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Three problems with the conventional delta-model for biomass
sampling data, and a computationally efficient alternative
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Abstract: Ecologists often analyse biomass sampling data that result in many zeros, where remaining samples can take any
positive real number. Samples are often analysed using a “delta-model” that combines two separate generalized linear models,
GLMs (for encounter probability and positive catch rates), or less often using a compound Poisson-gamma (CPG) distribution that
is computationally expensive. I discuss three theoretical problems with the conventional delta-model: difficulty interpreting
covariates for encounter probability, the assumed independence of the two GLMs, and the biologically implausible form when
eliminating covariates for either GLM. I then derive an alternative “Poisson-link model” that solves these problems. To illustrate,
I use biomass samples for 113 fish populations to show that the Poisson-link model improves fit (and decreases residual spatial
variation) for >80% of populations relative to the conventional delta-model. A simulation experiment illustrates that CPG and
Poisson-link models estimate covariate effects that are similar and biologically interpretable. I therefore recommend the
Poisson-link model as a useful alternative to the conventional delta-model with similar properties to the CPG distribution.

Résumé : Les écologistes analysent souvent des données d’échantillonnage de la biomasse qui donnent de nombreux zéros, les
échantillons restants pouvant prendre n’importe quel nombre réel positif. Les échantillons sont souvent analysés en utilisant un
«modele delta » qui combine deux modeles linéaires généralisés (MLG) différents (pour la probabilité de rencontre et les taux de
prises positifs) ou, moins souvent, une distribution Poisson-gamma composite (PGC) plus onéreuse sur le plan computationnel.
Jaborde trois problémes théoriques associés au modele delta classique, soit la difficulté d’interpréter les covariables en ce qui
concerne la probabilité de rencontres, I'indépendance présumée des deux MLG et la forme non plausible du point de vue
biologique quand les covariables sont éliminées pour I'un ou l'autre des MLG. Je développe ensuite un nouveau « modele
Poisson-lien » qui résout ces problémes. A des fins d’illustration, jutilise des échantillons de biomasse pour 113 populations de
poissons pour démontrer que le modele Poisson-lien améliore le calage (et réduit la variation spatiale résiduelle) pour >80 % des
populations par rapport au modele delta classique. Une expérience de simulation illustre le fait que les modeles PGC et
Poisson-lien estiment les effets de covariables qui sont semblables et permettent une interprétation biologique. Je recommande
donc le modele de Poisson-lien comme solution de rechange utile au modele delta classique avec des propriétés semblables a la
distribution PGC. [Traduit par la Rédaction]

and leaf-litter traps (e.g., Clark 2016). In each case, sampling yields
some proportion of zeros (e.g., where no individuals of a given
taxon were encountered) and also a continuous-valued measure of
density (e.g., biomass for samples where at least one individual of
a given taxon was encountered).

Biomass sampling data are often analysed using a “delta” (or
“hurdle”) model (Aitchison 1955; Lo et al. 1992; Stefansson 1996)
that includes two components: the probability of encountering
the species and the expected biomass given that the species is
encountered. This “delta-model” remains one of the most com-
mon types of regression used by ecologists and fisheries scientists
(Maunder and Punt 2004; Zuur et al. 2009). However, it has several

Introduction

Ecologists often estimate unknown biological rates (e.g., sur-
vival, stage-transition probabilities, per-capita productivity) by fit-
ting ecological models to available data. Ecologists frequently
collect such data from biological surveys, where observers visit a
predefined site and either record the species they encounter (oc-
cupancy data) or measure the quantity of each species (counts or
biomass). Many common analyses (including species distribution
models, climate envelope analysis, and habitat utilization models)
then involve fitting a regression to available data, often using a
generalized linear mixed model (GLMM).

Ecological surveys (particularly for marine fishes) will often
measure the biomass of a given species at each site. For example,
this is common in marine fish sampling where thousands of indi-
vidual fish can be captured simultaneously by a trawl gear. In this
case, it is easiest to sort the sample by species, weigh the biomass
for each species, and potentially subsample to determine individ-
ual mass, sex, and age (which can then be used to estimate the
number sampled, even though numbers are not directly counted).
Other examples of sampling species biomass include insect traps

theoretical and practical drawbacks (as discussed below). One in-
creasingly popular alternative to the conventional delta-model is
using a compound Poisson-gamma (CPG) model (Smyth 1996;
Foster and Bravington 2013; Lecomte et al. 2013), which is derived
by assuming that biomass samples capture a Poisson-distributed
number of individuals, where the biomass of each individual fol-
lows an independent gamma distribution. This CPG model is a
special case of the Tweedie distribution (Foster and Bravington
2013), but it remains computationally expensive to evaluate and
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Table 1. Names and symbols used in the main text, indicating whether each refers to data (“Data”),
an index (“Index”), a fixed (“Fixed”) or a random (“Random”) effect, or a derived quantity (“DQ”).

Name Symbol Type
Observed biomass for a survey sample i [ Data
Area swept for sample i a; Data
Measured covariates for sample i X; Data
Unmeasured variables (treated as random) for sample i Z; Data
Sample index i Index
Site index N
Time index t
Dispersion for probability density function for positive catch rates in om Fixed
conventional or Poisson-link delta-models
Shape parameter for variation in individual mass in compound k Fixed
Poisson-gamma (CPG) distribution
Fixed effects for delta-model B, B, Fixed
Fixed effects for Poisson-link model B.. B., Fixed
Fixed effects for CPG model B B, Fixed
Variance of random effects affecting p; in conventional delta-model a-f,w, cr;s Fixed
Variance of random effects affecting r; in conventional delta-model o, o Fixed
Variance of random effects affecting n; in Poisson-link delta-model 2 o Fixed
Variance of random effects affecting w; in Poisson-link delta-model O O Fixed
Random effects affecting p; in conventional delta-model w, (8), &, (8,1 Random
Random effects affecting r; in conventional delta-model w, (5), & (St) Random
Random effects affecting n; in Poisson-link delta-model w, (), &, (S,) Random
Random effects affecting w; in Poisson-link delta-model w,, (5), &, (5.t) Random
Taylor’s power law parameter v DQ
Predicted number of individuals in CPG distribution A DQ
Predicted density for sample i d; DQ
Predicted group density for sample i n; DQ
Predicted average mass for each individual or group for sample i w; DQ
Predicted encounter probability for sample i i DQ
Predicted biomass when a taxon is encountered for sample i r; DQ
Predicted individual mass in CPG distribution e DQ
Mean of Tweedie parameterization for CPG distribution i DQ
Dispersion of Tweedie parameterization of CPG distribution b; DQ

therefore is difficult to combine with other detailed model com-
ponents (e.g., spatio-temporal variation (Cressie and Wikle 2011)).

In the following, I first describe the most widely used version of
the delta-model in detail, which involves a logistic regression for
encounter probability and a separate generalized linear model
(GLM) for biomass when the taxon is encountered, and outline
three theoretical problems with using this conventional delta-
model. In response, I then define an alternative “Poisson-link”
model for analysing biomass sampling data and describe how this
Poisson-link model rectifies all three theoretical problems. I then
discuss similarities between the Poisson-link and CPG models, i.e.,
that both estimate numbers density and average mass via log-
linked linear predictors. Next, I compile biomass sampling data
from 113 fishes from seven marine ecosystems in North America
and Europe and show (1) that the Poisson-link model does not
sacrifice model fit relative to the CPG distribution and (2) that the
Poisson-link model often has better fit and reduces unexplained
variation relative to the conventional delta-model. Finally, I use a
simulation experiment to confirm that the Poisson-link and CPG
distributions both provide a simple interpretation of covariates
and estimate covariates similarly.

Methods

Defining the conventional delta-model

Fisheries scientists have analysed biomass sampling data using
delta-models for nearly 30 years (Lo et al. 1992; Stefansson 1996).
Historically, these delta-models have been fitted to data by esti-
mating parameters for two separate and independent GLMs:
(1) encounter probability: the probability of encountering the spe-
cies at a given place and time and (2) positive catch rates: the

probability density function for catch in biomass given that the
species is encountered. Predictions from the two GLMs can then
be multiplied together to predict local density, and this in turn is
used to predict total abundance across a prespecified spatial do-
main.

The “encounter probability” component of the delta-model de-
fines the probability p; that catch C; for the ith sample is nonzero:

(1a) I(C; > 0) ~ Bernoulli(p;)

where I(C; > 0) is an indicator function equal to one if C; > 0 and
zero otherwise (where all symbols are summarized in Table 1). In
a GLMM, p; is modelled via a link function g, where g(p,) is a linear
function of fixed and random effects. The “encounter probability”
GLM involves a Bernoulli distribution for each sample, and the
canonical link-function for this distribution is a logit-link. Pre-
sumably for this reason, researchers have often specified a logit-
link with little consideration of alternatives (e.g., Stefansson 1996;
Maunder and Punt 2004; Thorson and Ward 2013):

()  logitlp) = Bx, + vz,

where x; and z; are predictors for fixed-effects B, and random
effects v, associated with the ith observation affecting encounter
probability p, although other potential link-functions include the
probit and complementary log-log link-functions (Zuur et al. 2009
p. 248). In the following, we refer to the logit-link as the “conven-
tional” delta-model due to its widespread use in fisheries science.
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The “positive catch rate” component defines the probability
density function for catch C; given that it is nonzero. In the fol-
lowing, we use a bias-corrected lognormal density function:

o,
(2a) Cil(ci > 0) ~ Lognormall| log(r, — T

where log(r;) and 0% are the mean and variance of log(C,) and we
2

(o}
use log(r;) — - such that r;is interpreted as the mean (rather than

median) catch C; given that sample i encounters a given taxon. The
model again specifies a linear predictor for log(r;):

(2b)  log(r) = Bx; + v,z + log(a)

where B, and v, are again fixed and random effects (now affecting
positive catch rate r) and g, is the area swept during the ith sample
(i.e., a;is a linear offset for r;). Previous research has often explored
the performance of the lognormal versus gamma distribution (or
other alternatives), and comparisons using simulated data have
generally supported to the use of the Akaike information crite-
rion (AIC) (Akaike 1974) to properly identify the distribution used
to generate simulated data (Dick 2004).

Given these two model components, population density d(s, t) at
location s and time t can be predicted, d(s, t) = p(s, t) x (s,t). Total
abundance, center of distribution, or effective area occupied can
then be easily calculated from predicted population density and
spatial information about the population or sampling domain
(Thorson et al. 2016b).

Three “theoretical” problems with conventional delta-models

I note three major drawbacks to using the conventional delta-
model: (1) difficulties in interpreting covariates, (2) assumed
independence between model components, and (3) biologically
implausible form when removing covariates.

Drawback 1: Difficulties in interpreting coefficients

Using the conventional delta-model, an ecologist can include co-
variates affecting the logit-encounter probability, logit(p), and (or)
the log-positive catch rate, log(r). For predictors affecting logit(p),
fixed and random effects then affect the “odds ratio”, defined as
the log-ratio of encounter probability and nonencounter proba-

bility, i.e., logit(p) = log(Tin . However, it is not easy to summa-

rize the average effect of covariates for logit(p) on population
density d because this effect depends upon the value of all cova-
riates and samples. Furthermore, a random effect vy, for logit(p)
may have a variance of 0'3/ but there is no closed-form equation for
calculating the resulting variance in population density d. I sus-
pect that many ecologists would prefer to estimate the impact of
a covariate affecting encounter probability (e.g., bottom temper-
ature) on expected population densities rather than the “odds
ratio”. Although an ecologist could use predictive sampling to
approximate the variance in population density for any link func-
tion, the lack of a closed-form solution still complicates interpre-
tation for these models. This drawback would be solved by
defining all covariates via the log-link function, in which case an
estimated coefficient 8 for covariate x indicates that a 0.01 in-
crease in x; results in a 8% increase in predicted population den-
sity. However, defining all covariates via log-link is inconvenient
using a conventional delta-model because a log-link for encounter
probability p could exceed 1.0 (the upper bound for a probability).

Drawback 2: Assumed independence among components

Using the conventional delta-model, the “encounter probability”
and “positive catch rate” components are assumed to be
statistically independent, i.e., knowledge about encounter proba-

1371

bility p gives no information about the likely distribution for pos-
itive catches r. This assumption is contrary to a large body of
evidence suggesting (1) that abundant species have wide ranges,
such that frequently encountered species also have higher density
throughout their range (Gaston 1994), and also (2) that an increase
in local density will decrease the probability of failing to detect a
species that is present (Royle and Nichols 2003). Both phenomena
suggest that a location with increased probability of encounter
(higher p) will tend to have greater catch rates given an encounter
(higher 1), as has been argued previously for nonparametric zero-
inflated models (Liu and Chan 2011). As one concrete example, the
conventional delta-model specifies that positive catch rates r; in-
crease linearly with increased area swept g; for a given sample but
that increased area swept has no effect on encounter probability
p;- This specification is inconvenient because an increase in area
swept for many species will increase the probability of sampling
at least one occupied patch (Lecomte et al. 2013). In response, an
ecologist could chose to also include area swept as a predictor for
encounter probability p. However, there is no way to interpret the
estimated coefficient as a “linear offset” when using the conven-
tional logit-link for encounter probability (see Drawback 1 above),
so this area swept covariate would then be estimated to have a
nonlinear impact on expected catches.

Drawback 3: Biologically implausible form when removing covariates
Ecologists often have little data with which to estimate a mul-
titude of potential ecological processes. The presence of “tapering
effects” (i.e., many ecological processes with gradually declining
effect sizes for any given system) has driven interest in using
model selection to identify “parsimonious” ecological models
(Burnham and Anderson 2002). Parsimony in this case is defined
as an appropriate number of parameters that minimizes total
predictive error for a given data set (simultaneously low bias and
imprecision). In many cases, parsimony is achieved by identifying
a flexible family of models, where analysts can use model selec-
tion to identify the appropriate degree of model complexity. This
approach is most effective, however, when the model that elimi-
nates covariates remains biologically plausible (e.g., is likely to
provide a good fit for species on average). As a corollary of Draw-
back 2, it will often be more statistically efficient to assume that a
covariate associated with high encounter probability will also
likely be associated with high positive catch rates (and vice versa).
For example, if the density of rocky substrate is associated with
increased encounter probability for a refuge-seeking fish, then it
is also likely associated with increased positive catch rates be-
cause sampling will likely include a greater number of occupied
habitat patches. By contrast, removing covariates in a delta-model
generally involves specifying that a given covariate affects en-
counter probability but not positive catch rates (or vice versa).

Solutions from using an alternative “Poisson-link” model

As an alternative to the conventional delta-model, I propose a
“Poisson-link” model for biomass sampling data with many zeros.
This Poisson-link model is derived by defining n, as the predicted
density of individuals or groups at sample i, where the number of
observed individuals is assumed to follow a Poisson process with
expectation n;. The encounter probability from this Poisson pro-
cess is then

(3) p; =1 — exp(—a; x n)

such that p; —1as an; — «, i.e,, an increased area swept increases
the expected number of individuals observed (Foster and Bravington
2013; Lecomte et al. 2013). Predicted group density n; is then mod-
elled via a log-linked linear predictor:

(4)  logn) = Bix, + 7z,
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where a 0.1 increase in the right-hand side of eq. 4 (due to fixed
effects B,T,x,- or random effects ygzi) results in an approximately 10%
increase in predicted group density n;.

I then combine two equations for biomass density d to derive an
expression for positive catch rates r, i.e., (1) predicted biomass
density is the product of predicted group density and predicted
biomass per group (d; = n; x w;, where w is predicted biomass per
group of individuals) and (2) biomass density is the product of
encounter probability and positive catch rates (d; = p; x ;). After
rearranging, these definitions imply that

n;
(5) = 51 X W

When data are few, predicted biomass per group w can be esti-
mated as a single parameter. However, a more general treatment
involves specifying w via a log-linked linear predictor:

(6)  log(w) = BuX; + vz

where this reduces to constant predicted biomass per group, w; =
exp(B,)whenx=1and z=(.

The probability distribution for biomass sample C; is then
calculated for the Poisson-link model by converting predicted
numbers density (n;) to encounter probability (p;) using eq. 3, con-
verting predicted biomass per group (w;) to positive catch rates (r;)
using eq. 5, and then applying the same likelihood function as the
conventional delta-model (i.e., eqs. 1a and 2a). Consequently, this
likelihood function requires essentially the same computational
time as the conventional delta-model (egs. 3, 5, 1a, and 2a). Simi-
larly, the Poisson-link model can be interpreted as a reparameter-
ization of a delta-model using a complementary log-log link for
encounter probability (eq. 3) and a biologically interpretable link-
age between encounter probability and positive catch rates (eq. 5).
However, the Poisson-link model is not identical to a conventional
delta-model using a complementary log-log link because group
density n affects both encounter probability p and positive catch
rates r. In the following, I specify a lognormal distribution for
biomass given encounters for both conventional delta- and
Poisson-link models, although future studies could use model se-
lection to select among alternative distribution functions.

The Poisson-link model responds to all three theoretical
problems with the conventional delta-model

1. Difficulties in interpreting coefficients

The Poisson-link model simplifies interpretation of covariates.
In particular, covariates B, and B,, both predict changes in log-
density, so, e.g., a 0.01 increase in f3,X; is associated with approx-
imately a 1% increase in density. Similarly, a random effect y; with
a standard deviation of 0.01 explains approximately a 1% coefficient
of variation in density. Both fixed and random effects therefore have
a similar interpretation in predicting variation in population density
because both affect density via a log-link function.

2. Independence among components

The Poisson-link model induces a correlation between pre-
dicted encounter probability p and predicted positive catch rates r
that is interpretable biologically. When expected counts are low
(na << 1), an increase in group density results in a proportional
increase in encounter probability (n « p). In this case, increasing
group density results in a greater proportion of encounters, where
each encounter is likely to sample a single individual with massw.
As group-density becomes large (na >> 1), encounter probability
will plateau (p — 1), and further increases in group density are
accompanied by an increase in positive catch rates (n « r). In
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Fig. 1. Conceptual diagram showing encounter probability p (top
panel y-axis) and positive catch rate r (bottom panel y-axis) as a
function of group density n (x-axis) for the Poisson-link model given
different values for average biomass per group w (solid line: w =1 kg;
broken line: w = 2 kg) while holding area swept constant (a =1 km?).
An increased average mass results in a smaller increase in p with
increasing n (with identical form to a complementary log-log link
function) and also a slower convergence to the linear relationship
between numbers density n and positive catch rates r.
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summary, encounter probability p and positive catch rates r are
correlated via a joint dependence on group density n (see Fig. 1).

3. Biologically implausible form when removing covariates

Finally, the Poisson-link model by default specifies that a cova-
riate affecting group density (i.e., B,) influences predictions of
both encounter probability p and positive catch rates r. To con-
tinue our previous example, a covariate representing the local
density of rocky substrate might be selected for group density but
not for average mass, and this reduction in the number of esti-
mated parameters still retains a biologically meaningful impact of
substrate on both encounter probability and positive catch rates.
This specification will allow a smaller number of estimated pa-
rameters to explain variation in both encounter probability and
positive catch rates whenever p; and r; are positively correlated in
the form predicted by the Poisson-link model.

Despite these improvements over the conventional delta-
model, the Poisson-link and conventional delta-model are identi-
cal (e.g., have identical maximum likelihood and provide identical
predictions of density) for several potential model configurations.
For example, delta-model parameters (g, and §3,) can be converted
to Poisson-link parameters (8, and f3,,) and vice versa when using
an intercept-only model (e.g., X is a design matrixand z=)and a
constant area offset (i.e., a; = a for all observations i) via the relations

logit '(B,) = 1 — exp(—a x exp(B,)

7) exp(B,)

eXP(Br) = 1-— exp(—a X exp(Bn

)) cXP(BW)

< Published by NRC Research Press
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where these relations are derived from the definition of predicted
encounter probability p and positive catch rate r (see Table 2) and
the identical likelihood used in each model (egs. 1a and 2a). The
conventional delta- and Poisson-link models generally differ (i.e.,
result in different maximum likelihoods and density predictions)
whenever they include either a covariate, variable area offset, or
random effects.

Comparison with the CPG distribution

The proposed Poisson-link model has many similarities to a CPG
distribution, which is a special case of the Tweedie distribution
(Smyth 1996; Lecomte et al. 2013). The CPG distribution is derived
from the assumption that biomass samples arise from a Poisson
distribution for the number of individuals captured:

(8) N; ~ Poisson(A; x a;)

where A; is the group density in the vicinity of sampling (I use
different symbols for variables than in the Poisson-link model to
indicate that estimated variables may differ between CPG and
Poisson-link models). The CPG then specifies that the mass W; of
each individual follows a gamma distribution:

9 W, ~ Gamma(k, wk )

where k is the gamma shape parameter and wk™ is the scale
parameter, such that total catch C; = E]N:Q W The parameteriza-
tion used here involves estimating A;, u;, and k, where A; and w,; can
be specified via a link-function and linear predictors and k is as-
sumed constant for all samples i (see Foster and Bravington (2013)
for further discussion). The CPG distribution generates a “power-law”
relationship between the expected value, E(C;) = m;, and variance,
Var(C) = ¢m;. By contrast, the typical Tweedie parameterization
directly estimates the power parameter (1 <v < 2), uses a constant
dispersion (¢; = ¢ for all i) and a linear predictor for log(n), and
has been used extensively elsewhere (Candy 2004; Shono 2008;
Lecomte et al. 2013; Berg et al. 2014). The CPG is identical to the
Tweedie parameterization given mean m; = \,a;u; and dispersion
1 Nap)*™

PN 2-v
vation).

Similar to the Poisson-link model, the CPG distribution (using
the Foster and Bravington (2013) parameterization) specifies a log-
link for both group density and average mass:

(based on Foster and Bravington (2013) for deri-

log(\) = Bix; + %)z
log(p) = BX; + 7,2

and this results in an identical derivation for expected encounter
probability p and positive catch rates r as the Poisson-link model
(Table 2). The CPG distribution therefore responds to all three
theoretical problems similarly to the Poisson-link model (Foster
and Bravington 2013). The Foster-Bravington parameterization of
the CPG distribution then involves estimating fixed effects §,, B,
and k by finding their values that maximize the likelihood func-
tion.

However, the CPG likelihood function (Smyth 1996, Dunn and
Smyth 2005) is computationally expensive to evaluate because it
involves approximating an integration constant W as the sum of
an infinite series (Appendix A) or approximating the CPG distri-
bution using numerical sampling (e.g., Lauderdale 2012). Approx-
imating the sum of an infinite series has computational cost
determined by the number of terms in the summation, and nu-
merical sampling requires introducing a large number of discrete-
valued random effects. In the following, I evaluate the CPG
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likelihood using an upper limit of 1000 for calculating W and
confirm that the log-likelihood (given maximum likelihood esti-
mates of all parameters) is identical to the value generated by the
package fishMod (Foster et al. 2016) to a tolerance of 10-°. In prac-
tice, approximating this infinite series can be efficiently imple-
mented by specialized numerical techniques (Dunn and Smyth
2008; Foster and Bravington 2013), e.g., by analytically determin-
ing an efficient lower and upper bound for the summation. I
encourage further comparison of numerical techniques as a topic
for future research but claim that the CPG likelihood is computa-
tionally expensive relative to the Poisson-link model because the
former requires summing across as many as 50 terms (Foster and
Bravington 2013 p. 539), while the Poisson-link model requires
evaluating only a single term.

Unlike the CPG distribution, the Poisson-link model permits
a fast, closed-form calculation of the model likelihood (using
egs. 1a, 2a, and 3-6). Both the CPG and Poisson-link model specify
the density of groups (A and n, respectively for CPG and Poisson-
link) and average mass per group (n and w, respectively) via log-
linked linear predictors. The main difference, however, is that the
proposed Poisson-link specifies a different mean-variance rela-
tionship than the CPG model.

Case study data: bottom trawl survey database

In the following, I first compare the fit of the conventional and
alternative Poisson-link models with the CPG using real-world
data and a simple model (estimating annual intercepts as fixed
effects). I then compare the conventional and alternative Poisson-
link models using a more complicated model (estimating fixed
annual intercepts plus spatial and spatio-temporal variation),
which is computationally infeasible using implementations of the
CPG distribution available in Template Model Builder (Kristensen
et al. 2016).

For each comparison, [ use bottom trawl survey data from seven
marine ecosystems: (1) Eastern Bering Sea: survey operated by the
Alaska Fisheries Science Center (AFSC) obtained from a fixed-
station design (Lauth and Conner 2016), (2) Gulf of Alaska: survey
operated by the AFSC obtained from a randomized design
(Von Szalay and Raring 2016), (3) Aleutian Islands: survey operated
by the AFSC obtained from a randomized design (Raring et al.
2016), (4) US West Coast:the West Coast groundfish bottom trawl
survey operated by the Northwest Fisheries Science Center
(NWEFSC) obtained from a stratified-random design (Keller et al.
2017), (5) North Sea: the North Sea international bottom trawl
survey (NS-IBTS), restricting data to 1991-2015 obtained using a
“Gov” gear in quarter 1 (winter) (ICES 2012), (6) Scottish West
Coast: the Scottish West Coast international bottom trawl survey
(SWC-IBTS), restricting data to 1991-2015 obtained using a “Gov”
gear in quarter 1, and (7) Celtic Sea and Bay of Biscay: the French
demersal survey (EVHOE) of the Celtic Sea and Bay of Biscay, op-
erating by the French Research Institute for Exploitation of the
Sea (IFREMER) from 1997 to 2015 in quarter 4 (fall) (Mahé and
Poulard 2005).

US survey protocols (1-4) contain biomass-per-unit-area data
(i.e., samples are standardized to a constant area swept), so I as-
sume that area swept is constant for these surveys. European
survey protocols (5-7) are described in ICES (2012). Public data-
bases for surveys 1-4 contain biomass-per-unit-area (i.e., samples
are standardized to a constant area swept), while for those for
surveys 5-7 contain raw biomass/numbers and a measure of fish-
ing effort (the duration of tows in minutes). I therefore assume
that “tow duration” is proportional to area swept g, for surveys 5-7
and that area swept is constant for surveys 1-4. US survey pro-
tocols (1-4) are described in Stauffer (2004), and publicly available
databases for these surveys contain biomass-per-unit-area (i.e.,
samples are standardized to a constant area swept). I therefore
analyse “biomass-per-area” as catch and fix area swept g, at a
constant value for all samples in these surveys. European survey
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Table 2. Comparison of variables for the conventional delta-model, an alternative Poisson-link model, and the compound Poisson-gamma model including how to calculate biomass density

for each model.

Conventional delta-model

Poisson-link delta-model

Compound Poisson-gamma model

Component 1

Component 2

Density

Predicted encounter
probability

Predicted positive catch rate

Likelihood function

Process to simulate data

pi

Encounter probability p:
logit(p,) = ﬁ:xl + 'Y—fl;zi
Positive catch rates r:
log(r) = Bx; + v,2; + log(a)

Biomass density d: d; =p; x 1;
_ 1
1+ exp(—ByX, — %2

T, T,
1, = a; x exp(—B,X; — v,2)

1-p; if =0

Pr(C=¢) = {pi x f(C; UIZVI) if ¢>0

P ~ Bernoulli(p;) and
0 if P=0

c = 2
i Im 2) if P=1
2 M

LN(log(ri) —

Group density n: log(n) = BIx; + 7,2

Average biomass per group w:

logw,) = Brx, + vrz;

or equivalently positive catch rates:

log(r,) = log(n) — log(p) + ByX; + %2,
Biomass density d: d; =n; x w;
p;i=1-exp(-a; x ;)

bi

1-p, if =0
Pr(C:ci):{ P

px f(C; 1 o) if >0

P ~ Bernoulli(p;) and
0 if P=0
— 2

C = o .
! LN(log(ri) - 7M oﬁ) if P=1

Group density A: log(A) = BIx; + v,z
Average biomass per group u:

log(w) = BX; + v,z

Biomass density d: d; = A; x w;
p;i=1-exp(-a; x \))

exp(—A\;) if =0

G .
W(ci, Ay Ky ) x exp(fj AN log(ci)) if ¢>0

1
€\

where W(c;, A, k, ) =

j=1 JIT(jk)
N; ~ Poisson(\;) W;; ~ Gamma(k 2, pk?) and
0 if N;=0

—J N
G- Sw,, if N>0
j=1 "

Note: We also include equations to convert from variables in the alternative Poisson-link model (n and w) and compound Poisson-gamma model (A and p) to variables in the conventional delta-model model (p and r),
calculate the likelihood function, and simulate data given each model. The likelihood function is identical between conventional and Poisson-link delta-models, where we use a bias-corrected lognormal density
0,
1 (log<c,-> ~ log(r) — 7“)
exp| —
oy V2w 20y

per group w; to encounter probability p; and positive catch rates r;. The likelihood for the compound Poisson-gamma model is from Foster and Bravington (2013) (see their eq. 6) (after fixing a typo where they were
missing a negative sign before their first summand on the right-hand side of the second row).

function in the main text: f(C; r;; oﬁ,[) = . However, evaluating the likelihood function for the Poisson-link model requires converting predicted group density n; and biomass

yLEL
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Fig. 2. Spatial location of sampling data for four surveys in North
America (middle panel) and three surveys in Europe (top panel) and
annual sample size (bottom panel) for all seven bottom trawl
surveys with publicly available Application Programming Interfaces,
used for comparing performance of conventional and “Poisson-link”
delta-models (colors are defined in the legend in the top panel,
identical between panels, and can be used to match spatial coverage
to the annual sample size for each survey in the bottom panel).
[Color online.]
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protocols (5-7) are described in ICES (2012), and the public Datras
database for these surveys contains numbers caught for multiple
length bins and a measure of fishing effort (the duration of tows in
minutes) for each sample as well as records of individual biomass
and length. I calculate a length-mass key from records of individ-
ual biomass and length, use this key to convert numbers-at-length
to biomass-at-length, and then calculate total biomass for each
sample.

For each survey, I restrict data to the 20 most frequently en-
countered fishes (see Fig. 2 for annual sample sizes). Surveys 6 and
7 had sufficient mass-at-length records to calculate biomass data
for fewer than 20 species, so I used biomass data for as many
species as were available. All surveys are publicly available and
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can be accessed using R package FishData (https://github.com/
james-thorson/FishData), which in turn uses R package icesDatras
(https://github.com/ices-tools-prod/icesDatras) to download data
for surveys 5-7.

Comparison 1: Annual intercept models

I first compare the conventional delta-model and Poisson-link
model against the CPG distribution using a simple model where
each model component has a separate intercept by year. Parame-
ters for all models are estimated via maximum likelihood using
release number 1.5.0 (https://doi.org/10.5281/zenodo.834777) of
package VAST (www.github.com/james-thorson/VAST) (Thorson
and Barnett (2017)), which estimates parameters using Template
Model Builder (Kristensen et al. 2016) within the R statistical plat-
form (R Core Team 2015). Model selection is conducted using the
marginal AIC (Akaike 1974) as is widely used in ecology and fish-
eries (Burnham and Anderson 2002) based on the marginal log-
likelihood and the number of fixed effects. I do not attempt to
calculate the conditional AIC (Vaida and Blanchard 2005), which
measures complexity by the number of fixed effects plus the ef-
fective degrees of freedom for random effects. To my knowledge,
conditional AIC has not been used in fisheries science, and I rec-
ommend its exploration as a topic for future research. The likeli-
hood is identical for the conventional delta-model and Poisson-
link model (see eq. 8 and associated text) and different from that
for the CPG distribution (because the CPG has a different expo-
nent for Taylor’s power law; see section Comparison with the CPG
distribution). I therefore present the difference in AIC between
the Poisson-link model and the CPG model. I present this compar-
ison to determine whether the Poisson-link model gains compu-
tational efficiency while maintaining a model fit comparable to
that of the CPG model.

Comparison 2: Spatio-temporal model

I next compare the conventional delta-model and Poisson-link
model using a spatio-temporal modelling framework that in-
cludes both spatial and spatio-temporal variation among sites s
and years t and also estimates a fixed effect for each year in each
model component. I do not include the CPG distribution in this
comparison because it is not computationally feasible to include
the CPG within the spatio-temporal modelling framework in Tem-
plate Model Builder (although see Arcuti et al. (2013) or Augustin
et al. (2013) for a spatio-temporal implementations using the mgcv
package (Wood et al. 2016) in R). For the conventional delta-model,

I specify

logit '(p(s, 1)) = B,(t) + w,ls) + (s, 1)

M ogiris, ) = B0 + w8 + &5,

where intercepts B,,(t) and B,(t) for each year are estimated as fixed
effects and

@2 9 MVN(o, U%R)
&,(t) ~ MVN(0, o,R)

where R is the spatial correlation given estimated decorrelation
distance «, U;w is the estimated pointwise variance of spatial vari-
ation in p, 0-127S is the estimated pointwise variance of spatio-
temporal variation in p, and w, and &,(t) are defined identically
but with separate estimates of spatial variance o‘fw and spatio-
temporal variance o”, (Thorson et al. 2015). For the alternative
Poisson-link model, I specify

log(n(s, t)) = By(t) + w,(5) + &,(s,1)

@) togls, 1) = ByD) + @,f) + £y(s. 1)
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Fig. 3. Akaike information criterion (AIC) weight for the “Poisson-link” model compared with a compound Poisson-gamma (CPG) model
(where a species with a AIC weight of 1.0 means that AIC strongly favors the Poisson-link over the CPG model) for a simple (fixed intercept
only) model applied to survey biomass sampling data in seven bottom trawl surveys (see Fig. 2 for spatial and temporal coverage of each
survey), where each panel also lists the average AIC weight for the Poisson-link model and the number of species analysed in that region.
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where spatial and spatio-temporal terms (e.g., eq. 12) are defined
identically to the conventional delta-model (but using different
subscripts to indicate the difference in variables). Parameters for
both conventional and alternative models are estimated using
maximum marginal likelihood, using the Laplace approximation
to approximate the integral across the joint probability of fixed
and random effects. Parameter estimation is again performed us-
ing package VAST, using a stochastic partial differential equation
approximation to the multivariate normal distribution used in
spatial and spatio-temporal processes (Lindgren et al. 2011), and
model selection is conducted using AIC.

After estimating parameters, I then evaluate model perfor-
mance by comparing the estimated standard deviation of spatial
and spatio-temporal variation for positive catch rates r in the
conventional delta-model with these standard deviations for av-
erage mass w in the Poisson-link model. I do not compare the
variance for encounter probability p because it is not easily inter-
pretable in the conventional delta model (as explained in the
previous section “Drawback 1: Difficulties in interpreting coeffi-
cients”). However, this comparison is appropriate for positive
catch rates r because the Poisson-link model decomposes variance
in log(r) into three additive components (see the conversion from
w and p to r in Table 2):

Var{log(r)] = Var[log(g)] + Var[log(w)]
) = Var[log(g)] + 02, + 02,

whereas the conventional model decomposes variance into two
components (see eq. 11):

(15)  Varflog(r)] = o7, + o,

Therefore, if knowledge of encounter probability p is informative
about positive catch rates r, then this will cause average mass in
the alternative model to have lower spatial and (or) spatio-temporal
variance than for positive catch rates in the conventional model (i.e.,

if Cov(log(r), log(g)) >0, then o>, + o2, < 0>, + o). Alternatively,

if encounter probability p is statistically independent or negatively
associated about positive catch rates r, then the opposite will occur
(ie., if Cov{log(r), loggn <0,then o’ + 02, = 0>, + 02).

I therefore record (1) the proportion of species for each region
where the conventional or alternative model was selected as par-
simonious using the AIC, (2) the pointwise (marginal) standard
deviation of spatial and spatio-temporal variance for both model
components, and (3) the predictive standard deviation of an abun-

< Published by NRC Research Press



Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by NOAA CENTRAL on 06/05/23
For personal use only.

Thorson

1377

Fig. 4. Akaike information criterion (AIC) weight for the “Poisson-link” model compared with a conventional delta-model for a complicated
(fixed intercept plus random spatial and spatio-temporal effects) model applied to survey biomass sampling data in seven bottom trawl

surveys (see Fig. 3 caption for details).
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dance index derived from each model (indices are area-weighted
following Thorson et al. (2015)). I hypothesize that the Poisson-link
model will be more parsimonious than the conventional delta-
model for the majority of species. The pointwise variances o>, and
o7, from the conventional model and o7, and o2, from the alter-
native model are directly comparable, and I hypothesize that spa-
tial and spatio-temporal variances for the alternative model will
be lower because the encounter probability p (estimated from
proportion of nearby samples that encounter the species) is infor-
mative about local positive catch rates .

Simulation experiment

Finally, I conduct a simulation experiment to evaluate relative
performance of three alternative models (conventional delta-
model: eqs. 1-2; Poisson-link model: eqs. 3-6; CPG model: eqs. 8-
10) when estimating a covariate. This experiment involves the
following steps:

(1) I obtain data for a single species (arrowtooth flounder,
Atheresthes stomias, in the EBSBTS data; survey 1 above) including
the depth for each sampling location.

(2) I fit each of three models to these data while including
as fixed effect both year (as an annual intercept) and depth
(standardized to have a mean of 0 and a standard deviation of 1)
and while not including any random effects.

(3) For each model in step 2, I generate 100 simulated data sets,
using the estimated depth effect, variance parameters, and simu-
lating new annual intercepts that have the same mean and stan-

Fig. 5. Distribution of standard deviation estimates of residual
variation in positive catch rates for a complicated (fixed intercept
plus random spatial and spatio-temporal effects) model for each of
113 stocks (in total across seven surveys), using the conventional
delta-model (solid line) or alternative Poisson-link delta-model
(broken line). I display the average standard deviation for each
model in the top right corner (“delta”: conventional delta-model;
“Poisson”: Poisson-link delta-model).
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Fig. 6. Standard deviation estimates for a complicated (fixed intercept plus random spatial and spatio-temporal effects) model (see Fig. 5
caption for plot details) showing spatial variation (left column) and spatio-temporal variation (right column). Standard deviations for
encounter probability p (top row) and density in numbers n (middle row) are not directly comparable (because encounter probability uses a
logit-link, while density uses a log-link), but standard deviations for positive catch rates in the conventional delta-model and average mass in
the Poisson-link delta model (bottom row) are directly comparable (because both use a log-link).
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dard deviation as the sample mean and standard deviation of
estimated intercepts (from step 2). Each simulated data set has
same the annual sample size and sampling locations as the origi-
nal data set (in step 1).

(4) For each of these 300 simulated data sets, I fit each of the
three models (i.e., 900 model fits total). For each model fit, I record
the estimated depth effect for both model components.

I assess model performance in two ways. First, I compare the
estimated depth effect when fitted to real data (in step 2) among
models to explore how interpretable these estimates are. Second,
I compare the estimated and true depth effect from each combi-
nation of simulation model (in step 2) and estimation model (in
step 4). Based on previous arguments, I hypothesize that the
Poisson-link and CPG models will have similar performance when
fitted to data generated by either model (i.e., because both specify
depth effects via a log-link for both model components).

Results

Available data show that the Poisson-link model results in bet-
ter fit (a higher log-likelihood of available data) relative to the CPG
model using the simple “annual intercept” structure (Fig. 3). Both
models have the same number of parameters and differ in the
relationship between mean and variance for positive catch rates
in each year. This suggests that the Poisson-link model improved
computational efficiency without sacrificing fit relative to the

CPG for fish biomass sampling data distribution given this simple
intercept-only model structure.

The complicated spatio-temporal model applied to these same
data shows that using a Poisson-link model also results in better
fit that the conventional delta-model for the vast majority of pop-
ulations in five out of seven regions (Fig. 4). Models again have
an identical number of estimated parameters, so a higher log-
likelihood also indicates greater parsimony (e.g., using the AIC).
The average AIC weight for the Poisson-link model is >80% for the
same six regions. The exception is for the California Current,
where each model is each selected for 10 of 20 species. In this
region, the implied correlation between encounter probability
and positive catch rates apparently does not improve fit relative to
assuming independence between detection probability and posi-
tive catch rates. However, the implied correlation does improve fit
for the majority of populations in other regions.

The conventional and alternative models have essentially iden-
tical estimates of residual variation in positive catch rates (o), =
1.25 or 1.26), indicating that both models attribute a roughly iden-
tical portion of sampling variance to the combination of spatial
and spatio-temporal variation (Fig. 5). As hypothesized, however,
the Poisson-link model results in a lower standard deviation for
spatial and spatio-temporal variation (Fig. 6). The standard devia-
tion is not directly comparable for the first-model component
between models because o, and o, (from the conventional model;
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Fig. 7. Comparison of estimated log-standard deviation of total population-wide abundance for the conventional delta-model and alternative
Poisson-link model for a complicated (fixed intercept plus random spatial and spatio-temporal effects) model applied to biomass sampling
data in seven bottom trawl surveys (the solid line shows a 1:1 relationship, indicating equal precision between models, and circles below the
line indicate greater precision for the Poisson-link model for a given population and year; the number in the upper left corner indicates the

average log-ratio between models).
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top row of Fig. 6) affect r via a logit-link function, while o,,,and o,,,
(from the alternative model; middle row of Fig. 6) affect r via a
complementary log-log link function. However, the standard de-
viations for the second component are comparable (both o, o,
and o, 0,,, affect positive catch rates r via the log-link function).
For this second component (Fig. 6, bottom row), the delta-model
has a pointwise standard deviation of 1.47, whereas the Poisson-
link model has 1.05 for spatial variation. Therefore, including
local densities and encounter probabilities (n and p) as a predictor
of r shrinks the magnitude of unexplained spatial variation by

2
1- &82 = 47%. Similarly, the Poisson-link model shrinks the mag-
8 2
nitude of unexplained spatiotemporal variation by 1 — &72 =
0.56

29% on average across populations.

Despite resulting in better fit and also shrinking the magnitude
of explained variation in positive catch rates, the Poisson-link
model does not consistently decrease the log-standard deviation
of confidence intervals for estimated abundance indices relative
to the conventional delta-model (Fig. 7). Across all seven regions,
the Poisson-link model has similar or slightly wider confidence
intervals on average (0%-4% wider) for all seven regions and for

almost every stock within each region. Inspection of residual di-
agnostics (supplementary materials?) shows little difference in fit
between models to two species selected for illustration purposes
(arrowtooth flounder in the Eastern Bering Sea and shortraker
rockfish, Sebastes borealis, in the Aleutian Islands).

Finally, the simulation experiment (Fig. 8) shows that the
Poisson-link model estimates a 2.0% increase in group density and
a-0.9% decrease in biomass per group when depth increases by 1%
of its standard deviation for arrowtooth flounder in the Eastern
Bering Sea (Fig. 8, vertical broken lines in middle column). The
CPG estimates qualitatively similar depth effects (a 1.3% increase
in group density and a -0.7% decrease in biomass per group),
while the depth effect for encounter probability in the conven-
tional delta model (B,) is highly different. This difference arises
because the conventional delta-model uses a logit-link function,
and therefore the estimated depth coefficient for the delta-model
cannot be used to calculate a single value for the increase in
encounter probability per change in depth (instead the predicted
increase in encounter probability with depth changes each year
depending on the intercept for that year). The simulation experi-
ment also confirms (1) that all three models generate unbiased

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2017-0266.
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Fig. 8. Comparison of estimated depth effects (histogram) versus true value (broken vertical lines) when estimating parameters using the
delta-model (top row, red: 8,; blue: B,), Poisson-link model (middle row, red: g,; blue: §,,), and compound Poisson-gamma (CPG) model
(bottom row, red: B,; blue: 8,,) applied to data generated using each model (left column: delta-model; middle column: Poisson-link model;
right column: CPG) fitted to data for arrowtooth flounder, Atheresthes stomias, in the Eastern Bering Sea. Note that the true depth effect (broken
vertical line) is identical for each panel in a given column (because these all use the same operating model to generate data) and that panels
along the diagonal involve a correctly specified estimation model, while other panels involve a misspecified estimation model.
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estimates of depth effects when the simulation and estimation
models match (Figs. 8a, 8e, and 8i) and (2) that the Poisson-link and
CPG estimation models have similar performance to one another,
regardless of whether data are generated by using the Poisson-
link or CPG simulation models (Figs. 8e, 8f, 8h, and 8i). Finally, a
comparison of model selection results from the simulation exper-
iment (results not shown) confirms that AIC identifies the data-
generating model as the most parsimonious estimation model in
nearly 100% of simulation replicates. This result confirms that AIC
is a useful metric to evaluate model performance using real-world
data (i.e., in Figs. 3 and 4).

Discussion

Delta-models using a logit-link for encounter probabilities and
a log-link for positive catch rates have a long history in fisheries
science (Stefansson 1996; Maunder and Punt 2004), and I have
presented three theoretical arguments for why this conventional
delta-model is unsatisfactory, namely (1) difficulties in interpret-
ing how covariates for encounter probability affect population
density, (2) the lack of dependence between encounter probability
and positive catch rates, and (3) the biologically implausible form
when removing covariates for one or the other model component.
I'have then shown how these three difficulties are addressed using

anew “Poisson-link” model for biomass sampling data that can be
interpreted as a computationally efficient alternative to the CPG
distribution. Application to 113 populations in seven marine re-
gions shows that the Poisson-link model substantially improves
fit by using knowledge of encounter probabilities to decrease oth-
erwise unexplained variation in positive catch rates. However,
this Poisson-link model decreases average confidence interval
width for abundance indices in only one of seven regions. I there-
fore conclude that the Poisson-link model is not likely to substan-
tially increase the information available to stock assessments
when used to estimate abundance indices. However, improve-
ments in fit, interpretability, and parsimony relative to a conven-
tional delta-model are still likely to be useful when estimating
habitat maps, estimating habitat associations, and fitting ecolog-
ical models to samples of fish biomass.

I envision several useful avenues for future research. Most ob-
viously, the Poisson-link model could be compared more exhaus-
tively with the CPG distribution as well as other alternatives (e.g.,
the Law-of-Leaks “LoL” model: Ancelet et al. (2010)), including
more detailed comparison of the different mean-variance rela-
tionships implied by these potential models. This comparison
could then identify taxa and model structures where the CPG, LoL,
and Poisson-link models are more or less statistically efficient.
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Given the many potential numerical techniques to implement the
CPG (Dunn and Smyth 2005, 2008; Foster and Bravington 2013),
one of these will hopefully prove to be computationally feasible
for the spatio-temporal models as explored here. I note that the
CPG distribution automatically follows Taylor’s rule (i.e., a power
law mean-variance relationship) and therefore has stronger the-
oretical support for ecological processes. I also recommend future
research exploring the potential consequences of ignoring varia-
tion among samples when predicting biomass per group (i.e., fix-
ing w; = w). This restriction is particularly appealing when
introducing additional model complexity (i.e., modelling multi-
ple species simultaneously: Thorson et al. 2016a). The current
application to 113 populations worldwide shows that there is
substantial variation in w even after accounting for the effect of
encounter probabilities, but determining the impact of restrict-
ing w; = w on model performance will require further simulation
testing. This simulation experiment could presumably be condi-
tioned on the range of spatial and spatio-temporal variances esti-
mated in this study.

Finally, the past decade has seen rapid growth in a variety of
useful approximations for otherwise slow or intractable processes
that arise in ecology. Examples include approximating individual
birth-death demographics using Markov chains (Hubbell 2011),
estimating the likelihood of ecological rates given unobserved
(latent) variables via the Laplace approximation (Skaug and
Fournier 2006; Kristensen et al. 2016), or approximating spatial
variation and individual movement using finite-element analysis
methods (Lindgren et al. 2011; Thorson et al. 2017). Collectively,
these approximations are useful when they permit the develop-
ment of models with increased realism regarding otherwise ne-
glected processes in ecological systems (e.g., a “zero-sum” linkage
between regional and local species pools for describing commu-
nity richness: Hubbell 2011). In this light, the Poisson-link model
can be viewed as a computationally efficient approximation to a
common sampling design, where biomass samples arise from a
weighing of individuals that vary in individual biomass. I recom-
mend ongoing development and testing of efficient approxima-
tions to sampling processes and hope that these approximations
will collectively allow biological rates (births, deaths, and move-
ment) to be simultaneously estimated for entire communities
occurring on heterogenous landscapes using available data world-
wide. Hopefully, this will then allow us to “fill in the missing
spaces” where messy or opportunistic data exist but ecologist
have no previously conducted comparative analyses (e.g., in the
white spaces in Fig. 1, top and middle panels).
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Appendix A: Comparing the Poisson-link delta
model with the compound Poisson-gamma
distribution

The Tweedie distribution is sometimes used to analyse biomass
sampling data for marine fishes (Foster and Bravington 2013;
Lecomte et al. 2013). This distribution specifies expected catch
rates D such that catch rate C follows a stochastic process with
expectation and variance:

E(C) = D

V(C) « D"

where this formula for the variance is Taylor’s power law and v is
the power parameter (Foster and Bravington 2013). When1<v <2,
the Tweedie distribution can be derived from a compound
Poisson-gamma (CPG) distribution, where the number of “individ-
uals” captured is

Can. J. Fish. Aquat. Sci. Vol. 75, 2018
N ~ Poisson())

and where the weight of each individual j follows a gamma distri-
bution:

W; ~ Gamma(k, 6)

such that total catch C = X}, W, In the main text, I present a
reparameterization in terms of numbers density ); and expected
individual mass w, for each sample i, where gamma shape param-
eter k is constant among samples but expected individual mass p;
differs among samples (where u; = k6,). Following Foster and
Bravington (2013), I specify that both numbers density A; and ex-
pected individual mass u; are predicted using a log-linked linear
predictor, and where the offset g; affects expected catch in num-
bers. I also show that this parameterization generates a similar
functional form for expected encounter probability r and positive
catch rates r as our alternative Poisson-link model.

Unfortunately, the CPG likelihood function (Smyth 1996) is ex-
pensive to evaluate:

Pr(c; = C)

exp(—A\;) if ¢=0

_ C:
Wiep, Ay ks ) % eXP<*j - A log(ci)) if >0

1

where W(c;, A;, k, ;) is a integration constant that requires calcu-
lating the sum of an infinite series:

¢ \k

A
M

Wi, A k) = 2 JIT(jk)

j=1

where this likelihood can instead be approximated using Markov-
chain sampling of N; (e.g., Lauderdale 2012). However, numerical
techniques to approximate this likelihood function are a topic of
ongoing research (Dunn and Smyth 2005, 2008).
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