova-
riance Cov̂	P̂c�t�
 for proportions directly to the assessment model,
although we do not explore the idea further here.

After identifying the MLE, TMB uses the generalized delta-
method to calculate all standard errors as a function of fixed and
random effects (Kass and Steffey 1989). TMB also implements the
epsilon-estimator to bias-correct predicted abundance Îc�t� to ac-
count for the nonlinear transformation of random effects (Thorson
and Kristensen 2016), and this bias-corrected prediction of Îc�t� is
used when calculating P̂c�t� (eq. 11) and �̂�t� (eq. 13). The spatiotem-
poral model is implemented using version 1.6.0 of R package VAST

(Thorson and Barnett 2017), publicly available at https://github.
com/James-Thorson/VAST.

Simulation experiment
We explore the performance of the spatiotemporal model for

analyzing compositional data using a simulation experiment with
100 replicates. To do so, we simulate data arising from simple
age-structured dynamics and compare estimates of proportion-at-
age P̂c�t� from design and spatiotemporal estimators with its true
value Pc(t). Specifically, we simulate abundance (in numbers) at
age Na(s, t) for a short-lived groundfish at each of 58 049 (2 km by
2 km) cells throughout the Eastern Bering Sea:

(14) Na(s, t) � �exp[�N � �N(s) � 	N(s, t)] × exp(�aZ) if t � 1 or a � 1
Na�1(s, t � 1) × exp(�Z) if t � 1, a �1

where exp(�N) is the median density for age-0 individuals, �N(s)
and 	N(s, t) are spatial and spatiotemporal variation in log-density,
and Z = 0.5·year−1 is the instantaneous mortality rate (from natural and
human causes). We also simulate variation in mass-at-age Wa(s, t):

(15) Wa(s, t) � w
{L∞[1 � exp(�Ka)]}w� × exp[�W(s) � 	W(s, t)]

where L∞ = 100 cm is asymptotic length, K = 0.3·year−1 is the Brody
growth coefficient, w
 = 0.01 g·cm–3 is tissue density, w� = 3 is
isometric scaling of mass-at-length, and �W(s) and 	W(s, t) are spa-
tial and spatiotemporal variation, respectively, in mass-at-age.
Spatial (�N and �W) and spatiotemporal (	N(t) and 	W(t)) terms are
simulated from a Gaussian random field (eq. 6) using R package
RandomFields (Schlather 2009). However, we use an isotropic
Gaussian covariance function in the simulation model in place of
the anisotropic Matérn covariance function (eq. 7) used during
parameter estimation. We specify in the simulation model a scale
of 250 km for all simulated spatial fields (i.e., locations 379 km
apart have a 10% correlation), where spatial terms (�N and �W)
have respective standard deviations of 0.5 and 0.1, spatiotemporal
terms (	N(t) and 	W(t)) have respective standard deviations of 0.2
and 0.1, and measurement errors have comparable magnitude to
total spatial and spatiotemporal variation (�m

2 �c� � 1).
We then simulate sampling at each sampled location and year

from the historical Eastern Bering Sea bottom trawl survey for the
last 25 years (1992–2016), following a Poisson-link delta-model
(Thorson 2018):

(16)

pi(a) � 1 � exp[�aiSaNa(si, ti)]

ri(a) �
aiSaNa(si, ti)

pi(a)
× Wa(si, ti)

where ai is the area swept by sample i occurring at location si and
year ti, Sa = {1 − exp[−Sslope(a − S0.5)]}−1 is selectivity-at-age (S0.5 =
3 years is age at 50% selection and Sslope = 1 governs the slope of the
selectivity-at-age curve) and where encounter probability pi(a) and
positive catch rate ri(a) is defined such that encounter probability fol-
lows a complementary log-log distribution and Da(si, ti) = pa(si, ti)ra(si, ti) =
Na(si, ti)Wa(si, ti). We then simulate data using the conventional
delta-model (eq. 4) and also calculate the true proportion-at-age:

(17) Pc(t) �
�s�1

ns
[a(s) × Da(s, t)]

�a�1

na �s�1

ns
[a(s) × Da(s, t)]

where we record this value for each year in each replicate.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2018-0015.
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We simulate 100 replicated data sets using this simulation
model and fit the spatiotemporal compositional expansion model
to each. We then extract predictions of P̂c�t� and �̂�t� for each
replicate and evaluate model performance in three ways:

1. Bias and imprecision. We record the true Pc(t) and estimated
P̂c�t� proportion using both spatiotemporal and design-based
estimators, calculate the error for each age and year Ec�t� �
P̂c�t� � Pc�t�, and calculate the average Ec(t) across years, ages,
and replicates (a measure of bias) and standard deviation of
Ec(t) (a measure of imprecision);

2. Confidence interval coverage. We record the predicted input
sample size �̂�t� for both spatiotemporal and design-based es-
timators and use a likelihood-ratio test for the null hypothesis
that P̂c�t��̂�t� in each year t arises from a multinomial distribu-
tion with proportion Pc(t) and sample size �̂�t�. This test in-
volves calculating a likelihood-ratio statistic �t

2 for every year
of each simulation replicate:

(18) �2(t) � �
c�1

nc

�̂(t)P̂c(t) log� P̂c(t)

Pa(t)


We then compare this test statistic with its theoretical dis-
tribution under the null hypothesis, which follows a �2 distri-
bution with nc degrees of freedom. Given this theoretical
distribution, we extract the quantile Q(t) of the test statistic
�2(t) from a �2 distribution with na degrees of freedom and
record this quantile for every year and replicate for both esti-
mators. Q(t) should have a uniform distribution under the null
hypothesis that estimated input sample size �̂t is a good sum-
mary of the variance between predicted P̂c�t� and true Pc(t)
proportions, while excess mass as Q(t) ¡ 0 implies that the
input sample size �̂�t� is too small (i.e., SÊ	P̂c�t�


2 is too large),
while excess mass as Q(t) ¡ 1 implies that �̂�t� is too large.

3. Estimated sample size. Finally, we record the estimated sample size
�̂�t� foreachyearandreplicate forbothdesign (�̂design�t�) and model-
based estimators (�̂model�t�). We then calculate the average ratio
under the assumption that estimated sample size follows a
skewed (i.e., lognormal) distribution:

(19) log[�̂model(t)] � Normal�� � log[�̂design(t)], ��
2�

and we report the value exp(�) − 1 (and its standard error) as a
summary of the percent change in sample size from using a
spatiotemporal estimator relative to the conventional design-
based estimator.

We expect that both design- and model-based estimators will
be approximately unbiased and have a similar distribution for
quantiles Q(t). Based on previous comparisons of index-standardization
methods (e.g., Thorson et al. 2015b), we also expect that the model-
based estimator should have smaller imprecision and larger esti-
mated sample sizes than the design-based estimator. This expected
increase in precision would occur if the model-based estimator
explains some portion of observed variance via spatiotemporal
patterns and therefore has a smaller estimate of residual variance
when predicting proportions into unsampled locations.

Case study
We also demonstrate that the spatiotemporal expansion of

compositional data are feasible using real-world data for the stock
of lingcod (Ophiodon elongatus) off the Oregon and Washington
coasts. We specifically compare stock assessment model perfor-
mance when using a design-based or a spatiotemporal model-
based expansion of length-composition data in the 2017 stock
assessment model (Haltuch et al. 2017). To do so, we conduct both

design-based and model-based expansion of length-composition
records from the Northwest Fisheries Science Center (NWFSC)
shelf-slope bottom trawl survey (Keller et al. 2017), the primary
source of fishery-independent information for US West Coast
groundfishes. Following the approach used in the 2017 assess-
ment, we expand compositional estimates to the Oregon and
Washington portions of the sampling domain (from 42°N to
49°N), which corresponds to 12 017 (2 km by 2 km) cells.

For simplicity of presentation, we make the following changes
to the stock assessment model:

1. We separately expand and fit to data for male and female
individuals (rather than simultaneously expanding them).
This change is intended to simplify visualization of results when
comparing design and model-based estimates of proportion-
at-length.

2. We include newly expanded length-composition data for
the US West Coast bottom trawl survey from 2013 to 2015.
We also include input sample sizes calculated for design-
based (�̂design�t�) and model-based (�̂VAST�t�) estimators.

3. We use the Dirichlet-multinomial distribution to re-estimate
the effective sample size given the input sample sizes for each
method (Thorson et al. 2017b), where this sample size repre-
sents the amount of information in expanded compositional
data as estimated by the stock assessment model (i.e., how well
compositional data match other data sources and model
assumptions).

We specifically estimate P̂c�t� for 13 years and 60 length bins
(from 10 to 130 cm length divided into 2 cm bins) and use 100 spatial
knots to approximate spatial resolution (i.e., using the same spa-
tial resolution as used by Thorson et al. (2015b) for abundance
index testing). The stock assessment is implemented in Stock Syn-
thesis (Methot and Wetzel 2013) and is otherwise identical to that
recently accepted for management off the US West Coast (see
online Supplementary material B for a summary of the model1).

We implement first-stage expansion using the ratio of sampled
and total numbers (i.e., �i � ñi/ni) and then analyse resulting re-
cords nc�i� � ñc�i�/�i using a conventional delta-model. Some
length bins have too few observations to reliably estimate hyper-
parameters �m(c), �	p(c), and �	p(c). We therefore estimate a single
value for each hyperparameter for all length bins that have fewer
than 100 observations in total from 2003 to 2015. We then record
estimates of length-composition data P̂c�t� for both design- and
model-based estimators and include both in the 2017 stock assess-
ment model. We record estimates of the biomass ratio (spawning
output relative to its average unfished level) and fishing exploita-
tion rate (spawning potential ratio) for each assessment model
run and compare these values as well as the value of the negative
log-likelihood using each data set.

Results
Comparison between spatiotemporal and design-based estimates of

proportion-at-age for a replicate of the simulation experiment
(Fig. 1) shows broad agreement between methods, where both are
able to distinguish years with relatively strong old (year 14) or
young (year 12) cohorts, as well as track cohorts (e.g., the cohort
born in year 4 is dominant from ages 3 to 7 in years 7 to 11). The
estimated sample size �̂�t� in this replicate is generally larger for
the spatiotemporal than the design-based estimator (e.g., 115 versus
68 in year 1). Comparing the error between spatiotemporal and
design-based estimators (Fig. 2) confirms that both methods are
approximatelyunbiased (bothhaveanaveragebiaswithin<0.2%).How-
ever, the spatiotemporal estimator has average error that is ap-
proximately 10% smaller than the design-based estimator in every
age.

Both spatiotemporal and design-based estimators overestimate
sample size �̂�t� by a similar amount. In particular, the quantile

406 Can. J. Fish. Aquat. Sci. Vol. 76, 2019

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
06

/0
5/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Q(t) for both models (Fig. 3) indicates that the true proportion-at-
age Pa(t) is outside the 90% predictive interval approximately 40%
of the time (i.e., the quantile 0.9 < Q(t) < 1.0 contains almost
35%–40% of replicates for both models). This indicates that the
estimated sample size �̂�t� is greater than it should be for about
25%–30% of replicates and is appropriate for the remaining 70%–
75%. We therefore conclude that sample size estimates are satis-
factory in nearly 75% of simulation replicates and are overestimated in
the remaining 25% and that performance is similar between de-
sign and model-based estimators. Comparison of estimated sample

size �̂�t� between estimators (Fig. 4) indicates that the spatiotemporal
model yields proportion-at-age estimates P̂a�t� with a 32% greater
sample size than the design-based estimator. However, individual
years and replicates result in a lower spatiotemporal sample size
than the design-based estimator (i.e., dots below the dashed one-
to-one line in Fig. 4).

Finally, applying both spatiotemporal and design-based estima-
tors to length-structured data for lingcod in the US California
Current (Fig. 5) shows that both methods generate very similar
estimates of proportion-at-size. For example, a strong cohort first

Fig. 1. Prediction of proportion-at-age P̂a�t� (y axis) for each age (x axis) in each simulated year (panel) using a design-based (blue) or spatiotemporal
model-based (red) estimator (solid line: predicted value; vertical whisker: ±1 standard error), including the input sample size for design-based
�design(t) (blue number) and spatiotemporal models �VAST(t) (red number), compared with true proportion-at-age Pa(t) (black) for a single
replicate of the simulation experiment. [Colour online.]
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appears in 2009 (at a size of approximately 26 cm), and this strong
cohort can be easily identified until 2014 in both male and female
composition data. However, small differences do arise; for exam-
ple, the increase in 42–44 cm females in 2003 in the model-based
relative to design-based estimates and vice-versa in 54–56 cm fe-
males in 2008. Model diagnostics (Supplementary Fig. C11) show
that encounter probability is shrunk towards its average value for
both males and females and therefore is underestimated for the
small proportion of observations with high encounter propor-

tion, but otherwise do not indicate a lack of model fit. In general,
the model-based approach yields larger input-sample sizes (�̂�t�
from eq. 13, averaged across years and sexes: 211 for design-based
and 248 for model-based estimators). When fitting to these data
sets and re-estimating effective sample size, the model-based ap-
proach results in a larger effective sample size, indicating a small
increase in goodness of fit for expanded compositional data when
using the model-based approach (Fig. 6, top panel). The larger
effective sample size in turn underlies a small decreased in confi-

Fig. 2. Summary of error (	P̂c�t� � Pc�t�
 × 100%) in the simulation experiment (y axis) for each year (x axis) and age (panel), showing average
(solid line) and ±1 standard deviation for error (shaded interval) for the spatiotemporal (red) and design-based estimator (blue), where each
panel includes the average error across years with the average root-mean-squared error across years in parenthesis. A well-performing model
will have zero average error and will minimize the root-mean-squared error. [Colour online.]
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dence interval width for spawning biomass when fitting to the
model-based compositional data, but no substantial change in the
maximum likelihood estimate for spawning biomass or status
relative to unfished levels.

Discussion
We used a simulation experiment and real-world case study to

demonstrate a spatiotemporal approach to estimating composi-
tional data for use in stock assessment models. The simulation
experiment showed that a spatiotemporal model substantially
improves precision while remaining unbiased and having satis-
factory confidence interval coverage. An application to lingcod in
the US California Current confirmed that our implementation is
feasible using real-world data in conjunction with the existing
Stock Synthesis assessment software, even given the small (2 cm)
length bins that are commonly widely used on the US West Coast
(Monnahan et al. 2016). The case study also corroborates the con-
clusion that a spatiotemporal approach can increase both input
and effective sample size for compositional data. Our implemen-
tation involves using R package VAST to estimate spatiotemporal
variation in density for each age–length–sex bin, and this package
has previously been used for stock assessment in the Pacific and
North Pacific fisheries management councils (e.g., Lunsford et al.
2015; Thorson and Wetzel 2015). We therefore believe that our
proposed approach could be feasible for use in real-world assess-
ments.

We envision that estimating input sample size has an impor-
tant role in estimating the relative information in composition
and abundance-index data. Determining the relative weighting to
give these two data types during stock assessment model develop-
ment has been called “data weighting” (Francis 2011) and remains
a hotly contested topic in stock assessment research (see e.g.,
Maunder et al. 2017). Our spatiotemporal model for estimating
composition data calculates the multinomial sample size �̂�t�
that approximates the estimated precision for proportions P̂c�t�

(i.e., adapting methods from Thorson 2014). This multinomial
sample size could then be treated as the input sample size when
fitting composition data in an assessment model, as we do in the
case study here. However, the variance between expected and
observed proportions will often exceed its expectation given the
input sample size, which we call “overdispersion”. Overdispersion
can arise due to model mis-specification (e.g., because the assess-
ment model neglects spatial processes causing changes in selec-
tivity), such that the input sample size is too high. We therefore
recommend estimating overdispersion of compositional data
within every assessment, using the multinomial sample size as an
upper bound on effective sample size. This approach is computa-
tionally efficient using the Dirichlet-multinomial distribution
(Thorson et al. 2017b), although the Dirichlet-multinomial has the
same correlation structure as the multinomial distribution and
may perform poorly when overdispersion is correlated among
ages (e.g., due to mis-specified selectivity assumptions). If this
estimated overdispersion is large, we foresee that the analyst
could increase model flexibility for that model component, for
example, by allowing selectivity to vary over time (Xu et al., 2019)
as it is often observed to do (Sampson and Scott 2012). We there-
fore interpret model-based estimates of input sample size as an
important starting point in an iterative approach to stock assess-
ment model development and call this a “model-based approach
to compositional data weighting” (see Fig. 7 for a visualization).

Ongoing research has developed assessment models that fit di-
rectly to fishery-dependent and -independent records, such as log-
book entries, portside samples, survey trawls, etc. (Maunder and
Langley 2004; Kristensen et al. 2014; Thorson et al. 2015a). Here, we
have instead followed the more conventional approach of using
design- or model-based methods to aggregate records across
space, where resulting estimates of total catch, abundance, or
composition data can then be fitted in a separate stock assessment
model. Both the former (fitting assessments directly to observa-
tion records) and the latter (analysing records and then fitting in a

Fig. 3. Proportion of simulated replicates and years (y axis) with
predictive quantiles Q(t) within a given range (x axis) for the
spatiotemporal model (red) or design-based (blue) estimators (purple
shows overlap between model and design-based estimators), where a
perfect model would have a quantile distribution of 1.0 (dashed
horizontal line). [Colour online.]

Fig. 4. Input sample size for design-based �design(t) (x axis) and
spatiotemporal models �VAST(t) (y axis) for each simulation replicate
and year (circles), showing the 1:1 line (dashed line) representing
equal sample size and the estimated ratio of model versus design-
based sample size (dotted line) and the average ratio (bottom right)
and its standard error expressed as a percentage (see eq. 19).
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separate assessment model) have strengths and weaknesses. Fit-
ting assessments directly to observation records is likely to have
large issues with data weighting (i.e., where observation records
are thought to have more information than is appropriate), mak-
ing estimates of stock status implausibly precise (e.g., Maunder
and Langley 2004). However, this over-weighting may be resolved
by incorporating new forms of “process error” (e.g., spatiotempo-

ral variation in fish density; Kristensen et al. 2014; Thorson et al.
2015a). By contrast, analysing records and then fitting a secondary
assessment model has several advantages, including (i) faster pa-
rameter estimation and therefore greater scope for biological de-
tail in population dynamics (e.g., Taylor and Methot 2013) and
(ii) easier statistical diagnostics and explanation of model struc-
ture. We note that future research could modify the multivariate

Fig. 5. Prediction of proportion-at-length P̂c�t� for length classes of lingcod in the US portion of the California Current using a design-based
(blue) or spatiotemporal model-based (red) estimator including the predicted sample size for each (see Fig. 1 caption for details; length classes
are defined as “[X-Y)”, representing all fish with length X ≤ l ≤ Y), showing females (a) and males (b) separately and where any length bin not
shown has a proportion of 0.0 for all years. [Colour online.]
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spatiotemporal model used here to incorporate individual growth
and fishing mortality, and this would then be a spatiotemporal
size-structured population model. We therefore recommend on-
going research regarding the practical advantages and drawbacks
to these two general approaches to stock assessment models.

We recommend further research comparing spatiotemporal
and design-based approaches with compositional expansion us-
ing real-world stock assessments. Although spatiotemporal esti-
mates of abundance indices can also be influential in some case
studies (e.g., Cao et al. 2017), the model-based abundance indices
have not made a large difference in many other stock assessments

(e.g., Thorson and Wetzel 2015). The small impact of changes to
abundance indices in some stock assessments is not surprising,
given that many assessments are driven primarily by composi-
tional data (Francis 2011). We therefore hypothesize that the im-
pact of using design- versus model-based approaches on stock
assessment results will be greater when estimating compositional
data than abundance indices.

Previous studies have also used spatiotemporal models to esti-
mate abundance indices for individual sizes or ages (Thorson et al.
2017c; Berg et al. 2014; Kai et al. 2017). In particular, Berg et al.
(2014) used spatiotemporal models for estimating age-specific

Fig. 5 (concluded).
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abundance indices for use in a stock assessment model. Berg et al.
(2014) concluded that (i) spatiotemporal models were more precise
than a design-based estimator, and (ii) estimated abundance indi-
ces were correlated for adjacent ages. Including a size-specific
abundance index in a stock assessment model is common in Eu-
rope and the Northeast US. By contrast, we have estimated a sep-
arate time series of abundance index and compositional data,
following common practice in the US West Coast. The practice of
estimating abundance indices for each size or age is convenient,
because the estimated imprecision could be included as a covari-
ance matrix (to account for estimation covariance). By contrast,
our model structure has an independent intercept for each size
and year, which is designed to minimize the estimation covari-
ance for size composition between sizes and years. We recom-
mend that future research be conducted to explore the impact of
including estimation covariance for size-based abundance indices
(similar to Berg et al. 2014) or using model specifications that
minimize estimation covariance (as we do here) to determine
which approach has better performance in existing stock assess-
ments. However, any attempt to include estimation covariance
will require changing the input format for existing stock assess-
ment models (e.g., Stock Synthesis for our lingcod case study) to
allow the assessment software to read in a covariance matrix as-
sociated with every existing row of age or length composition
data. We therefore believe this comparison requires a separate
research effort.

Finally, we recommend several lines of research to explore the
proposed spatiotemporal model for composition data:

1. Data weighting. Future research should explore the impact of
model-based data processing on data weighting in stock as-
sessments. To do so, research could simulate a fishery for a
size-structured spatiotemporal population, spatial records of

catch rate and compositional samples, and conduct design- or
model-based expansion of records. It could then use these
estimates to simulate assessment models while estimating
overdispersion and then add process errors to account for
unmodeled spatial processes implicitly. This simulation ex-
periment would illustrate the potential for estimating input
sample size, overdispersion, and process errors to resolve ongo-
ing issues with data weighting in stock assessment. We hypoth-
esize that improved precision when using a spatiotemporal
model to expand compositional data would in turn improve
estimates of time-varying selectivity.

2. Conditional age-at-length (CAAL) data. Future research could
also explore potential improvements in precision when using
a spatiotemporal model to expand CAAL data. CAAL data are
typically included in Stock Synthesis models to both (i) ac-
count for a nonrandom sampling design for individuals that
have their ages read and (ii) allow estimating variation in size-
at-age among individuals. However, CAAL will require model-
ling many length bins for each observed age, and this will be
computationally challenging for long-lived species. We imag-
ine that future efforts could separately model CAAL data for
each survey year, and this will therefore reduce computational
costs for each individual year. However, we do not currently
know whether a spatiotemporal approach to CAAL data will be
computationally feasible.

3. Reviewer standards and assessment terms of reference. Im-
provements in stock-assessment methods must be accompa-
nied by improvements in how to specify and review stock
assessments. We therefore recommend ongoing research re-
garding diagnostics for spatiotemporal models (including those
used here), as well as simulation research to develop guide-

Fig. 6. Estimated spawning biomass (top panel, in metric tonnes)
and spawning output relative to average unfished levels (bottom
panel) showing the management target (line) and 95% confidence
intervals (shading) using either design-based (blue) or spatiotemporal
model-based (red) estimates of proportion-at-length P̂c�t� for the NWFSC
shelf-slope survey (purple again shows overlap between model- and
design-based estimators). We also show the average input sample size,
�(t), the average effective sample size estimated by the Dirichlet-
multinomial approach, and the ratio of these two sample sizes where
this “weighting ratio” measures the extent to which compositional
data are down-weighted due to lack of fit when combined with other
data sources and model assumptions (bottom plot; blue: design-based;
red: model-based). [Colour online.]

Fig. 7. Schematic showing role of model-based expansion of
compositional data when generating an input sample size �̂�t� and
estimated composition data P̂c�t�, which are combined with other
expanded data D̂ in a stock assessment model, where the match
between P̂c�t� and predicted proportions �c(t) depends upon model
mis-specification and where any overdispersion results in an
estimated effective sample size �̂eff�t� � �̂�t�. This decreased effective
sample size can then be used as a diagnostic to justify added
complexity within the stock assessment model, which will affect the
degree of model mis-specification and where this feedback between
�̂eff�t� and added model complexity (shown in the grey box) can be
iterated until the model has satisfactory fit to composition data.
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lines for when to use (or not use) model-based methods for
compositional data. Model-based methods for abundance indices
were developed in part to deal with variation in catch rates among
contracted fishing vessels (Helser et al. 2004; Thorson and Ward
2014), and future research could start by showing (i) whether vessels
also differ in size selectivity and (ii) whether this impacts estimated
sample sizes and proportions.

These three research lines will require substantial research over
the coming years. However, the lingcod case study used here high-
lights the potential increase in stock-assessment precision arising
from spatiotemporal approaches to compositional data. We there-
fore hypothesize that improvements in compositional analysis
will be worth the necessary research effort.
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